2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 static unsigned long surplus_huge_pages
;
27 unsigned long max_huge_pages
;
28 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
29 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
30 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
31 static unsigned int surplus_huge_pages_node
[MAX_NUMNODES
];
32 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
33 unsigned long hugepages_treat_as_movable
;
34 unsigned long nr_overcommit_huge_pages
;
35 static int hugetlb_next_nid
;
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 static DEFINE_SPINLOCK(hugetlb_lock
);
42 static void clear_huge_page(struct page
*page
, unsigned long addr
)
47 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
49 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
53 static void copy_huge_page(struct page
*dst
, struct page
*src
,
54 unsigned long addr
, struct vm_area_struct
*vma
)
59 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
61 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
65 static void enqueue_huge_page(struct page
*page
)
67 int nid
= page_to_nid(page
);
68 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
70 free_huge_pages_node
[nid
]++;
73 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
74 unsigned long address
)
77 struct page
*page
= NULL
;
78 struct mempolicy
*mpol
;
79 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
80 htlb_alloc_mask
, &mpol
);
83 for (z
= zonelist
->zones
; *z
; z
++) {
84 nid
= zone_to_nid(*z
);
85 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
86 !list_empty(&hugepage_freelists
[nid
])) {
87 page
= list_entry(hugepage_freelists
[nid
].next
,
91 free_huge_pages_node
[nid
]--;
92 if (vma
&& vma
->vm_flags
& VM_MAYSHARE
)
97 mpol_free(mpol
); /* unref if mpol !NULL */
101 static void update_and_free_page(struct page
*page
)
105 nr_huge_pages_node
[page_to_nid(page
)]--;
106 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
107 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
108 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
109 1 << PG_private
| 1<< PG_writeback
);
111 set_compound_page_dtor(page
, NULL
);
112 set_page_refcounted(page
);
113 __free_pages(page
, HUGETLB_PAGE_ORDER
);
116 static void free_huge_page(struct page
*page
)
118 int nid
= page_to_nid(page
);
119 struct address_space
*mapping
;
121 mapping
= (struct address_space
*) page_private(page
);
122 BUG_ON(page_count(page
));
123 INIT_LIST_HEAD(&page
->lru
);
125 spin_lock(&hugetlb_lock
);
126 if (surplus_huge_pages_node
[nid
]) {
127 update_and_free_page(page
);
128 surplus_huge_pages
--;
129 surplus_huge_pages_node
[nid
]--;
131 enqueue_huge_page(page
);
133 spin_unlock(&hugetlb_lock
);
135 hugetlb_put_quota(mapping
, 1);
136 set_page_private(page
, 0);
140 * Increment or decrement surplus_huge_pages. Keep node-specific counters
141 * balanced by operating on them in a round-robin fashion.
142 * Returns 1 if an adjustment was made.
144 static int adjust_pool_surplus(int delta
)
150 VM_BUG_ON(delta
!= -1 && delta
!= 1);
152 nid
= next_node(nid
, node_online_map
);
153 if (nid
== MAX_NUMNODES
)
154 nid
= first_node(node_online_map
);
156 /* To shrink on this node, there must be a surplus page */
157 if (delta
< 0 && !surplus_huge_pages_node
[nid
])
159 /* Surplus cannot exceed the total number of pages */
160 if (delta
> 0 && surplus_huge_pages_node
[nid
] >=
161 nr_huge_pages_node
[nid
])
164 surplus_huge_pages
+= delta
;
165 surplus_huge_pages_node
[nid
] += delta
;
168 } while (nid
!= prev_nid
);
174 static struct page
*alloc_fresh_huge_page_node(int nid
)
178 page
= alloc_pages_node(nid
,
179 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|__GFP_NOWARN
,
182 set_compound_page_dtor(page
, free_huge_page
);
183 spin_lock(&hugetlb_lock
);
185 nr_huge_pages_node
[nid
]++;
186 spin_unlock(&hugetlb_lock
);
187 put_page(page
); /* free it into the hugepage allocator */
193 static int alloc_fresh_huge_page(void)
200 start_nid
= hugetlb_next_nid
;
203 page
= alloc_fresh_huge_page_node(hugetlb_next_nid
);
207 * Use a helper variable to find the next node and then
208 * copy it back to hugetlb_next_nid afterwards:
209 * otherwise there's a window in which a racer might
210 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211 * But we don't need to use a spin_lock here: it really
212 * doesn't matter if occasionally a racer chooses the
213 * same nid as we do. Move nid forward in the mask even
214 * if we just successfully allocated a hugepage so that
215 * the next caller gets hugepages on the next node.
