[PATCH] namespaces: add nsproxy
[linux-2.6/verdex.git] / arch / mips / kernel / traps.c
blobe51d8fd9a15234ec4d3e5fabcafb22b24010f6ed
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_cpu(void);
57 extern asmlinkage void handle_ov(void);
58 extern asmlinkage void handle_tr(void);
59 extern asmlinkage void handle_fpe(void);
60 extern asmlinkage void handle_mdmx(void);
61 extern asmlinkage void handle_watch(void);
62 extern asmlinkage void handle_mt(void);
63 extern asmlinkage void handle_dsp(void);
64 extern asmlinkage void handle_mcheck(void);
65 extern asmlinkage void handle_reserved(void);
67 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
68 struct mips_fpu_struct *ctx);
70 void (*board_be_init)(void);
71 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
72 void (*board_nmi_handler_setup)(void);
73 void (*board_ejtag_handler_setup)(void);
74 void (*board_bind_eic_interrupt)(int irq, int regset);
77 static void show_raw_backtrace(unsigned long reg29)
79 unsigned long *sp = (unsigned long *)reg29;
80 unsigned long addr;
82 printk("Call Trace:");
83 #ifdef CONFIG_KALLSYMS
84 printk("\n");
85 #endif
86 while (!kstack_end(sp)) {
87 addr = *sp++;
88 if (__kernel_text_address(addr))
89 print_ip_sym(addr);
91 printk("\n");
94 #ifdef CONFIG_KALLSYMS
95 static int raw_show_trace;
96 static int __init set_raw_show_trace(char *str)
98 raw_show_trace = 1;
99 return 1;
101 __setup("raw_show_trace", set_raw_show_trace);
103 extern unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
104 unsigned long pc, unsigned long ra);
106 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 unsigned long sp = regs->regs[29];
109 unsigned long ra = regs->regs[31];
110 unsigned long pc = regs->cp0_epc;
112 if (raw_show_trace || !__kernel_text_address(pc)) {
113 show_raw_backtrace(sp);
114 return;
116 printk("Call Trace:\n");
117 do {
118 print_ip_sym(pc);
119 pc = unwind_stack(task, &sp, pc, ra);
120 ra = 0;
121 } while (pc);
122 printk("\n");
124 #else
125 #define show_backtrace(task, r) show_raw_backtrace((r)->regs[29]);
126 #endif
129 * This routine abuses get_user()/put_user() to reference pointers
130 * with at least a bit of error checking ...
132 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
134 const int field = 2 * sizeof(unsigned long);
135 long stackdata;
136 int i;
137 unsigned long *sp = (unsigned long *)regs->regs[29];
139 printk("Stack :");
140 i = 0;
141 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
142 if (i && ((i % (64 / field)) == 0))
143 printk("\n ");
144 if (i > 39) {
145 printk(" ...");
146 break;
149 if (__get_user(stackdata, sp++)) {
150 printk(" (Bad stack address)");
151 break;
154 printk(" %0*lx", field, stackdata);
155 i++;
157 printk("\n");
158 show_backtrace(task, regs);
161 static __always_inline void prepare_frametrace(struct pt_regs *regs)
163 __asm__ __volatile__(
164 ".set push\n\t"
165 ".set noat\n\t"
166 #ifdef CONFIG_64BIT
167 "1: dla $1, 1b\n\t"
168 "sd $1, %0\n\t"
169 "sd $29, %1\n\t"
170 "sd $31, %2\n\t"
171 #else
172 "1: la $1, 1b\n\t"
173 "sw $1, %0\n\t"
174 "sw $29, %1\n\t"
175 "sw $31, %2\n\t"
176 #endif
177 ".set pop\n\t"
178 : "=m" (regs->cp0_epc),
179 "=m" (regs->regs[29]), "=m" (regs->regs[31])
180 : : "memory");
183 void show_stack(struct task_struct *task, unsigned long *sp)
185 struct pt_regs regs;
186 if (sp) {
187 regs.regs[29] = (unsigned long)sp;
188 regs.regs[31] = 0;
189 regs.cp0_epc = 0;
190 } else {
191 if (task && task != current) {
192 regs.regs[29] = task->thread.reg29;
193 regs.regs[31] = 0;
194 regs.cp0_epc = task->thread.reg31;
195 } else {
196 prepare_frametrace(&regs);
199 show_stacktrace(task, &regs);
203 * The architecture-independent dump_stack generator
205 void dump_stack(void)
207 struct pt_regs regs;
210 * Remove any garbage that may be in regs (specially func
211 * addresses) to avoid show_raw_backtrace() to report them
213 memset(&regs, 0, sizeof(regs));
214 prepare_frametrace(&regs);
215 show_backtrace(current, &regs);
218 EXPORT_SYMBOL(dump_stack);
220 void show_code(unsigned int *pc)
222 long i;
224 printk("\nCode:");
226 for(i = -3 ; i < 6 ; i++) {
227 unsigned int insn;
228 if (__get_user(insn, pc + i)) {
229 printk(" (Bad address in epc)\n");
230 break;
232 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
236 void show_regs(struct pt_regs *regs)
238 const int field = 2 * sizeof(unsigned long);
