KVM: Allocate guest memory as MAP_PRIVATE, not MAP_SHARED
[linux-2.6/verdex.git] / arch / x86 / kvm / x86.c
blob675d010995a266273ece8db88014e278abc7dd39
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
39 #include <asm/uaccess.h>
40 #include <asm/msr.h>
41 #include <asm/desc.h>
43 #define MAX_IO_MSRS 256
44 #define CR0_RESERVED_BITS \
45 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
46 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
47 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
48 #define CR4_RESERVED_BITS \
49 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
50 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
51 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
52 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
54 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 /* EFER defaults:
56 * - enable syscall per default because its emulated by KVM
57 * - enable LME and LMA per default on 64 bit KVM
59 #ifdef CONFIG_X86_64
60 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
61 #else
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
63 #endif
65 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
66 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
68 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
69 struct kvm_cpuid_entry2 __user *entries);
71 struct kvm_x86_ops *kvm_x86_ops;
72 EXPORT_SYMBOL_GPL(kvm_x86_ops);
74 struct kvm_stats_debugfs_item debugfs_entries[] = {
75 { "pf_fixed", VCPU_STAT(pf_fixed) },
76 { "pf_guest", VCPU_STAT(pf_guest) },
77 { "tlb_flush", VCPU_STAT(tlb_flush) },
78 { "invlpg", VCPU_STAT(invlpg) },
79 { "exits", VCPU_STAT(exits) },
80 { "io_exits", VCPU_STAT(io_exits) },
81 { "mmio_exits", VCPU_STAT(mmio_exits) },
82 { "signal_exits", VCPU_STAT(signal_exits) },
83 { "irq_window", VCPU_STAT(irq_window_exits) },
84 { "nmi_window", VCPU_STAT(nmi_window_exits) },
85 { "halt_exits", VCPU_STAT(halt_exits) },
86 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
87 { "hypercalls", VCPU_STAT(hypercalls) },
88 { "request_irq", VCPU_STAT(request_irq_exits) },
89 { "irq_exits", VCPU_STAT(irq_exits) },
90 { "host_state_reload", VCPU_STAT(host_state_reload) },
91 { "efer_reload", VCPU_STAT(efer_reload) },
92 { "fpu_reload", VCPU_STAT(fpu_reload) },
93 { "insn_emulation", VCPU_STAT(insn_emulation) },
94 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
95 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
96 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
97 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
98 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
99 { "mmu_flooded", VM_STAT(mmu_flooded) },
100 { "mmu_recycled", VM_STAT(mmu_recycled) },
101 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
102 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
103 { "largepages", VM_STAT(lpages) },
104 { NULL }
107 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
108 int assigned_dev_id)
110 struct list_head *ptr;
111 struct kvm_assigned_dev_kernel *match;
113 list_for_each(ptr, head) {
114 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
115 if (match->assigned_dev_id == assigned_dev_id)
116 return match;
118 return NULL;
121 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
123 struct kvm_assigned_dev_kernel *assigned_dev;
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
128 /* This is taken to safely inject irq inside the guest. When
129 * the interrupt injection (or the ioapic code) uses a
130 * finer-grained lock, update this
132 mutex_lock(&assigned_dev->kvm->lock);
133 kvm_set_irq(assigned_dev->kvm,
134 assigned_dev->guest_irq, 1);
135 mutex_unlock(&assigned_dev->kvm->lock);
136 kvm_put_kvm(assigned_dev->kvm);
139 /* FIXME: Implement the OR logic needed to make shared interrupts on
140 * this line behave properly
142 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
144 struct kvm_assigned_dev_kernel *assigned_dev =
145 (struct kvm_assigned_dev_kernel *) dev_id;
147 kvm_get_kvm(assigned_dev->kvm);
148 schedule_work(&assigned_dev->interrupt_work);
149 disable_irq_nosync(irq);
150 return IRQ_HANDLED;
153 /* Ack the irq line for an assigned device */
154 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
156 struct kvm_assigned_dev_kernel *dev;
158 if (kian->gsi == -1)
159 return;
161 dev = container_of(kian, struct kvm_assigned_dev_kernel,
162 ack_notifier);
163 kvm_set_irq(dev->kvm, dev->guest_irq, 0);
164 enable_irq(dev->host_irq);
167 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
168 struct kvm_assigned_irq
169 *assigned_irq)
171 int r = 0;
172 struct kvm_assigned_dev_kernel *match;
174 mutex_lock(&kvm->lock);
176 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
177 assigned_irq->assigned_dev_id);
178 if (!match) {
179 mutex_unlock(&kvm->lock);
180 return -EINVAL;
183 if (match->irq_requested) {
184 match->guest_irq = assigned_irq->guest_irq;
185 match->ack_notifier.gsi = assigned_irq->guest_irq;
186 mutex_unlock(&kvm->lock);
187 return 0;
190 INIT_WORK(&match->interrupt_work,
191 kvm_assigned_dev_interrupt_work_handler);
193 if (irqchip_in_kernel(kvm)) {
194 if (!capable(CAP_SYS_RAWIO)) {
195 return -EPERM;
196 goto out;
199 if (assigned_irq->host_irq)
200 match->host_irq = assigned_irq->host_irq;
201 else
202 match->host_irq = match->dev->irq;
203 match->guest_irq = assigned_irq->guest_irq;
204 match->ack_notifier.gsi = assigned_irq->guest_irq;
205 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
206 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
208 /* Even though this is PCI, we don't want to use shared
209 * interrupts. Sharing host devices with guest-assigned devices
210 * on the same interrupt line is not a happy situation: there
211 * are going to be long delays in accepting, acking, etc.
213 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
214 "kvm_assigned_device", (void *)match)) {
215 printk(KERN_INFO "%s: couldn't allocate irq for pv "
216 "device\n", __func__);
217 r = -EIO;
218 goto out;
222 match->irq_requested = true;
223 out:
224 mutex_unlock(&kvm->lock);
225 return r;
228 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
229 struct kvm_assigned_pci_dev *assigned_dev)
231 int r = 0;
232 struct kvm_assigned_dev_kernel *match;
233 struct pci_dev *dev;
235 mutex_lock(&kvm->lock);
237 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
238 assigned_dev->assigned_dev_id);
239 if (match) {
240 /* device already assigned */
241 r = -EINVAL;
242 goto out;
245 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
246 if (match == NULL) {
247 printk(KERN_INFO "%s: Couldn't allocate memory\n",
248 __func__);
249 r = -ENOMEM;
250 goto out;
252 dev = pci_get_bus_and_slot(assigned_dev->busnr,
253 assigned_dev->devfn);
254 if (!dev) {
255 printk(KERN_INFO "%s: host device not found\n", __func__);
256 r = -EINVAL;
257 goto out_free;
259 if (pci_enable_device(dev)) {
260 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
261 r = -EBUSY;
262 goto out_put;
264 r = pci_request_regions(dev, "kvm_assigned_device");
265 if (r) {
266 printk(KERN_INFO "%s: Could not get access to device regions\n",
267 __func__);
268 goto out_disable;
270 match->assigned_dev_id = assigned_dev->assigned_dev_id;
271 match->host_busnr = assigned_dev->busnr;
272 match->host_devfn = assigned_dev->devfn;
273 match->dev = dev;
275 match->kvm = kvm;
277 list_add(&match->list, &kvm->arch.assigned_dev_head);
279 out:
280 mutex_unlock(&kvm->lock);
281 return r;
282 out_disable:
283 pci_disable_device(dev);
284 out_put:
285 pci_dev_put(dev);
286 out_free:
287 kfree(match);
288 mutex_unlock(&kvm->lock);
289 return r;
292 static void kvm_free_assigned_devices(struct kvm *kvm)
294 struct list_head *ptr, *ptr2;
295 struct kvm_assigned_dev_kernel *assigned_dev;
297 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
298 assigned_dev = list_entry(ptr,
299 struct kvm_assigned_dev_kernel,
300 list);
302 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested) {
303 free_irq(assigned_dev->host_irq,
304 (void *)assigned_dev);
306 kvm_unregister_irq_ack_notifier(kvm,
307 &assigned_dev->
308 ack_notifier);
311 if (cancel_work_sync(&assigned_dev->interrupt_work))
312 /* We had pending work. That means we will have to take
313 * care of kvm_put_kvm.
315 kvm_put_kvm(kvm);
317 pci_release_regions(assigned_dev->dev);
318 pci_disable_device(assigned_dev->dev);
319 pci_dev_put(assigned_dev->dev);
321 list_del(&assigned_dev->list);
322 kfree(assigned_dev);
326 unsigned long segment_base(u16 selector)
328 struct descriptor_table gdt;
329 struct desc_struct *d;
330 unsigned long table_base;
331 unsigned long v;
333 if (selector == 0)
334 return 0;
336 asm("sgdt %0" : "=m"(gdt));
337 table_base = gdt.base;
339 if (selector & 4) { /* from ldt */
340 u16 ldt_selector;
342 asm("sldt %0" : "=g"(ldt_selector));
343 table_base = segment_base(ldt_selector);
345 d = (struct desc_struct *)(table_base + (selector & ~7));
346 v = d->base0 | ((unsigned long)d->base1 << 16) |
347 ((unsigned long)d->base2 << 24);
348 #ifdef CONFIG_X86_64
349 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
350 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
351 #endif
352 return v;
354 EXPORT_SYMBOL_GPL(segment_base);
356 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
358 if (irqchip_in_kernel(vcpu->kvm))
359 return vcpu->arch.apic_base;
360 else
361 return vcpu->arch.apic_base;
363 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
365 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
367 /* TODO: reserve bits check */
368 if (irqchip_in_kernel(vcpu->kvm))
369 kvm_lapic_set_base(vcpu, data);
370 else
371 vcpu->arch.apic_base = data;
373 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
375 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
377 WARN_ON(vcpu->arch.exception.pending);
378 vcpu->arch.exception.pending = true;
379 vcpu->arch.exception.has_error_code = false;
380 vcpu->arch.exception.nr = nr;
382 EXPORT_SYMBOL_GPL(kvm_queue_exception);
384 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
385 u32 error_code)
387 ++vcpu->stat.pf_guest;
388 if (vcpu->arch.exception.pending) {
389 if (vcpu->arch.exception.nr == PF_VECTOR) {
390 printk(KERN_DEBUG "kvm: inject_page_fault:"
391 " double fault 0x%lx\n", addr);
392 vcpu->arch.exception.nr = DF_VECTOR;
393 vcpu->arch.exception.error_code = 0;
394 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
395 /* triple fault -> shutdown */
396 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
398 return;
400 vcpu->arch.cr2 = addr;
401 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
404 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
406 vcpu->arch.nmi_pending = 1;
408 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
410 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
412 WARN_ON(vcpu->arch.exception.pending);
413 vcpu->arch.exception.pending = true;
414 vcpu->arch.exception.has_error_code = true;
415 vcpu->arch.exception.nr = nr;
416 vcpu->arch.exception.error_code = error_code;
418 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
420 static void __queue_exception(struct kvm_vcpu *vcpu)
422 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
423 vcpu->arch.exception.has_error_code,
424 vcpu->arch.exception.error_code);
428 * Load the pae pdptrs. Return true is they are all valid.
430 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
432 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
433 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
434 int i;
435 int ret;
436 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
438 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
439 offset * sizeof(u64), sizeof(pdpte));
440 if (ret < 0) {
441 ret = 0;
442 goto out;
444 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
445 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
446 ret = 0;
447 goto out;
450 ret = 1;
452 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
453 out:
455 return ret;
457 EXPORT_SYMBOL_GPL(load_pdptrs);
459 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
461 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
462 bool changed = true;
463 int r;
465 if (is_long_mode(vcpu) || !is_pae(vcpu))
466 return false;
468 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
469 if (r < 0)
470 goto out;
471 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
472 out:
474 return changed;
477 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
479 if (cr0 & CR0_RESERVED_BITS) {
480 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
481 cr0, vcpu->arch.cr0);
482 kvm_inject_gp(vcpu, 0);
483 return;
486 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
487 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
488 kvm_inject_gp(vcpu, 0);
489 return;
492 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
493 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
494 "and a clear PE flag\n");
495 kvm_inject_gp(vcpu, 0);
496 return;
499 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
500 #ifdef CONFIG_X86_64
501 if ((vcpu->arch.shadow_efer & EFER_LME)) {
502 int cs_db, cs_l;
504 if (!is_pae(vcpu)) {
505 printk(KERN_DEBUG "set_cr0: #GP, start paging "
506 "in long mode while PAE is disabled\n");
507 kvm_inject_gp(vcpu, 0);
508 return;
510 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
511 if (cs_l) {
512 printk(KERN_DEBUG "set_cr0: #GP, start paging "
513 "in long mode while CS.L == 1\n");
514 kvm_inject_gp(vcpu, 0);
515 return;
518 } else
519 #endif
520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
521 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
522 "reserved bits\n");
523 kvm_inject_gp(vcpu, 0);
524 return;
529 kvm_x86_ops->set_cr0(vcpu, cr0);
530 vcpu->arch.cr0 = cr0;
532 kvm_mmu_reset_context(vcpu);
533 return;
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
540 KVMTRACE_1D(LMSW, vcpu,
541 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
542 handler);
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
546 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
548 if (cr4 & CR4_RESERVED_BITS) {
549 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
550 kvm_inject_gp(vcpu, 0);
551 return;
554 if (is_long_mode(vcpu)) {
555 if (!(cr4 & X86_CR4_PAE)) {
556 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
557 "in long mode\n");
558 kvm_inject_gp(vcpu, 0);
559 return;
561 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
562 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
563 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
564 kvm_inject_gp(vcpu, 0);
565 return;
568 if (cr4 & X86_CR4_VMXE) {
569 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
570 kvm_inject_gp(vcpu, 0);
571 return;
573 kvm_x86_ops->set_cr4(vcpu, cr4);
574 vcpu->arch.cr4 = cr4;
575 kvm_mmu_reset_context(vcpu);
577 EXPORT_SYMBOL_GPL(kvm_set_cr4);
579 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
581 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
582 kvm_mmu_flush_tlb(vcpu);
583 return;
586 if (is_long_mode(vcpu)) {
587 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
588 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
589 kvm_inject_gp(vcpu, 0);
590 return;
592 } else {
593 if (is_pae(vcpu)) {
594 if (cr3 & CR3_PAE_RESERVED_BITS) {
595 printk(KERN_DEBUG
596 "set_cr3: #GP, reserved bits\n");
597 kvm_inject_gp(vcpu, 0);
598 return;
600 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
601 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
602 "reserved bits\n");
603 kvm_inject_gp(vcpu, 0);
604 return;
608 * We don't check reserved bits in nonpae mode, because
609 * this isn't enforced, and VMware depends on this.
