KVM: MMU: Inherit a shadow page's guest level count from vcpu setup
[linux-2.6/verdex.git] / arch / x86 / kvm / mmu.c
blobf15023c11fea11b1d85c826f650a83275c9ec8fb
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
20 #include "mmu.h"
22 #include <linux/kvm_host.h>
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28 #include <linux/swap.h>
29 #include <linux/hugetlb.h>
30 #include <linux/compiler.h>
32 #include <asm/page.h>
33 #include <asm/cmpxchg.h>
34 #include <asm/io.h>
35 #include <asm/vmx.h>
38 * When setting this variable to true it enables Two-Dimensional-Paging
39 * where the hardware walks 2 page tables:
40 * 1. the guest-virtual to guest-physical
41 * 2. while doing 1. it walks guest-physical to host-physical
42 * If the hardware supports that we don't need to do shadow paging.
44 bool tdp_enabled = false;
46 #undef MMU_DEBUG
48 #undef AUDIT
50 #ifdef AUDIT
51 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
52 #else
53 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
54 #endif
56 #ifdef MMU_DEBUG
58 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
59 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
61 #else
63 #define pgprintk(x...) do { } while (0)
64 #define rmap_printk(x...) do { } while (0)
66 #endif
68 #if defined(MMU_DEBUG) || defined(AUDIT)
69 static int dbg = 0;
70 module_param(dbg, bool, 0644);
71 #endif
73 static int oos_shadow = 1;
74 module_param(oos_shadow, bool, 0644);
76 #ifndef MMU_DEBUG
77 #define ASSERT(x) do { } while (0)
78 #else
79 #define ASSERT(x) \
80 if (!(x)) { \
81 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
82 __FILE__, __LINE__, #x); \
84 #endif
86 #define PT_FIRST_AVAIL_BITS_SHIFT 9
87 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
89 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
91 #define PT64_LEVEL_BITS 9
93 #define PT64_LEVEL_SHIFT(level) \
94 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
96 #define PT64_LEVEL_MASK(level) \
97 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
99 #define PT64_INDEX(address, level)\
100 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103 #define PT32_LEVEL_BITS 10
105 #define PT32_LEVEL_SHIFT(level) \
106 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
108 #define PT32_LEVEL_MASK(level) \
109 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
111 #define PT32_INDEX(address, level)\
112 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
115 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
116 #define PT64_DIR_BASE_ADDR_MASK \
117 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
119 #define PT32_BASE_ADDR_MASK PAGE_MASK
120 #define PT32_DIR_BASE_ADDR_MASK \
121 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
124 | PT64_NX_MASK)
126 #define PFERR_PRESENT_MASK (1U << 0)
127 #define PFERR_WRITE_MASK (1U << 1)
128 #define PFERR_USER_MASK (1U << 2)
129 #define PFERR_FETCH_MASK (1U << 4)
131 #define PT_DIRECTORY_LEVEL 2
132 #define PT_PAGE_TABLE_LEVEL 1
134 #define RMAP_EXT 4
136 #define ACC_EXEC_MASK 1
137 #define ACC_WRITE_MASK PT_WRITABLE_MASK
138 #define ACC_USER_MASK PT_USER_MASK
139 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
141 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
143 struct kvm_rmap_desc {
144 u64 *shadow_ptes[RMAP_EXT];
145 struct kvm_rmap_desc *more;
148 struct kvm_shadow_walk {
149 int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
150 u64 addr, u64 *spte, int level);
153 struct kvm_unsync_walk {
154 int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
157 typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
159 static struct kmem_cache *pte_chain_cache;
160 static struct kmem_cache *rmap_desc_cache;
161 static struct kmem_cache *mmu_page_header_cache;
163 static u64 __read_mostly shadow_trap_nonpresent_pte;
164 static u64 __read_mostly shadow_notrap_nonpresent_pte;
165 static u64 __read_mostly shadow_base_present_pte;
166 static u64 __read_mostly shadow_nx_mask;
167 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
168 static u64 __read_mostly shadow_user_mask;
169 static u64 __read_mostly shadow_accessed_mask;
170 static u64 __read_mostly shadow_dirty_mask;
171 static u64 __read_mostly shadow_mt_mask;
173 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175 shadow_trap_nonpresent_pte = trap_pte;