239 unsigned int cause = regs->cp0_cause;
240 int i;
242 printk("Cpu %d\n", smp_processor_id());
245 * Saved main processor registers
247 for (i = 0; i < 32; ) {
248 if ((i % 4) == 0)
249 printk("$%2d :", i);
250 if (i == 0)
251 printk(" %0*lx", field, 0UL);
252 else if (i == 26 || i == 27)
253 printk(" %*s", field, "");
254 else
255 printk(" %0*lx", field, regs->regs[i]);
257 i++;
258 if ((i % 4) == 0)
259 printk("\n");
262 printk("Hi : %0*lx\n", field, regs->hi);
263 printk("Lo : %0*lx\n", field, regs->lo);
266 * Saved cp0 registers
268 printk("epc : %0*lx ", field, regs->cp0_epc);
269 print_symbol("%s ", regs->cp0_epc);
270 printk(" %s\n", print_tainted());
271 printk("ra : %0*lx ", field, regs->regs[31]);
272 print_symbol("%s\n", regs->regs[31]);
274 printk("Status: %08x ", (uint32_t) regs->cp0_status);
276 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
277 if (regs->cp0_status & ST0_KUO)
278 printk("KUo ");
279 if (regs->cp0_status & ST0_IEO)
280 printk("IEo ");
281 if (regs->cp0_status & ST0_KUP)
282 printk("KUp ");
283 if (regs->cp0_status & ST0_IEP)
284 printk("IEp ");
285 if (regs->cp0_status & ST0_KUC)
286 printk("KUc ");
287 if (regs->cp0_status & ST0_IEC)
288 printk("IEc ");
289 } else {
290 if (regs->cp0_status & ST0_KX)
291 printk("KX ");
292 if (regs->cp0_status & ST0_SX)
293 printk("SX ");
294 if (regs->cp0_status & ST0_UX)
295 printk("UX ");
296 switch (regs->cp0_status & ST0_KSU) {
297 case KSU_USER:
298 printk("USER ");
299 break;
300 case KSU_SUPERVISOR:
301 printk("SUPERVISOR ");
302 break;
303 case KSU_KERNEL:
304 printk("KERNEL ");
305 break;
306 default:
307 printk("BAD_MODE ");
308 break;
310 if (regs->cp0_status & ST0_ERL)
311 printk("ERL ");
312 if (regs->cp0_status & ST0_EXL)
313 printk("EXL ");
314 if (regs->cp0_status & ST0_IE)
315 printk("IE ");
317 printk("\n");
319 printk("Cause : %08x\n", cause);
321 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 if (1 <= cause && cause <= 5)
323 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
325 printk("PrId : %08x\n", read_c0_prid());
328 void show_registers(struct pt_regs *regs)
330 show_regs(regs);
331 print_modules();
332 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
333 current->comm, current->pid, current_thread_info(), current);
334 show_stacktrace(current, regs);
335 show_code((unsigned int *) regs->cp0_epc);
336 printk("\n");
339 static DEFINE_SPINLOCK(die_lock);
341 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
343 static int die_counter;
344 #ifdef CONFIG_MIPS_MT_SMTC
345 unsigned long dvpret = dvpe();
346 #endif /* CONFIG_MIPS_MT_SMTC */
348 console_verbose();
349 spin_lock_irq(&die_lock);
350 bust_spinlocks(1);
351 #ifdef CONFIG_MIPS_MT_SMTC
352 mips_mt_regdump(dvpret);
353 #endif /* CONFIG_MIPS_MT_SMTC */
354 printk("%s[#%d]:\n", str, ++die_counter);
355 show_registers(regs);
356 spin_unlock_irq(&die_lock);
358 if (in_interrupt())
359 panic("Fatal exception in interrupt");
361 if (panic_on_oops) {
362 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
363 ssleep(5);
364 panic("Fatal exception");
367 do_exit(SIGSEGV);
370 extern const struct exception_table_entry __start___dbe_table[];
371 extern const struct exception_table_entry __stop___dbe_table[];
373 void __declare_dbe_table(void)
375 __asm__ __volatile__(
376 ".section\t__dbe_table,\"a\"\n\t"
377 ".previous"
381 /* Given an address, look for it in the exception tables. */
382 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
384 const struct exception_table_entry *e;
386 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
387 if (!e)
388 e = search_module_dbetables(addr);
389 return e;
392 asmlinkage void do_be(struct pt_regs *regs)
394 const int field = 2 * sizeof(unsigned long);
395 const struct exception_table_entry *fixup = NULL;
396 int data = regs->cp0_cause & 4;
397 int action = MIPS_BE_FATAL;
399 /* XXX For now. Fixme, this searches the wrong table ... */
400 if (data && !user_mode(regs))
401 fixup = search_dbe_tables(exception_epc(regs));
403 if (fixup)
404 action = MIPS_BE_FIXUP;
406 if (board_be_handler)
407 action = board_be_handler(regs, fixup != 0);
409 switch (action) {
410 case MIPS_BE_DISCARD:
411 return;
412 case MIPS_BE_FIXUP:
413 if (fixup) {
414 regs->cp0_epc = fixup->nextinsn;
415 return;
417 break;
418 default:
419 break;
423 * Assume it would be too dangerous to continue ...