614 * Does the new cr3 value map to physical memory? (Note, we
615 * catch an invalid cr3 even in real-mode, because it would
616 * cause trouble later on when we turn on paging anyway.)
618 * A real CPU would silently accept an invalid cr3 and would
619 * attempt to use it - with largely undefined (and often hard
620 * to debug) behavior on the guest side.
622 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
623 kvm_inject_gp(vcpu, 0);
624 else {
625 vcpu->arch.cr3 = cr3;
626 vcpu->arch.mmu.new_cr3(vcpu);
629 EXPORT_SYMBOL_GPL(kvm_set_cr3);
631 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
633 if (cr8 & CR8_RESERVED_BITS) {
634 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
635 kvm_inject_gp(vcpu, 0);
636 return;
638 if (irqchip_in_kernel(vcpu->kvm))
639 kvm_lapic_set_tpr(vcpu, cr8);
640 else
641 vcpu->arch.cr8 = cr8;
643 EXPORT_SYMBOL_GPL(kvm_set_cr8);
645 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
647 if (irqchip_in_kernel(vcpu->kvm))
648 return kvm_lapic_get_cr8(vcpu);
649 else
650 return vcpu->arch.cr8;
652 EXPORT_SYMBOL_GPL(kvm_get_cr8);
655 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
656 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
658 * This list is modified at module load time to reflect the
659 * capabilities of the host cpu.
661 static u32 msrs_to_save[] = {
662 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
663 MSR_K6_STAR,
664 #ifdef CONFIG_X86_64
665 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
666 #endif
667 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
668 MSR_IA32_PERF_STATUS,
671 static unsigned num_msrs_to_save;
673 static u32 emulated_msrs[] = {
674 MSR_IA32_MISC_ENABLE,
677 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
679 if (efer & efer_reserved_bits) {
680 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
681 efer);
682 kvm_inject_gp(vcpu, 0);
683 return;
686 if (is_paging(vcpu)
687 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
688 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
689 kvm_inject_gp(vcpu, 0);
690 return;
693 kvm_x86_ops->set_efer(vcpu, efer);
695 efer &= ~EFER_LMA;
696 efer |= vcpu->arch.shadow_efer & EFER_LMA;
698 vcpu->arch.shadow_efer = efer;
701 void kvm_enable_efer_bits(u64 mask)
703 efer_reserved_bits &= ~mask;
705 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
709 * Writes msr value into into the appropriate "register".
710 * Returns 0 on success, non-0 otherwise.
711 * Assumes vcpu_load() was already called.
713 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
715 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
719 * Adapt set_msr() to msr_io()'s calling convention
721 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
723 return kvm_set_msr(vcpu, index, *data);
726 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
728 static int version;
729 struct pvclock_wall_clock wc;
730 struct timespec now, sys, boot;
732 if (!wall_clock)
733 return;
735 version++;
737 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
740 * The guest calculates current wall clock time by adding
741 * system time (updated by kvm_write_guest_time below) to the
742 * wall clock specified here. guest system time equals host
743 * system time for us, thus we must fill in host boot time here.
745 now = current_kernel_time();
746 ktime_get_ts(&sys);
747 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
749 wc.sec = boot.tv_sec;
750 wc.nsec = boot.tv_nsec;
751 wc.version = version;
753 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
755 version++;
756 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
759 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
761 uint32_t quotient, remainder;
763 /* Don't try to replace with do_div(), this one calculates
764 * "(dividend << 32) / divisor" */
765 __asm__ ( "divl %4"
766 : "=a" (quotient), "=d" (remainder)
767 : "0" (0), "1" (dividend), "r" (divisor) );
768 return quotient;
771 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
773 uint64_t nsecs = 1000000000LL;
774 int32_t shift = 0;
775 uint64_t tps64;
776 uint32_t tps32;
778 tps64 = tsc_khz * 1000LL;
779 while (tps64 > nsecs*2) {
780 tps64 >>= 1;
781 shift--;
784 tps32 = (uint32_t)tps64;
785 while (tps32 <= (uint32_t)nsecs) {
786 tps32 <<= 1;
787 shift++;
790 hv_clock->tsc_shift = shift;
791 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
793 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
794 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
795 hv_clock->tsc_to_system_mul);
798 static void kvm_write_guest_time(struct kvm_vcpu *v)
800 struct timespec ts;
801 unsigned long flags;
802 struct kvm_vcpu_arch *vcpu = &v->arch;
803 void *shared_kaddr;
805 if ((!vcpu->time_page))
806 return;
808 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
809 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
810 vcpu->hv_clock_tsc_khz = tsc_khz;
813 /* Keep irq disabled to prevent changes to the clock */
814 local_irq_save(flags);
815 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
816 &vcpu->hv_clock.tsc_timestamp);
817 ktime_get_ts(&ts);
818 local_irq_restore(flags);
820 /* With all the info we got, fill in the values */
822 vcpu->hv_clock.system_time = ts.tv_nsec +
823 (NSEC_PER_SEC * (u64)ts.tv_sec);
825 * The interface expects us to write an even number signaling that the
826 * update is finished. Since the guest won't see the intermediate
827 * state, we just increase by 2 at the end.
829 vcpu->hv_clock.version += 2;
831 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
833 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
834 sizeof(vcpu->hv_clock));
836 kunmap_atomic(shared_kaddr, KM_USER0);
838 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
841 static bool msr_mtrr_valid(unsigned msr)
843 switch (msr) {
844 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
845 case MSR_MTRRfix64K_00000:
846 case MSR_MTRRfix16K_80000:
847 case MSR_MTRRfix16K_A0000:
848 case MSR_MTRRfix4K_C0000:
849 case MSR_MTRRfix4K_C8000:
850 case MSR_MTRRfix4K_D0000:
851 case MSR_MTRRfix4K_D8000:
852 case MSR_MTRRfix4K_E0000:
853 case MSR_MTRRfix4K_E8000:
854 case MSR_MTRRfix4K_F0000:
855 case MSR_MTRRfix4K_F8000:
856 case MSR_MTRRdefType:
857 case MSR_IA32_CR_PAT:
858 return true;
859 case 0x2f8:
860 return true;
862 return false;
865 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
867 if (!msr_mtrr_valid(msr))
868 return 1;
870 vcpu->arch.mtrr[msr - 0x200] = data;
871 return 0;
874 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
876 switch (msr) {
877 case MSR_EFER:
878 set_efer(vcpu, data);
879 break;
880 case MSR_IA32_MC0_STATUS:
881 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
882 __func__, data);
883 break;
884 case MSR_IA32_MCG_STATUS:
885 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
886 __func__, data);
887 break;
888 case MSR_IA32_MCG_CTL:
889 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
890 __func__, data);
891 break;
892 case MSR_IA32_DEBUGCTLMSR:
893 if (!data) {
894 /* We support the non-activated case already */
895 break;
896 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
897 /* Values other than LBR and BTF are vendor-specific,
898 thus reserved and should throw a #GP */
899 return 1;
901 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
902 __func__, data);
903 break;
904 case MSR_IA32_UCODE_REV:
905 case MSR_IA32_UCODE_WRITE:
906 break;
907 case 0x200 ... 0x2ff:
908 return set_msr_mtrr(vcpu, msr, data);
909 case MSR_IA32_APICBASE:
910 kvm_set_apic_base(vcpu, data);
911 break;
912 case MSR_IA32_MISC_ENABLE:
913 vcpu->arch.ia32_misc_enable_msr = data;
914 break;
915 case MSR_KVM_WALL_CLOCK:
916 vcpu->kvm->arch.wall_clock = data;
917 kvm_write_wall_clock(vcpu->kvm, data);
918 break;
919 case MSR_KVM_SYSTEM_TIME: {
920 if (vcpu->arch.time_page) {
921 kvm_release_page_dirty(vcpu->arch.time_page);
922 vcpu->arch.time_page = NULL;
925 vcpu->arch.time = data;
927 /* we verify if the enable bit is set... */
928 if (!(data & 1))
929 break;
931 /* ...but clean it before doing the actual write */
932 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
934 down_read(&current->mm->mmap_sem);
935 vcpu->arch.time_page =
936 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
937 up_read(&current->mm->mmap_sem);
939 if (is_error_page(vcpu->arch.time_page)) {
940 kvm_release_page_clean(vcpu->arch.time_page);
941 vcpu->arch.time_page = NULL;
944 kvm_write_guest_time(vcpu);
945 break;
947 default:
948 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
949 return 1;
951 return 0;
953 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
957 * Reads an msr value (of 'msr_index') into 'pdata'.
958 * Returns 0 on success, non-0 otherwise.
959 * Assumes vcpu_load() was already called.
961 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
963 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
966 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
968 if (!msr_mtrr_valid(msr))
969 return 1;
971 *pdata = vcpu->arch.mtrr[msr - 0x200];
972 return 0;
975 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
977 u64 data;
979 switch (msr) {
980 case 0xc0010010: /* SYSCFG */
981 case 0xc0010015: /* HWCR */
982 case MSR_IA32_PLATFORM_ID:
983 case MSR_IA32_P5_MC_ADDR:
984 case MSR_IA32_P5_MC_TYPE:
985 case MSR_IA32_MC0_CTL:
986 case MSR_IA32_MCG_STATUS:
987 case MSR_IA32_MCG_CAP:
988 case MSR_IA32_MCG_CTL:
989 case MSR_IA32_MC0_MISC:
990 case MSR_IA32_MC0_MISC+4:
991 case MSR_IA32_MC0_MISC+8:
992 case MSR_IA32_MC0_MISC+12:
993 case MSR_IA32_MC0_MISC+16:
994 case MSR_IA32_UCODE_REV:
995 case MSR_IA32_EBL_CR_POWERON:
996 case MSR_IA32_DEBUGCTLMSR:
997 case MSR_IA32_LASTBRANCHFROMIP:
998 case MSR_IA32_LASTBRANCHTOIP:
999 case MSR_IA32_LASTINTFROMIP:
1000 case MSR_IA32_LASTINTTOIP:
1001 data = 0;
1002 break;
1003 case MSR_MTRRcap:
1004 data = 0x500 | KVM_NR_VAR_MTRR;
1005 break;
1006 case 0x200 ... 0x2ff:
1007 return get_msr_mtrr(vcpu, msr, pdata);
1008 case 0xcd: /* fsb frequency */
1009 data = 3;
1010 break;
1011 case MSR_IA32_APICBASE:
1012 data = kvm_get_apic_base(vcpu);
1013 break;
1014 case MSR_IA32_MISC_ENABLE:
1015 data = vcpu->arch.ia32_misc_enable_msr;
1016 break;
1017 case MSR_IA32_PERF_STATUS:
1018 /* TSC increment by tick */
1019 data = 1000ULL;
1020 /* CPU multiplier */
1021 data |= (((uint64_t)4ULL) << 40);
1022 break;
1023 case MSR_EFER:
1024 data = vcpu->arch.shadow_efer;
1025 break;
1026 case MSR_KVM_WALL_CLOCK:
1027 data = vcpu->kvm->arch.wall_clock;
1028 break;
1029 case MSR_KVM_SYSTEM_TIME:
1030 data = vcpu->arch.time;
1031 break;
1032 default:
1033 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1034 return 1;
1036 *pdata = data;
1037 return 0;
1039 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1042 * Read or write a bunch of msrs. All parameters are kernel addresses.
1044 * @return number of msrs set successfully.
