SLUB: use check_valid_pointer in kmem_ptr_validate
[linux-2.6/verdex.git] / mm / slub.c
blob1832ae1ea5366ed62a5ad80c8b667633f6472d06
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
91 * Issues still to be resolved:
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
100 * - Variable sizing of the per node arrays
103 /* Enable to test recovery from slab corruption on boot */
104 #undef SLUB_RESILIENCY_TEST
106 #if PAGE_SHIFT <= 12
109 * Small page size. Make sure that we do not fragment memory
111 #define DEFAULT_MAX_ORDER 1
112 #define DEFAULT_MIN_OBJECTS 4
114 #else
117 * Large page machines are customarily able to handle larger
118 * page orders.
120 #define DEFAULT_MAX_ORDER 2
121 #define DEFAULT_MIN_OBJECTS 8
123 #endif
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 2
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
141 * Set of flags that will prevent slab merging
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
157 /* Internal SLUB flags */
158 #define __OBJECT_POISON 0x80000000 /* Poison object */
160 /* Not all arches define cache_line_size */
161 #ifndef cache_line_size
162 #define cache_line_size() L1_CACHE_BYTES
163 #endif
165 static int kmem_size = sizeof(struct kmem_cache);
167 #ifdef CONFIG_SMP
168 static struct notifier_block slab_notifier;
169 #endif
171 static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
174 UP, /* Everything works */
175 SYSFS /* Sysfs up */
176 } slab_state = DOWN;
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock);
180 LIST_HEAD(slab_caches);
182 #ifdef CONFIG_SYSFS
183 static int sysfs_slab_add(struct kmem_cache *);
184 static int sysfs_slab_alias(struct kmem_cache *, const char *);
185 static void sysfs_slab_remove(struct kmem_cache *);
186 #else
187 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
188 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
189 static void sysfs_slab_remove(struct kmem_cache *s) {}
190 #endif
192 /********************************************************************
193 * Core slab cache functions
194 *******************************************************************/
196 int slab_is_available(void)
198 return slab_state >= UP;
201 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
203 #ifdef CONFIG_NUMA
204 return s->node[node];
205 #else
206 return &s->local_node;
207 #endif
211 * Object debugging
213 static void print_section(char *text, u8 *addr, unsigned int length)
215 int i, offset;
216 int newline = 1;
217 char ascii[17];
219 ascii[16] = 0;
221 for (i = 0; i < length; i++) {
222 if (newline) {
223 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
224 newline = 0;
226 printk(" %02x", addr[i]);
227 offset = i % 16;
228 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
229 if (offset == 15) {
230 printk(" %s\n",ascii);
231 newline = 1;
234 if (!newline) {
235 i %= 16;
236 while (i < 16) {
237 printk(" ");
238 ascii[i] = ' ';
239 i++;
241 printk(" %s\n", ascii);
246 * Slow version of get and set free pointer.
248 * This requires touching the cache lines of kmem_cache.
249 * The offset can also be obtained from the page. In that
250 * case it is in the cacheline that we already need to touch.
252 static void *get_freepointer(struct kmem_cache *s, void *object)
254 return *(void **)(object + s->offset);
257 static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
259 *(void **)(object + s->offset) = fp;
263 * Tracking user of a slab.
265 struct track {
266 void *addr; /* Called from address */
267 int cpu; /* Was running on cpu */
268 int pid; /* Pid context */
269 unsigned long when; /* When did the operation occur */
272 enum track_item { TRACK_ALLOC, TRACK_FREE };
274 static struct track *get_track(struct kmem_cache *s, void *object,
275 enum track_item alloc)
277 struct track *p;
279 if (s->offset)
280 p = object + s->offset + sizeof(void *);
281 else
282 p = object + s->inuse;
284 return p + alloc;
287 static void set_track(struct kmem_cache *s, void *object,
288 enum track_item alloc, void *addr)
290 struct track *p;
292 if (s->offset)
293 p = object + s->offset + sizeof(void *);
294 else
295 p = object + s->inuse;
297 p += alloc;
298 if (addr) {
299 p->addr = addr;
300 p->cpu = smp_processor_id();
301 p->pid = current ? current->pid : -1;
302 p->when = jiffies;
303 } else
304 memset(p, 0, sizeof(struct track));
307 static void init_tracking(struct kmem_cache *s, void *object)
309 if (s->flags & SLAB_STORE_USER) {
310 set_track(s, object, TRACK_FREE, NULL);
311 set_track(s, object, TRACK_ALLOC, NULL);
315 static void print_track(const char *s, struct track *t)
317 if (!t->addr)
318 return;
320 printk(KERN_ERR "%s: ", s);
321 __print_symbol("%s", (unsigned long)t->addr);
322 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
325 static void print_trailer(struct kmem_cache *s, u8 *p)
327 unsigned int off; /* Offset of last byte */
329 if (s->flags & SLAB_RED_ZONE)
330 print_section("Redzone", p + s->objsize,
331 s->inuse - s->objsize);
333 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
334 p + s->offset,
335 get_freepointer(s, p));
337 if (s->offset)
338 off = s->offset + sizeof(void *);
339 else
340 off = s->inuse;
342 if (s->flags & SLAB_STORE_USER) {
343 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
344 print_track("Last free ", get_track(s, p, TRACK_FREE));
345 off += 2 * sizeof(struct track);
348 if (off != s->size)
349 /* Beginning of the filler is the free pointer */
350 print_section("Filler", p + off, s->size - off);
353 static void object_err(struct kmem_cache *s, struct page *page,
354 u8 *object, char *reason)
356 u8 *addr = page_address(page);
358 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
359 s->name, reason, object, page);
360 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
361 object - addr, page->flags, page->inuse, page->freelist);
362 if (object > addr + 16)
363 print_section("Bytes b4", object - 16, 16);
364 print_section("Object", object, min(s->objsize, 128));
365 print_trailer(s, object);
366 dump_stack();
369 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
371 va_list args;
372 char buf[100];
374 va_start(args, reason);
375 vsnprintf(buf, sizeof(buf), reason, args);
376 va_end(args);
377 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
378 page);
379 dump_stack();
382 static void init_object(struct kmem_cache *s, void *object, int active)
384 u8 *p = object;
386 if (s->flags & __OBJECT_POISON) {
387 memset(p, POISON_FREE, s->objsize - 1);
388 p[s->objsize -1] = POISON_END;
391 if (s->flags & SLAB_RED_ZONE)
392 memset(p + s->objsize,
393 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
394 s->inuse - s->objsize);
397 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
399 while (bytes) {
400 if (*start != (u8)value)
401 return 0;
402 start++;
403 bytes--;
405 return 1;
408 static inline int check_valid_pointer(struct kmem_cache *s,
409 struct page *page, const void *object)
411 void *base;
413 if (!object)
414 return 1;
416 base = page_address(page);
417 if (object < base || object >= base + s->objects * s->size ||
418 (object - base) % s->size) {
419 return 0;
422 return 1;
426 * Object layout:
428 * object address
429 * Bytes of the object to be managed.
430 * If the freepointer may overlay the object then the free
431 * pointer is the first word of the object.
432 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
433 * 0xa5 (POISON_END)
435 * object + s->objsize
436 * Padding to reach word boundary. This is also used for Redzoning.
437 * Padding is extended to word size if Redzoning is enabled
438 * and objsize == inuse.
439 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
440 * 0xcc (RED_ACTIVE) for objects in use.
442 * object + s->inuse
443 * A. Free pointer (if we cannot overwrite object on free)
444 * B. Tracking data for SLAB_STORE_USER
445 * C. Padding to reach required alignment boundary
446 * Padding is done using 0x5a (POISON_INUSE)
448 * object + s->size
450 * If slabcaches are merged then the objsize and inuse boundaries are to
451 * be ignored. And therefore no slab options that rely on these boundaries
452 * may be used with merged slabcaches.
455 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
456 void *from, void *to)
458 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
459 s->name, message, data, from, to - 1);
460 memset(from, data, to - from);
463 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
465 unsigned long off = s->inuse; /* The end of info */
467 if (s->offset)
468 /* Freepointer is placed after the object. */
469 off += sizeof(void *);
471 if (s->flags & SLAB_STORE_USER)
472 /* We also have user information there */
473 off += 2 * sizeof(struct track);
475 if (s->size == off)
476 return 1;
478 if (check_bytes(p + off, POISON_INUSE, s->size - off))
479 return 1;
481 object_err(s, page, p, "Object padding check fails");
484 * Restore padding
486 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
487 return 0;
490 static int slab_pad_check(struct kmem_cache *s, struct page *page)
492 u8 *p;
493 int length, remainder;
495 if (!(s->flags & SLAB_POISON))
496 return 1;
498 p = page_address(page);
499 length = s->objects * s->size;
500 remainder = (PAGE_SIZE << s->order) - length;
501 if (!remainder)
502 return 1;
504 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
505 slab_err(s, page, "Padding check failed");
506 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
507 p + length + remainder);
508 return 0;
510 return 1;
513 static int check_object(struct kmem_cache *s, struct page *page,
514 void *object, int active)
516 u8 *p = object;
517 u8 *endobject = object + s->objsize;
519 if (s->flags & SLAB_RED_ZONE) {
520 unsigned int red =
521 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
523 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
524 object_err(s, page, object,
525 active ? "Redzone Active" : "Redzone Inactive");
526 restore_bytes(s, "redzone", red,
527 endobject, object + s->inuse);
528 return 0;
530 } else {
531 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
532 !check_bytes(endobject, POISON_INUSE,
533 s->inuse - s->objsize)) {
534 object_err(s, page, p, "Alignment padding check fails");
536 * Fix it so that there will not be another report.
538 * Hmmm... We may be corrupting an object that now expects
539 * to be longer than allowed.
541 restore_bytes(s, "alignment padding", POISON_INUSE,
542 endobject, object + s->inuse);
546 if (s->flags & SLAB_POISON) {
547 if (!active && (s->flags & __OBJECT_POISON) &&
548 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
549 p[s->objsize - 1] != POISON_END)) {
551 object_err(s, page, p, "Poison check failed");
552 restore_bytes(s, "Poison", POISON_FREE,
553 p, p + s->objsize -1);
554 restore_bytes(s, "Poison", POISON_END,
555 p + s->objsize - 1, p + s->objsize);
556 return 0;
559 * check_pad_bytes cleans up on its own.
561 check_pad_bytes(s, page, p);
564 if (!s->offset && active)
566 * Object and freepointer overlap. Cannot check
567 * freepointer while object is allocated.
