2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
45 extern asmlinkage
void handle_int(void);
46 extern asmlinkage
void handle_tlbm(void);
47 extern asmlinkage
void handle_tlbl(void);
48 extern asmlinkage
void handle_tlbs(void);
49 extern asmlinkage
void handle_adel(void);
50 extern asmlinkage
void handle_ades(void);
51 extern asmlinkage
void handle_ibe(void);
52 extern asmlinkage
void handle_dbe(void);
53 extern asmlinkage
void handle_sys(void);
54 extern asmlinkage
void handle_bp(void);
55 extern asmlinkage
void handle_ri(void);
56 extern asmlinkage
void handle_cpu(void);
57 extern asmlinkage
void handle_ov(void);
58 extern asmlinkage
void handle_tr(void);
59 extern asmlinkage
void handle_fpe(void);
60 extern asmlinkage
void handle_mdmx(void);
61 extern asmlinkage
void handle_watch(void);
62 extern asmlinkage
void handle_mt(void);
63 extern asmlinkage
void handle_dsp(void);
64 extern asmlinkage
void handle_mcheck(void);
65 extern asmlinkage
void handle_reserved(void);
67 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
68 struct mips_fpu_struct
*ctx
);
70 void (*board_be_init
)(void);
71 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
72 void (*board_nmi_handler_setup
)(void);
73 void (*board_ejtag_handler_setup
)(void);
74 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
77 static void show_raw_backtrace(unsigned long reg29
)
79 unsigned long *sp
= (unsigned long *)reg29
;
82 printk("Call Trace:");
83 #ifdef CONFIG_KALLSYMS
86 while (!kstack_end(sp
)) {
88 if (__kernel_text_address(addr
))
94 #ifdef CONFIG_KALLSYMS
95 static int raw_show_trace
;
96 static int __init
set_raw_show_trace(char *str
)
101 __setup("raw_show_trace", set_raw_show_trace
);
103 extern unsigned long unwind_stack(struct task_struct
*task
, unsigned long *sp
,
104 unsigned long pc
, unsigned long ra
);
106 static void show_backtrace(struct task_struct
*task
, struct pt_regs
*regs
)
108 unsigned long sp
= regs
->regs
[29];
109 unsigned long ra
= regs
->regs
[31];
110 unsigned long pc
= regs
->cp0_epc
;
112 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
113 show_raw_backtrace(sp
);
116 printk("Call Trace:\n");
119 pc
= unwind_stack(task
, &sp
, pc
, ra
);
125 #define show_backtrace(task, r) show_raw_backtrace((r)->regs[29]);
129 * This routine abuses get_user()/put_user() to reference pointers
130 * with at least a bit of error checking ...
132 static void show_stacktrace(struct task_struct
*task
, struct pt_regs
*regs
)
134 const int field
= 2 * sizeof(unsigned long);
137 unsigned long *sp
= (unsigned long *)regs
->regs
[29];
141 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
142 if (i
&& ((i
% (64 / field
)) == 0))
149 if (__get_user(stackdata
, sp
++)) {
150 printk(" (Bad stack address)");
154 printk(" %0*lx", field
, stackdata
);
158 show_backtrace(task
, regs
);
161 static __always_inline
void prepare_frametrace(struct pt_regs
*regs
)
163 __asm__
__volatile__(
178 : "=m" (regs
->cp0_epc
),
179 "=m" (regs
->regs
[29]), "=m" (regs
->regs
[31])
183 void show_stack(struct task_struct
*task
, unsigned long *sp
)
187 regs
.regs
[29] = (unsigned long)sp
;
191 if (task
&& task
!= current
) {
192 regs
.regs
[29] = task
->thread
.reg29
;
194 regs
.cp0_epc
= task
->thread
.reg31
;
196 prepare_frametrace(®s
);
199 show_stacktrace(task
, ®s
);
203 * The architecture-independent dump_stack generator
205 void dump_stack(void)
210 * Remove any garbage that may be in regs (specially func
211 * addresses) to avoid show_raw_backtrace() to report them
213 memset(®s
, 0, sizeof(regs
));
214 prepare_frametrace(®s
);
215 show_backtrace(current
, ®s
);
218 EXPORT_SYMBOL(dump_stack
);
220 void show_code(unsigned int *pc
)
226 for(i
= -3 ; i
< 6 ; i
++) {
228 if (__get_user(insn
