[PATCH] namespaces: add nsproxy
[linux-2.6/verdex.git] / arch / mips / kernel / vpe.c
blob51ddd216689850d5d0113dee662782ef82c3da8f
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
19 * VPE support module
21 * Provides support for loading a MIPS SP program on VPE1.
22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable
23 * (or partially linked). You should initialise your stack in the startup
24 * code. This loader looks for the symbol __start and sets up
25 * execution to resume from there. The MIPS SDE kit contains suitable examples.
27 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28 * i.e cat spapp >/dev/vpe1.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
56 typedef void *vpe_handle;
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
65 static char module_name[] = "vpe";
66 static int major;
68 #ifdef CONFIG_MIPS_APSP_KSPD
69 static struct kspd_notifications kspd_events;
70 static int kspd_events_reqd = 0;
71 #endif
73 /* grab the likely amount of memory we will need. */
74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
75 #define P_SIZE (2 * 1024 * 1024)
76 #else
77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
78 #define P_SIZE (256 * 1024)
79 #endif
81 extern unsigned long physical_memsize;
83 #define MAX_VPES 16
84 #define VPE_PATH_MAX 256
86 enum vpe_state {
87 VPE_STATE_UNUSED = 0,
88 VPE_STATE_INUSE,
89 VPE_STATE_RUNNING
92 enum tc_state {
93 TC_STATE_UNUSED = 0,
94 TC_STATE_INUSE,
95 TC_STATE_RUNNING,
96 TC_STATE_DYNAMIC
99 struct vpe {
100 enum vpe_state state;
102 /* (device) minor associated with this vpe */
103 int minor;
105 /* elfloader stuff */
106 void *load_addr;
107 unsigned long len;
108 char *pbuffer;
109 unsigned long plen;
110 unsigned int uid, gid;
111 char cwd[VPE_PATH_MAX];
113 unsigned long __start;
115 /* tc's associated with this vpe */
116 struct list_head tc;
118 /* The list of vpe's */
119 struct list_head list;
121 /* shared symbol address */
122 void *shared_ptr;
124 /* the list of who wants to know when something major happens */
125 struct list_head notify;
128 struct tc {
129 enum tc_state state;
130 int index;
132 /* parent VPE */
133 struct vpe *pvpe;
135 /* The list of TC's with this VPE */
136 struct list_head tc;
138 /* The global list of tc's */
139 struct list_head list;
142 struct vpecontrol_ {
143 /* Virtual processing elements */
144 struct list_head vpe_list;
146 /* Thread contexts */
147 struct list_head tc_list;
148 } vpecontrol;
150 static void release_progmem(void *ptr);
151 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
152 extern void save_gp_address(unsigned int secbase, unsigned int rel);
154 /* get the vpe associated with this minor */
155 struct vpe *get_vpe(int minor)
157 struct vpe *v;
159 if (!cpu_has_mipsmt)
160 return NULL;
162 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
163 if (v->minor == minor)
164 return v;
167 return NULL;
170 /* get the vpe associated with this minor */
171 struct tc *get_tc(int index)
173 struct tc *t;
175 list_for_each_entry(t, &vpecontrol.tc_list, list) {
176 if (t->index == index)
177 return t;
180 return NULL;
183 struct tc *get_tc_unused(void)
185 struct tc *t;
187 list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 if (t->state == TC_STATE_UNUSED)
189 return t;
192 return NULL;
195 /* allocate a vpe and associate it with this minor (or index) */
196 struct vpe *alloc_vpe(int minor)
198 struct vpe *v;
200 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
201 return NULL;
204 INIT_LIST_HEAD(&v->tc);
205 list_add_tail(&v->list, &vpecontrol.vpe_list);
207 INIT_LIST_HEAD(&v->notify);
208 v->minor = minor;
209 return v;
212 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
213 struct tc *alloc_tc(int index)
215 struct tc *t;
217 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
218 return NULL;
221 INIT_LIST_HEAD(&t->tc);
222 list_add_tail(&t->list, &vpecontrol.tc_list);
224 t->index = index;
226 return t;
229 /* clean up and free everything */
230 void release_vpe(struct vpe *v)
232 list_del(&v->list);
233 if (v->load_addr)
234 release_progmem(v);
235 kfree(v);
238 void dump_mtregs(void)
240 unsigned long val;
242 val = read_c0_config3();
243 printk("config3 0x%lx MT %ld\n", val,
244 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
246 val = read_c0_mvpcontrol();
247 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
248 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
249 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
250 (val & MVPCONTROL_EVP));
252 val = read_c0_mvpconf0();
253 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