569 return 1;
571 /* Check free pointer validity */
572 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
573 object_err(s, page, p, "Freepointer corrupt");
575 * No choice but to zap it and thus loose the remainder
576 * of the free objects in this slab. May cause
577 * another error because the object count maybe
578 * wrong now.
580 set_freepointer(s, p, NULL);
581 return 0;
583 return 1;
586 static int check_slab(struct kmem_cache *s, struct page *page)
588 VM_BUG_ON(!irqs_disabled());
590 if (!PageSlab(page)) {
591 slab_err(s, page, "Not a valid slab page flags=%lx "
592 "mapping=0x%p count=%d", page->flags, page->mapping,
593 page_count(page));
594 return 0;
596 if (page->offset * sizeof(void *) != s->offset) {
597 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
598 "mapping=0x%p count=%d",
599 (unsigned long)(page->offset * sizeof(void *)),
600 page->flags,
601 page->mapping,
602 page_count(page));
603 return 0;
605 if (page->inuse > s->objects) {
606 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
607 "mapping=0x%p count=%d",
608 s->name, page->inuse, s->objects, page->flags,
609 page->mapping, page_count(page));
610 return 0;
612 /* Slab_pad_check fixes things up after itself */
613 slab_pad_check(s, page);
614 return 1;
618 * Determine if a certain object on a page is on the freelist and
619 * therefore free. Must hold the slab lock for cpu slabs to
620 * guarantee that the chains are consistent.
622 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
624 int nr = 0;
625 void *fp = page->freelist;
626 void *object = NULL;
628 while (fp && nr <= s->objects) {
629 if (fp == search)
630 return 1;
631 if (!check_valid_pointer(s, page, fp)) {
632 if (object) {
633 object_err(s, page, object,
634 "Freechain corrupt");
635 set_freepointer(s, object, NULL);
636 break;
637 } else {
638 slab_err(s, page, "Freepointer 0x%p corrupt",
639 fp);
640 page->freelist = NULL;
641 page->inuse = s->objects;
642 printk(KERN_ERR "@@@ SLUB %s: Freelist "
643 "cleared. Slab 0x%p\n",
644 s->name, page);
645 return 0;
647 break;
649 object = fp;
650 fp = get_freepointer(s, object);
651 nr++;
654 if (page->inuse != s->objects - nr) {
655 slab_err(s, page, "Wrong object count. Counter is %d but "
656 "counted were %d", s, page, page->inuse,
657 s->objects - nr);
658 page->inuse = s->objects - nr;
659 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
660 "Slab @0x%p\n", s->name, page);
662 return search == NULL;
666 * Tracking of fully allocated slabs for debugging
668 static void add_full(struct kmem_cache_node *n, struct page *page)
670 spin_lock(&n->list_lock);
671 list_add(&page->lru, &n->full);
672 spin_unlock(&n->list_lock);
675 static void remove_full(struct kmem_cache *s, struct page *page)
677 struct kmem_cache_node *n;
679 if (!(s->flags & SLAB_STORE_USER))
680 return;
682 n = get_node(s, page_to_nid(page));
684 spin_lock(&n->list_lock);
685 list_del(&page->lru);
686 spin_unlock(&n->list_lock);
689 static int alloc_object_checks(struct kmem_cache *s, struct page *page,
690 void *object)
692 if (!check_slab(s, page))
693 goto bad;
695 if (object && !on_freelist(s, page, object)) {
696 slab_err(s, page, "Object 0x%p already allocated", object);
697 goto bad;
700 if (!check_valid_pointer(s, page, object)) {
701 object_err(s, page, object, "Freelist Pointer check fails");
702 goto bad;
705 if (!object)
706 return 1;
708 if (!check_object(s, page, object, 0))
709 goto bad;
711 return 1;
712 bad:
713 if (PageSlab(page)) {
715 * If this is a slab page then lets do the best we can
716 * to avoid issues in the future. Marking all objects
717 * as used avoids touching the remainder.
719 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
720 s->name, page);
721 page->inuse = s->objects;
722 page->freelist = NULL;
723 /* Fix up fields that may be corrupted */
724 page->offset = s->offset / sizeof(void *);
726 return 0;
729 static int free_object_checks(struct kmem_cache *s, struct page *page,
730 void *object)
732 if (!check_slab(s, page))
733 goto fail;
735 if (!check_valid_pointer(s, page, object)) {
736 slab_err(s, page, "Invalid object pointer 0x%p", object);
737 goto fail;
740 if (on_freelist(s, page, object)) {
741 slab_err(s, page, "Object 0x%p already free", object);
742 goto fail;
745 if (!check_object(s, page, object, 1))
746 return 0;
748 if (unlikely(s != page->slab)) {
749 if (!PageSlab(page))
750 slab_err(s, page, "Attempt to free object(0x%p) "
751 "outside of slab", object);
752 else
753 if (!page->slab) {
754 printk(KERN_ERR
755 "SLUB <none>: no slab for object 0x%p.\n",
756 object);
757 dump_stack();
759 else
760 slab_err(s, page, "object at 0x%p belongs "
761 "to slab %s", object, page->slab->name);
762 goto fail;
764 return 1;
765 fail:
766 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
767 s->name, page, object);
768 return 0;
772 * Slab allocation and freeing
774 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
776 struct page * page;
777 int pages = 1 << s->order;
779 if (s->order)
780 flags |= __GFP_COMP;
782 if (s->flags & SLAB_CACHE_DMA)
783 flags |= SLUB_DMA;
785 if (node == -1)
786 page = alloc_pages(flags, s->order);
787 else
788 page = alloc_pages_node(node, flags, s->order);
790 if (!page)
791 return NULL;
793 mod_zone_page_state(page_zone(page),
794 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
795 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
796 pages);
798 return page;
801 static void setup_object(struct kmem_cache *s, struct page *page,
802 void *object)
804 if (PageError(page)) {
805 init_object(s, object, 0);
806 init_tracking(s, object);
809 if (unlikely(s->ctor))
810 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
813 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
815 struct page *page;
816 struct kmem_cache_node *n;
817 void *start;
818 void *end;
819 void *last;
820 void *p;
822 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
824 if (flags & __GFP_WAIT)
825 local_irq_enable();
827 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
828 if (!page)
829 goto out;
831 n = get_node(s, page_to_nid(page));
832 if (n)
833 atomic_long_inc(&n->nr_slabs);
834 page->offset = s->offset / sizeof(void *);
835 page->slab = s;
836 page->flags |= 1 << PG_slab;
837 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
838 SLAB_STORE_USER | SLAB_TRACE))
839 page->flags |= 1 << PG_error;
841 start = page_address(page);
842 end = start + s->objects * s->size;
844 if (unlikely(s->flags & SLAB_POISON))
845 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
847 last = start;
848 for (p = start + s->size; p < end; p += s->size) {
849 setup_object(s, page, last);
850 set_freepointer(s, last, p);
851 last = p;
853 setup_object(s, page, last);
854 set_freepointer(s, last, NULL);
856 page->freelist = start;
857 page->inuse = 0;
858 out:
859 if (flags & __GFP_WAIT)
860 local_irq_disable();
861 return page;
864 static void __free_slab(struct kmem_cache *s, struct page *page)
866 int pages = 1 << s->order;
868 if (unlikely(PageError(page) || s->dtor)) {
869 void *start = page_address(page);
870 void *end = start + (pages << PAGE_SHIFT);
871 void *p;
873 slab_pad_check(s, page);
874 for (p = start; p <= end - s->size; p += s->size) {
875 if (s->dtor)
876 s->dtor(p, s, 0);
877 check_object(s, page, p, 0);
881 mod_zone_page_state(page_zone(page),
882 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
883 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
884 - pages);
886 page->mapping = NULL;
887 __free_pages(page, s->order);
890 static void rcu_free_slab(struct rcu_head *h)
892 struct page *page;
894 page = container_of((struct list_head *)h, struct page, lru);
895 __free_slab(page->slab, page);
898 static void free_slab(struct kmem_cache *s, struct page *page)
900 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
902 * RCU free overloads the RCU head over the LRU
904 struct rcu_head *head = (void *)&page->lru;
906 call_rcu(head, rcu_free_slab);
907 } else
908 __free_slab(s, page);
911 static void discard_slab(struct kmem_cache *s, struct page *page)
913 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
915 atomic_long_dec(&n->nr_slabs);
916 reset_page_mapcount(page);
917 page->flags &= ~(1 << PG_slab | 1 << PG_error);
918 free_slab(s, page);
922 * Per slab locking using the pagelock
924 static __always_inline void slab_lock(struct page *page)
926 bit_spin_lock(PG_locked, &page->flags);
929 static __always_inline void slab_unlock(struct page *page)
931 bit_spin_unlock(PG_locked, &page->flags);
934 static __always_inline int slab_trylock(struct page *page)
936 int rc = 1;
938 rc = bit_spin_trylock(PG_locked, &page->flags);
939 return rc;
943 * Management of partially allocated slabs
945 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
947 spin_lock(&n->list_lock);
948 n->nr_partial++;
949 list_add_tail(&page->lru, &n->partial);
950 spin_unlock(&n->list_lock);
953 static void add_partial(struct kmem_cache_node *n, struct page *page)
955 spin_lock(&n->list_lock);
956 n->nr_partial++;
957 list_add(&page->lru, &n->partial);
958 spin_unlock(&n->list_lock);
961 static void remove_partial(struct kmem_cache *s,
962 struct page *page)
964 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
966 spin_lock(&n->list_lock);
967 list_del(&page->lru);
968 n->nr_partial--;
969 spin_unlock(&n->list_lock);
973 * Lock page and remove it from the partial list
975 * Must hold list_lock
977 static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
979 if (slab_trylock(page)) {
980 list_del(&page->lru);
981 n->nr_partial--;
982 return 1;
984 return 0;
988 * Try to get a partial slab from a specific node
990 static struct page *get_partial_node(struct kmem_cache_node *n)
992 struct page *page;
995 * Racy check. If we mistakenly see no partial slabs then we
996 * just allocate an empty slab. If we mistakenly try to get a
997 * partial slab then get_partials() will return NULL.
999 if (!n || !n->nr_partial)
1000 return NULL;
1002 spin_lock(&n->list_lock);
1003 list_for_each_entry(page, &n->partial, lru)
1004 if (lock_and_del_slab(n, page))
1005 goto out;
1006 page = NULL;
1007 out:
1008 spin_unlock(&n->list_lock);
1009 return page;
1013 * Get a page from somewhere. Search in increasing NUMA
1014 * distances.