176 shadow_notrap_nonpresent_pte = notrap_pte;
178 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180 void kvm_mmu_set_base_ptes(u64 base_pte)
182 shadow_base_present_pte = base_pte;
184 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
186 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
187 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
189 shadow_user_mask = user_mask;
190 shadow_accessed_mask = accessed_mask;
191 shadow_dirty_mask = dirty_mask;
192 shadow_nx_mask = nx_mask;
193 shadow_x_mask = x_mask;
194 shadow_mt_mask = mt_mask;
196 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
198 static int is_write_protection(struct kvm_vcpu *vcpu)
200 return vcpu->arch.cr0 & X86_CR0_WP;
203 static int is_cpuid_PSE36(void)
205 return 1;
208 static int is_nx(struct kvm_vcpu *vcpu)
210 return vcpu->arch.shadow_efer & EFER_NX;
213 static int is_present_pte(unsigned long pte)
215 return pte & PT_PRESENT_MASK;
218 static int is_shadow_present_pte(u64 pte)
220 return pte != shadow_trap_nonpresent_pte
221 && pte != shadow_notrap_nonpresent_pte;
224 static int is_large_pte(u64 pte)
226 return pte & PT_PAGE_SIZE_MASK;
229 static int is_writeble_pte(unsigned long pte)
231 return pte & PT_WRITABLE_MASK;
234 static int is_dirty_pte(unsigned long pte)
236 return pte & shadow_dirty_mask;
239 static int is_rmap_pte(u64 pte)
241 return is_shadow_present_pte(pte);
244 static pfn_t spte_to_pfn(u64 pte)
246 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
249 static gfn_t pse36_gfn_delta(u32 gpte)
251 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
253 return (gpte & PT32_DIR_PSE36_MASK) << shift;
256 static void set_shadow_pte(u64 *sptep, u64 spte)
258 #ifdef CONFIG_X86_64
259 set_64bit((unsigned long *)sptep, spte);
260 #else
261 set_64bit((unsigned long long *)sptep, spte);
262 #endif
265 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
266 struct kmem_cache *base_cache, int min)
268 void *obj;
270 if (cache->nobjs >= min)
271 return 0;
272 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
273 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
274 if (!obj)
275 return -ENOMEM;
276 cache->objects[cache->nobjs++] = obj;
278 return 0;
281 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
283 while (mc->nobjs)
284 kfree(mc->objects[--mc->nobjs]);
287 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
288 int min)
290 struct page *page;
292 if (cache->nobjs >= min)
293 return 0;
294 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
295 page = alloc_page(GFP_KERNEL);
296 if (!page)
297 return -ENOMEM;
298 set_page_private(page, 0);
299 cache->objects[cache->nobjs++] = page_address(page);
301 return 0;
304 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
306 while (mc->nobjs)
307 free_page((unsigned long)mc->objects[--mc->nobjs]);
310 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
312 int r;
314 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
315 pte_chain_cache, 4);
316 if (r)
317 goto out;
318 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
319 rmap_desc_cache, 4);
320 if (r)
321 goto out;
322 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
323 if (r)
324 goto out;
325 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
326 mmu_page_header_cache, 4);
327 out:
328 return r;
331 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
333 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
334 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
335 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
336 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
339 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
340 size_t size)
342 void *p;
344 BUG_ON(!mc->nobjs);
345 p = mc->objects[--mc->nobjs];
346 memset(p, 0, size);
347 return p;
350 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
352 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
353 sizeof(struct kvm_pte_chain));
356 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
358 kfree(pc);
361 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
363 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
364 sizeof(struct kvm_rmap_desc));
367 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
369 kfree(rd);
373 * Return the pointer to the largepage write count for a given
374 * gfn, handling slots that are not large page aligned.