1046 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1047 struct kvm_msr_entry *entries,
1048 int (*do_msr)(struct kvm_vcpu *vcpu,
1049 unsigned index, u64 *data))
1051 int i;
1053 vcpu_load(vcpu);
1055 down_read(&vcpu->kvm->slots_lock);
1056 for (i = 0; i < msrs->nmsrs; ++i)
1057 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1058 break;
1059 up_read(&vcpu->kvm->slots_lock);
1061 vcpu_put(vcpu);
1063 return i;
1067 * Read or write a bunch of msrs. Parameters are user addresses.
1069 * @return number of msrs set successfully.
1071 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1072 int (*do_msr)(struct kvm_vcpu *vcpu,
1073 unsigned index, u64 *data),
1074 int writeback)
1076 struct kvm_msrs msrs;
1077 struct kvm_msr_entry *entries;
1078 int r, n;
1079 unsigned size;
1081 r = -EFAULT;
1082 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1083 goto out;
1085 r = -E2BIG;
1086 if (msrs.nmsrs >= MAX_IO_MSRS)
1087 goto out;
1089 r = -ENOMEM;
1090 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1091 entries = vmalloc(size);
1092 if (!entries)
1093 goto out;
1095 r = -EFAULT;
1096 if (copy_from_user(entries, user_msrs->entries, size))
1097 goto out_free;
1099 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1100 if (r < 0)
1101 goto out_free;
1103 r = -EFAULT;
1104 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1105 goto out_free;
1107 r = n;
1109 out_free:
1110 vfree(entries);
1111 out:
1112 return r;
1115 int kvm_dev_ioctl_check_extension(long ext)
1117 int r;
1119 switch (ext) {
1120 case KVM_CAP_IRQCHIP:
1121 case KVM_CAP_HLT:
1122 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1123 case KVM_CAP_USER_MEMORY:
1124 case KVM_CAP_SET_TSS_ADDR:
1125 case KVM_CAP_EXT_CPUID:
1126 case KVM_CAP_CLOCKSOURCE:
1127 case KVM_CAP_PIT:
1128 case KVM_CAP_NOP_IO_DELAY:
1129 case KVM_CAP_MP_STATE:
1130 case KVM_CAP_SYNC_MMU:
1131 r = 1;
1132 break;
1133 case KVM_CAP_COALESCED_MMIO:
1134 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1135 break;
1136 case KVM_CAP_VAPIC:
1137 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1138 break;
1139 case KVM_CAP_NR_VCPUS:
1140 r = KVM_MAX_VCPUS;
1141 break;
1142 case KVM_CAP_NR_MEMSLOTS:
1143 r = KVM_MEMORY_SLOTS;
1144 break;
1145 case KVM_CAP_PV_MMU:
1146 r = !tdp_enabled;
1147 break;
1148 default:
1149 r = 0;
1150 break;
1152 return r;
1156 long kvm_arch_dev_ioctl(struct file *filp,
1157 unsigned int ioctl, unsigned long arg)
1159 void __user *argp = (void __user *)arg;
1160 long r;
1162 switch (ioctl) {
1163 case KVM_GET_MSR_INDEX_LIST: {
1164 struct kvm_msr_list __user *user_msr_list = argp;
1165 struct kvm_msr_list msr_list;
1166 unsigned n;
1168 r = -EFAULT;
1169 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1170 goto out;
1171 n = msr_list.nmsrs;
1172 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1173 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1174 goto out;
1175 r = -E2BIG;
1176 if (n < num_msrs_to_save)
1177 goto out;
1178 r = -EFAULT;
1179 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1180 num_msrs_to_save * sizeof(u32)))
1181 goto out;
1182 if (copy_to_user(user_msr_list->indices
1183 + num_msrs_to_save * sizeof(u32),
1184 &emulated_msrs,
1185 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1186 goto out;
1187 r = 0;
1188 break;
1190 case KVM_GET_SUPPORTED_CPUID: {
1191 struct kvm_cpuid2 __user *cpuid_arg = argp;
1192 struct kvm_cpuid2 cpuid;
1194 r = -EFAULT;
1195 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1196 goto out;
1197 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1198 cpuid_arg->entries);
1199 if (r)
1200 goto out;
1202 r = -EFAULT;
1203 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1204 goto out;
1205 r = 0;
1206 break;
1208 default:
1209 r = -EINVAL;
1211 out:
1212 return r;
1215 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1217 kvm_x86_ops->vcpu_load(vcpu, cpu);
1218 kvm_write_guest_time(vcpu);
1221 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1223 kvm_x86_ops->vcpu_put(vcpu);
1224 kvm_put_guest_fpu(vcpu);
1227 static int is_efer_nx(void)
1229 u64 efer;
1231 rdmsrl(MSR_EFER, efer);
1232 return efer & EFER_NX;
1235 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1237 int i;
1238 struct kvm_cpuid_entry2 *e, *entry;
1240 entry = NULL;
1241 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1242 e = &vcpu->arch.cpuid_entries[i];
1243 if (e->function == 0x80000001) {
1244 entry = e;
1245 break;
1248 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1249 entry->edx &= ~(1 << 20);
1250 printk(KERN_INFO "kvm: guest NX capability removed\n");
1254 /* when an old userspace process fills a new kernel module */
1255 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1256 struct kvm_cpuid *cpuid,
1257 struct kvm_cpuid_entry __user *entries)
1259 int r, i;
1260 struct kvm_cpuid_entry *cpuid_entries;
1262 r = -E2BIG;
1263 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1264 goto out;
1265 r = -ENOMEM;
1266 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1267 if (!cpuid_entries)
1268 goto out;
1269 r = -EFAULT;
1270 if (copy_from_user(cpuid_entries, entries,
1271 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1272 goto out_free;
1273 for (i = 0; i < cpuid->nent; i++) {
1274 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1275 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1276 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1277 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1278 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1279 vcpu->arch.cpuid_entries[i].index = 0;
1280 vcpu->arch.cpuid_entries[i].flags = 0;
1281 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1282 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1283 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1285 vcpu->arch.cpuid_nent = cpuid->nent;
1286 cpuid_fix_nx_cap(vcpu);
1287 r = 0;
1289 out_free:
1290 vfree(cpuid_entries);
1291 out:
1292 return r;
1295 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1296 struct kvm_cpuid2 *cpuid,
1297 struct kvm_cpuid_entry2 __user *entries)
1299 int r;
1301 r = -E2BIG;
1302 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1303 goto out;
1304 r = -EFAULT;
1305 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1306 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1307 goto out;
1308 vcpu->arch.cpuid_nent = cpuid->nent;
1309 return 0;
1311 out:
1312 return r;
1315 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1316 struct kvm_cpuid2 *cpuid,
1317 struct kvm_cpuid_entry2 __user *entries)
1319 int r;
1321 r = -E2BIG;
1322 if (cpuid->nent < vcpu->arch.cpuid_nent)
1323 goto out;
1324 r = -EFAULT;
1325 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1326 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1327 goto out;
1328 return 0;
1330 out:
1331 cpuid->nent = vcpu->arch.cpuid_nent;
1332 return r;
1335 static inline u32 bit(int bitno)
1337 return 1 << (bitno & 31);
1340 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1341 u32 index)
1343 entry->function = function;
1344 entry->index = index;
1345 cpuid_count(entry->function, entry->index,
1346 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1347 entry->flags = 0;
1350 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1351 u32 index, int *nent, int maxnent)
1353 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1354 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1355 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1356 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1357 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1358 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1359 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1360 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1361 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1362 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1363 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1364 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1365 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1366 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1367 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1368 bit(X86_FEATURE_PGE) |
1369 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1370 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1371 bit(X86_FEATURE_SYSCALL) |
1372 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1373 #ifdef CONFIG_X86_64
1374 bit(X86_FEATURE_LM) |
1375 #endif
1376 bit(X86_FEATURE_MMXEXT) |
1377 bit(X86_FEATURE_3DNOWEXT) |
1378 bit(X86_FEATURE_3DNOW);
1379 const u32 kvm_supported_word3_x86_features =
1380 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1381 const u32 kvm_supported_word6_x86_features =
1382 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1384 /* all func 2 cpuid_count() should be called on the same cpu */
1385 get_cpu();
1386 do_cpuid_1_ent(entry, function, index);
1387 ++*nent;
1389 switch (function) {
1390 case 0:
1391 entry->eax = min(entry->eax, (u32)0xb);
1392 break;
1393 case 1:
1394 entry->edx &= kvm_supported_word0_x86_features;
1395 entry->ecx &= kvm_supported_word3_x86_features;
1396 break;
1397 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1398 * may return different values. This forces us to get_cpu() before
1399 * issuing the first command, and also to emulate this annoying behavior
1400 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1401 case 2: {
1402 int t, times = entry->eax & 0xff;
1404 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1405 for (t = 1; t < times && *nent < maxnent; ++t) {
1406 do_cpuid_1_ent(&entry[t], function, 0);
1407 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1408 ++*nent;
1410 break;
1412 /* function 4 and 0xb have additional index. */
1413 case 4: {
1414 int i, cache_type;
1416 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1417 /* read more entries until cache_type is zero */
1418 for (i = 1; *nent < maxnent; ++i) {
1419 cache_type = entry[i - 1].eax & 0x1f;
1420 if (!cache_type)
1421 break;
1422 do_cpuid_1_ent(&entry[i], function, i);
1423 entry[i].flags |=
1424 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1425 ++*nent;
1427 break;
1429 case 0xb: {
1430 int i, level_type;
1432 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1433 /* read more entries until level_type is zero */
1434 for (i = 1; *nent < maxnent; ++i) {
1435 level_type = entry[i - 1].ecx & 0xff;
1436 if (!level_type)
1437 break;
1438 do_cpuid_1_ent(&entry[i], function, i);
1439 entry[i].flags |=
1440 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1441 ++*nent;
1443 break;
1445 case 0x80000000:
1446 entry->eax = min(entry->eax, 0x8000001a);
1447 break;
1448 case 0x80000001:
1449 entry->edx &= kvm_supported_word1_x86_features;
1450 entry->ecx &= kvm_supported_word6_x86_features;
1451 break;
1453 put_cpu();
1456 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1457 struct kvm_cpuid_entry2 __user *entries)
1459 struct kvm_cpuid_entry2 *cpuid_entries;
1460 int limit, nent = 0, r = -E2BIG;
1461 u32 func;
1463 if (cpuid->nent < 1)
1464 goto out;
1465 r = -ENOMEM;
1466 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1467 if (!cpuid_entries)
1468 goto out;
1470 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1471 limit = cpuid_entries[0].eax;
1472 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1473 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1474 &nent, cpuid->nent);
1475 r = -E2BIG;
1476 if (nent >= cpuid->nent)
1477 goto out_free;
1479 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1480 limit = cpuid_entries[nent - 1].eax;
1481 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1482 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1483 &nent, cpuid->nent);
1484 r = -EFAULT;
1485 if (copy_to_user(entries, cpuid_entries,
1486 nent * sizeof(struct kvm_cpuid_entry2)))
1487 goto out_free;
1488 cpuid->nent = nent;
1489 r = 0;
1491 out_free:
1492 vfree(cpuid_entries);
1493 out:
1494 return r;
1497 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1498 struct kvm_lapic_state *s)
1500 vcpu_load(vcpu);
1501 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1502 vcpu_put(vcpu);
1504 return 0;
1507 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1508 struct kvm_lapic_state *s)
1510 vcpu_load(vcpu);
1511 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1512 kvm_apic_post_state_restore(vcpu);
1513 vcpu_put(vcpu);
1515 return 0;
1518 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1519 struct kvm_interrupt *irq)
1521 if (irq->irq < 0 || irq->irq >= 256)
1522 return -EINVAL;
1523 if (irqchip_in_kernel(vcpu->kvm))
1524 return -ENXIO;
1525 vcpu_load(vcpu);
1527 set_bit(irq->irq, vcpu->arch.irq_pending);
1528 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1530 vcpu_put(vcpu);
1532 return 0;
1535 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1536 struct kvm_tpr_access_ctl *tac)
1538 if (tac->flags)
1539 return -EINVAL;
1540 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1541 return 0;
1544 long kvm_arch_vcpu_ioctl(struct file *filp,
1545 unsigned int ioctl, unsigned long arg)
1547 struct kvm_vcpu *vcpu = filp->private_data;
1548 void __user *argp = (void __user *)arg;
1549 int r;
1550 struct kvm_lapic_state *lapic = NULL;
1552 switch (ioctl) {
1553 case KVM_GET_LAPIC: {
1554 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1556 r = -ENOMEM;
1557 if (!lapic)
1558 goto out;
1559 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1560 if (r)
1561 goto out;
1562 r = -EFAULT;
1563 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1564 goto out;
1565 r = 0;
1566 break;
1568 case KVM_SET_LAPIC: {
1569 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1570 r = -ENOMEM;
1571 if (!lapic)
1572 goto out;
1573 r = -EFAULT;
1574 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1575 goto out;
1576 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1577 if (r)
1578 goto out;
1579 r = 0;
1580 break;
1582 case KVM_INTERRUPT: {
1583 struct kvm_interrupt irq;
1585 r = -EFAULT;
1586 if (copy_from_user(&irq, argp, sizeof irq))
1587 goto out;
1588 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1589 if (r)
1590 goto out;
1591 r = 0;
1592 break;
1594 case KVM_SET_CPUID: {
1595 struct kvm_cpuid __user *cpuid_arg = argp;
1596 struct kvm_cpuid cpuid;
1598 r = -EFAULT;
1599 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1600 goto out;
1601 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1602 if (r)
1603 goto out;
1604 break;
1606 case KVM_SET_CPUID2: {
1607 struct kvm_cpuid2 __user *cpuid_arg = argp;
1608 struct kvm_cpuid2 cpuid;
1610 r = -EFAULT;
1611 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1612 goto out;
1613 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1614 cpuid_arg->entries);
1615 if (r)
1616 goto out;
1617 break;
1619 case KVM_GET_CPUID2: {
1620 struct kvm_cpuid2 __user *cpuid_arg = argp;
1621 struct kvm_cpuid2 cpuid;
1623 r = -EFAULT;
1624 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1625 goto out;
1626 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1627 cpuid_arg->entries);
1628 if (r)
1629 goto out;
1630 r = -EFAULT;
1631 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1632 goto out;
1633 r = 0;
1634 break;
1636 case KVM_GET_MSRS:
1637 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1638 break;
1639 case KVM_SET_MSRS:
1640 r = msr_io(vcpu, argp, do_set_msr, 0);
1641 break;
1642 case KVM_TPR_ACCESS_REPORTING: {
1643 struct kvm_tpr_access_ctl tac;
1645 r = -EFAULT;
1646 if (copy_from_user(&tac, argp, sizeof tac))
1647 goto out;
1648 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1649 if (r)
1650 goto out;
1651 r = -EFAULT;
1652 if (copy_to_user(argp, &tac, sizeof tac))
1653 goto out;
1654 r = 0;
1655 break;
1657 case KVM_SET_VAPIC_ADDR: {
1658 struct kvm_vapic_addr va;
1660 r = -EINVAL;
1661 if (!irqchip_in_kernel(vcpu->kvm))
1662 goto out;
1663 r = -EFAULT;
1664 if (copy_from_user(&va, argp, sizeof va))
1665 goto out;
1666 r = 0;
1667 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1668 break;
1670 default:
1671 r = -EINVAL;
1673 out:
1674 if (lapic)
1675 kfree(lapic);
1676 return r;
1679 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1681 int ret;
1683 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1684 return -1;
1685 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1686 return ret;
1689 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1690 u32 kvm_nr_mmu_pages)
1692 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1693 return -EINVAL;
1695 down_write(&kvm->slots_lock);
1697 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1698 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1700 up_write(&kvm->slots_lock);
1701 return 0;
1704 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1706 return kvm->arch.n_alloc_mmu_pages;
1709 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1711 int i;
1712 struct kvm_mem_alias *alias;
1714 for (i = 0; i < kvm->arch.naliases; ++i) {
1715 alias = &kvm->arch.aliases[i];
1716 if (gfn >= alias->base_gfn
1717 && gfn < alias->base_gfn + alias->npages)
1718 return alias->target_gfn + gfn - alias->base_gfn;
1720 return gfn;
1724 * Set a new alias region. Aliases map a portion of physical memory into
1725 * another portion. This is useful for memory windows, for example the PC
1726 * VGA region.