425 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
426 data ? "Data" : "Instruction",
427 field, regs->cp0_epc, field, regs->regs[31]);
428 die_if_kernel("Oops", regs);
429 force_sig(SIGBUS, current);
432 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
434 unsigned int __user *epc;
436 epc = (unsigned int __user *) regs->cp0_epc +
437 ((regs->cp0_cause & CAUSEF_BD) != 0);
438 if (!get_user(*opcode, epc))
439 return 0;
441 force_sig(SIGSEGV, current);
442 return 1;
446 * ll/sc emulation
449 #define OPCODE 0xfc000000
450 #define BASE 0x03e00000
451 #define RT 0x001f0000
452 #define OFFSET 0x0000ffff
453 #define LL 0xc0000000
454 #define SC 0xe0000000
455 #define SPEC3 0x7c000000
456 #define RD 0x0000f800
457 #define FUNC 0x0000003f
458 #define RDHWR 0x0000003b
461 * The ll_bit is cleared by r*_switch.S
464 unsigned long ll_bit;
466 static struct task_struct *ll_task = NULL;
468 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
470 unsigned long value, __user *vaddr;
471 long offset;
472 int signal = 0;
475 * analyse the ll instruction that just caused a ri exception
476 * and put the referenced address to addr.
479 /* sign extend offset */
480 offset = opcode & OFFSET;
481 offset <<= 16;
482 offset >>= 16;
484 vaddr = (unsigned long __user *)
485 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
487 if ((unsigned long)vaddr & 3) {
488 signal = SIGBUS;
489 goto sig;
491 if (get_user(value, vaddr)) {
492 signal = SIGSEGV;
493 goto sig;
496 preempt_disable();
498 if (ll_task == NULL || ll_task == current) {
499 ll_bit = 1;
500 } else {
501 ll_bit = 0;
503 ll_task = current;
505 preempt_enable();
507 compute_return_epc(regs);
509 regs->regs[(opcode & RT) >> 16] = value;
511 return;
513 sig:
514 force_sig(signal, current);
517 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
519 unsigned long __user *vaddr;
520 unsigned long reg;
521 long offset;
522 int signal = 0;
525 * analyse the sc instruction that just caused a ri exception
526 * and put the referenced address to addr.
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536 reg = (opcode & RT) >> 16;
538 if ((unsigned long)vaddr & 3) {
539 signal = SIGBUS;
540 goto sig;
543 preempt_disable();
545 if (ll_bit == 0 || ll_task != current) {
546 compute_return_epc(regs);
547 regs->regs[reg] = 0;
548 preempt_enable();
549 return;
552 preempt_enable();
554 if (put_user(regs->regs[reg], vaddr)) {
555 signal = SIGSEGV;
556 goto sig;
559 compute_return_epc(regs);
560 regs->regs[reg] = 1;
562 return;
564 sig:
565 force_sig(signal, current);
569 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
570 * opcodes are supposed to result in coprocessor unusable exceptions if
571 * executed on ll/sc-less processors. That's the theory. In practice a
572 * few processors such as NEC's VR4100 throw reserved instruction exceptions
573 * instead, so we're doing the emulation thing in both exception handlers.
575 static inline int simulate_llsc(struct pt_regs *regs)
577 unsigned int opcode;
579 if (unlikely(get_insn_opcode(regs, &opcode)))
580 return -EFAULT;
582 if ((opcode & OPCODE) == LL) {
583 simulate_ll(regs, opcode);
584 return 0;
586 if ((opcode & OPCODE) == SC) {
587 simulate_sc(regs, opcode);
588 return 0;
591 return -EFAULT; /* Strange things going on ... */
595 * Simulate trapping 'rdhwr' instructions to provide user accessible
596 * registers not implemented in hardware. The only current use of this
597 * is the thread area pointer.
599 static inline int simulate_rdhwr(struct pt_regs *regs)
601 struct thread_info *ti = task_thread_info(current);
602 unsigned int opcode;
604 if (unlikely(get_insn_opcode(regs, &opcode)))
605 return -EFAULT;
607 if (unlikely(compute_return_epc(regs)))
608 return -EFAULT;
610 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
611 int rd = (opcode & RD) >> 11;
612 int rt = (opcode & RT) >> 16;
613 switch (rd) {
614 case 29:
615 regs->regs[rt] = ti->tp_value;
616 return 0;
617 default:
618 return -EFAULT;
622 /* Not ours. */
623 return -EFAULT;
626 asmlinkage void do_ov(struct pt_regs *regs)
628 siginfo_t info;
630 die_if_kernel("Integer overflow", regs);
632 info.si_code = FPE_INTOVF;
633 info.si_signo = SIGFPE;
634 info.si_errno = 0;
635 info.si_addr = (void __user *) regs->cp0_epc;
636 force_sig_info(SIGFPE, &info, current);
640 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
642 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
644 die_if_kernel("FP exception in kernel code", regs);
646 if (fcr31 & FPU_CSR_UNI_X) {
647 int sig;
649 preempt_disable();
651 #ifdef CONFIG_PREEMPT
652 if (!is_fpu_owner()) {
653 /* We might lose fpu before disabling preempt... */
654 own_fpu();
655 BUG_ON(!used_math());
656 restore_fp(current);
658 #endif
660 * Unimplemented operation exception. If we've got the full
661 * software emulator on-board, let's use it...