254 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
255 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
258 /* Find some VPE program space */
259 static void *alloc_progmem(unsigned long len)
261 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
262 /* this means you must tell linux to use less memory than you physically have */
263 return pfn_to_kaddr(max_pfn);
264 #else
265 // simple grab some mem for now
266 return kmalloc(len, GFP_KERNEL);
267 #endif
270 static void release_progmem(void *ptr)
272 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
273 kfree(ptr);
274 #endif
277 /* Update size with this section: return offset. */
278 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
280 long ret;
282 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
283 *size = ret + sechdr->sh_size;
284 return ret;
287 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
288 might -- code, read-only data, read-write data, small data. Tally
289 sizes, and place the offsets into sh_entsize fields: high bit means it
290 belongs in init. */
291 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
292 Elf_Shdr * sechdrs, const char *secstrings)
294 static unsigned long const masks[][2] = {
295 /* NOTE: all executable code must be the first section
296 * in this array; otherwise modify the text_size
297 * finder in the two loops below */
298 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
299 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
300 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
301 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
303 unsigned int m, i;
305 for (i = 0; i < hdr->e_shnum; i++)
306 sechdrs[i].sh_entsize = ~0UL;
308 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
309 for (i = 0; i < hdr->e_shnum; ++i) {
310 Elf_Shdr *s = &sechdrs[i];
312 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
313 if ((s->sh_flags & masks[m][0]) != masks[m][0]
314 || (s->sh_flags & masks[m][1])
315 || s->sh_entsize != ~0UL)
316 continue;
317 s->sh_entsize = get_offset(&mod->core_size, s);
320 if (m == 0)
321 mod->core_text_size = mod->core_size;
327 /* from module-elf32.c, but subverted a little */
329 struct mips_hi16 {
330 struct mips_hi16 *next;
331 Elf32_Addr *addr;
332 Elf32_Addr value;
335 static struct mips_hi16 *mips_hi16_list;
336 static unsigned int gp_offs, gp_addr;
338 static int apply_r_mips_none(struct module *me, uint32_t *location,
339 Elf32_Addr v)
341 return 0;
344 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
345 Elf32_Addr v)
347 int rel;
349 if( !(*location & 0xffff) ) {
350 rel = (int)v - gp_addr;
352 else {
353 /* .sbss + gp(relative) + offset */
354 /* kludge! */
355 rel = (int)(short)((int)v + gp_offs +
356 (int)(short)(*location & 0xffff) - gp_addr);
359 if( (rel > 32768) || (rel < -32768) ) {
360 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
361 "relative address 0x%x out of range of gp register\n",
362 rel);
363 return -ENOEXEC;
366 *location = (*location & 0xffff0000) | (rel & 0xffff);
368 return 0;
371 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
372 Elf32_Addr v)
374 int rel;
375 rel = (((unsigned int)v - (unsigned int)location));
376 rel >>= 2; // because the offset is in _instructions_ not bytes.
377 rel -= 1; // and one instruction less due to the branch delay slot.
379 if( (rel > 32768) || (rel < -32768) ) {
380 printk(KERN_DEBUG "VPE loader: "
381 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
382 return -ENOEXEC;
385 *location = (*location & 0xffff0000) | (rel & 0xffff);
387 return 0;
390 static int apply_r_mips_32(struct module *me, uint32_t *location,
391 Elf32_Addr v)
393 *location += v;
395 return 0;
398 static int apply_r_mips_26(struct module *me, uint32_t *location,
399 Elf32_Addr v)
401 if (v % 4) {
402 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
403 " unaligned relocation\n");
404 return -ENOEXEC;
408 * Not desperately convinced this is a good check of an overflow condition
409 * anyway. But it gets in the way of handling undefined weak symbols which
410 * we want to set to zero.
411 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
412 * printk(KERN_ERR
413 * "module %s: relocation overflow\n",
414 * me->name);
415 * return -ENOEXEC;
419 *location = (*location & ~0x03ffffff) |
420 ((*location + (v >> 2)) & 0x03ffffff);
421 return 0;
424 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
425 Elf32_Addr v)
427 struct mips_hi16 *n;
430 * We cannot relocate this one now because we don't know the value of
431 * the carry we need to add. Save the information, and let LO16 do the
432 * actual relocation.