1728 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1729 struct kvm_memory_alias *alias)
1731 int r, n;
1732 struct kvm_mem_alias *p;
1734 r = -EINVAL;
1735 /* General sanity checks */
1736 if (alias->memory_size & (PAGE_SIZE - 1))
1737 goto out;
1738 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1739 goto out;
1740 if (alias->slot >= KVM_ALIAS_SLOTS)
1741 goto out;
1742 if (alias->guest_phys_addr + alias->memory_size
1743 < alias->guest_phys_addr)
1744 goto out;
1745 if (alias->target_phys_addr + alias->memory_size
1746 < alias->target_phys_addr)
1747 goto out;
1749 down_write(&kvm->slots_lock);
1750 spin_lock(&kvm->mmu_lock);
1752 p = &kvm->arch.aliases[alias->slot];
1753 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1754 p->npages = alias->memory_size >> PAGE_SHIFT;
1755 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1757 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1758 if (kvm->arch.aliases[n - 1].npages)
1759 break;
1760 kvm->arch.naliases = n;
1762 spin_unlock(&kvm->mmu_lock);
1763 kvm_mmu_zap_all(kvm);
1765 up_write(&kvm->slots_lock);
1767 return 0;
1769 out:
1770 return r;
1773 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1775 int r;
1777 r = 0;
1778 switch (chip->chip_id) {
1779 case KVM_IRQCHIP_PIC_MASTER:
1780 memcpy(&chip->chip.pic,
1781 &pic_irqchip(kvm)->pics[0],
1782 sizeof(struct kvm_pic_state));
1783 break;
1784 case KVM_IRQCHIP_PIC_SLAVE:
1785 memcpy(&chip->chip.pic,
1786 &pic_irqchip(kvm)->pics[1],
1787 sizeof(struct kvm_pic_state));
1788 break;
1789 case KVM_IRQCHIP_IOAPIC:
1790 memcpy(&chip->chip.ioapic,
1791 ioapic_irqchip(kvm),
1792 sizeof(struct kvm_ioapic_state));
1793 break;
1794 default:
1795 r = -EINVAL;
1796 break;
1798 return r;
1801 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1803 int r;
1805 r = 0;
1806 switch (chip->chip_id) {
1807 case KVM_IRQCHIP_PIC_MASTER:
1808 memcpy(&pic_irqchip(kvm)->pics[0],
1809 &chip->chip.pic,
1810 sizeof(struct kvm_pic_state));
1811 break;
1812 case KVM_IRQCHIP_PIC_SLAVE:
1813 memcpy(&pic_irqchip(kvm)->pics[1],
1814 &chip->chip.pic,
1815 sizeof(struct kvm_pic_state));
1816 break;
1817 case KVM_IRQCHIP_IOAPIC:
1818 memcpy(ioapic_irqchip(kvm),
1819 &chip->chip.ioapic,
1820 sizeof(struct kvm_ioapic_state));
1821 break;
1822 default:
1823 r = -EINVAL;
1824 break;
1826 kvm_pic_update_irq(pic_irqchip(kvm));
1827 return r;
1830 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1832 int r = 0;
1834 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1835 return r;
1838 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1840 int r = 0;
1842 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1843 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1844 return r;
1848 * Get (and clear) the dirty memory log for a memory slot.
1850 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1851 struct kvm_dirty_log *log)
1853 int r;
1854 int n;
1855 struct kvm_memory_slot *memslot;
1856 int is_dirty = 0;
1858 down_write(&kvm->slots_lock);
1860 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1861 if (r)
1862 goto out;
1864 /* If nothing is dirty, don't bother messing with page tables. */
1865 if (is_dirty) {
1866 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1867 kvm_flush_remote_tlbs(kvm);
1868 memslot = &kvm->memslots[log->slot];
1869 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1870 memset(memslot->dirty_bitmap, 0, n);
1872 r = 0;
1873 out:
1874 up_write(&kvm->slots_lock);
1875 return r;
1878 long kvm_arch_vm_ioctl(struct file *filp,
1879 unsigned int ioctl, unsigned long arg)
1881 struct kvm *kvm = filp->private_data;
1882 void __user *argp = (void __user *)arg;
1883 int r = -EINVAL;
1885 * This union makes it completely explicit to gcc-3.x
1886 * that these two variables' stack usage should be
1887 * combined, not added together.
1889 union {
1890 struct kvm_pit_state ps;
1891 struct kvm_memory_alias alias;
1892 } u;
1894 switch (ioctl) {
1895 case KVM_SET_TSS_ADDR:
1896 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1897 if (r < 0)
1898 goto out;
1899 break;
1900 case KVM_SET_MEMORY_REGION: {
1901 struct kvm_memory_region kvm_mem;
1902 struct kvm_userspace_memory_region kvm_userspace_mem;
1904 r = -EFAULT;
1905 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1906 goto out;
1907 kvm_userspace_mem.slot = kvm_mem.slot;
1908 kvm_userspace_mem.flags = kvm_mem.flags;
1909 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1910 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1911 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1912 if (r)
1913 goto out;
1914 break;
1916 case KVM_SET_NR_MMU_PAGES:
1917 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1918 if (r)
1919 goto out;
1920 break;
1921 case KVM_GET_NR_MMU_PAGES:
1922 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1923 break;
1924 case KVM_SET_MEMORY_ALIAS:
1925 r = -EFAULT;
1926 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1927 goto out;
1928 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1929 if (r)
1930 goto out;
1931 break;
1932 case KVM_CREATE_IRQCHIP:
1933 r = -ENOMEM;
1934 kvm->arch.vpic = kvm_create_pic(kvm);
1935 if (kvm->arch.vpic) {
1936 r = kvm_ioapic_init(kvm);
1937 if (r) {
1938 kfree(kvm->arch.vpic);
1939 kvm->arch.vpic = NULL;
1940 goto out;
1942 } else
1943 goto out;
1944 break;
1945 case KVM_CREATE_PIT:
1946 r = -ENOMEM;
1947 kvm->arch.vpit = kvm_create_pit(kvm);
1948 if (kvm->arch.vpit)
1949 r = 0;
1950 break;
1951 case KVM_IRQ_LINE: {
1952 struct kvm_irq_level irq_event;
1954 r = -EFAULT;
1955 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1956 goto out;
1957 if (irqchip_in_kernel(kvm)) {
1958 mutex_lock(&kvm->lock);
1959 kvm_set_irq(kvm, irq_event.irq, irq_event.level);
1960 mutex_unlock(&kvm->lock);
1961 r = 0;
1963 break;
1965 case KVM_GET_IRQCHIP: {
1966 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1967 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1969 r = -ENOMEM;
1970 if (!chip)
1971 goto out;
1972 r = -EFAULT;
1973 if (copy_from_user(chip, argp, sizeof *chip))
1974 goto get_irqchip_out;
1975 r = -ENXIO;
1976 if (!irqchip_in_kernel(kvm))
1977 goto get_irqchip_out;
1978 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1979 if (r)
1980 goto get_irqchip_out;
1981 r = -EFAULT;
1982 if (copy_to_user(argp, chip, sizeof *chip))
1983 goto get_irqchip_out;
1984 r = 0;
1985 get_irqchip_out:
1986 kfree(chip);
1987 if (r)
1988 goto out;
1989 break;
1991 case KVM_SET_IRQCHIP: {
1992 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1993 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1995 r = -ENOMEM;
1996 if (!chip)
1997 goto out;
1998 r = -EFAULT;
1999 if (copy_from_user(chip, argp, sizeof *chip))
2000 goto set_irqchip_out;
2001 r = -ENXIO;
2002 if (!irqchip_in_kernel(kvm))
2003 goto set_irqchip_out;
2004 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2005 if (r)
2006 goto set_irqchip_out;
2007 r = 0;
2008 set_irqchip_out:
2009 kfree(chip);
2010 if (r)
2011 goto out;
2012 break;
2014 case KVM_ASSIGN_PCI_DEVICE: {
2015 struct kvm_assigned_pci_dev assigned_dev;
2017 r = -EFAULT;
2018 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2019 goto out;
2020 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2021 if (r)
2022 goto out;
2023 break;
2025 case KVM_ASSIGN_IRQ: {
2026 struct kvm_assigned_irq assigned_irq;
2028 r = -EFAULT;
2029 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2030 goto out;
2031 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2032 if (r)
2033 goto out;
2034 break;
2036 case KVM_GET_PIT: {
2037 r = -EFAULT;
2038 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2039 goto out;
2040 r = -ENXIO;
2041 if (!kvm->arch.vpit)
2042 goto out;
2043 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2044 if (r)
2045 goto out;
2046 r = -EFAULT;
2047 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2048 goto out;
2049 r = 0;
2050 break;
2052 case KVM_SET_PIT: {
2053 r = -EFAULT;
2054 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2055 goto out;
2056 r = -ENXIO;
2057 if (!kvm->arch.vpit)
2058 goto out;
2059 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2060 if (r)
2061 goto out;
2062 r = 0;
2063 break;
2065 default:
2068 out:
2069 return r;
2072 static void kvm_init_msr_list(void)
2074 u32 dummy[2];
2075 unsigned i, j;
2077 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2078 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2079 continue;
2080 if (j < i)
2081 msrs_to_save[j] = msrs_to_save[i];
2082 j++;
2084 num_msrs_to_save = j;
2088 * Only apic need an MMIO device hook, so shortcut now..