217 next_nid
= next_node(hugetlb_next_nid
, node_online_map
);
218 if (next_nid
== MAX_NUMNODES
)
219 next_nid
= first_node(node_online_map
);
220 hugetlb_next_nid
= next_nid
;
221 } while (!page
&& hugetlb_next_nid
!= start_nid
);
226 static struct page
*alloc_buddy_huge_page(struct vm_area_struct
*vma
,
227 unsigned long address
)
233 * Assume we will successfully allocate the surplus page to
234 * prevent racing processes from causing the surplus to exceed
237 * This however introduces a different race, where a process B
238 * tries to grow the static hugepage pool while alloc_pages() is
239 * called by process A. B will only examine the per-node
240 * counters in determining if surplus huge pages can be
241 * converted to normal huge pages in adjust_pool_surplus(). A
242 * won't be able to increment the per-node counter, until the
243 * lock is dropped by B, but B doesn't drop hugetlb_lock until
244 * no more huge pages can be converted from surplus to normal
245 * state (and doesn't try to convert again). Thus, we have a
246 * case where a surplus huge page exists, the pool is grown, and
247 * the surplus huge page still exists after, even though it
248 * should just have been converted to a normal huge page. This
249 * does not leak memory, though, as the hugepage will be freed
250 * once it is out of use. It also does not allow the counters to
251 * go out of whack in adjust_pool_surplus() as we don't modify
252 * the node values until we've gotten the hugepage and only the
253 * per-node value is checked there.
255 spin_lock(&hugetlb_lock
);
256 if (surplus_huge_pages
>= nr_overcommit_huge_pages
) {
257 spin_unlock(&hugetlb_lock
);
261 surplus_huge_pages
++;
263 spin_unlock(&hugetlb_lock
);
265 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
268 spin_lock(&hugetlb_lock
);
270 nid
= page_to_nid(page
);
271 set_compound_page_dtor(page
, free_huge_page
);
273 * We incremented the global counters already
275 nr_huge_pages_node
[nid
]++;
276 surplus_huge_pages_node
[nid
]++;
279 surplus_huge_pages
--;
281 spin_unlock(&hugetlb_lock
);
287 * Increase the hugetlb pool such that it can accomodate a reservation
290 static int gather_surplus_pages(int delta
)
292 struct list_head surplus_list
;
293 struct page
*page
, *tmp
;
295 int needed
, allocated
;
297 needed
= (resv_huge_pages
+ delta
) - free_huge_pages
;
302 INIT_LIST_HEAD(&surplus_list
);
306 spin_unlock(&hugetlb_lock
);
307 for (i
= 0; i
< needed
; i
++) {
308 page
= alloc_buddy_huge_page(NULL
, 0);
311 * We were not able to allocate enough pages to
312 * satisfy the entire reservation so we free what
313 * we've allocated so far.
315 spin_lock(&hugetlb_lock
);
320 list_add(&page
->lru
, &surplus_list
);
325 * After retaking hugetlb_lock, we need to recalculate 'needed'
326 * because either resv_huge_pages or free_huge_pages may have changed.
328 spin_lock(&hugetlb_lock
);
329 needed
= (resv_huge_pages
+ delta
) - (free_huge_pages
+ allocated
);
334 * The surplus_list now contains _at_least_ the number of extra pages
335 * needed to accomodate the reservation. Add the appropriate number
336 * of pages to the hugetlb pool and free the extras back to the buddy
342 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
343 list_del(&page
->lru
);
345 enqueue_huge_page(page
);
348 * Decrement the refcount and free the page using its
349 * destructor. This must be done with hugetlb_lock
350 * unlocked which is safe because free_huge_page takes
351 * hugetlb_lock before deciding how to free the page.