434 n = kmalloc(sizeof *n, GFP_KERNEL);
435 if (!n)
436 return -ENOMEM;
438 n->addr = location;
439 n->value = v;
440 n->next = mips_hi16_list;
441 mips_hi16_list = n;
443 return 0;
446 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
447 Elf32_Addr v)
449 unsigned long insnlo = *location;
450 Elf32_Addr val, vallo;
452 /* Sign extend the addend we extract from the lo insn. */
453 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
455 if (mips_hi16_list != NULL) {
456 struct mips_hi16 *l;
458 l = mips_hi16_list;
459 while (l != NULL) {
460 struct mips_hi16 *next;
461 unsigned long insn;
464 * The value for the HI16 had best be the same.
466 if (v != l->value) {
467 printk(KERN_DEBUG "VPE loader: "
468 "apply_r_mips_lo16/hi16: "
469 "inconsistent value information\n");
470 return -ENOEXEC;
474 * Do the HI16 relocation. Note that we actually don't
475 * need to know anything about the LO16 itself, except
476 * where to find the low 16 bits of the addend needed
477 * by the LO16.
479 insn = *l->addr;
480 val = ((insn & 0xffff) << 16) + vallo;
481 val += v;
484 * Account for the sign extension that will happen in
485 * the low bits.
487 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
489 insn = (insn & ~0xffff) | val;
490 *l->addr = insn;
492 next = l->next;
493 kfree(l);
494 l = next;
497 mips_hi16_list = NULL;
501 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
503 val = v + vallo;
504 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
505 *location = insnlo;
507 return 0;
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 Elf32_Addr v) = {
512 [R_MIPS_NONE] = apply_r_mips_none,
513 [R_MIPS_32] = apply_r_mips_32,
514 [R_MIPS_26] = apply_r_mips_26,
515 [R_MIPS_HI16] = apply_r_mips_hi16,
516 [R_MIPS_LO16] = apply_r_mips_lo16,
517 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 [R_MIPS_PC16] = apply_r_mips_pc16
521 static char *rstrs[] = {
522 [R_MIPS_NONE] = "MIPS_NONE",
523 [R_MIPS_32] = "MIPS_32",
524 [R_MIPS_26] = "MIPS_26",
525 [R_MIPS_HI16] = "MIPS_HI16",
526 [R_MIPS_LO16] = "MIPS_LO16",
527 [R_MIPS_GPREL16] = "MIPS_GPREL16",
528 [R_MIPS_PC16] = "MIPS_PC16"
531 int apply_relocations(Elf32_Shdr *sechdrs,
532 const char *strtab,
533 unsigned int symindex,
534 unsigned int relsec,
535 struct module *me)
537 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
538 Elf32_Sym *sym;
539 uint32_t *location;
540 unsigned int i;
541 Elf32_Addr v;
542 int res;
544 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
545 Elf32_Word r_info = rel[i].r_info;
547 /* This is where to make the change */
548 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
549 + rel[i].r_offset;
550 /* This is the symbol it is referring to */
551 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
552 + ELF32_R_SYM(r_info);
554 if (!sym->st_value) {
555 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
556 me->name, strtab + sym->st_name);
557 /* just print the warning, dont barf */
560 v = sym->st_value;
562 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
563 if( res ) {
564 char *r = rstrs[ELF32_R_TYPE(r_info)];
565 printk(KERN_WARNING "VPE loader: .text+0x%x "
566 "relocation type %s for symbol \"%s\" failed\n",
567 rel[i].r_offset, r ? r : "UNKNOWN",
568 strtab + sym->st_name);
569 return res;
573 return 0;
576 void save_gp_address(unsigned int secbase, unsigned int rel)
578 gp_addr = secbase + rel;
579 gp_offs = gp_addr - (secbase & 0xffff0000);
581 /* end module-elf32.c */
585 /* Change all symbols so that sh_value encodes the pointer directly. */
586 static void simplify_symbols(Elf_Shdr * sechdrs,
587 unsigned int symindex,
588 const char *strtab,
589 const char *secstrings,
590 unsigned int nsecs, struct module *mod)
592 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
593 unsigned long secbase, bssbase = 0;
594 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
595 int size;
597 /* find the .bss section for COMMON symbols */
598 for (i = 0; i < nsecs; i++) {
599 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
600 bssbase = sechdrs[i].sh_addr;
601 break;
605 for (i = 1; i < n; i++) {
606 switch (sym[i].st_shndx) {
607 case SHN_COMMON:
608 /* Allocate space for the symbol in the .bss section.
609 st_value is currently size.