663 * Force FPU to dump state into task/thread context. We're
664 * moving a lot of data here for what is probably a single
665 * instruction, but the alternative is to pre-decode the FP
666 * register operands before invoking the emulator, which seems
667 * a bit extreme for what should be an infrequent event.
669 save_fp(current);
670 /* Ensure 'resume' not overwrite saved fp context again. */
671 lose_fpu();
673 preempt_enable();
675 /* Run the emulator */
676 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu);
678 preempt_disable();
680 own_fpu(); /* Using the FPU again. */
682 * We can't allow the emulated instruction to leave any of
683 * the cause bit set in $fcr31.
685 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
687 /* Restore the hardware register state */
688 restore_fp(current);
690 preempt_enable();
692 /* If something went wrong, signal */
693 if (sig)
694 force_sig(sig, current);
696 return;
699 force_sig(SIGFPE, current);
702 asmlinkage void do_bp(struct pt_regs *regs)
704 unsigned int opcode, bcode;
705 siginfo_t info;
707 die_if_kernel("Break instruction in kernel code", regs);
709 if (get_insn_opcode(regs, &opcode))
710 return;
713 * There is the ancient bug in the MIPS assemblers that the break
714 * code starts left to bit 16 instead to bit 6 in the opcode.
715 * Gas is bug-compatible, but not always, grrr...
716 * We handle both cases with a simple heuristics. --macro
718 bcode = ((opcode >> 6) & ((1 << 20) - 1));
719 if (bcode < (1 << 10))
720 bcode <<= 10;
723 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
724 * insns, even for break codes that indicate arithmetic failures.
725 * Weird ...)
726 * But should we continue the brokenness??? --macro
728 switch (bcode) {
729 case BRK_OVERFLOW << 10:
730 case BRK_DIVZERO << 10:
731 if (bcode == (BRK_DIVZERO << 10))
732 info.si_code = FPE_INTDIV;
733 else
734 info.si_code = FPE_INTOVF;
735 info.si_signo = SIGFPE;
736 info.si_errno = 0;
737 info.si_addr = (void __user *) regs->cp0_epc;
738 force_sig_info(SIGFPE, &info, current);
739 break;
740 default:
741 force_sig(SIGTRAP, current);
745 asmlinkage void do_tr(struct pt_regs *regs)
747 unsigned int opcode, tcode = 0;
748 siginfo_t info;
750 die_if_kernel("Trap instruction in kernel code", regs);
752 if (get_insn_opcode(regs, &opcode))
753 return;
755 /* Immediate versions don't provide a code. */
756 if (!(opcode & OPCODE))
757 tcode = ((opcode >> 6) & ((1 << 10) - 1));
760 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
761 * insns, even for trap codes that indicate arithmetic failures.
762 * Weird ...)
763 * But should we continue the brokenness??? --macro
765 switch (tcode) {
766 case BRK_OVERFLOW:
767 case BRK_DIVZERO:
768 if (tcode == BRK_DIVZERO)
769 info.si_code = FPE_INTDIV;
770 else
771 info.si_code = FPE_INTOVF;
772 info.si_signo = SIGFPE;
773 info.si_errno = 0;
774 info.si_addr = (void __user *) regs->cp0_epc;
775 force_sig_info(SIGFPE, &info, current);
776 break;
777 default:
778 force_sig(SIGTRAP, current);
782 asmlinkage void do_ri(struct pt_regs *regs)
784 die_if_kernel("Reserved instruction in kernel code", regs);
786 if (!cpu_has_llsc)
787 if (!simulate_llsc(regs))
788 return;
790 if (!simulate_rdhwr(regs))
791 return;
793 force_sig(SIGILL, current);
796 asmlinkage void do_cpu(struct pt_regs *regs)
798 unsigned int cpid;
800 die_if_kernel("do_cpu invoked from kernel context!", regs);
802 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
804 switch (cpid) {
805 case 0:
806 if (!cpu_has_llsc)
807 if (!simulate_llsc(regs))
808 return;
810 if (!simulate_rdhwr(regs))
811 return;
813 break;
815 case 1:
816 preempt_disable();
818 own_fpu();
819 if (used_math()) { /* Using the FPU again. */
820 restore_fp(current);
821 } else { /* First time FPU user. */
822 init_fpu();
823 set_used_math();
826 preempt_enable();
828 if (!cpu_has_fpu) {
829 int sig = fpu_emulator_cop1Handler(regs,
830 &current->thread.fpu);
831 if (sig)
832 force_sig(sig, current);
833 #ifdef CONFIG_MIPS_MT_FPAFF
834 else {
836 * MIPS MT processors may have fewer FPU contexts
837 * than CPU threads. If we've emulated more than
838 * some threshold number of instructions, force
839 * migration to a "CPU" that has FP support.
841 if(mt_fpemul_threshold > 0
842 && ((current->thread.emulated_fp++
843 > mt_fpemul_threshold))) {
845 * If there's no FPU present, or if the
846 * application has already restricted
847 * the allowed set to exclude any CPUs
848 * with FPUs, we'll skip the procedure.