353 spin_unlock(&hugetlb_lock
);
355 spin_lock(&hugetlb_lock
);
363 * When releasing a hugetlb pool reservation, any surplus pages that were
364 * allocated to satisfy the reservation must be explicitly freed if they were
367 static void return_unused_surplus_pages(unsigned long unused_resv_pages
)
371 unsigned long nr_pages
;
373 nr_pages
= min(unused_resv_pages
, surplus_huge_pages
);
376 nid
= next_node(nid
, node_online_map
);
377 if (nid
== MAX_NUMNODES
)
378 nid
= first_node(node_online_map
);
380 if (!surplus_huge_pages_node
[nid
])
383 if (!list_empty(&hugepage_freelists
[nid
])) {
384 page
= list_entry(hugepage_freelists
[nid
].next
,
386 list_del(&page
->lru
);
387 update_and_free_page(page
);
389 free_huge_pages_node
[nid
]--;
390 surplus_huge_pages
--;
391 surplus_huge_pages_node
[nid
]--;
398 static struct page
*alloc_huge_page_shared(struct vm_area_struct
*vma
,
403 spin_lock(&hugetlb_lock
);
404 page
= dequeue_huge_page(vma
, addr
);
405 spin_unlock(&hugetlb_lock
);
406 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
409 static struct page
*alloc_huge_page_private(struct vm_area_struct
*vma
,
412 struct page
*page
= NULL
;
414 if (hugetlb_get_quota(vma
->vm_file
->f_mapping
, 1))
415 return ERR_PTR(-VM_FAULT_SIGBUS
);
417 spin_lock(&hugetlb_lock
);
418 if (free_huge_pages
> resv_huge_pages
)
419 page
= dequeue_huge_page(vma
, addr
);
420 spin_unlock(&hugetlb_lock
);
422 page
= alloc_buddy_huge_page(vma
, addr
);
424 hugetlb_put_quota(vma
->vm_file
->f_mapping
, 1);
425 return ERR_PTR(-VM_FAULT_OOM
);
431 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
435 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
437 if (vma
->vm_flags
& VM_MAYSHARE
)
438 page
= alloc_huge_page_shared(vma
, addr
);
440 page
= alloc_huge_page_private(vma
, addr
);
443 set_page_refcounted(page
);
444 set_page_private(page
, (unsigned long) mapping
);
449 static int __init
hugetlb_init(void)
453 if (HPAGE_SHIFT
== 0)
456 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
457 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
459 hugetlb_next_nid
= first_node(node_online_map
);
461 for (i
= 0; i
< max_huge_pages
; ++i
) {
462 if (!alloc_fresh_huge_page())
465 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
466 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
469 module_init(hugetlb_init
);
471 static int __init
hugetlb_setup(char *s
)
473 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
477 __setup("hugepages=", hugetlb_setup
);
479 static unsigned int cpuset_mems_nr(unsigned int *array
)
484 for_each_node_mask(node
, cpuset_current_mems_allowed
)
491 #ifdef CONFIG_HIGHMEM
492 static void try_to_free_low(unsigned long count
)
496 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
497 struct page
*page
, *next
;
498 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
499 if (count
>= nr_huge_pages
)
501 if (PageHighMem(page
))
503 list_del(&page
->lru
);
504 update_and_free_page(page
);
506 free_huge_pages_node
[page_to_nid(page
)]--;
511 static inline void try_to_free_low(unsigned long count
)
516 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
517 static unsigned long set_max_huge_pages(unsigned long count
)
519 unsigned long min_count
, ret
;
522 * Increase the pool size
523 * First take pages out of surplus state. Then make up the
524 * remaining difference by allocating fresh huge pages.
526 * We might race with alloc_buddy_huge_page() here and be unable
527 * to convert a surplus huge page to a normal huge page. That is
528 * not critical, though, it just means the overall size of the
529 * pool might be one hugepage larger than it needs to be, but
530 * within all the constraints specified by the sysctls.
532 spin_lock(&hugetlb_lock
);
533 while (surplus_huge_pages
&& count
> persistent_huge_pages
) {
534 if (!adjust_pool_surplus(-1))
538 while (count
> persistent_huge_pages
) {
541 * If this allocation races such that we no longer need the
542 * page, free_huge_page will handle it by freeing the page
543 * and reducing the surplus.
545 spin_unlock(&hugetlb_lock
);
546 ret
= alloc_fresh_huge_page();
547 spin_lock(&hugetlb_lock
);
554 * Decrease the pool size
555 * First return free pages to the buddy allocator (being careful
556 * to keep enough around to satisfy reservations). Then place
557 * pages into surplus state as needed so the pool will shrink
558 * to the desired size as pages become free.
560 * By placing pages into the surplus state independent of the
561 * overcommit value, we are allowing the surplus pool size to
562 * exceed overcommit. There are few sane options here. Since
563 * alloc_buddy_huge_page() is checking the global counter,
564 * though, we'll note that we're not allowed to exceed surplus
565 * and won't grow the pool anywhere else. Not until one of the
566 * sysctls are changed, or the surplus pages go out of use.