, pc
+ i
)) {
229 printk(" (Bad address in epc)\n");
232 printk("%c%08x%c", (i
?' ':'<'), insn
, (i
?' ':'>'));
236 void show_regs(struct pt_regs
*regs
)
238 const int field
= 2 * sizeof(unsigned long);
239 unsigned int cause
= regs
->cp0_cause
;
242 printk("Cpu %d\n", smp_processor_id());
245 * Saved main processor registers
247 for (i
= 0; i
< 32; ) {
251 printk(" %0*lx", field
, 0UL);
252 else if (i
== 26 || i
== 27)
253 printk(" %*s", field
, "");
255 printk(" %0*lx", field
, regs
->regs
[i
]);
262 printk("Hi : %0*lx\n", field
, regs
->hi
);
263 printk("Lo : %0*lx\n", field
, regs
->lo
);
266 * Saved cp0 registers
268 printk("epc : %0*lx ", field
, regs
->cp0_epc
);
269 print_symbol("%s ", regs
->cp0_epc
);
270 printk(" %s\n", print_tainted());
271 printk("ra : %0*lx ", field
, regs
->regs
[31]);
272 print_symbol("%s\n", regs
->regs
[31]);
274 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
276 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
277 if (regs
->cp0_status
& ST0_KUO
)
279 if (regs
->cp0_status
& ST0_IEO
)
281 if (regs
->cp0_status
& ST0_KUP
)
283 if (regs
->cp0_status
& ST0_IEP
)
285 if (regs
->cp0_status
& ST0_KUC
)
287 if (regs
->cp0_status
& ST0_IEC
)
290 if (regs
->cp0_status
& ST0_KX
)
292 if (regs
->cp0_status
& ST0_SX
)
294 if (regs
->cp0_status
& ST0_UX
)
296 switch (regs
->cp0_status
& ST0_KSU
) {
301 printk("SUPERVISOR ");
310 if (regs
->cp0_status
& ST0_ERL
)
312 if (regs
->cp0_status
& ST0_EXL
)
314 if (regs
->cp0_status
& ST0_IE
)
319 printk("Cause : %08x\n", cause
);
321 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
322 if (1 <= cause
&& cause
<= 5)
323 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
325 printk("PrId : %08x\n", read_c0_prid());
328 void show_registers(struct pt_regs
*regs
)
332 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
333 current
->comm
, current
->pid
, current_thread_info(), current
);
334 show_stacktrace(current
, regs
);
335 show_code((unsigned int *) regs
->cp0_epc
);
339 static DEFINE_SPINLOCK(die_lock
);
341 NORET_TYPE
void ATTRIB_NORET
die(const char * str
, struct pt_regs
* regs
)
343 static int die_counter
;
344 #ifdef CONFIG_MIPS_MT_SMTC
345 unsigned long dvpret
= dvpe();
346 #endif /* CONFIG_MIPS_MT_SMTC */
349 spin_lock_irq(&die_lock
);
351 #ifdef CONFIG_MIPS_MT_SMTC
352 mips_mt_regdump(dvpret
);
353 #endif /* CONFIG_MIPS_MT_SMTC */
354 printk("%s[#%d]:\n", str
, ++die_counter
);
355 show_registers(regs
);
356 spin_unlock_irq(&die_lock
);
359 panic("Fatal exception in interrupt");
362 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
364 panic("Fatal exception");
370 extern const struct exception_table_entry __start___dbe_table
[];
371 extern const struct exception_table_entry __stop___dbe_table
[];
373 void __declare_dbe_table(void)
375 __asm__
__volatile__(
376 ".section\t__dbe_table,\"a\"\n\t"
381 /* Given an address, look for it in the exception tables. */
382 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
384 const struct exception_table_entry
*e
;
386 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
388 e
= search_module_dbetables(addr
);
392 asmlinkage
void do_be(struct pt_regs
*regs
)
394 const int field
= 2 * sizeof(unsigned long);
395 const struct exception_table_entry
*fixup
= NULL
;
396 int data
= regs
->cp0_cause
& 4;
397 int action
= MIPS_BE_FATAL
;
399 /* XXX For now. Fixme, this searches the wrong table ... */
400 if (data
&& !user_mode(regs
))
401 fixup
= search_dbe_tables(exception_epc(regs
));
404 action
= MIPS_BE_FIXUP
;
406 if (board_be_handler
)
407 action
= board_be_handler(regs
, fixup
!= 0);
410 case MIPS_BE_DISCARD
:
414 regs
->cp0_epc
= fixup
->nextinsn
;
423 * Assume it would be too dangerous to continue ...