850 if (cpus_intersects(current->cpus_allowed,
851 mt_fpu_cpumask)) {
852 cpumask_t tmask;
854 cpus_and(tmask,
855 current->thread.user_cpus_allowed,
856 mt_fpu_cpumask);
857 set_cpus_allowed(current, tmask);
858 current->thread.mflags |= MF_FPUBOUND;
862 #endif /* CONFIG_MIPS_MT_FPAFF */
865 return;
867 case 2:
868 case 3:
869 die_if_kernel("do_cpu invoked from kernel context!", regs);
870 break;
873 force_sig(SIGILL, current);
876 asmlinkage void do_mdmx(struct pt_regs *regs)
878 force_sig(SIGILL, current);
881 asmlinkage void do_watch(struct pt_regs *regs)
884 * We use the watch exception where available to detect stack
885 * overflows.
887 dump_tlb_all();
888 show_regs(regs);
889 panic("Caught WATCH exception - probably caused by stack overflow.");
892 asmlinkage void do_mcheck(struct pt_regs *regs)
894 const int field = 2 * sizeof(unsigned long);
895 int multi_match = regs->cp0_status & ST0_TS;
897 show_regs(regs);
899 if (multi_match) {
900 printk("Index : %0x\n", read_c0_index());
901 printk("Pagemask: %0x\n", read_c0_pagemask());
902 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
903 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
904 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
905 printk("\n");
906 dump_tlb_all();
909 show_code((unsigned int *) regs->cp0_epc);
912 * Some chips may have other causes of machine check (e.g. SB1
913 * graduation timer)
915 panic("Caught Machine Check exception - %scaused by multiple "
916 "matching entries in the TLB.",
917 (multi_match) ? "" : "not ");
920 asmlinkage void do_mt(struct pt_regs *regs)
922 int subcode;
924 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
925 >> VPECONTROL_EXCPT_SHIFT;
926 switch (subcode) {
927 case 0:
928 printk(KERN_DEBUG "Thread Underflow\n");
929 break;
930 case 1:
931 printk(KERN_DEBUG "Thread Overflow\n");
932 break;
933 case 2:
934 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
935 break;
936 case 3:
937 printk(KERN_DEBUG "Gating Storage Exception\n");
938 break;
939 case 4:
940 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
941 break;
942 case 5:
943 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
944 break;
945 default:
946 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
947 subcode);
948 break;
950 die_if_kernel("MIPS MT Thread exception in kernel", regs);
952 force_sig(SIGILL, current);
956 asmlinkage void do_dsp(struct pt_regs *regs)
958 if (cpu_has_dsp)
959 panic("Unexpected DSP exception\n");
961 force_sig(SIGILL, current);
964 asmlinkage void do_reserved(struct pt_regs *regs)
967 * Game over - no way to handle this if it ever occurs. Most probably
968 * caused by a new unknown cpu type or after another deadly
969 * hard/software error.
971 show_regs(regs);
972 panic("Caught reserved exception %ld - should not happen.",
973 (regs->cp0_cause & 0x7f) >> 2);
976 asmlinkage void do_default_vi(struct pt_regs *regs)
978 show_regs(regs);
979 panic("Caught unexpected vectored interrupt.");
983 * Some MIPS CPUs can enable/disable for cache parity detection, but do
984 * it different ways.
986 static inline void parity_protection_init(void)
988 switch (current_cpu_data.cputype) {
989 case CPU_24K:
990 case CPU_34K:
991 case CPU_5KC:
992 write_c0_ecc(0x80000000);
993 back_to_back_c0_hazard();
994 /* Set the PE bit (bit 31) in the c0_errctl register. */
995 printk(KERN_INFO "Cache parity protection %sabled\n",
996 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
997 break;
998 case CPU_20KC:
999 case CPU_25KF:
1000 /* Clear the DE bit (bit 16) in the c0_status register. */
1001 printk(KERN_INFO "Enable cache parity protection for "
1002 "MIPS 20KC/25KF CPUs.\n");
1003 clear_c0_status(ST0_DE);
1004 break;
1005 default:
1006 break;
1010 asmlinkage void cache_parity_error(void)
1012 const int field = 2 * sizeof(unsigned long);
1013 unsigned int reg_val;
1015 /* For the moment, report the problem and hang. */
1016 printk("Cache error exception:\n");
1017 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1018 reg_val = read_c0_cacheerr();
1019 printk("c0_cacheerr == %08x\n", reg_val);
1021 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1022 reg_val & (1<<30) ? "secondary" : "primary",
1023 reg_val & (1<<31) ? "data" : "insn");
1024 printk("Error bits: %s%s%s%s%s%s%s\n",
1025 reg_val & (1<<29) ? "ED " : "",
1026 reg_val & (1<<28) ? "ET " : "",
1027 reg_val & (1<<26) ? "EE " : "",
1028 reg_val & (1<<25) ? "EB " : "",
1029 reg_val & (1<<24) ? "EI " : "",
1030 reg_val & (1<<23) ? "E1 " : "",
1031 reg_val & (1<<22) ? "E0 " : "");
1032 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1034 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1035 if (reg_val & (1<<22))
1036 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1038 if (reg_val & (1<<23))
1039 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1040 #endif
1042 panic("Can't handle the cache error!");
1046 * SDBBP EJTAG debug exception handler.
