2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__
void ip_send_check(struct iphdr
*iph
)
89 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 int __ip_local_out(struct sk_buff
*skb
)
94 struct iphdr
*iph
= ip_hdr(skb
);
96 iph
->tot_len
= htons(skb
->len
);
98 return nf_hook(PF_INET
, NF_INET_LOCAL_OUT
, skb
, NULL
, skb
->dst
->dev
,
102 int ip_local_out(struct sk_buff
*skb
)
106 err
= __ip_local_out(skb
);
107 if (likely(err
== 1))
108 err
= dst_output(skb
);
112 EXPORT_SYMBOL_GPL(ip_local_out
);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
117 skb_reset_mac_header(newskb
);
118 __skb_pull(newskb
, skb_network_offset(newskb
));
119 newskb
->pkt_type
= PACKET_LOOPBACK
;
120 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
121 WARN_ON(!newskb
->dst
);
126 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
128 int ttl
= inet
->uc_ttl
;
131 ttl
= dst_metric(dst
, RTAX_HOPLIMIT
);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
140 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
142 struct inet_sock
*inet
= inet_sk(sk
);
143 struct rtable
*rt
= skb
->rtable
;
146 /* Build the IP header. */
147 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
148 skb_reset_network_header(skb
);
152 iph
->tos
= inet
->tos
;
153 if (ip_dont_fragment(sk
, &rt
->u
.dst
))
154 iph
->frag_off
= htons(IP_DF
);
157 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
158 iph
->daddr
= rt
->rt_dst
;
159 iph
->saddr
= rt
->rt_src
;
160 iph
->protocol
= sk
->sk_protocol
;
161 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
163 if (opt
&& opt
->optlen
) {
164 iph
->ihl
+= opt
->optlen
>>2;
165 ip_options_build(skb
, opt
, daddr
, rt
, 0);
168 skb
->priority
= sk
->sk_priority
;
169 skb
->mark
= sk
->sk_mark
;
172 return ip_local_out(skb
);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
177 static inline int ip_finish_output2(struct sk_buff
*skb
)
179 struct dst_entry
*dst
= skb
->dst
;
180 struct rtable
*rt
= (struct rtable
*)dst
;
181 struct net_device
*dev
= dst
->dev
;
182 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
184 if (rt
->rt_type
== RTN_MULTICAST
)
185 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCASTPKTS
);
186 else if (rt
->rt_type
== RTN_BROADCAST
)
187 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCASTPKTS
);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
191 struct sk_buff
*skb2
;
193 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
199 skb_set_owner_w(skb2
, skb
->sk
);
205 return neigh_hh_output(dst
->hh
, skb
);
206 else if (dst
->neighbour
)
207 return dst
->neighbour
->output(skb
);
210 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
217 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
219 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
220 skb
->dst
->dev
->mtu
: dst_mtu(skb
->dst
);
223 static int ip_finish_output(struct sk_buff
*skb
)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb
->dst
->xfrm
!= NULL
) {
228 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
229 return dst_output(skb
);
232 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
233 return ip_fragment(skb
, ip_finish_output2
);
235 return ip_finish_output2(skb
);
238 int ip_mc_output(struct sk_buff
*skb
)
240 struct sock
*sk
= skb
->sk
;
241 struct rtable
*rt
= skb
->rtable
;
242 struct net_device
*dev
= rt
->u
.dst
.dev
;
245 * If the indicated interface is up and running, send the packet.