610 We want it to have the address of the symbol. */
612 size = sym[i].st_value;
613 sym[i].st_value = bssbase;
615 bssbase += size;
616 break;
618 case SHN_ABS:
619 /* Don't need to do anything */
620 break;
622 case SHN_UNDEF:
623 /* ret = -ENOENT; */
624 break;
626 case SHN_MIPS_SCOMMON:
627 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
628 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
629 sym[i].st_shndx);
630 // .sbss section
631 break;
633 default:
634 secbase = sechdrs[sym[i].st_shndx].sh_addr;
636 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
637 save_gp_address(secbase, sym[i].st_value);
640 sym[i].st_value += secbase;
641 break;
646 #ifdef DEBUG_ELFLOADER
647 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
648 const char *strtab, struct module *mod)
650 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
651 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
653 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
654 for (i = 1; i < n; i++) {
655 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
656 strtab + sym[i].st_name, sym[i].st_value);
659 #endif
661 static void dump_tc(struct tc *t)
663 unsigned long val;
665 settc(t->index);
666 printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
667 "TCStatus 0x%lx halt 0x%lx\n",
668 t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
669 read_tc_c0_tcstatus(), read_tc_c0_tchalt());
671 printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
672 printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
674 val = read_c0_vpeconf0();
675 printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
676 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
678 printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
679 printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
681 printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
682 printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
685 static void dump_tclist(void)
687 struct tc *t;
689 list_for_each_entry(t, &vpecontrol.tc_list, list) {
690 dump_tc(t);
694 /* We are prepared so configure and start the VPE... */
695 int vpe_run(struct vpe * v)
697 struct vpe_notifications *n;
698 unsigned long val, dmt_flag;
699 struct tc *t;
701 /* check we are the Master VPE */
702 val = read_c0_vpeconf0();
703 if (!(val & VPECONF0_MVP)) {
704 printk(KERN_WARNING
705 "VPE loader: only Master VPE's are allowed to configure MT\n");
706 return -1;
709 /* disable MT (using dvpe) */
710 dvpe();
712 if (!list_empty(&v->tc)) {
713 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
714 printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
715 t->index);
716 return -ENOEXEC;
718 } else {
719 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
720 v->minor);
721 return -ENOEXEC;
724 /* Put MVPE's into 'configuration state' */
725 set_c0_mvpcontrol(MVPCONTROL_VPC);
727 settc(t->index);
729 /* should check it is halted, and not activated */
730 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
731 printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
732 t->index);
733 dump_tclist();
734 return -ENOEXEC;
738 * Disable multi-threaded execution whilst we activate, clear the
739 * halt bit and bound the tc to the other VPE...
741 dmt_flag = dmt();
743 /* Write the address we want it to start running from in the TCPC register. */
744 write_tc_c0_tcrestart((unsigned long)v->__start);
745 write_tc_c0_tccontext((unsigned long)0);
747 * Mark the TC as activated, not interrupt exempt and not dynamically
748 * allocatable
750 val = read_tc_c0_tcstatus();
751 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
752 write_tc_c0_tcstatus(val);
754 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
757 * The sde-kit passes 'memsize' to __start in $a3, so set something
758 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and
759 * DFLT_HEAP_SIZE when you compile your program
761 mttgpr(7, physical_memsize);
764 /* set up VPE1 */
766 * bind the TC to VPE 1 as late as possible so we only have the final
767 * VPE registers to set up, and so an EJTAG probe can trigger on it
769 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
771 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
773 back_to_back_c0_hazard();
775 /* Set up the XTC bit in vpeconf0 to point at our tc */
776 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
777 | (t->index << VPECONF0_XTC_SHIFT));
779 back_to_back_c0_hazard();
781 /* enable this VPE */
782 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
784 /* clear out any left overs from a previous program */
785 write_vpe_c0_status(0);
786 write_vpe_c0_cause(0);
788 /* take system out of configuration state */
789 clear_c0_mvpcontrol(MVPCONTROL_VPC);
791 /* now safe to re-enable multi-threading */
792 emt(dmt_flag);
794 /* set it running */
795 evpe(EVPE_ENABLE);
797 list_for_each_entry(n, &v->notify, list) {
798 n->start(v->minor);
801 return 0;
804 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
805 unsigned int symindex, const char *strtab,
806 struct module *mod)
808 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
809 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
811 for (i = 1; i < n; i++) {
812 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
813 v->__start = sym[i].st_value;
816 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
817 v->shared_ptr = (void *)sym[i].st_value;
821 if ( (v->__start == 0) || (v->shared_ptr == NULL))
822 return -1;
824 return 0;
828 * Allocates a VPE with some program code space(the load address), copies the
829 * contents of the program (p)buffer performing relocatations/etc, free's it
830 * when finished.