1047 * We skip the instruction and return to the next instruction.
1049 void ejtag_exception_handler(struct pt_regs *regs)
1051 const int field = 2 * sizeof(unsigned long);
1052 unsigned long depc, old_epc;
1053 unsigned int debug;
1055 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1056 depc = read_c0_depc();
1057 debug = read_c0_debug();
1058 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1059 if (debug & 0x80000000) {
1061 * In branch delay slot.
1062 * We cheat a little bit here and use EPC to calculate the
1063 * debug return address (DEPC). EPC is restored after the
1064 * calculation.
1066 old_epc = regs->cp0_epc;
1067 regs->cp0_epc = depc;
1068 __compute_return_epc(regs);
1069 depc = regs->cp0_epc;
1070 regs->cp0_epc = old_epc;
1071 } else
1072 depc += 4;
1073 write_c0_depc(depc);
1075 #if 0
1076 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1077 write_c0_debug(debug | 0x100);
1078 #endif
1082 * NMI exception handler.
1084 void nmi_exception_handler(struct pt_regs *regs)
1086 #ifdef CONFIG_MIPS_MT_SMTC
1087 unsigned long dvpret = dvpe();
1088 bust_spinlocks(1);
1089 printk("NMI taken!!!!\n");
1090 mips_mt_regdump(dvpret);
1091 #else
1092 bust_spinlocks(1);
1093 printk("NMI taken!!!!\n");
1094 #endif /* CONFIG_MIPS_MT_SMTC */
1095 die("NMI", regs);
1096 while(1) ;
1099 #define VECTORSPACING 0x100 /* for EI/VI mode */
1101 unsigned long ebase;
1102 unsigned long exception_handlers[32];
1103 unsigned long vi_handlers[64];
1106 * As a side effect of the way this is implemented we're limited
1107 * to interrupt handlers in the address range from
1108 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1110 void *set_except_vector(int n, void *addr)
1112 unsigned long handler = (unsigned long) addr;
1113 unsigned long old_handler = exception_handlers[n];
1115 exception_handlers[n] = handler;
1116 if (n == 0 && cpu_has_divec) {
1117 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1118 (0x03ffffff & (handler >> 2));
1119 flush_icache_range(ebase + 0x200, ebase + 0x204);
1121 return (void *)old_handler;
1124 #ifdef CONFIG_CPU_MIPSR2_SRS
1126 * MIPSR2 shadow register set allocation
1127 * FIXME: SMP...
1130 static struct shadow_registers {
1132 * Number of shadow register sets supported
1134 unsigned long sr_supported;
1136 * Bitmap of allocated shadow registers
1138 unsigned long sr_allocated;
1139 } shadow_registers;
1141 static void mips_srs_init(void)
1143 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1144 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1145 shadow_registers.sr_supported);
1146 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1149 int mips_srs_max(void)
1151 return shadow_registers.sr_supported;
1154 int mips_srs_alloc(void)
1156 struct shadow_registers *sr = &shadow_registers;
1157 int set;
1159 again:
1160 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1161 if (set >= sr->sr_supported)
1162 return -1;
1164 if (test_and_set_bit(set, &sr->sr_allocated))
1165 goto again;
1167 return set;
1170 void mips_srs_free(int set)
1172 struct shadow_registers *sr = &shadow_registers;
1174 clear_bit(set, &sr->sr_allocated);
1177 static void *set_vi_srs_handler(int n, void *addr, int srs)
1179 unsigned long handler;
1180 unsigned long old_handler = vi_handlers[n];
1181 u32 *w;
1182 unsigned char *b;
1184 if (!cpu_has_veic && !cpu_has_vint)
1185 BUG();
1187 if (addr == NULL) {
1188 handler = (unsigned long) do_default_vi;
1189 srs = 0;
1190 } else
1191 handler = (unsigned long) addr;
1192 vi_handlers[n] = (unsigned long) addr;
1194 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1196 if (srs >= mips_srs_max())
1197 panic("Shadow register set %d not supported", srs);
1199 if (cpu_has_veic) {
1200 if (board_bind_eic_interrupt)
1201 board_bind_eic_interrupt (n, srs);
1202 } else if (cpu_has_vint) {
1203 /* SRSMap is only defined if shadow sets are implemented */
1204 if (mips_srs_max() > 1)
1205 change_c0_srsmap (0xf << n*4, srs << n*4);
1208 if (srs == 0) {
1210 * If no shadow set is selected then use the default handler
1211 * that does normal register saving and a standard interrupt exit
1214 extern char except_vec_vi, except_vec_vi_lui;
1215 extern char except_vec_vi_ori, except_vec_vi_end;
1216 #ifdef CONFIG_MIPS_MT_SMTC
1218 * We need to provide the SMTC vectored interrupt handler
1219 * not only with the address of the handler, but with the
1220 * Status.IM bit to be masked before going there.