247 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTREQUESTS
);
250 skb
->protocol
= htons(ETH_P_IP
);
253 * Multicasts are looped back for other local users
256 if (rt
->rt_flags
&RTCF_MULTICAST
) {
257 if ((!sk
|| inet_sk(sk
)->mc_loop
)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt
->rt_flags
&RTCF_LOCAL
) || !(IPCB(skb
)->flags
&IPSKB_FORWARDED
))
270 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
272 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
,
274 ip_dev_loopback_xmit
);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb
)->ttl
== 0) {
285 if (rt
->rt_flags
&RTCF_BROADCAST
) {
286 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
288 NF_HOOK(PF_INET
, NF_INET_POST_ROUTING
, newskb
, NULL
,
289 newskb
->dev
, ip_dev_loopback_xmit
);
292 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, skb
->dev
,
294 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
297 int ip_output(struct sk_buff
*skb
)
299 struct net_device
*dev
= skb
->dst
->dev
;
301 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_OUTREQUESTS
);
304 skb
->protocol
= htons(ETH_P_IP
);
306 return NF_HOOK_COND(PF_INET
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
308 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
311 int ip_queue_xmit(struct sk_buff
*skb
, int ipfragok
)
313 struct sock
*sk
= skb
->sk
;
314 struct inet_sock
*inet
= inet_sk(sk
);
315 struct ip_options
*opt
= inet
->opt
;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
326 /* Make sure we can route this packet. */
327 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
340 .saddr
= inet
->saddr
,
341 .tos
= RT_CONN_FLAGS(sk
) } },
342 .proto
= sk
->sk_protocol
,
343 .flags
= inet_sk_flowi_flags(sk
),
345 { .sport
= inet
->sport
,
346 .dport
= inet
->dport
} } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
352 security_sk_classify_flow(sk
, &fl
);
353 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
356 sk_setup_caps(sk
, &rt
->u
.dst
);
358 skb
->dst
= dst_clone(&rt
->u
.dst
);
361 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
366 skb_reset_network_header(skb
);
368 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
369 if (ip_dont_fragment(sk
, &rt
->u
.dst
) && !ipfragok
)
370 iph
->frag_off
= htons(IP_DF
);
373 iph
->ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
374 iph
->protocol
= sk
->sk_protocol
;
375 iph
->saddr
= rt
->rt_src
;
376 iph
->daddr
= rt
->rt_dst
;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt
&& opt
->optlen
) {
380 iph
->ihl
+= opt
->optlen
>> 2;
381 ip_options_build(skb
, opt
, inet
->daddr
, rt
, 0);
384 ip_select_ident_more(iph
, &rt
->u
.dst
, sk
,
385 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
387 skb
->priority
= sk
->sk_priority
;
388 skb
->mark
= sk
->sk_mark
;
390 return ip_local_out(skb
);
393 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
395 return -EHOSTUNREACH
;
399 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
401 to
->pkt_type
= from
->pkt_type
;
402 to
->priority
= from
->priority
;
403 to
->protocol
= from
->protocol
;
404 dst_release(to
->dst
);
405 to
->dst
= dst_clone(from
->dst
);
407 to
->mark
= from
->mark
;
409 /* Copy the flags to each fragment. */
410 IPCB(to
)->flags
= IPCB(from
)->flags
;
412 #ifdef CONFIG_NET_SCHED
413 to
->tc_index
= from
->tc_index
;
416 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
417 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
418 to
->nf_trace
= from
->nf_trace
;
420 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
421 to
->ipvs_property
= from
->ipvs_property
;
423 skb_copy_secmark(to
, from
);
427 * This IP datagram is too large to be sent in one piece. Break it up into
428 * smaller pieces (each of size equal to IP header plus
429 * a block of the data of the original IP data part) that will yet fit in a
430 * single device frame, and queue such a frame for sending.
433 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
438 struct net_device
*dev
;
439 struct sk_buff
*skb2
;
440 unsigned int mtu
, hlen
, left
, len
, ll_rs
, pad
;
442 __be16 not_last_frag
;
443 struct rtable
*rt
= skb
->rtable
;
449 * Point into the IP datagram header.
454 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
455 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
456 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
457 htonl(ip_skb_dst_mtu(skb
)));
463 * Setup starting values.
467 mtu
= dst_mtu(&rt
->u
.dst
) - hlen
; /* Size of data space */
468 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
470 /* When frag_list is given, use it. First, check its validity:
471 * some transformers could create wrong frag_list or break existing
472 * one, it is not prohibited. In this case fall back to copying.
474 * LATER: this step can be merged to real generation of fragments,
475 * we can switch to copy when see the first bad fragment.