568 min_count
= resv_huge_pages
+ nr_huge_pages
- free_huge_pages
;
569 min_count
= max(count
, min_count
);
570 try_to_free_low(min_count
);
571 while (min_count
< persistent_huge_pages
) {
572 struct page
*page
= dequeue_huge_page(NULL
, 0);
575 update_and_free_page(page
);
577 while (count
< persistent_huge_pages
) {
578 if (!adjust_pool_surplus(1))
582 ret
= persistent_huge_pages
;
583 spin_unlock(&hugetlb_lock
);
587 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
588 struct file
*file
, void __user
*buffer
,
589 size_t *length
, loff_t
*ppos
)
591 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
592 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
596 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
597 struct file
*file
, void __user
*buffer
,
598 size_t *length
, loff_t
*ppos
)
600 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
601 if (hugepages_treat_as_movable
)
602 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
604 htlb_alloc_mask
= GFP_HIGHUSER
;
608 #endif /* CONFIG_SYSCTL */
610 int hugetlb_report_meminfo(char *buf
)
613 "HugePages_Total: %5lu\n"
614 "HugePages_Free: %5lu\n"
615 "HugePages_Rsvd: %5lu\n"
616 "HugePages_Surp: %5lu\n"
617 "Hugepagesize: %5lu kB\n",
625 int hugetlb_report_node_meminfo(int nid
, char *buf
)
628 "Node %d HugePages_Total: %5u\n"
629 "Node %d HugePages_Free: %5u\n",
630 nid
, nr_huge_pages_node
[nid
],
631 nid
, free_huge_pages_node
[nid
]);
634 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
635 unsigned long hugetlb_total_pages(void)
637 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
641 * We cannot handle pagefaults against hugetlb pages at all. They cause
642 * handle_mm_fault() to try to instantiate regular-sized pages in the
643 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
646 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
652 struct vm_operations_struct hugetlb_vm_ops
= {
653 .fault
= hugetlb_vm_op_fault
,
656 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
663 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
665 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
667 entry
= pte_mkyoung(entry
);
668 entry
= pte_mkhuge(entry
);
673 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
674 unsigned long address
, pte_t
*ptep
)
678 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
679 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
680 update_mmu_cache(vma
, address
, entry
);
685 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
686 struct vm_area_struct
*vma
)
688 pte_t
*src_pte
, *dst_pte
, entry
;
689 struct page
*ptepage
;
693 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
695 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
696 src_pte
= huge_pte_offset(src
, addr
);
699 dst_pte
= huge_pte_alloc(dst
, addr
);
702 spin_lock(&dst
->page_table_lock
);
703 spin_lock(&src
->page_table_lock
);
704 if (!pte_none(*src_pte
)) {
706 ptep_set_wrprotect(src
, addr
, src_pte
);
708 ptepage
= pte_page(entry
);
710 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
712 spin_unlock(&src
->page_table_lock
);
713 spin_unlock(&dst
->page_table_lock
);
721 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
724 struct mm_struct
*mm
= vma
->vm_mm
;
725 unsigned long address
;
731 * A page gathering list, protected by per file i_mmap_lock. The
732 * lock is used to avoid list corruption from multiple unmapping
733 * of the same page since we are using page->lru.
735 LIST_HEAD(page_list
);
737 WARN_ON(!is_vm_hugetlb_page(vma
));
738 BUG_ON(start
& ~HPAGE_MASK
);
739 BUG_ON(end
& ~HPAGE_MASK
);
741 spin_lock(&mm
->page_table_lock
);
742 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
743 ptep
= huge_pte_offset(mm
, address
);
747 if (huge_pmd_unshare(mm
, &address
, ptep
))
750 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
754 page
= pte_page(pte
);
756 set_page_dirty(page
);
757 list_add(&page
->lru
, &page_list
);
759 spin_unlock(&mm
->page_table_lock
);
760 flush_tlb_range(vma
, start
, end
);
761 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
762 list_del(&page
->lru
);
767 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
771 * It is undesirable to test vma->vm_file as it should be non-null
772 * for valid hugetlb area. However, vm_file will be NULL in the error
773 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
774 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
775 * to clean up. Since no pte has actually been setup, it is safe to
776 * do nothing in this case.