2090 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2091 gpa_t addr, int len,
2092 int is_write)
2094 struct kvm_io_device *dev;
2096 if (vcpu->arch.apic) {
2097 dev = &vcpu->arch.apic->dev;
2098 if (dev->in_range(dev, addr, len, is_write))
2099 return dev;
2101 return NULL;
2105 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2106 gpa_t addr, int len,
2107 int is_write)
2109 struct kvm_io_device *dev;
2111 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2112 if (dev == NULL)
2113 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2114 is_write);
2115 return dev;
2118 int emulator_read_std(unsigned long addr,
2119 void *val,
2120 unsigned int bytes,
2121 struct kvm_vcpu *vcpu)
2123 void *data = val;
2124 int r = X86EMUL_CONTINUE;
2126 while (bytes) {
2127 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2128 unsigned offset = addr & (PAGE_SIZE-1);
2129 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
2130 int ret;
2132 if (gpa == UNMAPPED_GVA) {
2133 r = X86EMUL_PROPAGATE_FAULT;
2134 goto out;
2136 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2137 if (ret < 0) {
2138 r = X86EMUL_UNHANDLEABLE;
2139 goto out;
2142 bytes -= tocopy;
2143 data += tocopy;
2144 addr += tocopy;
2146 out:
2147 return r;
2149 EXPORT_SYMBOL_GPL(emulator_read_std);
2151 static int emulator_read_emulated(unsigned long addr,
2152 void *val,
2153 unsigned int bytes,
2154 struct kvm_vcpu *vcpu)
2156 struct kvm_io_device *mmio_dev;
2157 gpa_t gpa;
2159 if (vcpu->mmio_read_completed) {
2160 memcpy(val, vcpu->mmio_data, bytes);
2161 vcpu->mmio_read_completed = 0;
2162 return X86EMUL_CONTINUE;
2165 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2167 /* For APIC access vmexit */
2168 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2169 goto mmio;
2171 if (emulator_read_std(addr, val, bytes, vcpu)
2172 == X86EMUL_CONTINUE)
2173 return X86EMUL_CONTINUE;
2174 if (gpa == UNMAPPED_GVA)
2175 return X86EMUL_PROPAGATE_FAULT;
2177 mmio:
2179 * Is this MMIO handled locally?
2181 mutex_lock(&vcpu->kvm->lock);
2182 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2183 if (mmio_dev) {
2184 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2185 mutex_unlock(&vcpu->kvm->lock);
2186 return X86EMUL_CONTINUE;
2188 mutex_unlock(&vcpu->kvm->lock);
2190 vcpu->mmio_needed = 1;
2191 vcpu->mmio_phys_addr = gpa;
2192 vcpu->mmio_size = bytes;
2193 vcpu->mmio_is_write = 0;
2195 return X86EMUL_UNHANDLEABLE;
2198 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2199 const void *val, int bytes)
2201 int ret;
2203 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2204 if (ret < 0)
2205 return 0;
2206 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
2207 return 1;
2210 static int emulator_write_emulated_onepage(unsigned long addr,
2211 const void *val,
2212 unsigned int bytes,
2213 struct kvm_vcpu *vcpu)
2215 struct kvm_io_device *mmio_dev;
2216 gpa_t gpa;
2218 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2220 if (gpa == UNMAPPED_GVA) {
2221 kvm_inject_page_fault(vcpu, addr, 2);
2222 return X86EMUL_PROPAGATE_FAULT;
2225 /* For APIC access vmexit */
2226 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2227 goto mmio;
2229 if (emulator_write_phys(vcpu, gpa, val, bytes))
2230 return X86EMUL_CONTINUE;
2232 mmio:
2234 * Is this MMIO handled locally?
2236 mutex_lock(&vcpu->kvm->lock);
2237 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2238 if (mmio_dev) {
2239 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2240 mutex_unlock(&vcpu->kvm->lock);
2241 return X86EMUL_CONTINUE;
2243 mutex_unlock(&vcpu->kvm->lock);
2245 vcpu->mmio_needed = 1;
2246 vcpu->mmio_phys_addr = gpa;
2247 vcpu->mmio_size = bytes;
2248 vcpu->mmio_is_write = 1;
2249 memcpy(vcpu->mmio_data, val, bytes);
2251 return X86EMUL_CONTINUE;
2254 int emulator_write_emulated(unsigned long addr,
2255 const void *val,
2256 unsigned int bytes,
2257 struct kvm_vcpu *vcpu)
2259 /* Crossing a page boundary? */
2260 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2261 int rc, now;
2263 now = -addr & ~PAGE_MASK;
2264 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2265 if (rc != X86EMUL_CONTINUE)
2266 return rc;
2267 addr += now;
2268 val += now;
2269 bytes -= now;
2271 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2273 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2275 static int emulator_cmpxchg_emulated(unsigned long addr,
2276 const void *old,
2277 const void *new,
2278 unsigned int bytes,
2279 struct kvm_vcpu *vcpu)
2281 static int reported;
2283 if (!reported) {
2284 reported = 1;
2285 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2287 #ifndef CONFIG_X86_64
2288 /* guests cmpxchg8b have to be emulated atomically */
2289 if (bytes == 8) {
2290 gpa_t gpa;
2291 struct page *page;
2292 char *kaddr;
2293 u64 val;
2295 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2297 if (gpa == UNMAPPED_GVA ||
2298 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2299 goto emul_write;
2301 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2302 goto emul_write;
2304 val = *(u64 *)new;
2306 down_read(&current->mm->mmap_sem);
2307 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2308 up_read(&current->mm->mmap_sem);
2310 kaddr = kmap_atomic(page, KM_USER0);
2311 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2312 kunmap_atomic(kaddr, KM_USER0);
2313 kvm_release_page_dirty(page);
2315 emul_write:
2316 #endif
2318 return emulator_write_emulated(addr, new, bytes, vcpu);
2321 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2323 return kvm_x86_ops->get_segment_base(vcpu, seg);
2326 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2328 return X86EMUL_CONTINUE;
2331 int emulate_clts(struct kvm_vcpu *vcpu)
2333 KVMTRACE_0D(CLTS, vcpu, handler);
2334 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2335 return X86EMUL_CONTINUE;
2338 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2340 struct kvm_vcpu *vcpu = ctxt->vcpu;
2342 switch (dr) {
2343 case 0 ... 3:
2344 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2345 return X86EMUL_CONTINUE;
2346 default:
2347 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2348 return X86EMUL_UNHANDLEABLE;
2352 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2354 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2355 int exception;
2357 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2358 if (exception) {
2359 /* FIXME: better handling */
2360 return X86EMUL_UNHANDLEABLE;
2362 return X86EMUL_CONTINUE;
2365 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2367 u8 opcodes[4];
2368 unsigned long rip = kvm_rip_read(vcpu);
2369 unsigned long rip_linear;
2371 if (!printk_ratelimit())
2372 return;
2374 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2376 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2378 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2379 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2381 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2383 static struct x86_emulate_ops emulate_ops = {
2384 .read_std = emulator_read_std,
2385 .read_emulated = emulator_read_emulated,
2386 .write_emulated = emulator_write_emulated,
2387 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2390 static void cache_all_regs(struct kvm_vcpu *vcpu)
2392 kvm_register_read(vcpu, VCPU_REGS_RAX);
2393 kvm_register_read(vcpu, VCPU_REGS_RSP);
2394 kvm_register_read(vcpu, VCPU_REGS_RIP);
2395 vcpu->arch.regs_dirty = ~0;
2398 int emulate_instruction(struct kvm_vcpu *vcpu,
2399 struct kvm_run *run,
2400 unsigned long cr2,
2401 u16 error_code,
2402 int emulation_type)
2404 int r;
2405 struct decode_cache *c;
2407 kvm_clear_exception_queue(vcpu);
2408 vcpu->arch.mmio_fault_cr2 = cr2;
2410 * TODO: fix x86_emulate.c to use guest_read/write_register
2411 * instead of direct ->regs accesses, can save hundred cycles
2412 * on Intel for instructions that don't read/change RSP, for
2413 * for example.
2415 cache_all_regs(vcpu);
2417 vcpu->mmio_is_write = 0;
2418 vcpu->arch.pio.string = 0;
2420 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2421 int cs_db, cs_l;
2422 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2424 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2425 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2426 vcpu->arch.emulate_ctxt.mode =
2427 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2428 ? X86EMUL_MODE_REAL : cs_l
2429 ? X86EMUL_MODE_PROT64 : cs_db
2430 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2432 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2434 /* Reject the instructions other than VMCALL/VMMCALL when
2435 * try to emulate invalid opcode */
2436 c = &vcpu->arch.emulate_ctxt.decode;
2437 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2438 (!(c->twobyte && c->b == 0x01 &&
2439 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2440 c->modrm_mod == 3 && c->modrm_rm == 1)))
2441 return EMULATE_FAIL;
2443 ++vcpu->stat.insn_emulation;
2444 if (r) {
2445 ++vcpu->stat.insn_emulation_fail;
2446 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2447 return EMULATE_DONE;
2448 return EMULATE_FAIL;
2452 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2454 if (vcpu->arch.pio.string)
2455 return EMULATE_DO_MMIO;
2457 if ((r || vcpu->mmio_is_write) && run) {
2458 run->exit_reason = KVM_EXIT_MMIO;
2459 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2460 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2461 run->mmio.len = vcpu->mmio_size;
2462 run->mmio.is_write = vcpu->mmio_is_write;
2465 if (r) {
2466 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2467 return EMULATE_DONE;
2468 if (!vcpu->mmio_needed) {
2469 kvm_report_emulation_failure(vcpu, "mmio");
2470 return EMULATE_FAIL;
2472 return EMULATE_DO_MMIO;
2475 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2477 if (vcpu->mmio_is_write) {
2478 vcpu->mmio_needed = 0;
2479 return EMULATE_DO_MMIO;
2482 return EMULATE_DONE;
2484 EXPORT_SYMBOL_GPL(emulate_instruction);
2486 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2488 int i;
2490 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2491 if (vcpu->arch.pio.guest_pages[i]) {
2492 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2493 vcpu->arch.pio.guest_pages[i] = NULL;
2497 static int pio_copy_data(struct kvm_vcpu *vcpu)
2499 void *p = vcpu->arch.pio_data;
2500 void *q;
2501 unsigned bytes;
2502 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2504 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2505 PAGE_KERNEL);
2506 if (!q) {
2507 free_pio_guest_pages(vcpu);
2508 return -ENOMEM;
2510 q += vcpu->arch.pio.guest_page_offset;
2511 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2512 if (vcpu->arch.pio.in)
2513 memcpy(q, p, bytes);
2514 else
2515 memcpy(p, q, bytes);
2516 q -= vcpu->arch.pio.guest_page_offset;
2517 vunmap(q);
2518 free_pio_guest_pages(vcpu);
2519 return 0;
2522 int complete_pio(struct kvm_vcpu *vcpu)
2524 struct kvm_pio_request *io = &vcpu->arch.pio;
2525 long delta;
2526 int r;
2527 unsigned long val;
2529 if (!io->string) {
2530 if (io->in) {
2531 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2532 memcpy(&val, vcpu->arch.pio_data, io->size);
2533 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2535 } else {
2536 if (io->in) {
2537 r = pio_copy_data(vcpu);
2538 if (r)
2539 return r;
2542 delta = 1;
2543 if (io->rep) {
2544 delta *= io->cur_count;
2546 * The size of the register should really depend on
2547 * current address size.
2549 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2550 val -= delta;
2551 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2553 if (io->down)
2554 delta = -delta;
2555 delta *= io->size;
2556 if (io->in) {
2557 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2558 val += delta;
2559 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2560 } else {
2561 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2562 val += delta;
2563 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2567 io->count -= io->cur_count;
2568 io->cur_count = 0;
2570 return 0;
2573 static void kernel_pio(struct kvm_io_device *pio_dev,
2574 struct kvm_vcpu *vcpu,
2575 void *pd)
2577 /* TODO: String I/O for in kernel device */
2579 mutex_lock(&vcpu->kvm->lock);
2580 if (vcpu->arch.pio.in)
2581 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2582 vcpu->arch.pio.size,
2583 pd);
2584 else
2585 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2586 vcpu->arch.pio.size,
2587 pd);
2588 mutex_unlock(&vcpu->kvm->lock);
2591 static void pio_string_write(struct kvm_io_device *pio_dev,
2592 struct kvm_vcpu *vcpu)
2594 struct kvm_pio_request *io = &vcpu->arch.pio;
2595 void *pd = vcpu->arch.pio_data;
2596 int i;
2598 mutex_lock(&vcpu->kvm->lock);
2599 for (i = 0; i < io->cur_count; i++) {
2600 kvm_iodevice_write(pio_dev, io->port,
2601 io->size,
2602 pd);
2603 pd += io->size;
2605 mutex_unlock(&vcpu->kvm->lock);
2608 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2609 gpa_t addr, int len,
2610 int is_write)
2612 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2615 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2616 int size, unsigned port)
2618 struct kvm_io_device *pio_dev;
2619 unsigned long val;
2621 vcpu->run->exit_reason = KVM_EXIT_IO;
2622 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2623 vcpu->run->io.size = vcpu->arch.pio.size = size;
2624 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2625 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2626 vcpu->run->io.port = vcpu->arch.pio.port = port;
2627 vcpu->arch.pio.in = in;
2628 vcpu->arch.pio.string = 0;
2629 vcpu->arch.pio.down = 0;
2630 vcpu->arch.pio.guest_page_offset = 0;
2631 vcpu->arch.pio.rep = 0;
2633 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2634 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2635 handler);
2636 else
2637 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2638 handler);
2640 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2641 memcpy(vcpu->arch.pio_data, &val, 4);
2643 kvm_x86_ops->skip_emulated_instruction(vcpu);
2645 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2646 if (pio_dev) {
2647 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2648 complete_pio(vcpu);
2649 return 1;
2651 return 0;
2653 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2655 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2656 int size, unsigned long count, int down,
2657 gva_t address, int rep, unsigned port)
2659 unsigned now, in_page;
2660 int i, ret = 0;
2661 int nr_pages = 1;
2662 struct page *page;
2663 struct kvm_io_device *pio_dev;
2665 vcpu->run->exit_reason = KVM_EXIT_IO;
2666 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2667 vcpu->run->io.size = vcpu->arch.pio.size = size;
2668 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2669 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2670 vcpu->run->io.port = vcpu->arch.pio.port = port;
2671 vcpu->arch.pio.in = in;
2672 vcpu->arch.pio.string = 1;
2673 vcpu->arch.pio.down = down;
2674 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2675 vcpu->arch.pio.rep = rep;
2677 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2678 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2679 handler);
2680 else
2681 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2682 handler);
2684 if (!count) {
2685 kvm_x86_ops->skip_emulated_instruction(vcpu);
2686 return 1;
2689 if (!down)
2690 in_page = PAGE_SIZE - offset_in_page(address);
2691 else
2692 in_page = offset_in_page(address) + size;
2693 now = min(count, (unsigned long)in_page / size);
2694 if (!now) {
2696 * String I/O straddles page boundary. Pin two guest pages
2697 * so that we satisfy atomicity constraints. Do just one
2698 * transaction to avoid complexity.