477 if (skb_shinfo(skb
)->frag_list
) {
478 struct sk_buff
*frag
;
479 int first_len
= skb_pagelen(skb
);
482 if (first_len
- hlen
> mtu
||
483 ((first_len
- hlen
) & 7) ||
484 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
488 for (frag
= skb_shinfo(skb
)->frag_list
; frag
; frag
= frag
->next
) {
489 /* Correct geometry. */
490 if (frag
->len
> mtu
||
491 ((frag
->len
& 7) && frag
->next
) ||
492 skb_headroom(frag
) < hlen
)
495 /* Partially cloned skb? */
496 if (skb_shared(frag
))
503 frag
->destructor
= sock_wfree
;
504 truesizes
+= frag
->truesize
;
508 /* Everything is OK. Generate! */
512 frag
= skb_shinfo(skb
)->frag_list
;
513 skb_shinfo(skb
)->frag_list
= NULL
;
514 skb
->data_len
= first_len
- skb_headlen(skb
);
515 skb
->truesize
-= truesizes
;
516 skb
->len
= first_len
;
517 iph
->tot_len
= htons(first_len
);
518 iph
->frag_off
= htons(IP_MF
);
522 /* Prepare header of the next frame,
523 * before previous one went down. */
525 frag
->ip_summed
= CHECKSUM_NONE
;
526 skb_reset_transport_header(frag
);
527 __skb_push(frag
, hlen
);
528 skb_reset_network_header(frag
);
529 memcpy(skb_network_header(frag
), iph
, hlen
);
531 iph
->tot_len
= htons(frag
->len
);
532 ip_copy_metadata(frag
, skb
);
534 ip_options_fragment(frag
);
535 offset
+= skb
->len
- hlen
;
536 iph
->frag_off
= htons(offset
>>3);
537 if (frag
->next
!= NULL
)
538 iph
->frag_off
|= htons(IP_MF
);
539 /* Ready, complete checksum */
546 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
556 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
565 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
570 left
= skb
->len
- hlen
; /* Space per frame */
571 ptr
= raw
+ hlen
; /* Where to start from */
573 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 * we need to make room for the encapsulating header
576 pad
= nf_bridge_pad(skb
);
577 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->u
.dst
.dev
, pad
);
581 * Fragment the datagram.
584 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
585 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
588 * Keep copying data until we run out.
593 /* IF: it doesn't fit, use 'mtu' - the data space left */
596 /* IF: we are not sending upto and including the packet end
597 then align the next start on an eight byte boundary */
605 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
606 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
612 * Set up data on packet
615 ip_copy_metadata(skb2
, skb
);
616 skb_reserve(skb2
, ll_rs
);
617 skb_put(skb2
, len
+ hlen
);
618 skb_reset_network_header(skb2
);
619 skb2
->transport_header
= skb2
->network_header
+ hlen
;
622 * Charge the memory for the fragment to any owner
627 skb_set_owner_w(skb2
, skb
->sk
);
630 * Copy the packet header into the new buffer.
633 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
636 * Copy a block of the IP datagram.
638 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
643 * Fill in the new header fields.
646 iph
->frag_off
= htons((offset
>> 3));
648 /* ANK: dirty, but effective trick. Upgrade options only if
649 * the segment to be fragmented was THE FIRST (otherwise,
650 * options are already fixed) and make it ONCE
651 * on the initial skb, so that all the following fragments
652 * will inherit fixed options.
655 ip_options_fragment(skb
);
658 * Added AC : If we are fragmenting a fragment that's not the
659 * last fragment then keep MF on each bit
661 if (left
> 0 || not_last_frag
)
662 iph
->frag_off
|= htons(IP_MF
);
667 * Put this fragment into the sending queue.