779 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
780 __unmap_hugepage_range(vma
, start
, end
);
781 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
785 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
786 unsigned long address
, pte_t
*ptep
, pte_t pte
)
788 struct page
*old_page
, *new_page
;
791 old_page
= pte_page(pte
);
793 /* If no-one else is actually using this page, avoid the copy
794 * and just make the page writable */
795 avoidcopy
= (page_count(old_page
) == 1);
797 set_huge_ptep_writable(vma
, address
, ptep
);
801 page_cache_get(old_page
);
802 new_page
= alloc_huge_page(vma
, address
);
804 if (IS_ERR(new_page
)) {
805 page_cache_release(old_page
);
806 return -PTR_ERR(new_page
);
809 spin_unlock(&mm
->page_table_lock
);
810 copy_huge_page(new_page
, old_page
, address
, vma
);
811 spin_lock(&mm
->page_table_lock
);
813 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
814 if (likely(pte_same(*ptep
, pte
))) {
816 set_huge_pte_at(mm
, address
, ptep
,
817 make_huge_pte(vma
, new_page
, 1));
818 /* Make the old page be freed below */
821 page_cache_release(new_page
);
822 page_cache_release(old_page
);
826 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
827 unsigned long address
, pte_t
*ptep
, int write_access
)
829 int ret
= VM_FAULT_SIGBUS
;
833 struct address_space
*mapping
;
836 mapping
= vma
->vm_file
->f_mapping
;
837 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
838 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
841 * Use page lock to guard against racing truncation
842 * before we get page_table_lock.
845 page
= find_lock_page(mapping
, idx
);
847 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
850 page
= alloc_huge_page(vma
, address
);
852 ret
= -PTR_ERR(page
);
855 clear_huge_page(page
, address
);
857 if (vma
->vm_flags
& VM_SHARED
) {
859 struct inode
*inode
= mapping
->host
;
861 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
869 spin_lock(&inode
->i_lock
);
870 inode
->i_blocks
+= BLOCKS_PER_HUGEPAGE
;
871 spin_unlock(&inode
->i_lock
);
876 spin_lock(&mm
->page_table_lock
);
877 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
882 if (!pte_none(*ptep
))
885 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
886 && (vma
->vm_flags
& VM_SHARED
)));
887 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
889 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
890 /* Optimization, do the COW without a second fault */
891 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
894 spin_unlock(&mm
->page_table_lock
);
900 spin_unlock(&mm
->page_table_lock
);
906 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
907 unsigned long address
, int write_access
)
912 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
914 ptep
= huge_pte_alloc(mm
, address
);
919 * Serialize hugepage allocation and instantiation, so that we don't
920 * get spurious allocation failures if two CPUs race to instantiate
921 * the same page in the page cache.
923 mutex_lock(&hugetlb_instantiation_mutex
);
925 if (pte_none(entry
)) {
926 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
927 mutex_unlock(&hugetlb_instantiation_mutex
);
933 spin_lock(&mm
->page_table_lock
);
934 /* Check for a racing update before calling hugetlb_cow */
935 if (likely(pte_same(entry
, *ptep
)))
936 if (write_access
&& !pte_write(entry
))
937 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
938 spin_unlock(&mm
->page_table_lock
);
939 mutex_unlock(&hugetlb_instantiation_mutex
);
944 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
945 struct page
**pages
, struct vm_area_struct
**vmas
,
946 unsigned long *position
, int *length
, int i
,
949 unsigned long pfn_offset
;
950 unsigned long vaddr
= *position
;
951 int remainder
= *length
;
953 spin_lock(&mm
->page_table_lock
);
954 while (vaddr
< vma
->vm_end
&& remainder
) {
959 * Some archs (sparc64, sh*) have multiple pte_ts to
960 * each hugepage. We have to make * sure we get the
961 * first, for the page indexing below to work.
963 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
965 if (!pte
|| pte_none(*pte
) || (write
&& !pte_write(*pte
))) {
968 spin_unlock(&mm
->page_table_lock
);
969 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
970 spin_lock(&mm
->page_table_lock
);
971 if (!(ret
& VM_FAULT_ERROR
))
980 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
981 page
= pte_page(*pte
);
985 pages
[i
] = page
+ pfn_offset
;
995 if (vaddr
< vma
->vm_end
&& remainder
&&
996 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
998 * We use pfn_offset to avoid touching the pageframes
999 * of this compound page.