425 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
426 data
? "Data" : "Instruction",
427 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
428 die_if_kernel("Oops", regs
);
429 force_sig(SIGBUS
, current
);
432 static inline int get_insn_opcode(struct pt_regs
*regs
, unsigned int *opcode
)
434 unsigned int __user
*epc
;
436 epc
= (unsigned int __user
*) regs
->cp0_epc
+
437 ((regs
->cp0_cause
& CAUSEF_BD
) != 0);
438 if (!get_user(*opcode
, epc
))
441 force_sig(SIGSEGV
, current
);
449 #define OPCODE 0xfc000000
450 #define BASE 0x03e00000
451 #define RT 0x001f0000
452 #define OFFSET 0x0000ffff
453 #define LL 0xc0000000
454 #define SC 0xe0000000
455 #define SPEC3 0x7c000000
456 #define RD 0x0000f800
457 #define FUNC 0x0000003f
458 #define RDHWR 0x0000003b
461 * The ll_bit is cleared by r*_switch.S
464 unsigned long ll_bit
;
466 static struct task_struct
*ll_task
= NULL
;
468 static inline void simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
470 unsigned long value
, __user
*vaddr
;
475 * analyse the ll instruction that just caused a ri exception
476 * and put the referenced address to addr.
479 /* sign extend offset */
480 offset
= opcode
& OFFSET
;
484 vaddr
= (unsigned long __user
*)
485 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
487 if ((unsigned long)vaddr
& 3) {
491 if (get_user(value
, vaddr
)) {
498 if (ll_task
== NULL
|| ll_task
== current
) {
507 compute_return_epc(regs
);
509 regs
->regs
[(opcode
& RT
) >> 16] = value
;
514 force_sig(signal
, current
);
517 static inline void simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
519 unsigned long __user
*vaddr
;
525 * analyse the sc instruction that just caused a ri exception
526 * and put the referenced address to addr.
529 /* sign extend offset */
530 offset
= opcode
& OFFSET
;
534 vaddr
= (unsigned long __user
*)
535 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
536 reg
= (opcode
& RT
) >> 16;
538 if ((unsigned long)vaddr
& 3) {
545 if (ll_bit
== 0 || ll_task
!= current
) {
546 compute_return_epc(regs
);
554 if (put_user(regs
->regs
[reg
], vaddr
)) {
559 compute_return_epc(regs
);
565 force_sig(signal
, current
);
569 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
570 * opcodes are supposed to result in coprocessor unusable exceptions if
571 * executed on ll/sc-less processors. That's the theory. In practice a
572 * few processors such as NEC's VR4100 throw reserved instruction exceptions
573 * instead, so we're doing the emulation thing in both exception handlers.
575 static inline int simulate_llsc(struct pt_regs
*regs
)
579 if (unlikely(get_insn_opcode(regs
, &opcode
)))
582 if ((opcode
& OPCODE
) == LL
) {
583 simulate_ll(regs
, opcode
);
586 if ((opcode
& OPCODE
) == SC
) {
587 simulate_sc(regs
, opcode
);
591 return -EFAULT
; /* Strange things going on ... */
595 * Simulate trapping 'rdhwr' instructions to provide user accessible
596 * registers not implemented in hardware. The only current use of this
597 * is the thread area pointer.
599 static inline int simulate_rdhwr(struct pt_regs
*regs
)
601 struct thread_info
*ti
= task_thread_info(current
);
604 if (unlikely(get_insn_opcode(regs
, &opcode
)))
607 if (unlikely(compute_return_epc(regs
)))
610 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
611 int rd
= (opcode
& RD
) >> 11;
612 int rt
= (opcode
& RT
) >> 16;
615 regs
->regs
[rt
] = ti
->tp_value
;
626 asmlinkage
void do_ov(struct pt_regs
*regs
)
630 die_if_kernel("Integer overflow", regs
);
632 info
.si_code
= FPE_INTOVF
;
633 info
.si_signo
= SIGFPE
;
635 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
636 force_sig_info(SIGFPE
, &info
, current
);
640 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
642 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
644 die_if_kernel("FP exception in kernel code", regs
);
646 if (fcr31
& FPU_CSR_UNI_X
) {
651 #ifdef CONFIG_PREEMPT
652 if (!is_fpu_owner()) {
653 /* We might lose fpu before disabling preempt... */
655 BUG_ON(!used_math());
660 * Unimplemented operation exception. If we've got the full
661 * software emulator on-board, let's use it...
663 * Force FPU to dump state into task/thread context. We're
664 * moving a lot of data here for what is probably a single
665 * instruction, but the alternative is to pre-decode the FP
666 * register operands before invoking the emulator, which seems
667 * a bit extreme for what should be an infrequent event.
670 /* Ensure 'resume' not overwrite saved fp context again. */
675 /* Run the emulator */
676 sig
= fpu_emulator_cop1Handler (regs
, ¤t
->thread
.fpu
);
680 own_fpu(); /* Using the FPU again. */
682 * We can't allow the emulated instruction to leave any of
683 * the cause bit set in $fcr31.