669 iph
->tot_len
= htons(len
+ hlen
);
677 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
680 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
685 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
689 EXPORT_SYMBOL(ip_fragment
);
692 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
694 struct iovec
*iov
= from
;
696 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
697 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
701 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
703 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
709 csum_page(struct page
*page
, int offset
, int copy
)
714 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
719 static inline int ip_ufo_append_data(struct sock
*sk
,
720 int getfrag(void *from
, char *to
, int offset
, int len
,
721 int odd
, struct sk_buff
*skb
),
722 void *from
, int length
, int hh_len
, int fragheaderlen
,
723 int transhdrlen
, int mtu
, unsigned int flags
)
728 /* There is support for UDP fragmentation offload by network
729 * device, so create one single skb packet containing complete
732 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
733 skb
= sock_alloc_send_skb(sk
,
734 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
735 (flags
& MSG_DONTWAIT
), &err
);
740 /* reserve space for Hardware header */
741 skb_reserve(skb
, hh_len
);
743 /* create space for UDP/IP header */
744 skb_put(skb
, fragheaderlen
+ transhdrlen
);
746 /* initialize network header pointer */
747 skb_reset_network_header(skb
);
749 /* initialize protocol header pointer */
750 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
752 skb
->ip_summed
= CHECKSUM_PARTIAL
;
754 sk
->sk_sndmsg_off
= 0;
756 /* specify the length of each IP datagram fragment */
757 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
758 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
759 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
762 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
763 (length
- transhdrlen
));
767 * ip_append_data() and ip_append_page() can make one large IP datagram
768 * from many pieces of data. Each pieces will be holded on the socket
769 * until ip_push_pending_frames() is called. Each piece can be a page
772 * Not only UDP, other transport protocols - e.g. raw sockets - can use
773 * this interface potentially.
775 * LATER: length must be adjusted by pad at tail, when it is required.
777 int ip_append_data(struct sock
*sk
,
778 int getfrag(void *from
, char *to
, int offset
, int len
,
779 int odd
, struct sk_buff
*skb
),
780 void *from
, int length
, int transhdrlen
,
781 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
784 struct inet_sock
*inet
= inet_sk(sk
);
787 struct ip_options
*opt
= NULL
;
794 unsigned int maxfraglen
, fragheaderlen
;
795 int csummode
= CHECKSUM_NONE
;
801 if (skb_queue_empty(&sk
->sk_write_queue
)) {
807 if (inet
->cork
.opt
== NULL
) {
808 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
809 if (unlikely(inet
->cork
.opt
== NULL
))
812 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
813 inet
->cork
.flags
|= IPCORK_OPT
;
814 inet
->cork
.addr
= ipc
->addr
;
818 * We steal reference to this route, caller should not release it
821 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
823 dst_mtu(rt
->u
.dst
.path
);
824 inet
->cork
.dst
= &rt
->u
.dst
;
825 inet
->cork
.length
= 0;
826 sk
->sk_sndmsg_page
= NULL
;
827 sk
->sk_sndmsg_off
= 0;
828 if ((exthdrlen
= rt
->u
.dst
.header_len
) != 0) {
830 transhdrlen
+= exthdrlen
;
833 rt
= (struct rtable
*)inet
->cork
.dst
;
834 if (inet
->cork
.flags
& IPCORK_OPT
)
835 opt
= inet
->cork
.opt
;
839 mtu
= inet
->cork
.fragsize
;
841 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
843 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
844 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
846 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
847 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
-exthdrlen
);
852 * transhdrlen > 0 means that this is the first fragment and we wish
853 * it won't be fragmented in the future.
856 length
+ fragheaderlen
<= mtu
&&
857 rt
->u
.dst
.dev
->features
& NETIF_F_V4_CSUM
&&
859 csummode
= CHECKSUM_PARTIAL
;
861 inet
->cork
.length
+= length
;
862 if (((length
> mtu
) || !skb_queue_empty(&sk
->sk_write_queue
)) &&
863 (sk
->sk_protocol
== IPPROTO_UDP
) &&
864 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
865 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
866 fragheaderlen
, transhdrlen
, mtu
,
873 /* So, what's going on in the loop below?
875 * We use calculated fragment length to generate chained skb,
876 * each of segments is IP fragment ready for sending to network after
877 * adding appropriate IP header.