1016 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1018 #ifdef CONFIG_NUMA
1019 struct zonelist *zonelist;
1020 struct zone **z;
1021 struct page *page;
1024 * The defrag ratio allows to configure the tradeoffs between
1025 * inter node defragmentation and node local allocations.
1026 * A lower defrag_ratio increases the tendency to do local
1027 * allocations instead of scanning throught the partial
1028 * lists on other nodes.
1030 * If defrag_ratio is set to 0 then kmalloc() always
1031 * returns node local objects. If its higher then kmalloc()
1032 * may return off node objects in order to avoid fragmentation.
1034 * A higher ratio means slabs may be taken from other nodes
1035 * thus reducing the number of partial slabs on those nodes.
1037 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1038 * defrag_ratio = 1000) then every (well almost) allocation
1039 * will first attempt to defrag slab caches on other nodes. This
1040 * means scanning over all nodes to look for partial slabs which
1041 * may be a bit expensive to do on every slab allocation.
1043 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1044 return NULL;
1046 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1047 ->node_zonelists[gfp_zone(flags)];
1048 for (z = zonelist->zones; *z; z++) {
1049 struct kmem_cache_node *n;
1051 n = get_node(s, zone_to_nid(*z));
1053 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1054 n->nr_partial > MIN_PARTIAL) {
1055 page = get_partial_node(n);
1056 if (page)
1057 return page;
1060 #endif
1061 return NULL;
1065 * Get a partial page, lock it and return it.
1067 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1069 struct page *page;
1070 int searchnode = (node == -1) ? numa_node_id() : node;
1072 page = get_partial_node(get_node(s, searchnode));
1073 if (page || (flags & __GFP_THISNODE))
1074 return page;
1076 return get_any_partial(s, flags);
1080 * Move a page back to the lists.
1082 * Must be called with the slab lock held.
1084 * On exit the slab lock will have been dropped.
1086 static void putback_slab(struct kmem_cache *s, struct page *page)
1088 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1090 if (page->inuse) {
1092 if (page->freelist)
1093 add_partial(n, page);
1094 else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1095 add_full(n, page);
1096 slab_unlock(page);
1098 } else {
1099 if (n->nr_partial < MIN_PARTIAL) {
1101 * Adding an empty page to the partial slabs in order
1102 * to avoid page allocator overhead. This page needs to
1103 * come after all the others that are not fully empty
1104 * in order to make sure that we do maximum
1105 * defragmentation.
1107 add_partial_tail(n, page);
1108 slab_unlock(page);
1109 } else {
1110 slab_unlock(page);
1111 discard_slab(s, page);
1117 * Remove the cpu slab
1119 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1121 s->cpu_slab[cpu] = NULL;
1122 ClearPageActive(page);
1124 putback_slab(s, page);
1127 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1129 slab_lock(page);
1130 deactivate_slab(s, page, cpu);
1134 * Flush cpu slab.
1135 * Called from IPI handler with interrupts disabled.
1137 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1139 struct page *page = s->cpu_slab[cpu];
1141 if (likely(page))
1142 flush_slab(s, page, cpu);
1145 static void flush_cpu_slab(void *d)
1147 struct kmem_cache *s = d;
1148 int cpu = smp_processor_id();
1150 __flush_cpu_slab(s, cpu);
1153 static void flush_all(struct kmem_cache *s)
1155 #ifdef CONFIG_SMP
1156 on_each_cpu(flush_cpu_slab, s, 1, 1);
1157 #else
1158 unsigned long flags;
1160 local_irq_save(flags);
1161 flush_cpu_slab(s);
1162 local_irq_restore(flags);
1163 #endif
1167 * slab_alloc is optimized to only modify two cachelines on the fast path
1168 * (aside from the stack):
1170 * 1. The page struct
1171 * 2. The first cacheline of the object to be allocated.
1173 * The only cache lines that are read (apart from code) is the
1174 * per cpu array in the kmem_cache struct.
1176 * Fastpath is not possible if we need to get a new slab or have
1177 * debugging enabled (which means all slabs are marked with PageError)
1179 static void *slab_alloc(struct kmem_cache *s,
1180 gfp_t gfpflags, int node, void *addr)
1182 struct page *page;
1183 void **object;
1184 unsigned long flags;
1185 int cpu;
1187 local_irq_save(flags);
1188 cpu = smp_processor_id();
1189 page = s->cpu_slab[cpu];
1190 if (!page)
1191 goto new_slab;
1193 slab_lock(page);
1194 if (unlikely(node != -1 && page_to_nid(page) != node))
1195 goto another_slab;
1196 redo:
1197 object = page->freelist;
1198 if (unlikely(!object))
1199 goto another_slab;
1200 if (unlikely(PageError(page)))
1201 goto debug;
1203 have_object:
1204 page->inuse++;
1205 page->freelist = object[page->offset];
1206 slab_unlock(page);
1207 local_irq_restore(flags);
1208 return object;
1210 another_slab:
1211 deactivate_slab(s, page, cpu);
1213 new_slab:
1214 page = get_partial(s, gfpflags, node);
1215 if (likely(page)) {
1216 have_slab:
1217 s->cpu_slab[cpu] = page;
1218 SetPageActive(page);
1219 goto redo;
1222 page = new_slab(s, gfpflags, node);
1223 if (page) {
1224 cpu = smp_processor_id();
1225 if (s->cpu_slab[cpu]) {
1227 * Someone else populated the cpu_slab while we enabled
1228 * interrupts, or we have got scheduled on another cpu.
1229 * The page may not be on the requested node.
1231 if (node == -1 ||
1232 page_to_nid(s->cpu_slab[cpu]) == node) {
1234 * Current cpuslab is acceptable and we
1235 * want the current one since its cache hot
1237 discard_slab(s, page);
1238 page = s->cpu_slab[cpu];
1239 slab_lock(page);
1240 goto redo;
1242 /* Dump the current slab */
1243 flush_slab(s, s->cpu_slab[cpu], cpu);
1245 slab_lock(page);
1246 goto have_slab;
1248 local_irq_restore(flags);
1249 return NULL;
1250 debug:
1251 if (!alloc_object_checks(s, page, object))
1252 goto another_slab;
1253 if (s->flags & SLAB_STORE_USER)
1254 set_track(s, object, TRACK_ALLOC, addr);
1255 if (s->flags & SLAB_TRACE) {
1256 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1257 s->name, object, page->inuse,
1258 page->freelist);
1259 dump_stack();
1261 init_object(s, object, 1);
1262 goto have_object;
1265 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1267 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1269 EXPORT_SYMBOL(kmem_cache_alloc);
1271 #ifdef CONFIG_NUMA
1272 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1274 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1276 EXPORT_SYMBOL(kmem_cache_alloc_node);
1277 #endif
1280 * The fastpath only writes the cacheline of the page struct and the first
1281 * cacheline of the object.
1283 * No special cachelines need to be read
1285 static void slab_free(struct kmem_cache *s, struct page *page,
1286 void *x, void *addr)
1288 void *prior;
1289 void **object = (void *)x;
1290 unsigned long flags;
1292 local_irq_save(flags);
1293 slab_lock(page);
1295 if (unlikely(PageError(page)))
1296 goto debug;
1297 checks_ok:
1298 prior = object[page->offset] = page->freelist;
1299 page->freelist = object;
1300 page->inuse--;
1302 if (unlikely(PageActive(page)))
1304 * Cpu slabs are never on partial lists and are
1305 * never freed.
1307 goto out_unlock;
1309 if (unlikely(!page->inuse))
1310 goto slab_empty;
1313 * Objects left in the slab. If it
1314 * was not on the partial list before
1315 * then add it.
1317 if (unlikely(!prior))
1318 add_partial(get_node(s, page_to_nid(page)), page);
1320 out_unlock:
1321 slab_unlock(page);
1322 local_irq_restore(flags);
1323 return;
1325 slab_empty:
1326 if (prior)
1328 * Slab on the partial list.
1330 remove_partial(s, page);
1332 slab_unlock(page);
1333 discard_slab(s, page);
1334 local_irq_restore(flags);
1335 return;
1337 debug:
1338 if (!free_object_checks(s, page, x))
1339 goto out_unlock;
1340 if (!PageActive(page) && !page->freelist)
1341 remove_full(s, page);
1342 if (s->flags & SLAB_STORE_USER)
1343 set_track(s, x, TRACK_FREE, addr);
1344 if (s->flags & SLAB_TRACE) {
1345 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1346 s->name, object, page->inuse,
1347 page->freelist);
1348 print_section("Object", (void *)object, s->objsize);
1349 dump_stack();
1351 init_object(s, object, 0);
1352 goto checks_ok;
1355 void kmem_cache_free(struct kmem_cache *s, void *x)
1357 struct page *page;
1359 page = virt_to_head_page(x);
1361 slab_free(s, page, x, __builtin_return_address(0));
1363 EXPORT_SYMBOL(kmem_cache_free);
1365 /* Figure out on which slab object the object resides */
1366 static struct page *get_object_page(const void *x)
1368 struct page *page = virt_to_head_page(x);
1370 if (!PageSlab(page))
1371 return NULL;
1373 return page;
1377 * kmem_cache_open produces objects aligned at "size" and the first object
1378 * is placed at offset 0 in the slab (We have no metainformation on the
1379 * slab, all slabs are in essence "off slab").
1381 * In order to get the desired alignment one just needs to align the
1382 * size.
1384 * Notice that the allocation order determines the sizes of the per cpu
1385 * caches. Each processor has always one slab available for allocations.
1386 * Increasing the allocation order reduces the number of times that slabs
1387 * must be moved on and off the partial lists and therefore may influence
1388 * locking overhead.
1390 * The offset is used to relocate the free list link in each object. It is
1391 * therefore possible to move the free list link behind the object. This
1392 * is necessary for RCU to work properly and also useful for debugging.
1396 * Mininum / Maximum order of slab pages. This influences locking overhead
1397 * and slab fragmentation. A higher order reduces the number of partial slabs
1398 * and increases the number of allocations possible without having to
1399 * take the list_lock.
1401 static int slub_min_order;
1402 static int slub_max_order = DEFAULT_MAX_ORDER;
1405 * Minimum number of objects per slab. This is necessary in order to
1406 * reduce locking overhead. Similar to the queue size in SLAB.
1408 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1411 * Merge control. If this is set then no merging of slab caches will occur.
1413 static int slub_nomerge;
1416 * Debug settings:
1418 static int slub_debug;
1420 static char *slub_debug_slabs;
1423 * Calculate the order of allocation given an slab object size.