376 static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
378 unsigned long idx;
380 idx = (gfn / KVM_PAGES_PER_HPAGE) -
381 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
382 return &slot->lpage_info[idx].write_count;
385 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
387 int *write_count;
389 gfn = unalias_gfn(kvm, gfn);
390 write_count = slot_largepage_idx(gfn,
391 gfn_to_memslot_unaliased(kvm, gfn));
392 *write_count += 1;
395 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
397 int *write_count;
399 gfn = unalias_gfn(kvm, gfn);
400 write_count = slot_largepage_idx(gfn,
401 gfn_to_memslot_unaliased(kvm, gfn));
402 *write_count -= 1;
403 WARN_ON(*write_count < 0);
406 static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
408 struct kvm_memory_slot *slot;
409 int *largepage_idx;
411 gfn = unalias_gfn(kvm, gfn);
412 slot = gfn_to_memslot_unaliased(kvm, gfn);
413 if (slot) {
414 largepage_idx = slot_largepage_idx(gfn, slot);
415 return *largepage_idx;
418 return 1;
421 static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
423 struct vm_area_struct *vma;
424 unsigned long addr;
425 int ret = 0;
427 addr = gfn_to_hva(kvm, gfn);
428 if (kvm_is_error_hva(addr))
429 return ret;
431 down_read(&current->mm->mmap_sem);
432 vma = find_vma(current->mm, addr);
433 if (vma && is_vm_hugetlb_page(vma))
434 ret = 1;
435 up_read(&current->mm->mmap_sem);
437 return ret;
440 static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
442 struct kvm_memory_slot *slot;
444 if (has_wrprotected_page(vcpu->kvm, large_gfn))
445 return 0;
447 if (!host_largepage_backed(vcpu->kvm, large_gfn))
448 return 0;
450 slot = gfn_to_memslot(vcpu->kvm, large_gfn);
451 if (slot && slot->dirty_bitmap)
452 return 0;
454 return 1;
458 * Take gfn and return the reverse mapping to it.
459 * Note: gfn must be unaliased before this function get called
462 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
464 struct kvm_memory_slot *slot;
465 unsigned long idx;
467 slot = gfn_to_memslot(kvm, gfn);
468 if (!lpage)
469 return &slot->rmap[gfn - slot->base_gfn];
471 idx = (gfn / KVM_PAGES_PER_HPAGE) -
472 (slot->base_gfn / KVM_PAGES_PER_HPAGE);
474 return &slot->lpage_info[idx].rmap_pde;
478 * Reverse mapping data structures:
480 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
481 * that points to page_address(page).
483 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
484 * containing more mappings.
486 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
488 struct kvm_mmu_page *sp;
489 struct kvm_rmap_desc *desc;
490 unsigned long *rmapp;
491 int i;
493 if (!is_rmap_pte(*spte))
494 return;
495 gfn = unalias_gfn(vcpu->kvm, gfn);
496 sp = page_header(__pa(spte));
497 sp->gfns[spte - sp->spt] = gfn;
498 rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
499 if (!*rmapp) {
500 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
501 *rmapp = (unsigned long)spte;
502 } else if (!(*rmapp & 1)) {
503 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
504 desc = mmu_alloc_rmap_desc(vcpu);
505 desc->shadow_ptes[0] = (u64 *)*rmapp;
506 desc->shadow_ptes[1] = spte;
507 *rmapp = (unsigned long)desc | 1;
508 } else {
509 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
510 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
511 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
512 desc = desc->more;
513 if (desc->shadow_ptes[RMAP_EXT-1]) {
514 desc->more = mmu_alloc_rmap_desc(vcpu);
515 desc = desc->more;
517 for (i = 0; desc->shadow_ptes[i]; ++i)
519 desc->shadow_ptes[i] = spte;
523 static void rmap_desc_remove_entry(unsigned long *rmapp,
524 struct kvm_rmap_desc *desc,
525 int i,
526 struct kvm_rmap_desc *prev_desc)
528 int j;
530 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
532 desc->shadow_ptes[i] = desc->shadow_ptes[j];
533 desc->shadow_ptes[j] = NULL;
534 if (j != 0)
535 return;
536 if (!prev_desc && !desc->more)