880 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
884 /* Check if the remaining data fits into current packet. */
885 copy
= mtu
- skb
->len
;
887 copy
= maxfraglen
- skb
->len
;
890 unsigned int datalen
;
891 unsigned int fraglen
;
892 unsigned int fraggap
;
893 unsigned int alloclen
;
894 struct sk_buff
*skb_prev
;
898 fraggap
= skb_prev
->len
- maxfraglen
;
903 * If remaining data exceeds the mtu,
904 * we know we need more fragment(s).
906 datalen
= length
+ fraggap
;
907 if (datalen
> mtu
- fragheaderlen
)
908 datalen
= maxfraglen
- fragheaderlen
;
909 fraglen
= datalen
+ fragheaderlen
;
911 if ((flags
& MSG_MORE
) &&
912 !(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
915 alloclen
= datalen
+ fragheaderlen
;
917 /* The last fragment gets additional space at tail.
918 * Note, with MSG_MORE we overallocate on fragments,
919 * because we have no idea what fragment will be
922 if (datalen
== length
+ fraggap
)
923 alloclen
+= rt
->u
.dst
.trailer_len
;
926 skb
= sock_alloc_send_skb(sk
,
927 alloclen
+ hh_len
+ 15,
928 (flags
& MSG_DONTWAIT
), &err
);
931 if (atomic_read(&sk
->sk_wmem_alloc
) <=
933 skb
= sock_wmalloc(sk
,
934 alloclen
+ hh_len
+ 15, 1,
936 if (unlikely(skb
== NULL
))
939 /* only the initial fragment is
947 * Fill in the control structures
949 skb
->ip_summed
= csummode
;
951 skb_reserve(skb
, hh_len
);
952 *skb_tx(skb
) = ipc
->shtx
;
955 * Find where to start putting bytes.
957 data
= skb_put(skb
, fraglen
);
958 skb_set_network_header(skb
, exthdrlen
);
959 skb
->transport_header
= (skb
->network_header
+
961 data
+= fragheaderlen
;
964 skb
->csum
= skb_copy_and_csum_bits(
965 skb_prev
, maxfraglen
,
966 data
+ transhdrlen
, fraggap
, 0);
967 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
970 pskb_trim_unique(skb_prev
, maxfraglen
);
973 copy
= datalen
- transhdrlen
- fraggap
;
974 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
981 length
-= datalen
- fraggap
;
984 csummode
= CHECKSUM_NONE
;
987 * Put the packet on the pending queue.
989 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
996 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
)) {
1000 if (getfrag(from
, skb_put(skb
, copy
),
1001 offset
, copy
, off
, skb
) < 0) {
1002 __skb_trim(skb
, off
);
1007 int i
= skb_shinfo(skb
)->nr_frags
;
1008 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
1009 struct page
*page
= sk
->sk_sndmsg_page
;
1010 int off
= sk
->sk_sndmsg_off
;
1013 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1016 if (page
!= frag
->page
) {
1017 if (i
== MAX_SKB_FRAGS
) {
1022 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1023 frag
= &skb_shinfo(skb
)->frags
[i
];
1025 } else if (i
< MAX_SKB_FRAGS
) {
1026 if (copy
> PAGE_SIZE
)
1028 page
= alloc_pages(sk
->sk_allocation
, 0);
1033 sk
->sk_sndmsg_page
= page
;
1034 sk
->sk_sndmsg_off
= 0;
1036 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1037 frag
= &skb_shinfo(skb
)->frags
[i
];
1042 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1046 sk
->sk_sndmsg_off
+= copy
;
1049 skb
->data_len
+= copy
;
1050 skb
->truesize
+= copy
;
1051 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1060 inet
->cork
.length
-= length
;
1061 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1065 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1066 int offset
, size_t size
, int flags
)
1068 struct inet_sock
*inet
= inet_sk(sk
);
1069 struct sk_buff
*skb
;
1071 struct ip_options
*opt
= NULL
;
1076 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1081 if (flags
&MSG_PROBE
)
1084 if (skb_queue_empty(&sk
->sk_write_queue
))
1087 rt
= (struct rtable
*)inet
->cork
.dst
;
1088 if (inet
->cork
.flags
& IPCORK_OPT
)
1089 opt
= inet
->cork
.opt
;
1091 if (!(rt
->u
.dst
.dev
->features
&NETIF_F_SG
))
1094 hh_len