832 int vpe_elfload(struct vpe * v)
834 Elf_Ehdr *hdr;
835 Elf_Shdr *sechdrs;
836 long err = 0;
837 char *secstrings, *strtab = NULL;
838 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
839 struct module mod; // so we can re-use the relocations code
841 memset(&mod, 0, sizeof(struct module));
842 strcpy(mod.name, "VPE loader");
844 hdr = (Elf_Ehdr *) v->pbuffer;
845 len = v->plen;
847 /* Sanity checks against insmoding binaries or wrong arch,
848 weird elf version */
849 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
850 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
851 || !elf_check_arch(hdr)
852 || hdr->e_shentsize != sizeof(*sechdrs)) {
853 printk(KERN_WARNING
854 "VPE loader: program wrong arch or weird elf version\n");
856 return -ENOEXEC;
859 if (hdr->e_type == ET_REL)
860 relocate = 1;
862 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
863 printk(KERN_ERR "VPE loader: program length %u truncated\n",
864 len);
866 return -ENOEXEC;
869 /* Convenience variables */
870 sechdrs = (void *)hdr + hdr->e_shoff;
871 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
872 sechdrs[0].sh_addr = 0;
874 /* And these should exist, but gcc whinges if we don't init them */
875 symindex = strindex = 0;
877 if (relocate) {
878 for (i = 1; i < hdr->e_shnum; i++) {
879 if (sechdrs[i].sh_type != SHT_NOBITS
880 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
881 printk(KERN_ERR "VPE program length %u truncated\n",
882 len);
883 return -ENOEXEC;
886 /* Mark all sections sh_addr with their address in the
887 temporary image. */
888 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
890 /* Internal symbols and strings. */
891 if (sechdrs[i].sh_type == SHT_SYMTAB) {
892 symindex = i;
893 strindex = sechdrs[i].sh_link;
894 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
897 layout_sections(&mod, hdr, sechdrs, secstrings);
900 v->load_addr = alloc_progmem(mod.core_size);
901 memset(v->load_addr, 0, mod.core_size);
903 printk("VPE loader: loading to %p\n", v->load_addr);
905 if (relocate) {
906 for (i = 0; i < hdr->e_shnum; i++) {
907 void *dest;
909 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
910 continue;
912 dest = v->load_addr + sechdrs[i].sh_entsize;
914 if (sechdrs[i].sh_type != SHT_NOBITS)
915 memcpy(dest, (void *)sechdrs[i].sh_addr,
916 sechdrs[i].sh_size);
917 /* Update sh_addr to point to copy in image. */
918 sechdrs[i].sh_addr = (unsigned long)dest;
920 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
921 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
924 /* Fix up syms, so that st_value is a pointer to location. */
925 simplify_symbols(sechdrs, symindex, strtab, secstrings,
926 hdr->e_shnum, &mod);
928 /* Now do relocations. */
929 for (i = 1; i < hdr->e_shnum; i++) {
930 const char *strtab = (char *)sechdrs[strindex].sh_addr;
931 unsigned int info = sechdrs[i].sh_info;
933 /* Not a valid relocation section? */
934 if (info >= hdr->e_shnum)
935 continue;
937 /* Don't bother with non-allocated sections */
938 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
939 continue;
941 if (sechdrs[i].sh_type == SHT_REL)
942 err = apply_relocations(sechdrs, strtab, symindex, i,
943 &mod);
944 else if (sechdrs[i].sh_type == SHT_RELA)
945 err = apply_relocate_add(sechdrs, strtab, symindex, i,
946 &mod);
947 if (err < 0)
948 return err;
951 } else {
952 for (i = 0; i < hdr->e_shnum; i++) {
954 /* Internal symbols and strings. */
955 if (sechdrs[i].sh_type == SHT_SYMTAB) {
956 symindex = i;
957 strindex = sechdrs[i].sh_link;
958 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
960 /* mark the symtab's address for when we try to find the
961 magic symbols */
962 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
965 /* filter sections we dont want in the final image */
966 if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
967 (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
968 printk( KERN_DEBUG " ignoring section, "
969 "name %s type %x address 0x%x \n",
970 secstrings + sechdrs[i].sh_name,
971 sechdrs[i].sh_type, sechdrs[i].sh_addr);
972 continue;
975 if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