537 *rmapp = (unsigned long)desc->shadow_ptes[0];
538 else
539 if (prev_desc)
540 prev_desc->more = desc->more;
541 else
542 *rmapp = (unsigned long)desc->more | 1;
543 mmu_free_rmap_desc(desc);
546 static void rmap_remove(struct kvm *kvm, u64 *spte)
548 struct kvm_rmap_desc *desc;
549 struct kvm_rmap_desc *prev_desc;
550 struct kvm_mmu_page *sp;
551 pfn_t pfn;
552 unsigned long *rmapp;
553 int i;
555 if (!is_rmap_pte(*spte))
556 return;
557 sp = page_header(__pa(spte));
558 pfn = spte_to_pfn(*spte);
559 if (*spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (is_writeble_pte(*spte))
562 kvm_release_pfn_dirty(pfn);
563 else
564 kvm_release_pfn_clean(pfn);
565 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
566 if (!*rmapp) {
567 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
568 BUG();
569 } else if (!(*rmapp & 1)) {
570 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
571 if ((u64 *)*rmapp != spte) {
572 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
573 spte, *spte);
574 BUG();
576 *rmapp = 0;
577 } else {
578 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
579 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
580 prev_desc = NULL;
581 while (desc) {
582 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
583 if (desc->shadow_ptes[i] == spte) {
584 rmap_desc_remove_entry(rmapp,
585 desc, i,
586 prev_desc);
587 return;
589 prev_desc = desc;
590 desc = desc->more;
592 BUG();
596 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
598 struct kvm_rmap_desc *desc;
599 struct kvm_rmap_desc *prev_desc;
600 u64 *prev_spte;
601 int i;
603 if (!*rmapp)
604 return NULL;
605 else if (!(*rmapp & 1)) {
606 if (!spte)
607 return (u64 *)*rmapp;
608 return NULL;
610 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
611 prev_desc = NULL;
612 prev_spte = NULL;
613 while (desc) {
614 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
615 if (prev_spte == spte)
616 return desc->shadow_ptes[i];
617 prev_spte = desc->shadow_ptes[i];
619 desc = desc->more;
621 return NULL;
624 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
626 unsigned long *rmapp;
627 u64 *spte;
628 int write_protected = 0;
630 gfn = unalias_gfn(kvm, gfn);
631 rmapp = gfn_to_rmap(kvm, gfn, 0);
633 spte = rmap_next(kvm, rmapp, NULL);
634 while (spte) {
635 BUG_ON(!spte);
636 BUG_ON(!(*spte & PT_PRESENT_MASK));
637 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
638 if (is_writeble_pte(*spte)) {
639 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
640 write_protected = 1;
642 spte = rmap_next(kvm, rmapp, spte);
644 if (write_protected) {
645 pfn_t pfn;
647 spte = rmap_next(kvm, rmapp, NULL);
648 pfn = spte_to_pfn(*spte);
649 kvm_set_pfn_dirty(pfn);
652 /* check for huge page mappings */
653 rmapp = gfn_to_rmap(kvm, gfn, 1);
654 spte = rmap_next(kvm, rmapp, NULL);
655 while (spte) {
656 BUG_ON(!spte);
657 BUG_ON(!(*spte & PT_PRESENT_MASK));
658 BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
659 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
660 if (is_writeble_pte(*spte)) {
661 rmap_remove(kvm, spte);
662 --kvm->stat.lpages;
663 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
664 spte = NULL;
665 write_protected = 1;
667 spte = rmap_next(kvm, rmapp, spte);
670 return write_protected;
673 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
675 u64 *spte;
676 int need_tlb_flush = 0;
678 while ((spte = rmap_next(kvm, rmapp, NULL))) {
679 BUG_ON(!(*spte & PT_PRESENT_MASK));
680 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
681 rmap_remove(kvm, spte);
682 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
683 need_tlb_flush = 1;
685 return need_tlb_flush;
688 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
689 int (*handler)(struct kvm *kvm, unsigned long *rmapp))
691 int i;
692 int retval = 0;
695 * If mmap_sem isn't taken, we can look the memslots with only
696 * the mmu_lock by skipping over the slots with userspace_addr == 0.