685 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
687 /* Restore the hardware register state */
692 /* If something went wrong, signal */
694 force_sig(sig
, current
);
699 force_sig(SIGFPE
, current
);
702 asmlinkage
void do_bp(struct pt_regs
*regs
)
704 unsigned int opcode
, bcode
;
707 die_if_kernel("Break instruction in kernel code", regs
);
709 if (get_insn_opcode(regs
, &opcode
))
713 * There is the ancient bug in the MIPS assemblers that the break
714 * code starts left to bit 16 instead to bit 6 in the opcode.
715 * Gas is bug-compatible, but not always, grrr...
716 * We handle both cases with a simple heuristics. --macro
718 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
719 if (bcode
< (1 << 10))
723 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
724 * insns, even for break codes that indicate arithmetic failures.
726 * But should we continue the brokenness??? --macro
729 case BRK_OVERFLOW
<< 10:
730 case BRK_DIVZERO
<< 10:
731 if (bcode
== (BRK_DIVZERO
<< 10))
732 info
.si_code
= FPE_INTDIV
;
734 info
.si_code
= FPE_INTOVF
;
735 info
.si_signo
= SIGFPE
;
737 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
738 force_sig_info(SIGFPE
, &info
, current
);
741 force_sig(SIGTRAP
, current
);
745 asmlinkage
void do_tr(struct pt_regs
*regs
)
747 unsigned int opcode
, tcode
= 0;
750 die_if_kernel("Trap instruction in kernel code", regs
);
752 if (get_insn_opcode(regs
, &opcode
))
755 /* Immediate versions don't provide a code. */
756 if (!(opcode
& OPCODE
))
757 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
760 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
761 * insns, even for trap codes that indicate arithmetic failures.
763 * But should we continue the brokenness??? --macro
768 if (tcode
== BRK_DIVZERO
)
769 info
.si_code
= FPE_INTDIV
;
771 info
.si_code
= FPE_INTOVF
;
772 info
.si_signo
= SIGFPE
;
774 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
775 force_sig_info(SIGFPE
, &info
, current
);
778 force_sig(SIGTRAP
, current
);
782 asmlinkage
void do_ri(struct pt_regs
*regs
)
784 die_if_kernel("Reserved instruction in kernel code", regs
);
787 if (!simulate_llsc(regs
))
790 if (!simulate_rdhwr(regs
))
793 force_sig(SIGILL
, current
);
796 asmlinkage
void do_cpu(struct pt_regs
*regs
)
800 die_if_kernel("do_cpu invoked from kernel context!", regs
);
802 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
807 if (!simulate_llsc(regs
))
810 if (!simulate_rdhwr(regs
))
819 if (used_math()) { /* Using the FPU again. */
821 } else { /* First time FPU user. */
829 int sig
= fpu_emulator_cop1Handler(regs
,
830 ¤t
->thread
.fpu
);
832 force_sig(sig
, current
);
833 #ifdef CONFIG_MIPS_MT_FPAFF
836 * MIPS MT processors may have fewer FPU contexts
837 * than CPU threads. If we've emulated more than
838 * some threshold number of instructions, force
839 * migration to a "CPU" that has FP support.
841 if(mt_fpemul_threshold
> 0
842 && ((current
->thread
.emulated_fp
++
843 > mt_fpemul_threshold
))) {
845 * If there's no FPU present, or if the
846 * application has already restricted
847 * the allowed set to exclude any CPUs
848 * with FPUs, we'll skip the procedure.
850 if (cpus_intersects(current
->cpus_allowed
,
855 current
->thread
.user_cpus_allowed
,
857 set_cpus_allowed(current
, tmask
);
858 current
->thread
.mflags
|= MF_FPUBOUND
;
862 #endif /* CONFIG_MIPS_MT_FPAFF */
869 die_if_kernel("do_cpu invoked from kernel context!", regs
);
873 force_sig(SIGILL
, current
);
876 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
878 force_sig(SIGILL
, current
);
881 asmlinkage
void do_watch(struct pt_regs
*regs
)
884 * We use the watch exception where available to detect stack
889 panic("Caught WATCH exception - probably caused by stack overflow.");
892 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
894 const int field
= 2 * sizeof(unsigned long);
895 int multi_match
= regs
->cp0_status
& ST0_TS
;
900 printk("Index : %0x\n", read_c0_index());
901 printk("Pagemask: %0x\n", read_c0_pagemask());
902 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
903 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
904 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
909 show_code((unsigned int *) regs
->cp0_epc
);
912 * Some chips may have other causes of machine check (e.g. SB1
915 panic("Caught Machine Check exception - %scaused by multiple "
916 "matching entries in the TLB.",
917 (multi_match
) ? "" : "not ");
920 asmlinkage
void do_mt(struct pt_regs
*regs
)
924 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
925 >> VPECONTROL_EXCPT_SHIFT
;
928 printk(KERN_DEBUG
"Thread Underflow\n");
931 printk(KERN_DEBUG
"Thread Overflow\n");
934 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
937 printk(KERN_DEBUG
"Gating Storage Exception\n");
940 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
943 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
946 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
950 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
952 force_sig(SIGILL
, current
);
956 asmlinkage
void do_dsp(struct pt_regs
*regs
)
959 panic("Unexpected DSP exception\n");
961 force_sig(SIGILL
, current
);
964 asmlinkage
void do_reserved(struct pt_regs
*regs
)
967 * Game over - no way to handle this if it ever occurs. Most probably
968 * caused by a new unknown cpu type or after another deadly
969 * hard/software error.