976 printk( KERN_WARNING "VPE loader: "
977 "fully linked image has invalid section, "
978 "name %s type %x address 0x%x, before load "
979 "address of 0x%x\n",
980 secstrings + sechdrs[i].sh_name,
981 sechdrs[i].sh_type, sechdrs[i].sh_addr,
982 (unsigned int)v->load_addr);
983 return -ENOEXEC;
986 printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
987 "size 0x%x0 from x%p\n",
988 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
989 sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
991 if (sechdrs[i].sh_type != SHT_NOBITS)
992 memcpy((void *)sechdrs[i].sh_addr,
993 (char *)hdr + sechdrs[i].sh_offset,
994 sechdrs[i].sh_size);
995 else
996 memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
1000 /* make sure it's physically written out */
1001 flush_icache_range((unsigned long)v->load_addr,
1002 (unsigned long)v->load_addr + v->len);
1004 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1005 if (v->__start == 0) {
1006 printk(KERN_WARNING "VPE loader: program does not contain "
1007 "a __start symbol\n");
1008 return -ENOEXEC;
1011 if (v->shared_ptr == NULL)
1012 printk(KERN_WARNING "VPE loader: "
1013 "program does not contain vpe_shared symbol.\n"
1014 " Unable to use AMVP (AP/SP) facilities.\n");
1017 printk(" elf loaded\n");
1018 return 0;
1021 __attribute_used__ void dump_vpe(struct vpe * v)
1023 struct tc *t;
1025 settc(v->minor);
1027 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1028 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1030 list_for_each_entry(t, &vpecontrol.tc_list, list)
1031 dump_tc(t);
1034 static void cleanup_tc(struct tc *tc)
1036 int tmp;
1038 /* Put MVPE's into 'configuration state' */
1039 set_c0_mvpcontrol(MVPCONTROL_VPC);
1041 settc(tc->index);
1042 tmp = read_tc_c0_tcstatus();
1044 /* mark not allocated and not dynamically allocatable */
1045 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1046 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1047 write_tc_c0_tcstatus(tmp);
1049 write_tc_c0_tchalt(TCHALT_H);
1051 /* bind it to anything other than VPE1 */
1052 write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1054 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1057 static int getcwd(char *buff, int size)
1059 mm_segment_t old_fs;
1060 int ret;
1062 old_fs = get_fs();
1063 set_fs(KERNEL_DS);
1065 ret = sys_getcwd(buff,size);
1067 set_fs(old_fs);
1069 return ret;
1072 /* checks VPE is unused and gets ready to load program */
1073 static int vpe_open(struct inode *inode, struct file *filp)
1075 int minor, ret;
1076 struct vpe *v;
1077 struct vpe_notifications *not;
1079 /* assume only 1 device at the mo. */
1080 if ((minor = iminor(inode)) != 1) {
1081 printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1082 return -ENODEV;
1085 if ((v = get_vpe(minor)) == NULL) {
1086 printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1087 return -ENODEV;
1090 if (v->state != VPE_STATE_UNUSED) {
1091 dvpe();
1093 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1095 dump_tc(get_tc(minor));
1097 list_for_each_entry(not, &v->notify, list) {
1098 not->stop(minor);
1101 release_progmem(v->load_addr);
1102 cleanup_tc(get_tc(minor));
1105 // allocate it so when we get write ops we know it's expected.
1106 v->state = VPE_STATE_INUSE;
1108 /* this of-course trashes what was there before... */
1109 v->pbuffer = vmalloc(P_SIZE);
1110 v->plen = P_SIZE;
1111 v->load_addr = NULL;
1112 v->len = 0;
1114 v->uid = filp->f_uid;
1115 v->gid = filp->f_gid;
1117 #ifdef CONFIG_MIPS_APSP_KSPD
1118 /* get kspd to tell us when a syscall_exit happens */
1119 if (!kspd_events_reqd) {
1120 kspd_notify(&kspd_events);
1121 kspd_events_reqd++;
1123 #endif
1125 v->cwd[0] = 0;
1126 ret = getcwd(v->cwd, VPE_PATH_MAX);
1127 if (ret < 0)
1128 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1130 v->shared_ptr = NULL;
1131 v->__start = 0;
1132 return 0;
1135 static int vpe_release(struct inode *inode, struct file *filp)
1137 int minor, ret = 0;
1138 struct vpe *v;
1139 Elf_Ehdr *hdr;
1141 minor = iminor(inode);
1142 if ((v = get_vpe(minor)) == NULL)
1143 return -ENODEV;
1145 // simple case of fire and forget, so tell the VPE to run...