698 for (i = 0; i < kvm->nmemslots; i++) {
699 struct kvm_memory_slot *memslot = &kvm->memslots[i];
700 unsigned long start = memslot->userspace_addr;
701 unsigned long end;
703 /* mmu_lock protects userspace_addr */
704 if (!start)
705 continue;
707 end = start + (memslot->npages << PAGE_SHIFT);
708 if (hva >= start && hva < end) {
709 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
710 retval |= handler(kvm, &memslot->rmap[gfn_offset]);
711 retval |= handler(kvm,
712 &memslot->lpage_info[
713 gfn_offset /
714 KVM_PAGES_PER_HPAGE].rmap_pde);
718 return retval;
721 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
723 return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
726 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
728 u64 *spte;
729 int young = 0;
731 /* always return old for EPT */
732 if (!shadow_accessed_mask)
733 return 0;
735 spte = rmap_next(kvm, rmapp, NULL);
736 while (spte) {
737 int _young;
738 u64 _spte = *spte;
739 BUG_ON(!(_spte & PT_PRESENT_MASK));
740 _young = _spte & PT_ACCESSED_MASK;
741 if (_young) {
742 young = 1;
743 clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
745 spte = rmap_next(kvm, rmapp, spte);
747 return young;
750 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
752 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
755 #ifdef MMU_DEBUG
756 static int is_empty_shadow_page(u64 *spt)
758 u64 *pos;
759 u64 *end;
761 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
762 if (is_shadow_present_pte(*pos)) {
763 printk(KERN_ERR "%s: %p %llx\n", __func__,
764 pos, *pos);
765 return 0;
767 return 1;
769 #endif
771 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
773 ASSERT(is_empty_shadow_page(sp->spt));
774 list_del(&sp->link);
775 __free_page(virt_to_page(sp->spt));
776 __free_page(virt_to_page(sp->gfns));
777 kfree(sp);
778 ++kvm->arch.n_free_mmu_pages;
781 static unsigned kvm_page_table_hashfn(gfn_t gfn)
783 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
786 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
787 u64 *parent_pte)
789 struct kvm_mmu_page *sp;
791 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
792 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
793 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
794 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
795 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
796 INIT_LIST_HEAD(&sp->oos_link);
797 ASSERT(is_empty_shadow_page(sp->spt));
798 bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
799 sp->multimapped = 0;
800 sp->global = 1;
801 sp->parent_pte = parent_pte;
802 --vcpu->kvm->arch.n_free_mmu_pages;
803 return sp;
806 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
807 struct kvm_mmu_page *sp, u64 *parent_pte)
809 struct kvm_pte_chain *pte_chain;
810 struct hlist_node *node;
811 int i;
813 if (!parent_pte)
814 return;
815 if (!sp->multimapped) {
816 u64 *old = sp->parent_pte;
818 if (!old) {
819 sp->parent_pte = parent_pte;
820 return;
822 sp->multimapped = 1;
823 pte_chain = mmu_alloc_pte_chain(vcpu);
824 INIT_HLIST_HEAD(&sp->parent_ptes);
825 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
826 pte_chain->parent_ptes[0] = old;
828 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
829 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
830 continue;
831 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
832 if (!pte_chain->parent_ptes[i]) {
833 pte_chain->parent_ptes[i] = parent_pte;
834 return;
837 pte_chain = mmu_alloc_pte_chain(vcpu);
838 BUG_ON(!pte_chain);
839 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
840 pte_chain->parent_ptes[0] = parent_pte;
843 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
844 u64 *parent_pte)
846 struct kvm_pte_chain *pte_chain;
847 struct hlist_node *node;
848 int i;
850 if (!sp->multimapped) {