1222 extern char except_vec_vi_mori;
1223 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1224 #endif /* CONFIG_MIPS_MT_SMTC */
1225 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1226 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1227 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1229 if (handler_len > VECTORSPACING) {
1231 * Sigh... panicing won't help as the console
1232 * is probably not configured :(
1234 panic ("VECTORSPACING too small");
1237 memcpy (b, &except_vec_vi, handler_len);
1238 #ifdef CONFIG_MIPS_MT_SMTC
1239 if (n > 7)
1240 printk("Vector index %d exceeds SMTC maximum\n", n);
1241 w = (u32 *)(b + mori_offset);
1242 *w = (*w & 0xffff0000) | (0x100 << n);
1243 #endif /* CONFIG_MIPS_MT_SMTC */
1244 w = (u32 *)(b + lui_offset);
1245 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1246 w = (u32 *)(b + ori_offset);
1247 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1248 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1250 else {
1252 * In other cases jump directly to the interrupt handler
1254 * It is the handlers responsibility to save registers if required
1255 * (eg hi/lo) and return from the exception using "eret"
1257 w = (u32 *)b;
1258 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1259 *w = 0;
1260 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1263 return (void *)old_handler;
1266 void *set_vi_handler(int n, void *addr)
1268 return set_vi_srs_handler(n, addr, 0);
1271 #else
1273 static inline void mips_srs_init(void)
1277 #endif /* CONFIG_CPU_MIPSR2_SRS */
1280 * This is used by native signal handling
1282 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1283 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1285 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1286 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1288 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1289 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1291 #ifdef CONFIG_SMP
1292 static int smp_save_fp_context(struct sigcontext *sc)
1294 return cpu_has_fpu
1295 ? _save_fp_context(sc)
1296 : fpu_emulator_save_context(sc);
1299 static int smp_restore_fp_context(struct sigcontext *sc)
1301 return cpu_has_fpu
1302 ? _restore_fp_context(sc)
1303 : fpu_emulator_restore_context(sc);
1305 #endif
1307 static inline void signal_init(void)
1309 #ifdef CONFIG_SMP
1310 /* For now just do the cpu_has_fpu check when the functions are invoked */
1311 save_fp_context = smp_save_fp_context;
1312 restore_fp_context = smp_restore_fp_context;
1313 #else
1314 if (cpu_has_fpu) {
1315 save_fp_context = _save_fp_context;
1316 restore_fp_context = _restore_fp_context;
1317 } else {
1318 save_fp_context = fpu_emulator_save_context;
1319 restore_fp_context = fpu_emulator_restore_context;
1321 #endif
1324 #ifdef CONFIG_MIPS32_COMPAT
1327 * This is used by 32-bit signal stuff on the 64-bit kernel
1329 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1330 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1332 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1333 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1335 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1336 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1338 static inline void signal32_init(void)
1340 if (cpu_has_fpu) {
1341 save_fp_context32 = _save_fp_context32;
1342 restore_fp_context32 = _restore_fp_context32;
1343 } else {
1344 save_fp_context32 = fpu_emulator_save_context32;
1345 restore_fp_context32 = fpu_emulator_restore_context32;
1348 #endif
1350 extern void cpu_cache_init(void);
1351 extern void tlb_init(void);
1352 extern void flush_tlb_handlers(void);
1354 void __init per_cpu_trap_init(void)
1356 unsigned int cpu = smp_processor_id();
1357 unsigned int status_set = ST0_CU0;
1358 #ifdef CONFIG_MIPS_MT_SMTC
1359 int secondaryTC = 0;
1360 int bootTC = (cpu == 0);
1363 * Only do per_cpu_trap_init() for first TC of Each VPE.
1364 * Note that this hack assumes that the SMTC init code
1365 * assigns TCs consecutively and in ascending order.
1368 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1369 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1370 secondaryTC = 1;
1371 #endif /* CONFIG_MIPS_MT_SMTC */
1374 * Disable coprocessors and select 32-bit or 64-bit addressing
1375 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1376 * flag that some firmware may have left set and the TS bit (for
1377 * IP27). Set XX for ISA IV code to work.
1379 #ifdef CONFIG_64BIT
1380 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1381 #endif
1382 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1383 status_set |= ST0_XX;
1384 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1385 status_set);
1387 if (cpu_has_dsp)
1388 set_c0_status(ST0_MX);
1390 #ifdef CONFIG_CPU_MIPSR2
1391 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1392 #endif
1394 #ifdef CONFIG_MIPS_MT_SMTC
1395 if (!secondaryTC) {
1396 #endif /* CONFIG_MIPS_MT_SMTC */
1399 * Interrupt handling.