= LL_RESERVED_SPACE(rt
->u
.dst
.dev
);
1095 mtu
= inet
->cork
.fragsize
;
1097 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1098 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1100 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1101 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->dport
, mtu
);
1105 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1108 inet
->cork
.length
+= size
;
1109 if ((sk
->sk_protocol
== IPPROTO_UDP
) &&
1110 (rt
->u
.dst
.dev
->features
& NETIF_F_UFO
)) {
1111 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1112 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1119 if (skb_is_gso(skb
))
1123 /* Check if the remaining data fits into current packet. */
1124 len
= mtu
- skb
->len
;
1126 len
= maxfraglen
- skb
->len
;
1129 struct sk_buff
*skb_prev
;
1133 fraggap
= skb_prev
->len
- maxfraglen
;
1135 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1136 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1137 if (unlikely(!skb
)) {
1143 * Fill in the control structures
1145 skb
->ip_summed
= CHECKSUM_NONE
;
1147 skb_reserve(skb
, hh_len
);
1150 * Find where to start putting bytes.
1152 skb_put(skb
, fragheaderlen
+ fraggap
);
1153 skb_reset_network_header(skb
);
1154 skb
->transport_header
= (skb
->network_header
+
1157 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1159 skb_transport_header(skb
),
1161 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1163 pskb_trim_unique(skb_prev
, maxfraglen
);
1167 * Put the packet on the pending queue.
1169 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1173 i
= skb_shinfo(skb
)->nr_frags
;
1176 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1177 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1178 } else if (i
< MAX_SKB_FRAGS
) {
1180 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1186 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1188 csum
= csum_page(page
, offset
, len
);
1189 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1193 skb
->data_len
+= len
;
1194 skb
->truesize
+= len
;
1195 atomic_add(len
, &sk
->sk_wmem_alloc
);
1202 inet
->cork
.length
-= size
;
1203 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1207 static void ip_cork_release(struct inet_sock
*inet
)
1209 inet
->cork
.flags
&= ~IPCORK_OPT
;
1210 kfree(inet
->cork
.opt
);
1211 inet
->cork
.opt
= NULL
;
1212 dst_release(inet
->cork
.dst
);
1213 inet
->cork
.dst
= NULL
;
1217 * Combined all pending IP fragments on the socket as one IP datagram
1218 * and push them out.
1220 int ip_push_pending_frames(struct sock
*sk
)
1222 struct sk_buff
*skb
, *tmp_skb
;
1223 struct sk_buff
**tail_skb
;
1224 struct inet_sock
*inet
= inet_sk(sk
);
1225 struct net
*net
= sock_net(sk
);
1226 struct ip_options
*opt
= NULL
;
1227 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1233 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1235 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1237 /* move skb->data to ip header from ext header */
1238 if (skb
->data
< skb_network_header(skb
))
1239 __skb_pull(skb
, skb_network_offset(skb
));
1240 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1241 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1242 *tail_skb
= tmp_skb
;
1243 tail_skb
= &(tmp_skb
->next
);
1244 skb
->len
+= tmp_skb
->len
;
1245 skb
->data_len
+= tmp_skb
->len
;
1246 skb
->truesize
+= tmp_skb
->truesize
;
1247 __sock_put(tmp_skb
->sk
);
1248 tmp_skb
->destructor
= NULL
;
1252 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1253 * to fragment the frame generated here. No matter, what transforms
1254 * how transforms change size of the packet, it will come out.
1256 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1259 /* DF bit is set when we want to see DF on outgoing frames.