851 BUG_ON(sp->parent_pte != parent_pte);
852 sp->parent_pte = NULL;
853 return;
855 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
856 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
857 if (!pte_chain->parent_ptes[i])
858 break;
859 if (pte_chain->parent_ptes[i] != parent_pte)
860 continue;
861 while (i + 1 < NR_PTE_CHAIN_ENTRIES
862 && pte_chain->parent_ptes[i + 1]) {
863 pte_chain->parent_ptes[i]
864 = pte_chain->parent_ptes[i + 1];
865 ++i;
867 pte_chain->parent_ptes[i] = NULL;
868 if (i == 0) {
869 hlist_del(&pte_chain->link);
870 mmu_free_pte_chain(pte_chain);
871 if (hlist_empty(&sp->parent_ptes)) {
872 sp->multimapped = 0;
873 sp->parent_pte = NULL;
876 return;
878 BUG();
882 static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
883 mmu_parent_walk_fn fn)
885 struct kvm_pte_chain *pte_chain;
886 struct hlist_node *node;
887 struct kvm_mmu_page *parent_sp;
888 int i;
890 if (!sp->multimapped && sp->parent_pte) {
891 parent_sp = page_header(__pa(sp->parent_pte));
892 fn(vcpu, parent_sp);
893 mmu_parent_walk(vcpu, parent_sp, fn);
894 return;
896 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
897 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
898 if (!pte_chain->parent_ptes[i])
899 break;
900 parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
901 fn(vcpu, parent_sp);
902 mmu_parent_walk(vcpu, parent_sp, fn);
906 static void kvm_mmu_update_unsync_bitmap(u64 *spte)
908 unsigned int index;
909 struct kvm_mmu_page *sp = page_header(__pa(spte));
911 index = spte - sp->spt;
912 if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
913 sp->unsync_children++;
914 WARN_ON(!sp->unsync_children);
917 static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
919 struct kvm_pte_chain *pte_chain;
920 struct hlist_node *node;
921 int i;
923 if (!sp->parent_pte)
924 return;
926 if (!sp->multimapped) {
927 kvm_mmu_update_unsync_bitmap(sp->parent_pte);
928 return;
931 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
932 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
933 if (!pte_chain->parent_ptes[i])
934 break;
935 kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
939 static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
941 kvm_mmu_update_parents_unsync(sp);
942 return 1;
945 static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
946 struct kvm_mmu_page *sp)
948 mmu_parent_walk(vcpu, sp, unsync_walk_fn);
949 kvm_mmu_update_parents_unsync(sp);
952 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
953 struct kvm_mmu_page *sp)
955 int i;
957 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
958 sp->spt[i] = shadow_trap_nonpresent_pte;
961 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
962 struct kvm_mmu_page *sp)
964 return 1;
967 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
971 #define KVM_PAGE_ARRAY_NR 16
973 struct kvm_mmu_pages {
974 struct mmu_page_and_offset {
975 struct kvm_mmu_page *sp;
976 unsigned int idx;
977 } page[KVM_PAGE_ARRAY_NR];
978 unsigned int nr;
981 #define for_each_unsync_children(bitmap, idx) \
982 for (idx = find_first_bit(bitmap, 512); \
983 idx < 512; \
984 idx = find_next_bit(bitmap, 512, idx+1))
986 int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
987 int idx)
989 int i;
991 if (sp->unsync)
992 for (i=0; i < pvec->nr; i++)
993 if (pvec->page[i].sp == sp)
994 return 0;
996 pvec->page[pvec->nr].sp = sp;
997 pvec->page[pvec->nr].idx = idx;
998 pvec->nr++;
999 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1002 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1003 struct kvm_mmu_pages *pvec)
1005 int i, ret, nr_unsync_leaf = 0;
1007 for_each_unsync_children(sp->unsync_child_bitmap, i) {
1008 u64 ent = sp->spt[i];
1010 if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
1011 struct kvm_mmu_page *child;