1425 * The order of allocation has significant impact on other elements
1426 * of the system. Generally order 0 allocations should be preferred
1427 * since they do not cause fragmentation in the page allocator. Larger
1428 * objects may have problems with order 0 because there may be too much
1429 * space left unused in a slab. We go to a higher order if more than 1/8th
1430 * of the slab would be wasted.
1432 * In order to reach satisfactory performance we must ensure that
1433 * a minimum number of objects is in one slab. Otherwise we may
1434 * generate too much activity on the partial lists. This is less a
1435 * concern for large slabs though. slub_max_order specifies the order
1436 * where we begin to stop considering the number of objects in a slab.
1438 * Higher order allocations also allow the placement of more objects
1439 * in a slab and thereby reduce object handling overhead. If the user
1440 * has requested a higher mininum order then we start with that one
1441 * instead of zero.
1443 static int calculate_order(int size)
1445 int order;
1446 int rem;
1448 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1449 order < MAX_ORDER; order++) {
1450 unsigned long slab_size = PAGE_SIZE << order;
1452 if (slub_max_order > order &&
1453 slab_size < slub_min_objects * size)
1454 continue;
1456 if (slab_size < size)
1457 continue;
1459 rem = slab_size % size;
1461 if (rem <= (PAGE_SIZE << order) / 8)
1462 break;
1465 if (order >= MAX_ORDER)
1466 return -E2BIG;
1467 return order;
1471 * Function to figure out which alignment to use from the
1472 * various ways of specifying it.
1474 static unsigned long calculate_alignment(unsigned long flags,
1475 unsigned long align, unsigned long size)
1478 * If the user wants hardware cache aligned objects then
1479 * follow that suggestion if the object is sufficiently
1480 * large.
1482 * The hardware cache alignment cannot override the
1483 * specified alignment though. If that is greater
1484 * then use it.
1486 if ((flags & SLAB_HWCACHE_ALIGN) &&
1487 size > cache_line_size() / 2)
1488 return max_t(unsigned long, align, cache_line_size());
1490 if (align < ARCH_SLAB_MINALIGN)
1491 return ARCH_SLAB_MINALIGN;
1493 return ALIGN(align, sizeof(void *));
1496 static void init_kmem_cache_node(struct kmem_cache_node *n)
1498 n->nr_partial = 0;
1499 atomic_long_set(&n->nr_slabs, 0);
1500 spin_lock_init(&n->list_lock);
1501 INIT_LIST_HEAD(&n->partial);
1502 INIT_LIST_HEAD(&n->full);
1505 #ifdef CONFIG_NUMA
1507 * No kmalloc_node yet so do it by hand. We know that this is the first
1508 * slab on the node for this slabcache. There are no concurrent accesses
1509 * possible.
1511 * Note that this function only works on the kmalloc_node_cache
1512 * when allocating for the kmalloc_node_cache.
1514 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1515 int node)
1517 struct page *page;
1518 struct kmem_cache_node *n;
1520 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1522 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1523 /* new_slab() disables interupts */
1524 local_irq_enable();
1526 BUG_ON(!page);
1527 n = page->freelist;
1528 BUG_ON(!n);
1529 page->freelist = get_freepointer(kmalloc_caches, n);
1530 page->inuse++;
1531 kmalloc_caches->node[node] = n;
1532 init_object(kmalloc_caches, n, 1);
1533 init_kmem_cache_node(n);
1534 atomic_long_inc(&n->nr_slabs);
1535 add_partial(n, page);
1536 return n;
1539 static void free_kmem_cache_nodes(struct kmem_cache *s)
1541 int node;
1543 for_each_online_node(node) {
1544 struct kmem_cache_node *n = s->node[node];
1545 if (n && n != &s->local_node)
1546 kmem_cache_free(kmalloc_caches, n);
1547 s->node[node] = NULL;
1551 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1553 int node;
1554 int local_node;
1556 if (slab_state >= UP)
1557 local_node = page_to_nid(virt_to_page(s));
1558 else
1559 local_node = 0;
1561 for_each_online_node(node) {
1562 struct kmem_cache_node *n;
1564 if (local_node == node)
1565 n = &s->local_node;
1566 else {
1567 if (slab_state == DOWN) {
1568 n = early_kmem_cache_node_alloc(gfpflags,
1569 node);
1570 continue;
1572 n = kmem_cache_alloc_node(kmalloc_caches,
1573 gfpflags, node);
1575 if (!n) {
1576 free_kmem_cache_nodes(s);
1577 return 0;
1581 s->node[node] = n;
1582 init_kmem_cache_node(n);
1584 return 1;
1586 #else
1587 static void free_kmem_cache_nodes(struct kmem_cache *s)
1591 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1593 init_kmem_cache_node(&s->local_node);
1594 return 1;
1596 #endif
1599 * calculate_sizes() determines the order and the distribution of data within
1600 * a slab object.
1602 static int calculate_sizes(struct kmem_cache *s)
1604 unsigned long flags = s->flags;
1605 unsigned long size = s->objsize;
1606 unsigned long align = s->align;
1609 * Determine if we can poison the object itself. If the user of
1610 * the slab may touch the object after free or before allocation
1611 * then we should never poison the object itself.
1613 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1614 !s->ctor && !s->dtor)
1615 s->flags |= __OBJECT_POISON;
1616 else
1617 s->flags &= ~__OBJECT_POISON;
1620 * Round up object size to the next word boundary. We can only
1621 * place the free pointer at word boundaries and this determines
1622 * the possible location of the free pointer.
1624 size = ALIGN(size, sizeof(void *));
1627 * If we are redzoning then check if there is some space between the
1628 * end of the object and the free pointer. If not then add an
1629 * additional word, so that we can establish a redzone between
1630 * the object and the freepointer to be able to check for overwrites.
1632 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1633 size += sizeof(void *);
1636 * With that we have determined how much of the slab is in actual
1637 * use by the object. This is the potential offset to the free
1638 * pointer.
1640 s->inuse = size;
1642 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1643 s->ctor || s->dtor)) {
1645 * Relocate free pointer after the object if it is not
1646 * permitted to overwrite the first word of the object on
1647 * kmem_cache_free.
1649 * This is the case if we do RCU, have a constructor or
1650 * destructor or are poisoning the objects.
1652 s->offset = size;
1653 size += sizeof(void *);
1656 if (flags & SLAB_STORE_USER)
1658 * Need to store information about allocs and frees after
1659 * the object.
1661 size += 2 * sizeof(struct track);
1663 if (flags & SLAB_RED_ZONE)
1665 * Add some empty padding so that we can catch
1666 * overwrites from earlier objects rather than let
1667 * tracking information or the free pointer be
1668 * corrupted if an user writes before the start
1669 * of the object.
1671 size += sizeof(void *);
1673 * Determine the alignment based on various parameters that the
1674 * user specified and the dynamic determination of cache line size
1675 * on bootup.
1677 align = calculate_alignment(flags, align, s->objsize);
1680 * SLUB stores one object immediately after another beginning from
1681 * offset 0. In order to align the objects we have to simply size
1682 * each object to conform to the alignment.
1684 size = ALIGN(size, align);
1685 s->size = size;
1687 s->order = calculate_order(size);
1688 if (s->order < 0)
1689 return 0;
1692 * Determine the number of objects per slab
1694 s->objects = (PAGE_SIZE << s->order) / size;
1697 * Verify that the number of objects is within permitted limits.
1698 * The page->inuse field is only 16 bit wide! So we cannot have
1699 * more than 64k objects per slab.
1701 if (!s->objects || s->objects > 65535)
1702 return 0;
1703 return 1;
1707 static int __init finish_bootstrap(void)
1709 struct list_head *h;
1710 int err;
1712 slab_state = SYSFS;
1714 list_for_each(h, &slab_caches) {
1715 struct kmem_cache *s =
1716 container_of(h, struct kmem_cache, list);
1718 err = sysfs_slab_add(s);
1719 BUG_ON(err);
1721 return 0;
1724 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1725 const char *name, size_t size,
1726 size_t align, unsigned long flags,
1727 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1728 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1730 memset(s, 0, kmem_size);
1731 s->name = name;
1732 s->ctor = ctor;
1733 s->dtor = dtor;
1734 s->objsize = size;
1735 s->flags = flags;
1736 s->align = align;
1739 * The page->offset field is only 16 bit wide. This is an offset
1740 * in units of words from the beginning of an object. If the slab
1741 * size is bigger then we cannot move the free pointer behind the
1742 * object anymore.
1744 * On 32 bit platforms the limit is 256k. On 64bit platforms
1745 * the limit is 512k.
1747 * Debugging or ctor/dtors may create a need to move the free
1748 * pointer. Fail if this happens.
1750 if (s->size >= 65535 * sizeof(void *)) {
1751 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1752 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1753 BUG_ON(ctor || dtor);
1755 else
1757 * Enable debugging if selected on the kernel commandline.
1759 if (slub_debug && (!slub_debug_slabs ||
1760 strncmp(slub_debug_slabs, name,
1761 strlen(slub_debug_slabs)) == 0))
1762 s->flags |= slub_debug;
1764 if (!calculate_sizes(s))
1765 goto error;
1767 s->refcount = 1;
1768 #ifdef CONFIG_NUMA
1769 s->defrag_ratio = 100;
1770 #endif
1772 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1773 return 1;
1774 error:
1775 if (flags & SLAB_PANIC)
1776 panic("Cannot create slab %s size=%lu realsize=%u "
1777 "order=%u offset=%u flags=%lx\n",
1778 s->name, (unsigned long)size, s->size, s->order,
1779 s->offset, flags);
1780 return 0;
1782 EXPORT_SYMBOL(kmem_cache_open);
1785 * Check if a given pointer is valid
1787 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1789 struct page * page;
1790 void *addr;
1792 page = get_object_page(object);
1794 if (!page || s != page->slab)
1795 /* No slab or wrong slab */
1796 return 0;
1798 if (!check_valid_pointer(s, page, object))
1799 return 0;
1802 * We could also check if the object is on the slabs freelist.
1803 * But this would be too expensive and it seems that the main
1804 * purpose of kmem_ptr_valid is to check if the object belongs
1805 * to a certain slab.