1260 * If local_df is set too, we still allow to fragment this frame
1262 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1263 (skb
->len
<= dst_mtu(&rt
->u
.dst
) &&
1264 ip_dont_fragment(sk
, &rt
->u
.dst
)))
1267 if (inet
->cork
.flags
& IPCORK_OPT
)
1268 opt
= inet
->cork
.opt
;
1270 if (rt
->rt_type
== RTN_MULTICAST
)
1273 ttl
= ip_select_ttl(inet
, &rt
->u
.dst
);
1275 iph
= (struct iphdr
*)skb
->data
;
1279 iph
->ihl
+= opt
->optlen
>>2;
1280 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1282 iph
->tos
= inet
->tos
;
1284 ip_select_ident(iph
, &rt
->u
.dst
, sk
);
1286 iph
->protocol
= sk
->sk_protocol
;
1287 iph
->saddr
= rt
->rt_src
;
1288 iph
->daddr
= rt
->rt_dst
;
1290 skb
->priority
= sk
->sk_priority
;
1291 skb
->mark
= sk
->sk_mark
;
1293 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1296 inet
->cork
.dst
= NULL
;
1297 skb
->dst
= &rt
->u
.dst
;
1299 if (iph
->protocol
== IPPROTO_ICMP
)
1300 icmp_out_count(net
, ((struct icmphdr
*)
1301 skb_transport_header(skb
))->type
);
1303 /* Netfilter gets whole the not fragmented skb. */
1304 err
= ip_local_out(skb
);
1307 err
= inet
->recverr
? net_xmit_errno(err
) : 0;
1313 ip_cork_release(inet
);
1317 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1322 * Throw away all pending data on the socket.
1324 void ip_flush_pending_frames(struct sock
*sk
)
1326 struct sk_buff
*skb
;
1328 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1331 ip_cork_release(inet_sk(sk
));
1336 * Fetch data from kernel space and fill in checksum if needed.
1338 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1339 int len
, int odd
, struct sk_buff
*skb
)
1343 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1344 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1349 * Generic function to send a packet as reply to another packet.
1350 * Used to send TCP resets so far. ICMP should use this function too.
1352 * Should run single threaded per socket because it uses the sock
1353 * structure to pass arguments.
1355 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1358 struct inet_sock
*inet
= inet_sk(sk
);
1360 struct ip_options opt
;
1363 struct ipcm_cookie ipc
;
1365 struct rtable
*rt
= skb
->rtable
;
1367 if (ip_options_echo(&replyopts
.opt
, skb
))
1370 daddr
= ipc
.addr
= rt
->rt_src
;
1374 if (replyopts
.opt
.optlen
) {
1375 ipc
.opt
= &replyopts
.opt
;
1378 daddr
= replyopts
.opt
.faddr
;
1382 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1385 .saddr
= rt
->rt_spec_dst
,
1386 .tos
= RT_TOS(ip_hdr(skb
)->tos
) } },
1387 /* Not quite clean, but right. */
1389 { .sport
= tcp_hdr(skb
)->dest
,
1390 .dport
= tcp_hdr(skb
)->source
} },
1391 .proto
= sk
->sk_protocol
,
1392 .flags
= ip_reply_arg_flowi_flags(arg
) };
1393 security_skb_classify_flow(skb
, &fl
);
1394 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1398 /* And let IP do all the hard work.
1400 This chunk is not reenterable, hence spinlock.
1401 Note that it uses the fact, that this function is called
1402 with locally disabled BH and that sk cannot be already spinlocked.
1405 inet
->tos
= ip_hdr(skb
)->tos
;
1406 sk
->sk_priority
= skb
->priority
;
1407 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1408 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1409 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1410 &ipc
, &rt
, MSG_DONTWAIT
);
1411 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1412 if (arg
->csumoffset
>= 0)
1413 *((__sum16
*)skb_transport_header(skb
) +
1414 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1416 skb
->ip_summed
= CHECKSUM_NONE
;
1417 ip_push_pending_frames(sk
);
1425 void __init
ip_init(void)
1430 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1431 igmp_mc_proc_init();
1435 EXPORT_SYMBOL(ip_generic_getfrag
);
1436 EXPORT_SYMBOL(ip_queue_xmit
);
1437 EXPORT_SYMBOL(ip_send_check
);