1147 hdr = (Elf_Ehdr *) v->pbuffer;
1148 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1149 if (vpe_elfload(v) >= 0)
1150 vpe_run(v);
1151 else {
1152 printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1153 ret = -ENOEXEC;
1155 } else {
1156 printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1157 ret = -ENOEXEC;
1160 /* It's good to be able to run the SP and if it chokes have a look at
1161 the /dev/rt?. But if we reset the pointer to the shared struct we
1162 loose what has happened. So perhaps if garbage is sent to the vpe
1163 device, use it as a trigger for the reset. Hopefully a nice
1164 executable will be along shortly. */
1165 if (ret < 0)
1166 v->shared_ptr = NULL;
1168 // cleanup any temp buffers
1169 if (v->pbuffer)
1170 vfree(v->pbuffer);
1171 v->plen = 0;
1172 return ret;
1175 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1176 size_t count, loff_t * ppos)
1178 int minor;
1179 size_t ret = count;
1180 struct vpe *v;
1182 minor = iminor(file->f_dentry->d_inode);
1183 if ((v = get_vpe(minor)) == NULL)
1184 return -ENODEV;
1186 if (v->pbuffer == NULL) {
1187 printk(KERN_ERR "VPE loader: no buffer for program\n");
1188 return -ENOMEM;
1191 if ((count + v->len) > v->plen) {
1192 printk(KERN_WARNING
1193 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1194 return -ENOMEM;
1197 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1198 if (!count)
1199 return -EFAULT;
1201 v->len += count;
1202 return ret;
1205 static struct file_operations vpe_fops = {
1206 .owner = THIS_MODULE,
1207 .open = vpe_open,
1208 .release = vpe_release,
1209 .write = vpe_write
1212 /* module wrapper entry points */
1213 /* give me a vpe */
1214 vpe_handle vpe_alloc(void)
1216 int i;
1217 struct vpe *v;
1219 /* find a vpe */
1220 for (i = 1; i < MAX_VPES; i++) {
1221 if ((v = get_vpe(i)) != NULL) {
1222 v->state = VPE_STATE_INUSE;
1223 return v;
1226 return NULL;
1229 EXPORT_SYMBOL(vpe_alloc);
1231 /* start running from here */
1232 int vpe_start(vpe_handle vpe, unsigned long start)
1234 struct vpe *v = vpe;
1236 v->__start = start;
1237 return vpe_run(v);
1240 EXPORT_SYMBOL(vpe_start);
1242 /* halt it for now */
1243 int vpe_stop(vpe_handle vpe)
1245 struct vpe *v = vpe;
1246 struct tc *t;
1247 unsigned int evpe_flags;
1249 evpe_flags = dvpe();
1251 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1253 settc(t->index);
1254 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1257 evpe(evpe_flags);
1259 return 0;
1262 EXPORT_SYMBOL(vpe_stop);
1264 /* I've done with it thank you */
1265 int vpe_free(vpe_handle vpe)
1267 struct vpe *v = vpe;
1268 struct tc *t;
1269 unsigned int evpe_flags;
1271 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1272 return -ENOEXEC;
1275 evpe_flags = dvpe();
1277 /* Put MVPE's into 'configuration state' */
1278 set_c0_mvpcontrol(MVPCONTROL_VPC);
1280 settc(t->index);
1281 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1283 /* mark the TC unallocated and halt'ed */
1284 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1285 write_tc_c0_tchalt(TCHALT_H);
1287 v->state = VPE_STATE_UNUSED;
1289 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1290 evpe(evpe_flags);
1292 return 0;
1295 EXPORT_SYMBOL(vpe_free);
1297 void *vpe_get_shared(int index)
1299 struct vpe *v;
1301 if ((v = get_vpe(index)) == NULL)
1302 return NULL;
1304 return v->shared_ptr;
1307 EXPORT_SYMBOL(vpe_get_shared);
1309 int vpe_getuid(int index)
1311 struct vpe *v;
1313 if ((v = get_vpe(index)) == NULL)
1314 return -1;
1316 return v->uid;
1319 EXPORT_SYMBOL(vpe_getuid);
1321 int vpe_getgid(int index)
1323 struct vpe *v;
1325 if ((v = get_vpe(index)) == NULL)
1326 return -1;
1328 return v->gid;
1331 EXPORT_SYMBOL(vpe_getgid);