1012 child = page_header(ent & PT64_BASE_ADDR_MASK);
1014 if (child->unsync_children) {
1015 if (mmu_pages_add(pvec, child, i))
1016 return -ENOSPC;
1018 ret = __mmu_unsync_walk(child, pvec);
1019 if (!ret)
1020 __clear_bit(i, sp->unsync_child_bitmap);
1021 else if (ret > 0)
1022 nr_unsync_leaf += ret;
1023 else
1024 return ret;
1027 if (child->unsync) {
1028 nr_unsync_leaf++;
1029 if (mmu_pages_add(pvec, child, i))
1030 return -ENOSPC;
1035 if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
1036 sp->unsync_children = 0;
1038 return nr_unsync_leaf;
1041 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1042 struct kvm_mmu_pages *pvec)
1044 if (!sp->unsync_children)
1045 return 0;
1047 mmu_pages_add(pvec, sp, 0);
1048 return __mmu_unsync_walk(sp, pvec);
1051 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
1053 unsigned index;
1054 struct hlist_head *bucket;
1055 struct kvm_mmu_page *sp;
1056 struct hlist_node *node;
1058 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1059 index = kvm_page_table_hashfn(gfn);
1060 bucket = &kvm->arch.mmu_page_hash[index];
1061 hlist_for_each_entry(sp, node, bucket, hash_link)
1062 if (sp->gfn == gfn && !sp->role.metaphysical
1063 && !sp->role.invalid) {
1064 pgprintk("%s: found role %x\n",
1065 __func__, sp->role.word);
1066 return sp;
1068 return NULL;
1071 static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
1073 list_del(&sp->oos_link);
1074 --kvm->stat.mmu_unsync_global;
1077 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1079 WARN_ON(!sp->unsync);
1080 sp->unsync = 0;
1081 if (sp->global)
1082 kvm_unlink_unsync_global(kvm, sp);
1083 --kvm->stat.mmu_unsync;
1086 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
1088 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1090 if (sp->role.glevels != vcpu->arch.mmu.root_level) {
1091 kvm_mmu_zap_page(vcpu->kvm, sp);
1092 return 1;
1095 if (rmap_write_protect(vcpu->kvm, sp->gfn))
1096 kvm_flush_remote_tlbs(vcpu->kvm);
1097 kvm_unlink_unsync_page(vcpu->kvm, sp);
1098 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1099 kvm_mmu_zap_page(vcpu->kvm, sp);
1100 return 1;
1103 kvm_mmu_flush_tlb(vcpu);
1104 return 0;
1107 struct mmu_page_path {
1108 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1109 unsigned int idx[PT64_ROOT_LEVEL-1];
1112 #define for_each_sp(pvec, sp, parents, i) \
1113 for (i = mmu_pages_next(&pvec, &parents, -1), \
1114 sp = pvec.page[i].sp; \
1115 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1116 i = mmu_pages_next(&pvec, &parents, i))
1118 int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
1119 int i)
1121 int n;
1123 for (n = i+1; n < pvec->nr; n++) {
1124 struct kvm_mmu_page *sp = pvec->page[n].sp;
1126 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1127 parents->idx[0] = pvec->page[n].idx;
1128 return n;
1131 parents->parent[sp->role.level-2] = sp;
1132 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1135 return n;
1138 void mmu_pages_clear_parents(struct mmu_page_path *parents)
1140 struct kvm_mmu_page *sp;
1141 unsigned int level = 0;
1143 do {
1144 unsigned int idx = parents->idx[level];
1146 sp = parents->parent[level];
1147 if (!sp)
1148 return;
1150 --sp->unsync_children;
1151 WARN_ON((int)sp->unsync_children < 0);
1152 __clear_bit(idx, sp->unsync_child_bitmap);
1153 level++;
1154 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1157 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1158 struct mmu_page_path *parents,
1159 struct kvm_mmu_pages *pvec)
1161 parents->parent[parent->role.level-1] = NULL;
1162 pvec->nr = 0;
1165 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1166 struct kvm_mmu_page *parent)
1168 int i;
1169 struct kvm_mmu_page *sp;
1170 struct mmu_page_path parents;
1171 struct kvm_mmu_pages pages;
1173 kvm_mmu_pages_init(parent, &parents, &pages);