2700 nr_pages = 2;
2701 now = 1;
2703 if (down) {
2705 * String I/O in reverse. Yuck. Kill the guest, fix later.
2707 pr_unimpl(vcpu, "guest string pio down\n");
2708 kvm_inject_gp(vcpu, 0);
2709 return 1;
2711 vcpu->run->io.count = now;
2712 vcpu->arch.pio.cur_count = now;
2714 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2715 kvm_x86_ops->skip_emulated_instruction(vcpu);
2717 for (i = 0; i < nr_pages; ++i) {
2718 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2719 vcpu->arch.pio.guest_pages[i] = page;
2720 if (!page) {
2721 kvm_inject_gp(vcpu, 0);
2722 free_pio_guest_pages(vcpu);
2723 return 1;
2727 pio_dev = vcpu_find_pio_dev(vcpu, port,
2728 vcpu->arch.pio.cur_count,
2729 !vcpu->arch.pio.in);
2730 if (!vcpu->arch.pio.in) {
2731 /* string PIO write */
2732 ret = pio_copy_data(vcpu);
2733 if (ret >= 0 && pio_dev) {
2734 pio_string_write(pio_dev, vcpu);
2735 complete_pio(vcpu);
2736 if (vcpu->arch.pio.count == 0)
2737 ret = 1;
2739 } else if (pio_dev)
2740 pr_unimpl(vcpu, "no string pio read support yet, "
2741 "port %x size %d count %ld\n",
2742 port, size, count);
2744 return ret;
2746 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2748 int kvm_arch_init(void *opaque)
2750 int r;
2751 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2753 if (kvm_x86_ops) {
2754 printk(KERN_ERR "kvm: already loaded the other module\n");
2755 r = -EEXIST;
2756 goto out;
2759 if (!ops->cpu_has_kvm_support()) {
2760 printk(KERN_ERR "kvm: no hardware support\n");
2761 r = -EOPNOTSUPP;
2762 goto out;
2764 if (ops->disabled_by_bios()) {
2765 printk(KERN_ERR "kvm: disabled by bios\n");
2766 r = -EOPNOTSUPP;
2767 goto out;
2770 r = kvm_mmu_module_init();
2771 if (r)
2772 goto out;
2774 kvm_init_msr_list();
2776 kvm_x86_ops = ops;
2777 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2778 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2779 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2780 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2781 return 0;
2783 out:
2784 return r;
2787 void kvm_arch_exit(void)
2789 kvm_x86_ops = NULL;
2790 kvm_mmu_module_exit();
2793 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2795 ++vcpu->stat.halt_exits;
2796 KVMTRACE_0D(HLT, vcpu, handler);
2797 if (irqchip_in_kernel(vcpu->kvm)) {
2798 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2799 up_read(&vcpu->kvm->slots_lock);
2800 kvm_vcpu_block(vcpu);
2801 down_read(&vcpu->kvm->slots_lock);
2802 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2803 return -EINTR;
2804 return 1;
2805 } else {
2806 vcpu->run->exit_reason = KVM_EXIT_HLT;
2807 return 0;
2810 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2812 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2813 unsigned long a1)
2815 if (is_long_mode(vcpu))
2816 return a0;
2817 else
2818 return a0 | ((gpa_t)a1 << 32);
2821 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2823 unsigned long nr, a0, a1, a2, a3, ret;
2824 int r = 1;
2826 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2827 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2828 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2829 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2830 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2832 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2834 if (!is_long_mode(vcpu)) {
2835 nr &= 0xFFFFFFFF;
2836 a0 &= 0xFFFFFFFF;
2837 a1 &= 0xFFFFFFFF;
2838 a2 &= 0xFFFFFFFF;
2839 a3 &= 0xFFFFFFFF;
2842 switch (nr) {
2843 case KVM_HC_VAPIC_POLL_IRQ:
2844 ret = 0;
2845 break;
2846 case KVM_HC_MMU_OP:
2847 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2848 break;
2849 default:
2850 ret = -KVM_ENOSYS;
2851 break;
2853 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2854 ++vcpu->stat.hypercalls;
2855 return r;
2857 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2859 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2861 char instruction[3];
2862 int ret = 0;
2863 unsigned long rip = kvm_rip_read(vcpu);
2867 * Blow out the MMU to ensure that no other VCPU has an active mapping
2868 * to ensure that the updated hypercall appears atomically across all
2869 * VCPUs.
2871 kvm_mmu_zap_all(vcpu->kvm);
2873 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2874 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2875 != X86EMUL_CONTINUE)
2876 ret = -EFAULT;
2878 return ret;
2881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2883 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2886 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2888 struct descriptor_table dt = { limit, base };
2890 kvm_x86_ops->set_gdt(vcpu, &dt);
2893 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2895 struct descriptor_table dt = { limit, base };
2897 kvm_x86_ops->set_idt(vcpu, &dt);
2900 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2901 unsigned long *rflags)
2903 kvm_lmsw(vcpu, msw);
2904 *rflags = kvm_x86_ops->get_rflags(vcpu);
2907 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2909 unsigned long value;
2911 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2912 switch (cr) {
2913 case 0:
2914 value = vcpu->arch.cr0;
2915 break;
2916 case 2:
2917 value = vcpu->arch.cr2;
2918 break;
2919 case 3:
2920 value = vcpu->arch.cr3;
2921 break;
2922 case 4:
2923 value = vcpu->arch.cr4;
2924 break;
2925 case 8:
2926 value = kvm_get_cr8(vcpu);
2927 break;
2928 default:
2929 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2930 return 0;
2932 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2933 (u32)((u64)value >> 32), handler);
2935 return value;
2938 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2939 unsigned long *rflags)
2941 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2942 (u32)((u64)val >> 32), handler);
2944 switch (cr) {
2945 case 0:
2946 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2947 *rflags = kvm_x86_ops->get_rflags(vcpu);
2948 break;
2949 case 2:
2950 vcpu->arch.cr2 = val;
2951 break;
2952 case 3:
2953 kvm_set_cr3(vcpu, val);
2954 break;
2955 case 4:
2956 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2957 break;
2958 case 8:
2959 kvm_set_cr8(vcpu, val & 0xfUL);
2960 break;
2961 default:
2962 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2966 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2968 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2969 int j, nent = vcpu->arch.cpuid_nent;
2971 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2972 /* when no next entry is found, the current entry[i] is reselected */
2973 for (j = i + 1; j == i; j = (j + 1) % nent) {
2974 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2975 if (ej->function == e->function) {
2976 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2977 return j;
2980 return 0; /* silence gcc, even though control never reaches here */
2983 /* find an entry with matching function, matching index (if needed), and that
2984 * should be read next (if it's stateful) */
2985 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2986 u32 function, u32 index)
2988 if (e->function != function)
2989 return 0;
2990 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2991 return 0;
2992 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2993 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2994 return 0;
2995 return 1;
2998 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3000 int i;
3001 u32 function, index;
3002 struct kvm_cpuid_entry2 *e, *best;
3004 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3005 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3006 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3007 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3008 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3009 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3010 best = NULL;
3011 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3012 e = &vcpu->arch.cpuid_entries[i];
3013 if (is_matching_cpuid_entry(e, function, index)) {
3014 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3015 move_to_next_stateful_cpuid_entry(vcpu, i);
3016 best = e;
3017 break;
3020 * Both basic or both extended?
3022 if (((e->function ^ function) & 0x80000000) == 0)
3023 if (!best || e->function > best->function)
3024 best = e;
3026 if (best) {
3027 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3028 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3029 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3030 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3032 kvm_x86_ops->skip_emulated_instruction(vcpu);
3033 KVMTRACE_5D(CPUID, vcpu, function,
3034 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3035 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3036 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3037 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3039 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3042 * Check if userspace requested an interrupt window, and that the
3043 * interrupt window is open.
3045 * No need to exit to userspace if we already have an interrupt queued.
3047 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3048 struct kvm_run *kvm_run)
3050 return (!vcpu->arch.irq_summary &&
3051 kvm_run->request_interrupt_window &&
3052 vcpu->arch.interrupt_window_open &&
3053 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
3056 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3057 struct kvm_run *kvm_run)
3059 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3060 kvm_run->cr8 = kvm_get_cr8(vcpu);
3061 kvm_run->apic_base = kvm_get_apic_base(vcpu);
3062 if (irqchip_in_kernel(vcpu->kvm))
3063 kvm_run->ready_for_interrupt_injection = 1;
3064 else
3065 kvm_run->ready_for_interrupt_injection =
3066 (vcpu->arch.interrupt_window_open &&
3067 vcpu->arch.irq_summary == 0);
3070 static void vapic_enter(struct kvm_vcpu *vcpu)
3072 struct kvm_lapic *apic = vcpu->arch.apic;
3073 struct page *page;
3075 if (!apic || !apic->vapic_addr)
3076 return;
3078 down_read(&current->mm->mmap_sem);
3079 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3080 up_read(&current->mm->mmap_sem);
3082 vcpu->arch.apic->vapic_page = page;
3085 static void vapic_exit(struct kvm_vcpu *vcpu)
3087 struct kvm_lapic *apic = vcpu->arch.apic;
3089 if (!apic || !apic->vapic_addr)
3090 return;
3092 down_read(&vcpu->kvm->slots_lock);
3093 kvm_release_page_dirty(apic->vapic_page);
3094 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3095 up_read(&vcpu->kvm->slots_lock);
3098 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3100 int r;
3102 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3103 pr_debug("vcpu %d received sipi with vector # %x\n",
3104 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3105 kvm_lapic_reset(vcpu);
3106 r = kvm_x86_ops->vcpu_reset(vcpu);
3107 if (r)
3108 return r;
3109 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3112 down_read(&vcpu->kvm->slots_lock);
3113 vapic_enter(vcpu);
3115 again:
3116 if (vcpu->requests)
3117 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3118 kvm_mmu_unload(vcpu);
3120 r = kvm_mmu_reload(vcpu);
3121 if (unlikely(r))
3122 goto out;
3124 if (vcpu->requests) {
3125 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3126 __kvm_migrate_timers(vcpu);
3127 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3128 kvm_x86_ops->tlb_flush(vcpu);
3129 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3130 &vcpu->requests)) {
3131 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3132 r = 0;
3133 goto out;
3135 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3136 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3137 r = 0;
3138 goto out;
3142 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3143 kvm_inject_pending_timer_irqs(vcpu);
3145 preempt_disable();
3147 kvm_x86_ops->prepare_guest_switch(vcpu);
3148 kvm_load_guest_fpu(vcpu);
3150 local_irq_disable();
3152 if (vcpu->requests || need_resched()) {
3153 local_irq_enable();
3154 preempt_enable();
3155 r = 1;
3156 goto out;
3159 if (signal_pending(current)) {
3160 local_irq_enable();
3161 preempt_enable();
3162 r = -EINTR;
3163 kvm_run->exit_reason = KVM_EXIT_INTR;
3164 ++vcpu->stat.signal_exits;
3165 goto out;
3168 if (vcpu->guest_debug.enabled)
3169 kvm_x86_ops->guest_debug_pre(vcpu);
3171 vcpu->guest_mode = 1;
3173 * Make sure that guest_mode assignment won't happen after
3174 * testing the pending IRQ vector bitmap.
3176 smp_wmb();
3178 if (vcpu->arch.exception.pending)
3179 __queue_exception(vcpu);
3180 else if (irqchip_in_kernel(vcpu->kvm))
3181 kvm_x86_ops->inject_pending_irq(vcpu);
3182 else
3183 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3185 kvm_lapic_sync_to_vapic(vcpu);
3187 up_read(&vcpu->kvm->slots_lock);
3189 kvm_guest_enter();
3192 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3193 kvm_x86_ops->run(vcpu, kvm_run);
3195 vcpu->guest_mode = 0;
3196 local_irq_enable();
3198 ++vcpu->stat.exits;
3201 * We must have an instruction between local_irq_enable() and
3202 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3203 * the interrupt shadow. The stat.exits increment will do nicely.