1807 return 1;
1809 EXPORT_SYMBOL(kmem_ptr_validate);
1812 * Determine the size of a slab object
1814 unsigned int kmem_cache_size(struct kmem_cache *s)
1816 return s->objsize;
1818 EXPORT_SYMBOL(kmem_cache_size);
1820 const char *kmem_cache_name(struct kmem_cache *s)
1822 return s->name;
1824 EXPORT_SYMBOL(kmem_cache_name);
1827 * Attempt to free all slabs on a node
1829 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1830 struct list_head *list)
1832 int slabs_inuse = 0;
1833 unsigned long flags;
1834 struct page *page, *h;
1836 spin_lock_irqsave(&n->list_lock, flags);
1837 list_for_each_entry_safe(page, h, list, lru)
1838 if (!page->inuse) {
1839 list_del(&page->lru);
1840 discard_slab(s, page);
1841 } else
1842 slabs_inuse++;
1843 spin_unlock_irqrestore(&n->list_lock, flags);
1844 return slabs_inuse;
1848 * Release all resources used by slab cache
1850 static int kmem_cache_close(struct kmem_cache *s)
1852 int node;
1854 flush_all(s);
1856 /* Attempt to free all objects */
1857 for_each_online_node(node) {
1858 struct kmem_cache_node *n = get_node(s, node);
1860 n->nr_partial -= free_list(s, n, &n->partial);
1861 if (atomic_long_read(&n->nr_slabs))
1862 return 1;
1864 free_kmem_cache_nodes(s);
1865 return 0;
1869 * Close a cache and release the kmem_cache structure
1870 * (must be used for caches created using kmem_cache_create)
1872 void kmem_cache_destroy(struct kmem_cache *s)
1874 down_write(&slub_lock);
1875 s->refcount--;
1876 if (!s->refcount) {
1877 list_del(&s->list);
1878 if (kmem_cache_close(s))
1879 WARN_ON(1);
1880 sysfs_slab_remove(s);
1881 kfree(s);
1883 up_write(&slub_lock);
1885 EXPORT_SYMBOL(kmem_cache_destroy);
1887 /********************************************************************
1888 * Kmalloc subsystem
1889 *******************************************************************/
1891 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1892 EXPORT_SYMBOL(kmalloc_caches);
1894 #ifdef CONFIG_ZONE_DMA
1895 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1896 #endif
1898 static int __init setup_slub_min_order(char *str)
1900 get_option (&str, &slub_min_order);
1902 return 1;
1905 __setup("slub_min_order=", setup_slub_min_order);
1907 static int __init setup_slub_max_order(char *str)
1909 get_option (&str, &slub_max_order);
1911 return 1;
1914 __setup("slub_max_order=", setup_slub_max_order);
1916 static int __init setup_slub_min_objects(char *str)
1918 get_option (&str, &slub_min_objects);
1920 return 1;
1923 __setup("slub_min_objects=", setup_slub_min_objects);
1925 static int __init setup_slub_nomerge(char *str)
1927 slub_nomerge = 1;
1928 return 1;
1931 __setup("slub_nomerge", setup_slub_nomerge);
1933 static int __init setup_slub_debug(char *str)
1935 if (!str || *str != '=')
1936 slub_debug = DEBUG_DEFAULT_FLAGS;
1937 else {
1938 str++;
1939 if (*str == 0 || *str == ',')
1940 slub_debug = DEBUG_DEFAULT_FLAGS;
1941 else
1942 for( ;*str && *str != ','; str++)
1943 switch (*str) {
1944 case 'f' : case 'F' :
1945 slub_debug |= SLAB_DEBUG_FREE;
1946 break;
1947 case 'z' : case 'Z' :
1948 slub_debug |= SLAB_RED_ZONE;
1949 break;
1950 case 'p' : case 'P' :
1951 slub_debug |= SLAB_POISON;
1952 break;
1953 case 'u' : case 'U' :
1954 slub_debug |= SLAB_STORE_USER;
1955 break;
1956 case 't' : case 'T' :
1957 slub_debug |= SLAB_TRACE;
1958 break;
1959 default:
1960 printk(KERN_ERR "slub_debug option '%c' "
1961 "unknown. skipped\n",*str);
1965 if (*str == ',')
1966 slub_debug_slabs = str + 1;
1967 return 1;
1970 __setup("slub_debug", setup_slub_debug);
1972 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1973 const char *name, int size, gfp_t gfp_flags)
1975 unsigned int flags = 0;
1977 if (gfp_flags & SLUB_DMA)
1978 flags = SLAB_CACHE_DMA;
1980 down_write(&slub_lock);
1981 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1982 flags, NULL, NULL))
1983 goto panic;
1985 list_add(&s->list, &slab_caches);
1986 up_write(&slub_lock);
1987 if (sysfs_slab_add(s))
1988 goto panic;
1989 return s;
1991 panic:
1992 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1995 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1997 int index = kmalloc_index(size);
1999 if (!index)
2000 return NULL;
2002 /* Allocation too large? */
2003 BUG_ON(index < 0);
2005 #ifdef CONFIG_ZONE_DMA
2006 if ((flags & SLUB_DMA)) {
2007 struct kmem_cache *s;
2008 struct kmem_cache *x;
2009 char *text;
2010 size_t realsize;
2012 s = kmalloc_caches_dma[index];
2013 if (s)
2014 return s;
2016 /* Dynamically create dma cache */
2017 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2018 if (!x)
2019 panic("Unable to allocate memory for dma cache\n");
2021 if (index <= KMALLOC_SHIFT_HIGH)
2022 realsize = 1 << index;
2023 else {
2024 if (index == 1)
2025 realsize = 96;
2026 else
2027 realsize = 192;
2030 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2031 (unsigned int)realsize);
2032 s = create_kmalloc_cache(x, text, realsize, flags);
2033 kmalloc_caches_dma[index] = s;
2034 return s;
2036 #endif
2037 return &kmalloc_caches[index];
2040 void *__kmalloc(size_t size, gfp_t flags)
2042 struct kmem_cache *s = get_slab(size, flags);
2044 if (s)
2045 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2046 return NULL;
2048 EXPORT_SYMBOL(__kmalloc);
2050 #ifdef CONFIG_NUMA
2051 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2053 struct kmem_cache *s = get_slab(size, flags);
2055 if (s)
2056 return slab_alloc(s, flags, node, __builtin_return_address(0));
2057 return NULL;
2059 EXPORT_SYMBOL(__kmalloc_node);
2060 #endif
2062 size_t ksize(const void *object)
2064 struct page *page = get_object_page(object);
2065 struct kmem_cache *s;
2067 BUG_ON(!page);
2068 s = page->slab;
2069 BUG_ON(!s);
2072 * Debugging requires use of the padding between object
2073 * and whatever may come after it.
2075 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2076 return s->objsize;
2079 * If we have the need to store the freelist pointer
2080 * back there or track user information then we can
2081 * only use the space before that information.
2083 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2084 return s->inuse;
2087 * Else we can use all the padding etc for the allocation
2089 return s->size;
2091 EXPORT_SYMBOL(ksize);
2093 void kfree(const void *x)
2095 struct kmem_cache *s;
2096 struct page *page;
2098 if (!x)
2099 return;
2101 page = virt_to_head_page(x);
2102 s = page->slab;
2104 slab_free(s, page, (void *)x, __builtin_return_address(0));
2106 EXPORT_SYMBOL(kfree);
2109 * kmem_cache_shrink removes empty slabs from the partial lists
2110 * and then sorts the partially allocated slabs by the number
2111 * of items in use. The slabs with the most items in use
2112 * come first. New allocations will remove these from the
2113 * partial list because they are full. The slabs with the
2114 * least items are placed last. If it happens that the objects
2115 * are freed then the page can be returned to the page allocator.
2117 int kmem_cache_shrink(struct kmem_cache *s)
2119 int node;
2120 int i;
2121 struct kmem_cache_node *n;
2122 struct page *page;
2123 struct page *t;
2124 struct list_head *slabs_by_inuse =
2125 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2126 unsigned long flags;
2128 if (!slabs_by_inuse)
2129 return -ENOMEM;
2131 flush_all(s);
2132 for_each_online_node(node) {
2133 n = get_node(s, node);
2135 if (!n->nr_partial)
2136 continue;
2138 for (i = 0; i < s->objects; i++)
2139 INIT_LIST_HEAD(slabs_by_inuse + i);
2141 spin_lock_irqsave(&n->list_lock, flags);
2144 * Build lists indexed by the items in use in
2145 * each slab or free slabs if empty.
2147 * Note that concurrent frees may occur while
2148 * we hold the list_lock. page->inuse here is
2149 * the upper limit.
2151 list_for_each_entry_safe(page, t, &n->partial, lru) {
2152 if (!page->inuse && slab_trylock(page)) {
2154 * Must hold slab lock here because slab_free
2155 * may have freed the last object and be
2156 * waiting to release the slab.
2158 list_del(&page->lru);
2159 n->nr_partial--;
2160 slab_unlock(page);
2161 discard_slab(s, page);
2162 } else {
2163 if (n->nr_partial > MAX_PARTIAL)
2164 list_move(&page->lru,
2165 slabs_by_inuse + page->inuse);
2169 if (n->nr_partial <= MAX_PARTIAL)
2170 goto out;
2173 * Rebuild the partial list with the slabs filled up
2174 * most first and the least used slabs at the end.
2176 for (i = s->objects - 1; i >= 0; i--)
2177 list_splice(slabs_by_inuse + i, n->partial.prev);
2179 out:
2180 spin_unlock_irqrestore(&n->list_lock, flags);
2183 kfree(slabs_by_inuse);
2184 return 0;
2186 EXPORT_SYMBOL(kmem_cache_shrink);
2189 * krealloc - reallocate memory. The contents will remain unchanged.
2191 * @p: object to reallocate memory for.
2192 * @new_size: how many bytes of memory are required.
2193 * @flags: the type of memory to allocate.
2195 * The contents of the object pointed to are preserved up to the
2196 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2197 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2198 * %NULL pointer, the object pointed to is freed.
2200 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2202 struct kmem_cache *new_cache;
2203 void *ret;
2204 struct page *page;
2206 if (unlikely(!p))
2207 return kmalloc(new_size, flags);
2209 if (unlikely(!new_size)) {
2210 kfree(p);
2211 return NULL;
2214 page = virt_to_head_page(p);
2216 new_cache = get_slab(new_size, flags);
2219 * If new size fits in the current cache, bail out.
2221 if (likely(page->slab == new_cache))
2222 return (void *)p;
2224 ret = kmalloc(new_size, flags);
2225 if (ret) {
2226 memcpy(ret, p, min(new_size, ksize(p)));
2227 kfree(p);
2229 return ret;
2231 EXPORT_SYMBOL(krealloc);
2233 /********************************************************************
2234 * Basic setup of slabs
2235 *******************************************************************/
2237 void __init kmem_cache_init(void)
2239 int i;
2241 #ifdef CONFIG_NUMA
2243 * Must first have the slab cache available for the allocations of the
2244 * struct kmalloc_cache_node's. There is special bootstrap code in
2245 * kmem_cache_open for slab_state == DOWN.