972 panic("Caught reserved exception %ld - should not happen.",
973 (regs
->cp0_cause
& 0x7f) >> 2);
976 asmlinkage
void do_default_vi(struct pt_regs
*regs
)
979 panic("Caught unexpected vectored interrupt.");
983 * Some MIPS CPUs can enable/disable for cache parity detection, but do
986 static inline void parity_protection_init(void)
988 switch (current_cpu_data
.cputype
) {
992 write_c0_ecc(0x80000000);
993 back_to_back_c0_hazard();
994 /* Set the PE bit (bit 31) in the c0_errctl register. */
995 printk(KERN_INFO
"Cache parity protection %sabled\n",
996 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1000 /* Clear the DE bit (bit 16) in the c0_status register. */
1001 printk(KERN_INFO
"Enable cache parity protection for "
1002 "MIPS 20KC/25KF CPUs.\n");
1003 clear_c0_status(ST0_DE
);
1010 asmlinkage
void cache_parity_error(void)
1012 const int field
= 2 * sizeof(unsigned long);
1013 unsigned int reg_val
;
1015 /* For the moment, report the problem and hang. */
1016 printk("Cache error exception:\n");
1017 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1018 reg_val
= read_c0_cacheerr();
1019 printk("c0_cacheerr == %08x\n", reg_val
);
1021 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1022 reg_val
& (1<<30) ? "secondary" : "primary",
1023 reg_val
& (1<<31) ? "data" : "insn");
1024 printk("Error bits: %s%s%s%s%s%s%s\n",
1025 reg_val
& (1<<29) ? "ED " : "",
1026 reg_val
& (1<<28) ? "ET " : "",
1027 reg_val
& (1<<26) ? "EE " : "",
1028 reg_val
& (1<<25) ? "EB " : "",
1029 reg_val
& (1<<24) ? "EI " : "",
1030 reg_val
& (1<<23) ? "E1 " : "",
1031 reg_val
& (1<<22) ? "E0 " : "");
1032 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1034 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1035 if (reg_val
& (1<<22))
1036 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1038 if (reg_val
& (1<<23))
1039 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1042 panic("Can't handle the cache error!");
1046 * SDBBP EJTAG debug exception handler.
1047 * We skip the instruction and return to the next instruction.
1049 void ejtag_exception_handler(struct pt_regs
*regs
)
1051 const int field
= 2 * sizeof(unsigned long);
1052 unsigned long depc
, old_epc
;
1055 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1056 depc
= read_c0_depc();
1057 debug
= read_c0_debug();
1058 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1059 if (debug
& 0x80000000) {
1061 * In branch delay slot.
1062 * We cheat a little bit here and use EPC to calculate the
1063 * debug return address (DEPC). EPC is restored after the
1066 old_epc
= regs
->cp0_epc
;
1067 regs
->cp0_epc
= depc
;
1068 __compute_return_epc(regs
);
1069 depc
= regs
->cp0_epc
;
1070 regs
->cp0_epc
= old_epc
;
1073 write_c0_depc(depc
);
1076 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1077 write_c0_debug(debug
| 0x100);
1082 * NMI exception handler.