3204 * But we need to prevent reordering, hence this barrier():
3206 barrier();
3208 kvm_guest_exit();
3210 preempt_enable();
3212 down_read(&vcpu->kvm->slots_lock);
3215 * Profile KVM exit RIPs:
3217 if (unlikely(prof_on == KVM_PROFILING)) {
3218 unsigned long rip = kvm_rip_read(vcpu);
3219 profile_hit(KVM_PROFILING, (void *)rip);
3222 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3223 vcpu->arch.exception.pending = false;
3225 kvm_lapic_sync_from_vapic(vcpu);
3227 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3229 if (r > 0) {
3230 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3231 r = -EINTR;
3232 kvm_run->exit_reason = KVM_EXIT_INTR;
3233 ++vcpu->stat.request_irq_exits;
3234 goto out;
3236 if (!need_resched())
3237 goto again;
3240 out:
3241 up_read(&vcpu->kvm->slots_lock);
3242 if (r > 0) {
3243 kvm_resched(vcpu);
3244 down_read(&vcpu->kvm->slots_lock);
3245 goto again;
3248 post_kvm_run_save(vcpu, kvm_run);
3250 vapic_exit(vcpu);
3252 return r;
3255 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3257 int r;
3258 sigset_t sigsaved;
3260 vcpu_load(vcpu);
3262 if (vcpu->sigset_active)
3263 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3265 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3266 kvm_vcpu_block(vcpu);
3267 r = -EAGAIN;
3268 goto out;
3271 /* re-sync apic's tpr */
3272 if (!irqchip_in_kernel(vcpu->kvm))
3273 kvm_set_cr8(vcpu, kvm_run->cr8);
3275 if (vcpu->arch.pio.cur_count) {
3276 r = complete_pio(vcpu);
3277 if (r)
3278 goto out;
3280 #if CONFIG_HAS_IOMEM
3281 if (vcpu->mmio_needed) {
3282 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3283 vcpu->mmio_read_completed = 1;
3284 vcpu->mmio_needed = 0;
3286 down_read(&vcpu->kvm->slots_lock);
3287 r = emulate_instruction(vcpu, kvm_run,
3288 vcpu->arch.mmio_fault_cr2, 0,
3289 EMULTYPE_NO_DECODE);
3290 up_read(&vcpu->kvm->slots_lock);
3291 if (r == EMULATE_DO_MMIO) {
3293 * Read-modify-write. Back to userspace.
3295 r = 0;
3296 goto out;
3299 #endif
3300 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3301 kvm_register_write(vcpu, VCPU_REGS_RAX,
3302 kvm_run->hypercall.ret);
3304 r = __vcpu_run(vcpu, kvm_run);
3306 out:
3307 if (vcpu->sigset_active)
3308 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3310 vcpu_put(vcpu);
3311 return r;
3314 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3316 vcpu_load(vcpu);
3318 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3319 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3320 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3321 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3322 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3323 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3324 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3325 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3326 #ifdef CONFIG_X86_64
3327 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3328 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3329 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3330 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3331 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3332 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3333 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3334 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3335 #endif
3337 regs->rip = kvm_rip_read(vcpu);
3338 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3341 * Don't leak debug flags in case they were set for guest debugging
3343 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3344 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3346 vcpu_put(vcpu);
3348 return 0;
3351 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3353 vcpu_load(vcpu);
3355 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3356 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3357 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3358 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3359 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3360 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3361 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3362 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3363 #ifdef CONFIG_X86_64
3364 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3365 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3366 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3367 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3368 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3369 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3370 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3371 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3373 #endif
3375 kvm_rip_write(vcpu, regs->rip);
3376 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3379 vcpu->arch.exception.pending = false;
3381 vcpu_put(vcpu);
3383 return 0;
3386 void kvm_get_segment(struct kvm_vcpu *vcpu,
3387 struct kvm_segment *var, int seg)
3389 kvm_x86_ops->get_segment(vcpu, var, seg);
3392 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3394 struct kvm_segment cs;
3396 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3397 *db = cs.db;
3398 *l = cs.l;
3400 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3402 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3403 struct kvm_sregs *sregs)
3405 struct descriptor_table dt;
3406 int pending_vec;
3408 vcpu_load(vcpu);
3410 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3411 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3412 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3413 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3414 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3415 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3417 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3418 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3420 kvm_x86_ops->get_idt(vcpu, &dt);
3421 sregs->idt.limit = dt.limit;
3422 sregs->idt.base = dt.base;
3423 kvm_x86_ops->get_gdt(vcpu, &dt);
3424 sregs->gdt.limit = dt.limit;
3425 sregs->gdt.base = dt.base;
3427 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3428 sregs->cr0 = vcpu->arch.cr0;
3429 sregs->cr2 = vcpu->arch.cr2;
3430 sregs->cr3 = vcpu->arch.cr3;
3431 sregs->cr4 = vcpu->arch.cr4;
3432 sregs->cr8 = kvm_get_cr8(vcpu);
3433 sregs->efer = vcpu->arch.shadow_efer;
3434 sregs->apic_base = kvm_get_apic_base(vcpu);
3436 if (irqchip_in_kernel(vcpu->kvm)) {
3437 memset(sregs->interrupt_bitmap, 0,
3438 sizeof sregs->interrupt_bitmap);
3439 pending_vec = kvm_x86_ops->get_irq(vcpu);
3440 if (pending_vec >= 0)
3441 set_bit(pending_vec,
3442 (unsigned long *)sregs->interrupt_bitmap);
3443 } else
3444 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3445 sizeof sregs->interrupt_bitmap);
3447 vcpu_put(vcpu);
3449 return 0;
3452 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3453 struct kvm_mp_state *mp_state)
3455 vcpu_load(vcpu);
3456 mp_state->mp_state = vcpu->arch.mp_state;
3457 vcpu_put(vcpu);
3458 return 0;
3461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3462 struct kvm_mp_state *mp_state)
3464 vcpu_load(vcpu);
3465 vcpu->arch.mp_state = mp_state->mp_state;
3466 vcpu_put(vcpu);
3467 return 0;
3470 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3471 struct kvm_segment *var, int seg)
3473 kvm_x86_ops->set_segment(vcpu, var, seg);
3476 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3477 struct kvm_segment *kvm_desct)
3479 kvm_desct->base = seg_desc->base0;
3480 kvm_desct->base |= seg_desc->base1 << 16;
3481 kvm_desct->base |= seg_desc->base2 << 24;
3482 kvm_desct->limit = seg_desc->limit0;
3483 kvm_desct->limit |= seg_desc->limit << 16;
3484 if (seg_desc->g) {
3485 kvm_desct->limit <<= 12;
3486 kvm_desct->limit |= 0xfff;
3488 kvm_desct->selector = selector;
3489 kvm_desct->type = seg_desc->type;
3490 kvm_desct->present = seg_desc->p;
3491 kvm_desct->dpl = seg_desc->dpl;
3492 kvm_desct->db = seg_desc->d;
3493 kvm_desct->s = seg_desc->s;
3494 kvm_desct->l = seg_desc->l;
3495 kvm_desct->g = seg_desc->g;
3496 kvm_desct->avl = seg_desc->avl;
3497 if (!selector)
3498 kvm_desct->unusable = 1;
3499 else
3500 kvm_desct->unusable = 0;
3501 kvm_desct->padding = 0;
3504 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3505 u16 selector,
3506 struct descriptor_table *dtable)
3508 if (selector & 1 << 2) {
3509 struct kvm_segment kvm_seg;
3511 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3513 if (kvm_seg.unusable)
3514 dtable->limit = 0;
3515 else
3516 dtable->limit = kvm_seg.limit;
3517 dtable->base = kvm_seg.base;
3519 else
3520 kvm_x86_ops->get_gdt(vcpu, dtable);
3523 /* allowed just for 8 bytes segments */
3524 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3525 struct desc_struct *seg_desc)
3527 gpa_t gpa;
3528 struct descriptor_table dtable;
3529 u16 index = selector >> 3;
3531 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3533 if (dtable.limit < index * 8 + 7) {
3534 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3535 return 1;
3537 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3538 gpa += index * 8;
3539 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3542 /* allowed just for 8 bytes segments */
3543 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3544 struct desc_struct *seg_desc)
3546 gpa_t gpa;
3547 struct descriptor_table dtable;
3548 u16 index = selector >> 3;
3550 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3552 if (dtable.limit < index * 8 + 7)
3553 return 1;
3554 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3555 gpa += index * 8;
3556 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3559 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3560 struct desc_struct *seg_desc)
3562 u32 base_addr;
3564 base_addr = seg_desc->base0;
3565 base_addr |= (seg_desc->base1 << 16);
3566 base_addr |= (seg_desc->base2 << 24);
3568 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3571 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3573 struct kvm_segment kvm_seg;
3575 kvm_get_segment(vcpu, &kvm_seg, seg);
3576 return kvm_seg.selector;
3579 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3580 u16 selector,
3581 struct kvm_segment *kvm_seg)
3583 struct desc_struct seg_desc;
3585 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3586 return 1;
3587 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3588 return 0;
3591 int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3593 struct kvm_segment segvar = {
3594 .base = selector << 4,
3595 .limit = 0xffff,
3596 .selector = selector,
3597 .type = 3,
3598 .present = 1,
3599 .dpl = 3,
3600 .db = 0,
3601 .s = 1,
3602 .l = 0,
3603 .g = 0,
3604 .avl = 0,
3605 .unusable = 0,
3607 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3608 return 0;
3611 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3612 int type_bits, int seg)
3614 struct kvm_segment kvm_seg;
3616 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3617 return kvm_load_realmode_segment(vcpu, selector, seg);
3618 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3619 return 1;
3620 kvm_seg.type |= type_bits;
3622 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3623 seg != VCPU_SREG_LDTR)
3624 if (!kvm_seg.s)
3625 kvm_seg.unusable = 1;
3627 kvm_set_segment(vcpu, &kvm_seg, seg);
3628 return 0;
3631 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3632 struct tss_segment_32 *tss)
3634 tss->cr3 = vcpu->arch.cr3;
3635 tss->eip = kvm_rip_read(vcpu);
3636 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3637 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3638 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3639 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3640 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3641 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3642 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3643 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3644 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3645 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3646 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3647 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3648 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3649 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3650 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3651 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3652 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3655 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3656 struct tss_segment_32 *tss)
3658 kvm_set_cr3(vcpu, tss->cr3);
3660 kvm_rip_write(vcpu, tss->eip);
3661 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3663 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3664 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3665 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3666 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3667 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3668 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3669 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3670 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3672 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3673 return 1;
3675 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3676 return 1;
3678 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3679 return 1;
3681 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3682 return 1;
3684 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3685 return 1;
3687 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3688 return 1;
3690 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3691 return 1;
3692 return 0;
3695 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3696 struct tss_segment_16 *tss)
3698 tss->ip = kvm_rip_read(vcpu);
3699 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3700 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3701 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3702 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3703 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3704 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3705 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3706 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3707 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3709 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3710 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3711 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3712 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3713 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3714 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3717 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3718 struct tss_segment_16 *tss)
3720 kvm_rip_write(vcpu, tss->ip);
3721 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3722 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3723 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3724 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3725 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3726 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3727 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3728 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3729 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3731 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3732 return 1;
3734 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3735 return 1;
3737 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3738 return 1;
3740 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3741 return 1;
3743 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3744 return 1;
3745 return 0;
3748 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3749 u32 old_tss_base,
3750 struct desc_struct *nseg_desc)
3752 struct tss_segment_16 tss_segment_16;
3753 int ret = 0;
3755 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3756 sizeof tss_segment_16))
3757 goto out;
3759 save_state_to_tss16(vcpu, &tss_segment_16);
3761 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3762 sizeof tss_segment_16))
3763 goto out;
3765 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3766 &tss_segment_16, sizeof tss_segment_16))
3767 goto out;
3769 if (load_state_from_tss16(vcpu, &tss_segment_16))
3770 goto out;
3772 ret = 1;
3773 out:
3774 return ret;
3777 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3778 u32 old_tss_base,
3779 struct desc_struct *nseg_desc)
3781 struct tss_segment_32 tss_segment_32;
3782 int ret = 0;
3784 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3785 sizeof tss_segment_32))
3786 goto out;
3788 save_state_to_tss32(vcpu, &tss_segment_32);
3790 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3791 sizeof tss_segment_32))
3792 goto out;
3794 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3795 &tss_segment_32, sizeof tss_segment_32))
3796 goto out;
3798 if (load_state_from_tss32(vcpu, &tss_segment_32))
3799 goto out;
3801 ret = 1;
3802 out:
3803 return ret;
3806 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3808 struct kvm_segment tr_seg;
3809 struct desc_struct cseg_desc;
3810 struct desc_struct nseg_desc;
3811 int ret = 0;
3812 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3813 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3815 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3817 /* FIXME: Handle errors. Failure to read either TSS or their
3818 * descriptors should generate a pagefault.