1004 spin_unlock(&mm
->page_table_lock
);
1005 *length
= remainder
;
1011 void hugetlb_change_protection(struct vm_area_struct
*vma
,
1012 unsigned long address
, unsigned long end
, pgprot_t newprot
)
1014 struct mm_struct
*mm
= vma
->vm_mm
;
1015 unsigned long start
= address
;
1019 BUG_ON(address
>= end
);
1020 flush_cache_range(vma
, address
, end
);
1022 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1023 spin_lock(&mm
->page_table_lock
);
1024 for (; address
< end
; address
+= HPAGE_SIZE
) {
1025 ptep
= huge_pte_offset(mm
, address
);
1028 if (huge_pmd_unshare(mm
, &address
, ptep
))
1030 if (!pte_none(*ptep
)) {
1031 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1032 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
1033 set_huge_pte_at(mm
, address
, ptep
, pte
);
1036 spin_unlock(&mm
->page_table_lock
);
1037 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1039 flush_tlb_range(vma
, start
, end
);
1042 struct file_region
{
1043 struct list_head link
;
1048 static long region_add(struct list_head
*head
, long f
, long t
)
1050 struct file_region
*rg
, *nrg
, *trg
;
1052 /* Locate the region we are either in or before. */
1053 list_for_each_entry(rg
, head
, link
)
1057 /* Round our left edge to the current segment if it encloses us. */
1061 /* Check for and consume any regions we now overlap with. */
1063 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1064 if (&rg
->link
== head
)
1069 /* If this area reaches higher then extend our area to
1070 * include it completely. If this is not the first area
1071 * which we intend to reuse, free it. */
1075 list_del(&rg
->link
);
1084 static long region_chg(struct list_head
*head
, long f
, long t
)
1086 struct file_region
*rg
, *nrg
;
1089 /* Locate the region we are before or in. */
1090 list_for_each_entry(rg
, head
, link
)
1094 /* If we are below the current region then a new region is required.
1095 * Subtle, allocate a new region at the position but make it zero
1096 * size such that we can guarantee to record the reservation. */
1097 if (&rg
->link
== head
|| t
< rg
->from
) {
1098 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
1103 INIT_LIST_HEAD(&nrg
->link
);
1104 list_add(&nrg
->link
, rg
->link
.prev
);
1109 /* Round our left edge to the current segment if it encloses us. */
1114 /* Check for and consume any regions we now overlap with. */
1115 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
1116 if (&rg
->link
== head
)
1121 /* We overlap with this area, if it extends futher than
1122 * us then we must extend ourselves. Account for its
1123 * existing reservation. */
1128 chg
-= rg
->to
- rg
->from
;
1133 static long region_truncate(struct list_head
*head
, long end
)
1135 struct file_region
*rg
, *trg
;
1138 /* Locate the region we are either in or before. */
1139 list_for_each_entry(rg
, head
, link
)
1142 if (&rg
->link
== head
)
1145 /* If we are in the middle of a region then adjust it. */
1146 if (end
> rg
->from
) {
1149 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
1152 /* Drop any remaining regions. */
1153 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1154 if (&rg
->link
== head
)
1156 chg
+= rg
->to
- rg
->from
;
1157 list_del(&rg
->link
);
1163 static int hugetlb_acct_memory(long delta
)
1167 spin_lock(&hugetlb_lock
);
1169 * When cpuset is configured, it breaks the strict hugetlb page
1170 * reservation as the accounting is done on a global variable. Such
1171 * reservation is completely rubbish in the presence of cpuset because
1172 * the reservation is not checked against page availability for the
1173 * current cpuset. Application can still potentially OOM'ed by kernel
1174 * with lack of free htlb page in cpuset that the task is in.
1175 * Attempt to enforce strict accounting with cpuset is almost
1176 * impossible (or too ugly) because cpuset is too fluid that
1177 * task or memory node can be dynamically moved between cpusets.
1179 * The change of semantics for shared hugetlb mapping with cpuset is
1180 * undesirable. However, in order to preserve some of the semantics,
1181 * we fall back to check against current free page availability as
1182 * a best attempt and hopefully to minimize the impact of changing
1183 * semantics that cpuset has.
1186 if (gather_surplus_pages(delta
) < 0)
1189 if (delta
> cpuset_mems_nr(free_huge_pages_node
))
1194 resv_huge_pages
+= delta
;
1196 return_unused_surplus_pages((unsigned long) -delta
);
1199 spin_unlock(&hugetlb_lock
);
1203 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
1207 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1211 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1213 ret
= hugetlb_acct_memory(chg
);
1215 hugetlb_put_quota(inode
->i_mapping
, chg
);
1218 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1222 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1224 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1226 spin_lock(&inode
->i_lock
);
1227 inode
->i_blocks
-= BLOCKS_PER_HUGEPAGE
* freed
;
1228 spin_unlock(&inode
->i_lock
);
1230 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1231 hugetlb_acct_memory(-(chg
- freed
));