1401 if (cpu_has_veic || cpu_has_vint) {
1402 write_c0_ebase (ebase);
1403 /* Setting vector spacing enables EI/VI mode */
1404 change_c0_intctl (0x3e0, VECTORSPACING);
1406 if (cpu_has_divec) {
1407 if (cpu_has_mipsmt) {
1408 unsigned int vpflags = dvpe();
1409 set_c0_cause(CAUSEF_IV);
1410 evpe(vpflags);
1411 } else
1412 set_c0_cause(CAUSEF_IV);
1414 #ifdef CONFIG_MIPS_MT_SMTC
1416 #endif /* CONFIG_MIPS_MT_SMTC */
1418 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1419 TLBMISS_HANDLER_SETUP();
1421 atomic_inc(&init_mm.mm_count);
1422 current->active_mm = &init_mm;
1423 BUG_ON(current->mm);
1424 enter_lazy_tlb(&init_mm, current);
1426 #ifdef CONFIG_MIPS_MT_SMTC
1427 if (bootTC) {
1428 #endif /* CONFIG_MIPS_MT_SMTC */
1429 cpu_cache_init();
1430 tlb_init();
1431 #ifdef CONFIG_MIPS_MT_SMTC
1433 #endif /* CONFIG_MIPS_MT_SMTC */
1436 /* Install CPU exception handler */
1437 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1439 memcpy((void *)(ebase + offset), addr, size);
1440 flush_icache_range(ebase + offset, ebase + offset + size);
1443 /* Install uncached CPU exception handler */
1444 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1446 #ifdef CONFIG_32BIT
1447 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1448 #endif
1449 #ifdef CONFIG_64BIT
1450 unsigned long uncached_ebase = TO_UNCAC(ebase);
1451 #endif
1453 memcpy((void *)(uncached_ebase + offset), addr, size);
1456 void __init trap_init(void)
1458 extern char except_vec3_generic, except_vec3_r4000;
1459 extern char except_vec4;
1460 unsigned long i;
1462 if (cpu_has_veic || cpu_has_vint)
1463 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1464 else
1465 ebase = CAC_BASE;
1467 mips_srs_init();
1469 per_cpu_trap_init();
1472 * Copy the generic exception handlers to their final destination.
1473 * This will be overriden later as suitable for a particular
1474 * configuration.
1476 set_handler(0x180, &except_vec3_generic, 0x80);
1479 * Setup default vectors
1481 for (i = 0; i <= 31; i++)
1482 set_except_vector(i, handle_reserved);
1485 * Copy the EJTAG debug exception vector handler code to it's final
1486 * destination.
1488 if (cpu_has_ejtag && board_ejtag_handler_setup)
1489 board_ejtag_handler_setup ();
1492 * Only some CPUs have the watch exceptions.
1494 if (cpu_has_watch)
1495 set_except_vector(23, handle_watch);
1498 * Initialise interrupt handlers
1500 if (cpu_has_veic || cpu_has_vint) {
1501 int nvec = cpu_has_veic ? 64 : 8;
1502 for (i = 0; i < nvec; i++)
1503 set_vi_handler(i, NULL);
1505 else if (cpu_has_divec)
1506 set_handler(0x200, &except_vec4, 0x8);
1509 * Some CPUs can enable/disable for cache parity detection, but does
1510 * it different ways.
1512 parity_protection_init();
1515 * The Data Bus Errors / Instruction Bus Errors are signaled
1516 * by external hardware. Therefore these two exceptions
1517 * may have board specific handlers.
1519 if (board_be_init)
1520 board_be_init();
1522 set_except_vector(0, handle_int);
1523 set_except_vector(1, handle_tlbm);
1524 set_except_vector(2, handle_tlbl);
1525 set_except_vector(3, handle_tlbs);
1527 set_except_vector(4, handle_adel);
1528 set_except_vector(5, handle_ades);
1530 set_except_vector(6, handle_ibe);
1531 set_except_vector(7, handle_dbe);
1533 set_except_vector(8, handle_sys);
1534 set_except_vector(9, handle_bp);
1535 set_except_vector(10, handle_ri);
1536 set_except_vector(11, handle_cpu);
1537 set_except_vector(12, handle_ov);
1538 set_except_vector(13, handle_tr);
1540 if (current_cpu_data.cputype == CPU_R6000 ||
1541 current_cpu_data.cputype == CPU_R6000A) {
1543 * The R6000 is the only R-series CPU that features a machine
1544 * check exception (similar to the R4000 cache error) and
1545 * unaligned ldc1/sdc1 exception. The handlers have not been
1546 * written yet. Well, anyway there is no R6000 machine on the
1547 * current list of targets for Linux/MIPS.
1548 * (Duh, crap, there is someone with a triple R6k machine)
1550 //set_except_vector(14, handle_mc);
1551 //set_except_vector(15, handle_ndc);
1555 if (board_nmi_handler_setup)
1556 board_nmi_handler_setup();
1558 if (cpu_has_fpu && !cpu_has_nofpuex)
1559 set_except_vector(15, handle_fpe);
1561 set_except_vector(22, handle_mdmx);
1563 if (cpu_has_mcheck)
1564 set_except_vector(24, handle_mcheck);
1566 if (cpu_has_mipsmt)
1567 set_except_vector(25, handle_mt);
1569 if (cpu_has_dsp)
1570 set_except_vector(26, handle_dsp);
1572 if (cpu_has_vce)
1573 /* Special exception: R4[04]00 uses also the divec space. */
1574 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1575 else if (cpu_has_4kex)
1576 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1577 else
1578 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1580 signal_init();
1581 #ifdef CONFIG_MIPS32_COMPAT
1582 signal32_init();
1583 #endif
1585 flush_icache_range(ebase, ebase + 0x400);
1586 flush_tlb_handlers();