3820 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3821 goto out;
3823 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3824 goto out;
3826 if (reason != TASK_SWITCH_IRET) {
3827 int cpl;
3829 cpl = kvm_x86_ops->get_cpl(vcpu);
3830 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3831 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3832 return 1;
3836 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3837 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3838 return 1;
3841 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3842 cseg_desc.type &= ~(1 << 1); //clear the B flag
3843 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3846 if (reason == TASK_SWITCH_IRET) {
3847 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3848 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3851 kvm_x86_ops->skip_emulated_instruction(vcpu);
3853 if (nseg_desc.type & 8)
3854 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3855 &nseg_desc);
3856 else
3857 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3858 &nseg_desc);
3860 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3861 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3862 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3865 if (reason != TASK_SWITCH_IRET) {
3866 nseg_desc.type |= (1 << 1);
3867 save_guest_segment_descriptor(vcpu, tss_selector,
3868 &nseg_desc);
3871 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3872 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3873 tr_seg.type = 11;
3874 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3875 out:
3876 return ret;
3878 EXPORT_SYMBOL_GPL(kvm_task_switch);
3880 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3881 struct kvm_sregs *sregs)
3883 int mmu_reset_needed = 0;
3884 int i, pending_vec, max_bits;
3885 struct descriptor_table dt;
3887 vcpu_load(vcpu);
3889 dt.limit = sregs->idt.limit;
3890 dt.base = sregs->idt.base;
3891 kvm_x86_ops->set_idt(vcpu, &dt);
3892 dt.limit = sregs->gdt.limit;
3893 dt.base = sregs->gdt.base;
3894 kvm_x86_ops->set_gdt(vcpu, &dt);
3896 vcpu->arch.cr2 = sregs->cr2;
3897 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3898 vcpu->arch.cr3 = sregs->cr3;
3900 kvm_set_cr8(vcpu, sregs->cr8);
3902 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3903 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3904 kvm_set_apic_base(vcpu, sregs->apic_base);
3906 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3908 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3909 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3910 vcpu->arch.cr0 = sregs->cr0;
3912 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3913 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3914 if (!is_long_mode(vcpu) && is_pae(vcpu))
3915 load_pdptrs(vcpu, vcpu->arch.cr3);
3917 if (mmu_reset_needed)
3918 kvm_mmu_reset_context(vcpu);
3920 if (!irqchip_in_kernel(vcpu->kvm)) {
3921 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3922 sizeof vcpu->arch.irq_pending);
3923 vcpu->arch.irq_summary = 0;
3924 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3925 if (vcpu->arch.irq_pending[i])
3926 __set_bit(i, &vcpu->arch.irq_summary);
3927 } else {
3928 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3929 pending_vec = find_first_bit(
3930 (const unsigned long *)sregs->interrupt_bitmap,
3931 max_bits);
3932 /* Only pending external irq is handled here */
3933 if (pending_vec < max_bits) {
3934 kvm_x86_ops->set_irq(vcpu, pending_vec);
3935 pr_debug("Set back pending irq %d\n",
3936 pending_vec);
3940 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3941 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3942 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3943 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3944 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3945 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3947 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3948 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3950 vcpu_put(vcpu);
3952 return 0;
3955 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3956 struct kvm_debug_guest *dbg)
3958 int r;
3960 vcpu_load(vcpu);
3962 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3964 vcpu_put(vcpu);
3966 return r;
3970 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3971 * we have asm/x86/processor.h
3973 struct fxsave {
3974 u16 cwd;
3975 u16 swd;
3976 u16 twd;
3977 u16 fop;
3978 u64 rip;
3979 u64 rdp;
3980 u32 mxcsr;
3981 u32 mxcsr_mask;
3982 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3983 #ifdef CONFIG_X86_64
3984 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3985 #else
3986 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3987 #endif
3991 * Translate a guest virtual address to a guest physical address.
3993 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3994 struct kvm_translation *tr)
3996 unsigned long vaddr = tr->linear_address;
3997 gpa_t gpa;
3999 vcpu_load(vcpu);
4000 down_read(&vcpu->kvm->slots_lock);
4001 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4002 up_read(&vcpu->kvm->slots_lock);
4003 tr->physical_address = gpa;
4004 tr->valid = gpa != UNMAPPED_GVA;
4005 tr->writeable = 1;
4006 tr->usermode = 0;
4007 vcpu_put(vcpu);
4009 return 0;
4012 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4014 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4016 vcpu_load(vcpu);
4018 memcpy(fpu->fpr, fxsave->st_space, 128);
4019 fpu->fcw = fxsave->cwd;
4020 fpu->fsw = fxsave->swd;
4021 fpu->ftwx = fxsave->twd;
4022 fpu->last_opcode = fxsave->fop;
4023 fpu->last_ip = fxsave->rip;
4024 fpu->last_dp = fxsave->rdp;
4025 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4027 vcpu_put(vcpu);
4029 return 0;
4032 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4034 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4036 vcpu_load(vcpu);
4038 memcpy(fxsave->st_space, fpu->fpr, 128);
4039 fxsave->cwd = fpu->fcw;
4040 fxsave->swd = fpu->fsw;
4041 fxsave->twd = fpu->ftwx;
4042 fxsave->fop = fpu->last_opcode;
4043 fxsave->rip = fpu->last_ip;
4044 fxsave->rdp = fpu->last_dp;
4045 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4047 vcpu_put(vcpu);
4049 return 0;
4052 void fx_init(struct kvm_vcpu *vcpu)
4054 unsigned after_mxcsr_mask;
4057 * Touch the fpu the first time in non atomic context as if
4058 * this is the first fpu instruction the exception handler
4059 * will fire before the instruction returns and it'll have to
4060 * allocate ram with GFP_KERNEL.
4062 if (!used_math())
4063 kvm_fx_save(&vcpu->arch.host_fx_image);
4065 /* Initialize guest FPU by resetting ours and saving into guest's */
4066 preempt_disable();
4067 kvm_fx_save(&vcpu->arch.host_fx_image);
4068 kvm_fx_finit();
4069 kvm_fx_save(&vcpu->arch.guest_fx_image);
4070 kvm_fx_restore(&vcpu->arch.host_fx_image);
4071 preempt_enable();
4073 vcpu->arch.cr0 |= X86_CR0_ET;
4074 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4075 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4076 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4077 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4079 EXPORT_SYMBOL_GPL(fx_init);
4081 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4083 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4084 return;
4086 vcpu->guest_fpu_loaded = 1;
4087 kvm_fx_save(&vcpu->arch.host_fx_image);
4088 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4090 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4092 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4094 if (!vcpu->guest_fpu_loaded)
4095 return;
4097 vcpu->guest_fpu_loaded = 0;
4098 kvm_fx_save(&vcpu->arch.guest_fx_image);
4099 kvm_fx_restore(&vcpu->arch.host_fx_image);
4100 ++vcpu->stat.fpu_reload;
4102 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4104 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4106 kvm_x86_ops->vcpu_free(vcpu);
4109 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4110 unsigned int id)
4112 return kvm_x86_ops->vcpu_create(kvm, id);
4115 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4117 int r;
4119 /* We do fxsave: this must be aligned. */
4120 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4122 vcpu_load(vcpu);
4123 r = kvm_arch_vcpu_reset(vcpu);
4124 if (r == 0)
4125 r = kvm_mmu_setup(vcpu);
4126 vcpu_put(vcpu);
4127 if (r < 0)
4128 goto free_vcpu;
4130 return 0;
4131 free_vcpu:
4132 kvm_x86_ops->vcpu_free(vcpu);
4133 return r;
4136 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4138 vcpu_load(vcpu);
4139 kvm_mmu_unload(vcpu);
4140 vcpu_put(vcpu);
4142 kvm_x86_ops->vcpu_free(vcpu);
4145 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4147 return kvm_x86_ops->vcpu_reset(vcpu);
4150 void kvm_arch_hardware_enable(void *garbage)
4152 kvm_x86_ops->hardware_enable(garbage);
4155 void kvm_arch_hardware_disable(void *garbage)
4157 kvm_x86_ops->hardware_disable(garbage);
4160 int kvm_arch_hardware_setup(void)
4162 return kvm_x86_ops->hardware_setup();
4165 void kvm_arch_hardware_unsetup(void)
4167 kvm_x86_ops->hardware_unsetup();
4170 void kvm_arch_check_processor_compat(void *rtn)
4172 kvm_x86_ops->check_processor_compatibility(rtn);
4175 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4177 struct page *page;
4178 struct kvm *kvm;
4179 int r;
4181 BUG_ON(vcpu->kvm == NULL);
4182 kvm = vcpu->kvm;
4184 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4185 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4186 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4187 else
4188 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4190 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4191 if (!page) {
4192 r = -ENOMEM;
4193 goto fail;
4195 vcpu->arch.pio_data = page_address(page);
4197 r = kvm_mmu_create(vcpu);
4198 if (r < 0)
4199 goto fail_free_pio_data;
4201 if (irqchip_in_kernel(kvm)) {
4202 r = kvm_create_lapic(vcpu);
4203 if (r < 0)
4204 goto fail_mmu_destroy;
4207 return 0;
4209 fail_mmu_destroy:
4210 kvm_mmu_destroy(vcpu);
4211 fail_free_pio_data:
4212 free_page((unsigned long)vcpu->arch.pio_data);
4213 fail:
4214 return r;
4217 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4219 kvm_free_lapic(vcpu);
4220 down_read(&vcpu->kvm->slots_lock);
4221 kvm_mmu_destroy(vcpu);
4222 up_read(&vcpu->kvm->slots_lock);
4223 free_page((unsigned long)vcpu->arch.pio_data);
4226 struct kvm *kvm_arch_create_vm(void)
4228 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4230 if (!kvm)
4231 return ERR_PTR(-ENOMEM);
4233 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4234 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4236 return kvm;
4239 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4241 vcpu_load(vcpu);
4242 kvm_mmu_unload(vcpu);
4243 vcpu_put(vcpu);
4246 static void kvm_free_vcpus(struct kvm *kvm)
4248 unsigned int i;
4251 * Unpin any mmu pages first.
4253 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4254 if (kvm->vcpus[i])
4255 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4256 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4257 if (kvm->vcpus[i]) {
4258 kvm_arch_vcpu_free(kvm->vcpus[i]);
4259 kvm->vcpus[i] = NULL;
4265 void kvm_arch_destroy_vm(struct kvm *kvm)
4267 kvm_free_assigned_devices(kvm);
4268 kvm_free_pit(kvm);
4269 kfree(kvm->arch.vpic);
4270 kfree(kvm->arch.vioapic);
4271 kvm_free_vcpus(kvm);
4272 kvm_free_physmem(kvm);
4273 if (kvm->arch.apic_access_page)
4274 put_page(kvm->arch.apic_access_page);
4275 if (kvm->arch.ept_identity_pagetable)
4276 put_page(kvm->arch.ept_identity_pagetable);
4277 kfree(kvm);
4280 int kvm_arch_set_memory_region(struct kvm *kvm,
4281 struct kvm_userspace_memory_region *mem,
4282 struct kvm_memory_slot old,
4283 int user_alloc)
4285 int npages = mem->memory_size >> PAGE_SHIFT;
4286 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4288 /*To keep backward compatibility with older userspace,
4289 *x86 needs to hanlde !user_alloc case.
4291 if (!user_alloc) {
4292 if (npages && !old.rmap) {
4293 unsigned long userspace_addr;
4295 down_write(&current->mm->mmap_sem);
4296 userspace_addr = do_mmap(NULL, 0,
4297 npages * PAGE_SIZE,
4298 PROT_READ | PROT_WRITE,
4299 MAP_PRIVATE | MAP_ANONYMOUS,
4301 up_write(&current->mm->mmap_sem);
4303 if (IS_ERR((void *)userspace_addr))
4304 return PTR_ERR((void *)userspace_addr);
4306 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4307 spin_lock(&kvm->mmu_lock);
4308 memslot->userspace_addr = userspace_addr;
4309 spin_unlock(&kvm->mmu_lock);
4310 } else {
4311 if (!old.user_alloc && old.rmap) {
4312 int ret;
4314 down_write(&current->mm->mmap_sem);
4315 ret = do_munmap(current->mm, old.userspace_addr,
4316 old.npages * PAGE_SIZE);
4317 up_write(&current->mm->mmap_sem);
4318 if (ret < 0)
4319 printk(KERN_WARNING
4320 "kvm_vm_ioctl_set_memory_region: "
4321 "failed to munmap memory\n");
4326 if (!kvm->arch.n_requested_mmu_pages) {
4327 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4328 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4331 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4332 kvm_flush_remote_tlbs(kvm);
4334 return 0;
4337 void kvm_arch_flush_shadow(struct kvm *kvm)
4339 kvm_mmu_zap_all(kvm);
4342 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4344 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4345 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4348 static void vcpu_kick_intr(void *info)
4350 #ifdef DEBUG
4351 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4352 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4353 #endif
4356 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4358 int ipi_pcpu = vcpu->cpu;
4359 int cpu = get_cpu();
4361 if (waitqueue_active(&vcpu->wq)) {
4362 wake_up_interruptible(&vcpu->wq);
4363 ++vcpu->stat.halt_wakeup;
4366 * We may be called synchronously with irqs disabled in guest mode,
4367 * So need not to call smp_call_function_single() in that case.
4369 if (vcpu->guest_mode && vcpu->cpu != cpu)
4370 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4371 put_cpu();