1084 void nmi_exception_handler(struct pt_regs
*regs
)
1086 #ifdef CONFIG_MIPS_MT_SMTC
1087 unsigned long dvpret
= dvpe();
1089 printk("NMI taken!!!!\n");
1090 mips_mt_regdump(dvpret
);
1093 printk("NMI taken!!!!\n");
1094 #endif /* CONFIG_MIPS_MT_SMTC */
1099 #define VECTORSPACING 0x100 /* for EI/VI mode */
1101 unsigned long ebase
;
1102 unsigned long exception_handlers
[32];
1103 unsigned long vi_handlers
[64];
1106 * As a side effect of the way this is implemented we're limited
1107 * to interrupt handlers in the address range from
1108 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1110 void *set_except_vector(int n
, void *addr
)
1112 unsigned long handler
= (unsigned long) addr
;
1113 unsigned long old_handler
= exception_handlers
[n
];
1115 exception_handlers
[n
] = handler
;
1116 if (n
== 0 && cpu_has_divec
) {
1117 *(volatile u32
*)(ebase
+ 0x200) = 0x08000000 |
1118 (0x03ffffff & (handler
>> 2));
1119 flush_icache_range(ebase
+ 0x200, ebase
+ 0x204);
1121 return (void *)old_handler
;
1124 #ifdef CONFIG_CPU_MIPSR2_SRS
1126 * MIPSR2 shadow register set allocation
1130 static struct shadow_registers
{
1132 * Number of shadow register sets supported
1134 unsigned long sr_supported
;
1136 * Bitmap of allocated shadow registers
1138 unsigned long sr_allocated
;
1141 static void mips_srs_init(void)
1143 shadow_registers
.sr_supported
= ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1144 printk(KERN_INFO
"%d MIPSR2 register sets available\n",
1145 shadow_registers
.sr_supported
);
1146 shadow_registers
.sr_allocated
= 1; /* Set 0 used by kernel */
1149 int mips_srs_max(void)
1151 return shadow_registers
.sr_supported
;
1154 int mips_srs_alloc(void)
1156 struct shadow_registers
*sr
= &shadow_registers
;
1160 set
= find_first_zero_bit(&sr
->sr_allocated
, sr
->sr_supported
);
1161 if (set
>= sr
->sr_supported
)
1164 if (test_and_set_bit(set
, &sr
->sr_allocated
))
1170 void mips_srs_free(int set
)
1172 struct shadow_registers
*sr
= &shadow_registers
;
1174 clear_bit(set
, &sr
->sr_allocated
);
1177 static void *set_vi_srs_handler(int n
, void *addr
, int srs
)
1179 unsigned long handler
;
1180 unsigned long old_handler
= vi_handlers
[n
];
1184 if (!cpu_has_veic
&& !cpu_has_vint
)
1188 handler
= (unsigned long) do_default_vi
;
1191 handler
= (unsigned long) addr
;
1192 vi_handlers
[n
] = (unsigned long) addr
;
1194 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1196 if (srs
>= mips_srs_max())
1197 panic("Shadow register set %d not supported", srs
);
1200 if (board_bind_eic_interrupt
)
1201 board_bind_eic_interrupt (n
, srs
);
1202 } else if (cpu_has_vint
) {
1203 /* SRSMap is only defined if shadow sets are implemented */
1204 if (mips_srs_max() > 1)
1205 change_c0_srsmap (0xf << n
*4, srs
<< n
*4);
1210 * If no shadow set is selected then use the default handler
1211 * that does normal register saving and a standard interrupt exit
1214 extern char except_vec_vi
, except_vec_vi_lui
;
1215 extern char except_vec_vi_ori
, except_vec_vi_end
;
1216 #ifdef CONFIG_MIPS_MT_SMTC
1218 * We need to provide the SMTC vectored interrupt handler
1219 * not only with the address of the handler, but with the
1220 * Status.IM bit to be masked before going there.
1222 extern char except_vec_vi_mori
;
1223 const int mori_offset
= &except_vec_vi_mori
- &except_vec_vi
;
1224 #endif /* CONFIG_MIPS_MT_SMTC */
1225 const int handler_len
= &except_vec_vi_end
- &except_vec_vi
;
1226 const int lui_offset
= &except_vec_vi_lui
- &except_vec_vi
;
1227 const int ori_offset
= &except_vec_vi_ori
- &except_vec_vi
;
1229 if (handler_len
> VECTORSPACING
) {
1231 * Sigh... panicing won't help as the console
1232 * is probably not configured :(
1234 panic ("VECTORSPACING too small");
1237 memcpy (b
, &except_vec_vi
, handler_len
);
1238 #ifdef CONFIG_MIPS_MT_SMTC
1240 printk("Vector index %d exceeds SMTC maximum\n", n
);
1241 w
= (u32
*)(b
+ mori_offset
);
1242 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1243 #endif /* CONFIG_MIPS_MT_SMTC */
1244 w
= (u32
*)(b
+ lui_offset
);