2247 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2248 sizeof(struct kmem_cache_node), GFP_KERNEL);
2249 #endif
2251 /* Able to allocate the per node structures */
2252 slab_state = PARTIAL;
2254 /* Caches that are not of the two-to-the-power-of size */
2255 create_kmalloc_cache(&kmalloc_caches[1],
2256 "kmalloc-96", 96, GFP_KERNEL);
2257 create_kmalloc_cache(&kmalloc_caches[2],
2258 "kmalloc-192", 192, GFP_KERNEL);
2260 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2261 create_kmalloc_cache(&kmalloc_caches[i],
2262 "kmalloc", 1 << i, GFP_KERNEL);
2264 slab_state = UP;
2266 /* Provide the correct kmalloc names now that the caches are up */
2267 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2268 kmalloc_caches[i]. name =
2269 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2271 #ifdef CONFIG_SMP
2272 register_cpu_notifier(&slab_notifier);
2273 #endif
2275 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2276 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2277 + nr_cpu_ids * sizeof(struct page *);
2279 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2280 " Processors=%d, Nodes=%d\n",
2281 KMALLOC_SHIFT_HIGH, cache_line_size(),
2282 slub_min_order, slub_max_order, slub_min_objects,
2283 nr_cpu_ids, nr_node_ids);
2287 * Find a mergeable slab cache
2289 static int slab_unmergeable(struct kmem_cache *s)
2291 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2292 return 1;
2294 if (s->ctor || s->dtor)
2295 return 1;
2297 return 0;
2300 static struct kmem_cache *find_mergeable(size_t size,
2301 size_t align, unsigned long flags,
2302 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2303 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2305 struct list_head *h;
2307 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2308 return NULL;
2310 if (ctor || dtor)
2311 return NULL;
2313 size = ALIGN(size, sizeof(void *));
2314 align = calculate_alignment(flags, align, size);
2315 size = ALIGN(size, align);
2317 list_for_each(h, &slab_caches) {
2318 struct kmem_cache *s =
2319 container_of(h, struct kmem_cache, list);
2321 if (slab_unmergeable(s))
2322 continue;
2324 if (size > s->size)
2325 continue;
2327 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2328 (s->flags & SLUB_MERGE_SAME))
2329 continue;
2331 * Check if alignment is compatible.
2332 * Courtesy of Adrian Drzewiecki
2334 if ((s->size & ~(align -1)) != s->size)
2335 continue;
2337 if (s->size - size >= sizeof(void *))
2338 continue;
2340 return s;
2342 return NULL;
2345 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2346 size_t align, unsigned long flags,
2347 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2348 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2350 struct kmem_cache *s;
2352 down_write(&slub_lock);
2353 s = find_mergeable(size, align, flags, dtor, ctor);
2354 if (s) {
2355 s->refcount++;
2357 * Adjust the object sizes so that we clear
2358 * the complete object on kzalloc.
2360 s->objsize = max(s->objsize, (int)size);
2361 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2362 if (sysfs_slab_alias(s, name))
2363 goto err;
2364 } else {
2365 s = kmalloc(kmem_size, GFP_KERNEL);
2366 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2367 size, align, flags, ctor, dtor)) {
2368 if (sysfs_slab_add(s)) {
2369 kfree(s);
2370 goto err;
2372 list_add(&s->list, &slab_caches);
2373 } else
2374 kfree(s);
2376 up_write(&slub_lock);
2377 return s;
2379 err:
2380 up_write(&slub_lock);
2381 if (flags & SLAB_PANIC)
2382 panic("Cannot create slabcache %s\n", name);
2383 else
2384 s = NULL;
2385 return s;
2387 EXPORT_SYMBOL(kmem_cache_create);
2389 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2391 void *x;
2393 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2394 if (x)
2395 memset(x, 0, s->objsize);
2396 return x;
2398 EXPORT_SYMBOL(kmem_cache_zalloc);
2400 #ifdef CONFIG_SMP
2401 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2403 struct list_head *h;
2405 down_read(&slub_lock);
2406 list_for_each(h, &slab_caches) {
2407 struct kmem_cache *s =
2408 container_of(h, struct kmem_cache, list);
2410 func(s, cpu);
2412 up_read(&slub_lock);
2416 * Use the cpu notifier to insure that the slab are flushed
2417 * when necessary.
2419 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2420 unsigned long action, void *hcpu)
2422 long cpu = (long)hcpu;
2424 switch (action) {
2425 case CPU_UP_CANCELED:
2426 case CPU_DEAD:
2427 for_all_slabs(__flush_cpu_slab, cpu);
2428 break;
2429 default:
2430 break;
2432 return NOTIFY_OK;
2435 static struct notifier_block __cpuinitdata slab_notifier =
2436 { &slab_cpuup_callback, NULL, 0 };
2438 #endif
2440 #ifdef CONFIG_NUMA
2442 /*****************************************************************
2443 * Generic reaper used to support the page allocator
2444 * (the cpu slabs are reaped by a per slab workqueue).
2446 * Maybe move this to the page allocator?
2447 ****************************************************************/
2449 static DEFINE_PER_CPU(unsigned long, reap_node);
2451 static void init_reap_node(int cpu)
2453 int node;
2455 node = next_node(cpu_to_node(cpu), node_online_map);
2456 if (node == MAX_NUMNODES)
2457 node = first_node(node_online_map);
2459 __get_cpu_var(reap_node) = node;
2462 static void next_reap_node(void)
2464 int node = __get_cpu_var(reap_node);
2467 * Also drain per cpu pages on remote zones
2469 if (node != numa_node_id())
2470 drain_node_pages(node);
2472 node = next_node(node, node_online_map);
2473 if (unlikely(node >= MAX_NUMNODES))
2474 node = first_node(node_online_map);
2475 __get_cpu_var(reap_node) = node;
2477 #else
2478 #define init_reap_node(cpu) do { } while (0)
2479 #define next_reap_node(void) do { } while (0)
2480 #endif
2482 #define REAPTIMEOUT_CPUC (2*HZ)
2484 #ifdef CONFIG_SMP
2485 static DEFINE_PER_CPU(struct delayed_work, reap_work);
2487 static void cache_reap(struct work_struct *unused)
2489 next_reap_node();
2490 refresh_cpu_vm_stats(smp_processor_id());
2491 schedule_delayed_work(&__get_cpu_var(reap_work),
2492 REAPTIMEOUT_CPUC);
2495 static void __devinit start_cpu_timer(int cpu)
2497 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2500 * When this gets called from do_initcalls via cpucache_init(),
2501 * init_workqueues() has already run, so keventd will be setup
2502 * at that time.
2504 if (keventd_up() && reap_work->work.func == NULL) {
2505 init_reap_node(cpu);
2506 INIT_DELAYED_WORK(reap_work, cache_reap);
2507 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2511 static int __init cpucache_init(void)
2513 int cpu;
2516 * Register the timers that drain pcp pages and update vm statistics
2518 for_each_online_cpu(cpu)
2519 start_cpu_timer(cpu);
2520 return 0;
2522 __initcall(cpucache_init);
2523 #endif
2525 #ifdef SLUB_RESILIENCY_TEST
2526 static unsigned long validate_slab_cache(struct kmem_cache *s);
2528 static void resiliency_test(void)
2530 u8 *p;
2532 printk(KERN_ERR "SLUB resiliency testing\n");
2533 printk(KERN_ERR "-----------------------\n");
2534 printk(KERN_ERR "A. Corruption after allocation\n");
2536 p = kzalloc(16, GFP_KERNEL);
2537 p[16] = 0x12;
2538 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2539 " 0x12->0x%p\n\n", p + 16);
2541 validate_slab_cache(kmalloc_caches + 4);
2543 /* Hmmm... The next two are dangerous */
2544 p = kzalloc(32, GFP_KERNEL);
2545 p[32 + sizeof(void *)] = 0x34;
2546 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2547 " 0x34 -> -0x%p\n", p);
2548 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2550 validate_slab_cache(kmalloc_caches + 5);
2551 p = kzalloc(64, GFP_KERNEL);
2552 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2553 *p = 0x56;
2554 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2556 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2557 validate_slab_cache(kmalloc_caches + 6);
2559 printk(KERN_ERR "\nB. Corruption after free\n");
2560 p = kzalloc(128, GFP_KERNEL);
2561 kfree(p);
2562 *p = 0x78;
2563 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2564 validate_slab_cache(kmalloc_caches + 7);
2566 p = kzalloc(256, GFP_KERNEL);
2567 kfree(p);
2568 p[50] = 0x9a;
2569 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2570 validate_slab_cache(kmalloc_caches + 8);
2572 p = kzalloc(512, GFP_KERNEL);
2573 kfree(p);
2574 p[512] = 0xab;
2575 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2576 validate_slab_cache(kmalloc_caches + 9);
2578 #else
2579 static void resiliency_test(void) {};
2580 #endif
2583 * These are not as efficient as kmalloc for the non debug case.
2584 * We do not have the page struct available so we have to touch one
2585 * cacheline in struct kmem_cache to check slab flags.