1333 int vpe_notify(int index, struct vpe_notifications *notify)
1335 struct vpe *v;
1337 if ((v = get_vpe(index)) == NULL)
1338 return -1;
1340 list_add(&notify->list, &v->notify);
1341 return 0;
1344 EXPORT_SYMBOL(vpe_notify);
1346 char *vpe_getcwd(int index)
1348 struct vpe *v;
1350 if ((v = get_vpe(index)) == NULL)
1351 return NULL;
1353 return v->cwd;
1356 EXPORT_SYMBOL(vpe_getcwd);
1358 #ifdef CONFIG_MIPS_APSP_KSPD
1359 static void kspd_sp_exit( int sp_id)
1361 cleanup_tc(get_tc(sp_id));
1363 #endif
1365 static int __init vpe_module_init(void)
1367 struct vpe *v = NULL;
1368 struct tc *t;
1369 unsigned long val;
1370 int i;
1372 if (!cpu_has_mipsmt) {
1373 printk("VPE loader: not a MIPS MT capable processor\n");
1374 return -ENODEV;
1377 major = register_chrdev(0, module_name, &vpe_fops);
1378 if (major < 0) {
1379 printk("VPE loader: unable to register character device\n");
1380 return major;
1383 dmt();
1384 dvpe();
1386 /* Put MVPE's into 'configuration state' */
1387 set_c0_mvpcontrol(MVPCONTROL_VPC);
1389 /* dump_mtregs(); */
1391 INIT_LIST_HEAD(&vpecontrol.vpe_list);
1392 INIT_LIST_HEAD(&vpecontrol.tc_list);
1394 val = read_c0_mvpconf0();
1395 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1396 t = alloc_tc(i);
1398 /* VPE's */
1399 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1400 settc(i);
1402 if ((v = alloc_vpe(i)) == NULL) {
1403 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1404 return -ENODEV;
1407 /* add the tc to the list of this vpe's tc's. */
1408 list_add(&t->tc, &v->tc);
1410 /* deactivate all but vpe0 */
1411 if (i != 0) {
1412 unsigned long tmp = read_vpe_c0_vpeconf0();
1414 tmp &= ~VPECONF0_VPA;
1416 /* master VPE */
1417 tmp |= VPECONF0_MVP;
1418 write_vpe_c0_vpeconf0(tmp);
1421 /* disable multi-threading with TC's */
1422 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1424 if (i != 0) {
1425 write_vpe_c0_status((read_c0_status() &
1426 ~(ST0_IM | ST0_IE | ST0_KSU))
1427 | ST0_CU0);
1430 * Set config to be the same as vpe0,
1431 * particularly kseg0 coherency alg
1433 write_vpe_c0_config(read_c0_config());
1437 /* TC's */
1438 t->pvpe = v; /* set the parent vpe */
1440 if (i != 0) {
1441 unsigned long tmp;
1443 settc(i);
1445 /* Any TC that is bound to VPE0 gets left as is - in case
1446 we are running SMTC on VPE0. A TC that is bound to any
1447 other VPE gets bound to VPE0, ideally I'd like to make
1448 it homeless but it doesn't appear to let me bind a TC
1449 to a non-existent VPE. Which is perfectly reasonable.
1451 The (un)bound state is visible to an EJTAG probe so may
1452 notify GDB...
1455 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1456 /* tc is bound >vpe0 */
1457 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1459 t->pvpe = get_vpe(0); /* set the parent vpe */
1462 tmp = read_tc_c0_tcstatus();
1464 /* mark not activated and not dynamically allocatable */
1465 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1466 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1467 write_tc_c0_tcstatus(tmp);
1469 write_tc_c0_tchalt(TCHALT_H);
1473 /* release config state */
1474 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1476 #ifdef CONFIG_MIPS_APSP_KSPD
1477 kspd_events.kspd_sp_exit = kspd_sp_exit;
1478 #endif
1479 return 0;
1482 static void __exit vpe_module_exit(void)
1484 struct vpe *v, *n;
1486 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1487 if (v->state != VPE_STATE_UNUSED) {
1488 release_vpe(v);
1492 unregister_chrdev(major, module_name);
1495 module_init(vpe_module_init);
1496 module_exit(vpe_module_exit);
1497 MODULE_DESCRIPTION("MIPS VPE Loader");
1498 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1499 MODULE_LICENSE("GPL");