1245 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1246 w
= (u32
*)(b
+ ori_offset
);
1247 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1248 flush_icache_range((unsigned long)b
, (unsigned long)(b
+handler_len
));
1252 * In other cases jump directly to the interrupt handler
1254 * It is the handlers responsibility to save registers if required
1255 * (eg hi/lo) and return from the exception using "eret"
1258 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1260 flush_icache_range((unsigned long)b
, (unsigned long)(b
+8));
1263 return (void *)old_handler
;
1266 void *set_vi_handler(int n
, void *addr
)
1268 return set_vi_srs_handler(n
, addr
, 0);
1273 static inline void mips_srs_init(void)
1277 #endif /* CONFIG_CPU_MIPSR2_SRS */
1280 * This is used by native signal handling
1282 asmlinkage
int (*save_fp_context
)(struct sigcontext
*sc
);
1283 asmlinkage
int (*restore_fp_context
)(struct sigcontext
*sc
);
1285 extern asmlinkage
int _save_fp_context(struct sigcontext
*sc
);
1286 extern asmlinkage
int _restore_fp_context(struct sigcontext
*sc
);
1288 extern asmlinkage
int fpu_emulator_save_context(struct sigcontext
*sc
);
1289 extern asmlinkage
int fpu_emulator_restore_context(struct sigcontext
*sc
);
1292 static int smp_save_fp_context(struct sigcontext
*sc
)
1295 ? _save_fp_context(sc
)
1296 : fpu_emulator_save_context(sc
);
1299 static int smp_restore_fp_context(struct sigcontext
*sc
)
1302 ? _restore_fp_context(sc
)
1303 : fpu_emulator_restore_context(sc
);
1307 static inline void signal_init(void)
1310 /* For now just do the cpu_has_fpu check when the functions are invoked */
1311 save_fp_context
= smp_save_fp_context
;
1312 restore_fp_context
= smp_restore_fp_context
;
1315 save_fp_context
= _save_fp_context
;
1316 restore_fp_context
= _restore_fp_context
;
1318 save_fp_context
= fpu_emulator_save_context
;
1319 restore_fp_context
= fpu_emulator_restore_context
;
1324 #ifdef CONFIG_MIPS32_COMPAT
1327 * This is used by 32-bit signal stuff on the 64-bit kernel
1329 asmlinkage
int (*save_fp_context32
)(struct sigcontext32
*sc
);
1330 asmlinkage
int (*restore_fp_context32
)(struct sigcontext32
*sc
);
1332 extern asmlinkage
int _save_fp_context32(struct sigcontext32
*sc
);
1333 extern asmlinkage
int _restore_fp_context32(struct sigcontext32
*sc
);
1335 extern asmlinkage
int fpu_emulator_save_context32(struct sigcontext32
*sc
);
1336 extern asmlinkage
int fpu_emulator_restore_context32(struct sigcontext32
*sc
);
1338 static inline void signal32_init(void)
1341 save_fp_context32
= _save_fp_context32
;
1342 restore_fp_context32
= _restore_fp_context32
;
1344 save_fp_context32
= fpu_emulator_save_context32
;
1345 restore_fp_context32
= fpu_emulator_restore_context32
;
1350 extern void cpu_cache_init(void);
1351 extern void tlb_init(void);
1352 extern void flush_tlb_handlers(void);
1354 void __init
per_cpu_trap_init(void)
1356 unsigned int cpu
= smp_processor_id();
1357 unsigned int status_set
= ST0_CU0
;
1358 #ifdef CONFIG_MIPS_MT_SMTC
1359 int secondaryTC
= 0;
1360 int bootTC
= (cpu
== 0);
1363 * Only do per_cpu_trap_init() for first TC of Each VPE.
1364 * Note that this hack assumes that the SMTC init code
1365 * assigns TCs consecutively and in ascending order.
1368 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1369 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1371 #endif /* CONFIG_MIPS_MT_SMTC */
1374 * Disable coprocessors and select 32-bit or 64-bit addressing
1375 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1376 * flag that some firmware may have left set and the TS bit (for
1377 * IP27). Set XX for ISA IV code to work.
1380 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1382 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1383 status_set
|= ST0_XX
;
1384 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1388 set_c0_status(ST0_MX
);
1390 #ifdef CONFIG_CPU_MIPSR2
1391 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1394 #ifdef CONFIG_MIPS_MT_SMTC
1396 #endif /* CONFIG_MIPS_MT_SMTC */
1399 * Interrupt handling.