2587 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2589 struct kmem_cache *s = get_slab(size, gfpflags);
2591 if (!s)
2592 return NULL;
2594 return slab_alloc(s, gfpflags, -1, caller);
2597 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2598 int node, void *caller)
2600 struct kmem_cache *s = get_slab(size, gfpflags);
2602 if (!s)
2603 return NULL;
2605 return slab_alloc(s, gfpflags, node, caller);
2608 #ifdef CONFIG_SYSFS
2610 static int validate_slab(struct kmem_cache *s, struct page *page)
2612 void *p;
2613 void *addr = page_address(page);
2614 unsigned long map[BITS_TO_LONGS(s->objects)];
2616 if (!check_slab(s, page) ||
2617 !on_freelist(s, page, NULL))
2618 return 0;
2620 /* Now we know that a valid freelist exists */
2621 bitmap_zero(map, s->objects);
2623 for(p = page->freelist; p; p = get_freepointer(s, p)) {
2624 set_bit((p - addr) / s->size, map);
2625 if (!check_object(s, page, p, 0))
2626 return 0;
2629 for(p = addr; p < addr + s->objects * s->size; p += s->size)
2630 if (!test_bit((p - addr) / s->size, map))
2631 if (!check_object(s, page, p, 1))
2632 return 0;
2633 return 1;
2636 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2638 if (slab_trylock(page)) {
2639 validate_slab(s, page);
2640 slab_unlock(page);
2641 } else
2642 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2643 s->name, page);
2645 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2646 if (!PageError(page))
2647 printk(KERN_ERR "SLUB %s: PageError not set "
2648 "on slab 0x%p\n", s->name, page);
2649 } else {
2650 if (PageError(page))
2651 printk(KERN_ERR "SLUB %s: PageError set on "
2652 "slab 0x%p\n", s->name, page);
2656 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2658 unsigned long count = 0;
2659 struct page *page;
2660 unsigned long flags;
2662 spin_lock_irqsave(&n->list_lock, flags);
2664 list_for_each_entry(page, &n->partial, lru) {
2665 validate_slab_slab(s, page);
2666 count++;
2668 if (count != n->nr_partial)
2669 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2670 "counter=%ld\n", s->name, count, n->nr_partial);
2672 if (!(s->flags & SLAB_STORE_USER))
2673 goto out;
2675 list_for_each_entry(page, &n->full, lru) {
2676 validate_slab_slab(s, page);
2677 count++;
2679 if (count != atomic_long_read(&n->nr_slabs))
2680 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2681 "counter=%ld\n", s->name, count,
2682 atomic_long_read(&n->nr_slabs));
2684 out:
2685 spin_unlock_irqrestore(&n->list_lock, flags);
2686 return count;
2689 static unsigned long validate_slab_cache(struct kmem_cache *s)
2691 int node;
2692 unsigned long count = 0;
2694 flush_all(s);
2695 for_each_online_node(node) {
2696 struct kmem_cache_node *n = get_node(s, node);
2698 count += validate_slab_node(s, n);
2700 return count;
2704 * Generate lists of locations where slabcache objects are allocated
2705 * and freed.
2708 struct location {
2709 unsigned long count;
2710 void *addr;
2713 struct loc_track {
2714 unsigned long max;
2715 unsigned long count;
2716 struct location *loc;
2719 static void free_loc_track(struct loc_track *t)
2721 if (t->max)
2722 free_pages((unsigned long)t->loc,
2723 get_order(sizeof(struct location) * t->max));
2726 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2728 struct location *l;
2729 int order;
2731 if (!max)
2732 max = PAGE_SIZE / sizeof(struct location);
2734 order = get_order(sizeof(struct location) * max);
2736 l = (void *)__get_free_pages(GFP_KERNEL, order);
2738 if (!l)
2739 return 0;
2741 if (t->count) {
2742 memcpy(l, t->loc, sizeof(struct location) * t->count);
2743 free_loc_track(t);
2745 t->max = max;
2746 t->loc = l;
2747 return 1;
2750 static int add_location(struct loc_track *t, struct kmem_cache *s,
2751 void *addr)
2753 long start, end, pos;
2754 struct location *l;
2755 void *caddr;
2757 start = -1;
2758 end = t->count;
2760 for ( ; ; ) {
2761 pos = start + (end - start + 1) / 2;
2764 * There is nothing at "end". If we end up there
2765 * we need to add something to before end.
2767 if (pos == end)
2768 break;
2770 caddr = t->loc[pos].addr;
2771 if (addr == caddr) {
2772 t->loc[pos].count++;
2773 return 1;
2776 if (addr < caddr)
2777 end = pos;
2778 else
2779 start = pos;
2783 * Not found. Insert new tracking element
2785 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2786 return 0;
2788 l = t->loc + pos;
2789 if (pos < t->count)
2790 memmove(l + 1, l,
2791 (t->count - pos) * sizeof(struct location));
2792 t->count++;
2793 l->count = 1;
2794 l->addr = addr;
2795 return 1;
2798 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2799 struct page *page, enum track_item alloc)
2801 void *addr = page_address(page);
2802 unsigned long map[BITS_TO_LONGS(s->objects)];
2803 void *p;
2805 bitmap_zero(map, s->objects);
2806 for (p = page->freelist; p; p = get_freepointer(s, p))
2807 set_bit((p - addr) / s->size, map);
2809 for (p = addr; p < addr + s->objects * s->size; p += s->size)
2810 if (!test_bit((p - addr) / s->size, map)) {
2811 void *addr = get_track(s, p, alloc)->addr;
2813 add_location(t, s, addr);
2817 static int list_locations(struct kmem_cache *s, char *buf,
2818 enum track_item alloc)
2820 int n = 0;
2821 unsigned long i;
2822 struct loc_track t;
2823 int node;
2825 t.count = 0;
2826 t.max = 0;
2828 /* Push back cpu slabs */
2829 flush_all(s);
2831 for_each_online_node(node) {
2832 struct kmem_cache_node *n = get_node(s, node);
2833 unsigned long flags;
2834 struct page *page;
2836 if (!atomic_read(&n->nr_slabs))
2837 continue;
2839 spin_lock_irqsave(&n->list_lock, flags);
2840 list_for_each_entry(page, &n->partial, lru)
2841 process_slab(&t, s, page, alloc);
2842 list_for_each_entry(page, &n->full, lru)
2843 process_slab(&t, s, page, alloc);
2844 spin_unlock_irqrestore(&n->list_lock, flags);
2847 for (i = 0; i < t.count; i++) {
2848 void *addr = t.loc[i].addr;
2850 if (n > PAGE_SIZE - 100)
2851 break;
2852 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2853 if (addr)
2854 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2855 else
2856 n += sprintf(buf + n, "<not-available>");
2857 n += sprintf(buf + n, "\n");
2860 free_loc_track(&t);
2861 if (!t.count)
2862 n += sprintf(buf, "No data\n");
2863 return n;
2866 static unsigned long count_partial(struct kmem_cache_node *n)
2868 unsigned long flags;
2869 unsigned long x = 0;
2870 struct page *page;
2872 spin_lock_irqsave(&n->list_lock, flags);
2873 list_for_each_entry(page, &n->partial, lru)
2874 x += page->inuse;
2875 spin_unlock_irqrestore(&n->list_lock, flags);
2876 return x;
2879 enum slab_stat_type {
2880 SL_FULL,
2881 SL_PARTIAL,
2882 SL_CPU,
2883 SL_OBJECTS
2886 #define SO_FULL (1 << SL_FULL)
2887 #define SO_PARTIAL (1 << SL_PARTIAL)
2888 #define SO_CPU (1 << SL_CPU)
2889 #define SO_OBJECTS (1 << SL_OBJECTS)
2891 static unsigned long slab_objects(struct kmem_cache *s,
2892 char *buf, unsigned long flags)
2894 unsigned long total = 0;
2895 int cpu;
2896 int node;
2897 int x;
2898 unsigned long *nodes;
2899 unsigned long *per_cpu;
2901 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2902 per_cpu = nodes + nr_node_ids;
2904 for_each_possible_cpu(cpu) {
2905 struct page *page = s->cpu_slab[cpu];
2906 int node;
2908 if (page) {
2909 node = page_to_nid(page);
2910 if (flags & SO_CPU) {
2911 int x = 0;
2913 if (flags & SO_OBJECTS)
2914 x = page->inuse;
2915 else
2916 x = 1;
2917 total += x;
2918 nodes[node] += x;
2920 per_cpu[node]++;
2924 for_each_online_node(node) {
2925 struct kmem_cache_node *n = get_node(s, node);
2927 if (flags & SO_PARTIAL) {
2928 if (flags & SO_OBJECTS)
2929 x = count_partial(n);
2930 else
2931 x = n->nr_partial;
2932 total += x;
2933 nodes[node] += x;
2936 if (flags & SO_FULL) {
2937 int full_slabs = atomic_read(&n->nr_slabs)
2938 - per_cpu[node]
2939 - n->nr_partial;
2941 if (flags & SO_OBJECTS)
2942 x = full_slabs * s->objects;
2943 else
2944 x = full_slabs;
2945 total += x;
2946 nodes[node] += x;
2950 x = sprintf(buf, "%lu", total);
2951 #ifdef CONFIG_NUMA
2952 for_each_online_node(node)
2953 if (nodes[node])
2954 x += sprintf(buf + x, " N%d=%lu",
2955 node, nodes[node]);
2956 #endif
2957 kfree(nodes);
2958 return x + sprintf(buf + x, "\n");
2961 static int any_slab_objects(struct kmem_cache *s)
2963 int node;
2964 int cpu;
2966 for_each_possible_cpu(cpu)
2967 if (s->cpu_slab[cpu])
2968 return 1;
2970 for_each_node(node) {
2971 struct kmem_cache_node *n = get_node(s, node);
2973 if (n->nr_partial || atomic_read(&n->nr_slabs))
2974 return 1;
2976 return 0;
2979 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2980 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
2982 struct slab_attribute {
2983 struct attribute attr;
2984 ssize_t (*show)(struct kmem_cache *s, char *buf);
2985 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2988 #define SLAB_ATTR_RO(_name) \
2989 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2991 #define SLAB_ATTR(_name) \
2992 static struct slab_attribute _name##_attr = \
2993 __ATTR(_name, 0644, _name##_show, _name##_store)
2995 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2997 return sprintf(buf, "%d\n", s->size);
2999 SLAB_ATTR_RO(slab_size);
3001 static ssize_t align_show(struct kmem_cache *s, char *buf)
3003 return sprintf(buf, "%d\n", s->align);
3005 SLAB_ATTR_RO(align);
3007 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3009 return sprintf(buf, "%d\n", s->objsize);
3011 SLAB_ATTR_RO(object_size);
3013 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3015 return sprintf(buf, "%d\n", s->objects);
3017 SLAB_ATTR_RO(objs_per_slab);
3019 static ssize_t order_show(struct kmem_cache *s, char *buf)
3021 return sprintf(buf, "%d\n", s->order);
3023 SLAB_ATTR_RO(order);
3025 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3027 if (s->ctor) {
3028 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3030 return n + sprintf(buf + n, "\n");
3032 return 0;
3034 SLAB_ATTR_RO(ctor);
3036 static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3038 if (s->dtor) {
3039 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3041 return n + sprintf(buf + n, "\n");
3043 return 0;
3045 SLAB_ATTR_RO(dtor);