1401 if (cpu_has_veic
|| cpu_has_vint
) {
1402 write_c0_ebase (ebase
);
1403 /* Setting vector spacing enables EI/VI mode */
1404 change_c0_intctl (0x3e0, VECTORSPACING
);
1406 if (cpu_has_divec
) {
1407 if (cpu_has_mipsmt
) {
1408 unsigned int vpflags
= dvpe();
1409 set_c0_cause(CAUSEF_IV
);
1412 set_c0_cause(CAUSEF_IV
);
1414 #ifdef CONFIG_MIPS_MT_SMTC
1416 #endif /* CONFIG_MIPS_MT_SMTC */
1418 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1419 TLBMISS_HANDLER_SETUP();
1421 atomic_inc(&init_mm
.mm_count
);
1422 current
->active_mm
= &init_mm
;
1423 BUG_ON(current
->mm
);
1424 enter_lazy_tlb(&init_mm
, current
);
1426 #ifdef CONFIG_MIPS_MT_SMTC
1428 #endif /* CONFIG_MIPS_MT_SMTC */
1431 #ifdef CONFIG_MIPS_MT_SMTC
1433 #endif /* CONFIG_MIPS_MT_SMTC */
1436 /* Install CPU exception handler */
1437 void __init
set_handler (unsigned long offset
, void *addr
, unsigned long size
)
1439 memcpy((void *)(ebase
+ offset
), addr
, size
);
1440 flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1443 /* Install uncached CPU exception handler */
1444 void __init
set_uncached_handler (unsigned long offset
, void *addr
, unsigned long size
)
1447 unsigned long uncached_ebase
= KSEG1ADDR(ebase
);
1450 unsigned long uncached_ebase
= TO_UNCAC(ebase
);
1453 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1456 void __init
trap_init(void)
1458 extern char except_vec3_generic
, except_vec3_r4000
;
1459 extern char except_vec4
;
1462 if (cpu_has_veic
|| cpu_has_vint
)
1463 ebase
= (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING
*64);
1469 per_cpu_trap_init();
1472 * Copy the generic exception handlers to their final destination.
1473 * This will be overriden later as suitable for a particular
1476 set_handler(0x180, &except_vec3_generic
, 0x80);
1479 * Setup default vectors
1481 for (i
= 0; i
<= 31; i
++)
1482 set_except_vector(i
, handle_reserved
);
1485 * Copy the EJTAG debug exception vector handler code to it's final
1488 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1489 board_ejtag_handler_setup ();
1492 * Only some CPUs have the watch exceptions.
1495 set_except_vector(23, handle_watch
);
1498 * Initialise interrupt handlers
1500 if (cpu_has_veic
|| cpu_has_vint
) {
1501 int nvec
= cpu_has_veic
? 64 : 8;
1502 for (i
= 0; i
< nvec
; i
++)
1503 set_vi_handler(i
, NULL
);
1505 else if (cpu_has_divec
)
1506 set_handler(0x200, &except_vec4
, 0x8);
1509 * Some CPUs can enable/disable for cache parity detection, but does
1510 * it different ways.
1512 parity_protection_init();
1515 * The Data Bus Errors / Instruction Bus Errors are signaled
1516 * by external hardware. Therefore these two exceptions
1517 * may have board specific handlers.
1522 set_except_vector(0, handle_int
);
1523 set_except_vector(1, handle_tlbm
);
1524 set_except_vector(2, handle_tlbl
);
1525 set_except_vector(3, handle_tlbs
);
1527 set_except_vector(4, handle_adel
);
1528 set_except_vector(5, handle_ades
);
1530 set_except_vector(6, handle_ibe
);
1531 set_except_vector(7, handle_dbe
);
1533 set_except_vector(8, handle_sys
);
1534 set_except_vector(9, handle_bp
);
1535 set_except_vector(10, handle_ri
);
1536 set_except_vector(11, handle_cpu
);
1537 set_except_vector(12, handle_ov
);
1538 set_except_vector(13, handle_tr
);
1540 if (current_cpu_data
.cputype
== CPU_R6000
||
1541 current_cpu_data
.cputype
== CPU_R6000A
) {
1543 * The R6000 is the only R-series CPU that features a machine
1544 * check exception (similar to the R4000 cache error) and
1545 * unaligned ldc1/sdc1 exception. The handlers have not been
1546 * written yet. Well, anyway there is no R6000 machine on the
1547 * current list of targets for Linux/MIPS.
1548 * (Duh, crap, there is someone with a triple R6k machine)
1550 //set_except_vector(14, handle_mc);
1551 //set_except_vector(15, handle_ndc);
1555 if (board_nmi_handler_setup
)
1556 board_nmi_handler_setup();
1558 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1559 set_except_vector(15, handle_fpe
);
1561 set_except_vector(22, handle_mdmx
);
1564 set_except_vector(24, handle_mcheck
);
1567 set_except_vector(25, handle_mt
);
1570 set_except_vector(26, handle_dsp
);
1573 /* Special exception: R4[04]00 uses also the divec space. */
1574 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_r4000
, 0x100);
1575 else if (cpu_has_4kex
)
1576 memcpy((void *)(CAC_BASE
+ 0x180), &except_vec3_generic
, 0x80);
1578 memcpy((void *)(CAC_BASE
+ 0x080), &except_vec3_generic
, 0x80);
1581 #ifdef CONFIG_MIPS32_COMPAT
1585 flush_icache_range(ebase
, ebase
+ 0x400);
1586 flush_tlb_handlers();