3047 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3049 return sprintf(buf, "%d\n", s->refcount - 1);
3051 SLAB_ATTR_RO(aliases);
3053 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3055 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3057 SLAB_ATTR_RO(slabs);
3059 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3061 return slab_objects(s, buf, SO_PARTIAL);
3063 SLAB_ATTR_RO(partial);
3065 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3067 return slab_objects(s, buf, SO_CPU);
3069 SLAB_ATTR_RO(cpu_slabs);
3071 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3073 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3075 SLAB_ATTR_RO(objects);
3077 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3082 static ssize_t sanity_checks_store(struct kmem_cache *s,
3083 const char *buf, size_t length)
3085 s->flags &= ~SLAB_DEBUG_FREE;
3086 if (buf[0] == '1')
3087 s->flags |= SLAB_DEBUG_FREE;
3088 return length;
3090 SLAB_ATTR(sanity_checks);
3092 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3097 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3098 size_t length)
3100 s->flags &= ~SLAB_TRACE;
3101 if (buf[0] == '1')
3102 s->flags |= SLAB_TRACE;
3103 return length;
3105 SLAB_ATTR(trace);
3107 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3109 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3112 static ssize_t reclaim_account_store(struct kmem_cache *s,
3113 const char *buf, size_t length)
3115 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3116 if (buf[0] == '1')
3117 s->flags |= SLAB_RECLAIM_ACCOUNT;
3118 return length;
3120 SLAB_ATTR(reclaim_account);
3122 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3126 SLAB_ATTR_RO(hwcache_align);
3128 #ifdef CONFIG_ZONE_DMA
3129 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3133 SLAB_ATTR_RO(cache_dma);
3134 #endif
3136 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3138 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3140 SLAB_ATTR_RO(destroy_by_rcu);
3142 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3144 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3147 static ssize_t red_zone_store(struct kmem_cache *s,
3148 const char *buf, size_t length)
3150 if (any_slab_objects(s))
3151 return -EBUSY;
3153 s->flags &= ~SLAB_RED_ZONE;
3154 if (buf[0] == '1')
3155 s->flags |= SLAB_RED_ZONE;
3156 calculate_sizes(s);
3157 return length;
3159 SLAB_ATTR(red_zone);
3161 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3163 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3166 static ssize_t poison_store(struct kmem_cache *s,
3167 const char *buf, size_t length)
3169 if (any_slab_objects(s))
3170 return -EBUSY;
3172 s->flags &= ~SLAB_POISON;
3173 if (buf[0] == '1')
3174 s->flags |= SLAB_POISON;
3175 calculate_sizes(s);
3176 return length;
3178 SLAB_ATTR(poison);
3180 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3182 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3185 static ssize_t store_user_store(struct kmem_cache *s,
3186 const char *buf, size_t length)
3188 if (any_slab_objects(s))
3189 return -EBUSY;
3191 s->flags &= ~SLAB_STORE_USER;
3192 if (buf[0] == '1')
3193 s->flags |= SLAB_STORE_USER;
3194 calculate_sizes(s);
3195 return length;
3197 SLAB_ATTR(store_user);
3199 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3201 return 0;
3204 static ssize_t validate_store(struct kmem_cache *s,
3205 const char *buf, size_t length)
3207 if (buf[0] == '1')
3208 validate_slab_cache(s);
3209 else
3210 return -EINVAL;
3211 return length;
3213 SLAB_ATTR(validate);
3215 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3217 return 0;
3220 static ssize_t shrink_store(struct kmem_cache *s,
3221 const char *buf, size_t length)
3223 if (buf[0] == '1') {
3224 int rc = kmem_cache_shrink(s);
3226 if (rc)
3227 return rc;
3228 } else
3229 return -EINVAL;
3230 return length;
3232 SLAB_ATTR(shrink);
3234 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3236 if (!(s->flags & SLAB_STORE_USER))
3237 return -ENOSYS;
3238 return list_locations(s, buf, TRACK_ALLOC);
3240 SLAB_ATTR_RO(alloc_calls);
3242 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3244 if (!(s->flags & SLAB_STORE_USER))
3245 return -ENOSYS;
3246 return list_locations(s, buf, TRACK_FREE);
3248 SLAB_ATTR_RO(free_calls);
3250 #ifdef CONFIG_NUMA
3251 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3253 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3256 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3257 const char *buf, size_t length)
3259 int n = simple_strtoul(buf, NULL, 10);
3261 if (n < 100)
3262 s->defrag_ratio = n * 10;
3263 return length;
3265 SLAB_ATTR(defrag_ratio);
3266 #endif
3268 static struct attribute * slab_attrs[] = {
3269 &slab_size_attr.attr,
3270 &object_size_attr.attr,
3271 &objs_per_slab_attr.attr,
3272 &order_attr.attr,
3273 &objects_attr.attr,
3274 &slabs_attr.attr,
3275 &partial_attr.attr,
3276 &cpu_slabs_attr.attr,
3277 &ctor_attr.attr,
3278 &dtor_attr.attr,
3279 &aliases_attr.attr,
3280 &align_attr.attr,
3281 &sanity_checks_attr.attr,
3282 &trace_attr.attr,
3283 &hwcache_align_attr.attr,
3284 &reclaim_account_attr.attr,
3285 &destroy_by_rcu_attr.attr,
3286 &red_zone_attr.attr,
3287 &poison_attr.attr,
3288 &store_user_attr.attr,
3289 &validate_attr.attr,
3290 &shrink_attr.attr,
3291 &alloc_calls_attr.attr,
3292 &free_calls_attr.attr,
3293 #ifdef CONFIG_ZONE_DMA
3294 &cache_dma_attr.attr,
3295 #endif
3296 #ifdef CONFIG_NUMA
3297 &defrag_ratio_attr.attr,
3298 #endif
3299 NULL
3302 static struct attribute_group slab_attr_group = {
3303 .attrs = slab_attrs,
3306 static ssize_t slab_attr_show(struct kobject *kobj,
3307 struct attribute *attr,
3308 char *buf)
3310 struct slab_attribute *attribute;
3311 struct kmem_cache *s;
3312 int err;
3314 attribute = to_slab_attr(attr);
3315 s = to_slab(kobj);
3317 if (!attribute->show)
3318 return -EIO;
3320 err = attribute->show(s, buf);
3322 return err;
3325 static ssize_t slab_attr_store(struct kobject *kobj,
3326 struct attribute *attr,
3327 const char *buf, size_t len)
3329 struct slab_attribute *attribute;
3330 struct kmem_cache *s;
3331 int err;
3333 attribute = to_slab_attr(attr);
3334 s = to_slab(kobj);
3336 if (!attribute->store)
3337 return -EIO;
3339 err = attribute->store(s, buf, len);
3341 return err;
3344 static struct sysfs_ops slab_sysfs_ops = {
3345 .show = slab_attr_show,
3346 .store = slab_attr_store,
3349 static struct kobj_type slab_ktype = {
3350 .sysfs_ops = &slab_sysfs_ops,
3353 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3355 struct kobj_type *ktype = get_ktype(kobj);
3357 if (ktype == &slab_ktype)
3358 return 1;
3359 return 0;
3362 static struct kset_uevent_ops slab_uevent_ops = {
3363 .filter = uevent_filter,
3366 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3368 #define ID_STR_LENGTH 64
3370 /* Create a unique string id for a slab cache:
3371 * format
3372 * :[flags-]size:[memory address of kmemcache]
3374 static char *create_unique_id(struct kmem_cache *s)
3376 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3377 char *p = name;
3379 BUG_ON(!name);
3381 *p++ = ':';
3383 * First flags affecting slabcache operations. We will only
3384 * get here for aliasable slabs so we do not need to support
3385 * too many flags. The flags here must cover all flags that
3386 * are matched during merging to guarantee that the id is
3387 * unique.
3389 if (s->flags & SLAB_CACHE_DMA)
3390 *p++ = 'd';
3391 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3392 *p++ = 'a';
3393 if (s->flags & SLAB_DEBUG_FREE)
3394 *p++ = 'F';
3395 if (p != name + 1)
3396 *p++ = '-';
3397 p += sprintf(p, "%07d", s->size);
3398 BUG_ON(p > name + ID_STR_LENGTH - 1);
3399 return name;
3402 static int sysfs_slab_add(struct kmem_cache *s)
3404 int err;
3405 const char *name;
3406 int unmergeable;
3408 if (slab_state < SYSFS)
3409 /* Defer until later */
3410 return 0;
3412 unmergeable = slab_unmergeable(s);
3413 if (unmergeable) {
3415 * Slabcache can never be merged so we can use the name proper.
3416 * This is typically the case for debug situations. In that
3417 * case we can catch duplicate names easily.
3419 sysfs_remove_link(&slab_subsys.kobj, s->name);
3420 name = s->name;
3421 } else {
3423 * Create a unique name for the slab as a target
3424 * for the symlinks.
3426 name = create_unique_id(s);
3429 kobj_set_kset_s(s, slab_subsys);
3430 kobject_set_name(&s->kobj, name);
3431 kobject_init(&s->kobj);
3432 err = kobject_add(&s->kobj);
3433 if (err)
3434 return err;
3436 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3437 if (err)
3438 return err;
3439 kobject_uevent(&s->kobj, KOBJ_ADD);
3440 if (!unmergeable) {
3441 /* Setup first alias */
3442 sysfs_slab_alias(s, s->name);
3443 kfree(name);
3445 return 0;
3448 static void sysfs_slab_remove(struct kmem_cache *s)
3450 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3451 kobject_del(&s->kobj);
3455 * Need to buffer aliases during bootup until sysfs becomes
3456 * available lest we loose that information.
3458 struct saved_alias {
3459 struct kmem_cache *s;
3460 const char *name;
3461 struct saved_alias *next;
3464 struct saved_alias *alias_list;
3466 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3468 struct saved_alias *al;
3470 if (slab_state == SYSFS) {
3472 * If we have a leftover link then remove it.
3474 sysfs_remove_link(&slab_subsys.kobj, name);
3475 return sysfs_create_link(&slab_subsys.kobj,
3476 &s->kobj, name);
3479 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3480 if (!al)
3481 return -ENOMEM;
3483 al->s = s;
3484 al->name = name;
3485 al->next = alias_list;
3486 alias_list = al;
3487 return 0;
3490 static int __init slab_sysfs_init(void)
3492 int err;
3494 err = subsystem_register(&slab_subsys);
3495 if (err) {
3496 printk(KERN_ERR "Cannot register slab subsystem.\n");
3497 return -ENOSYS;
3500 finish_bootstrap();
3502 while (alias_list) {
3503 struct saved_alias *al = alias_list;
3505 alias_list = alias_list->next;
3506 err = sysfs_slab_alias(al->s, al->name);
3507 BUG_ON(err);
3508 kfree(al);
3511 resiliency_test();
3512 return 0;
3515 __initcall(slab_sysfs_init);
3516 #else
3517 __initcall(finish_bootstrap);
3518 #endif