1174 while (mmu_unsync_walk(parent, &pages)) {
1175 int protected = 0;
1177 for_each_sp(pages, sp, parents, i)
1178 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1180 if (protected)
1181 kvm_flush_remote_tlbs(vcpu->kvm);
1183 for_each_sp(pages, sp, parents, i) {
1184 kvm_sync_page(vcpu, sp);
1185 mmu_pages_clear_parents(&parents);
1187 cond_resched_lock(&vcpu->kvm->mmu_lock);
1188 kvm_mmu_pages_init(parent, &parents, &pages);
1192 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1193 gfn_t gfn,
1194 gva_t gaddr,
1195 unsigned level,
1196 int metaphysical,
1197 unsigned access,
1198 u64 *parent_pte)
1200 union kvm_mmu_page_role role;
1201 unsigned index;
1202 unsigned quadrant;
1203 struct hlist_head *bucket;
1204 struct kvm_mmu_page *sp;
1205 struct hlist_node *node, *tmp;
1207 role = vcpu->arch.mmu.base_role;
1208 role.level = level;
1209 role.metaphysical = metaphysical;
1210 role.access = access;
1211 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1212 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1213 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1214 role.quadrant = quadrant;
1216 pgprintk("%s: looking gfn %lx role %x\n", __func__,
1217 gfn, role.word);
1218 index = kvm_page_table_hashfn(gfn);
1219 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1220 hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
1221 if (sp->gfn == gfn) {
1222 if (sp->unsync)
1223 if (kvm_sync_page(vcpu, sp))
1224 continue;
1226 if (sp->role.word != role.word)
1227 continue;
1229 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1230 if (sp->unsync_children) {
1231 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
1232 kvm_mmu_mark_parents_unsync(vcpu, sp);
1234 pgprintk("%s: found\n", __func__);
1235 return sp;
1237 ++vcpu->kvm->stat.mmu_cache_miss;
1238 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
1239 if (!sp)
1240 return sp;
1241 pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
1242 sp->gfn = gfn;
1243 sp->role = role;
1244 hlist_add_head(&sp->hash_link, bucket);
1245 if (!metaphysical) {
1246 if (rmap_write_protect(vcpu->kvm, gfn))
1247 kvm_flush_remote_tlbs(vcpu->kvm);
1248 account_shadowed(vcpu->kvm, gfn);
1250 if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1251 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1252 else
1253 nonpaging_prefetch_page(vcpu, sp);
1254 return sp;
1257 static int walk_shadow(struct kvm_shadow_walk *walker,
1258 struct kvm_vcpu *vcpu, u64 addr)
1260 hpa_t shadow_addr;
1261 int level;
1262 int r;
1263 u64 *sptep;
1264 unsigned index;
1266 shadow_addr = vcpu->arch.mmu.root_hpa;
1267 level = vcpu->arch.mmu.shadow_root_level;
1268 if (level == PT32E_ROOT_LEVEL) {
1269 shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1270 shadow_addr &= PT64_BASE_ADDR_MASK;
1271 if (!shadow_addr)
1272 return 1;
1273 --level;
1276 while (level >= PT_PAGE_TABLE_LEVEL) {
1277 index = SHADOW_PT_INDEX(addr, level);
1278 sptep = ((u64 *)__va(shadow_addr)) + index;
1279 r = walker->entry(walker, vcpu, addr, sptep, level);
1280 if (r)
1281 return r;
1282 shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
1283 --level;
1285 return 0;
1288 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1289 struct kvm_mmu_page *sp)
1291 unsigned i;
1292 u64 *pt;
1293 u64 ent;
1295 pt = sp->spt;
1297 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1298 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1299 if (is_shadow_present_pte(pt[i]))
1300 rmap_remove(kvm, &pt[i]);
1301 pt[i] = shadow_trap_nonpresent_pte;
1303 return;
1306 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1307 ent = pt[i];
1309 if (is_shadow_present_pte(ent)) {
1310 if (!is_large_pte(ent)) {
1311 ent &= PT64_BASE_ADDR_MASK;
1312 mmu_page_remove_parent_pte(page_header(ent),
1313 &pt[i]);
1314 } else {
1315 --kvm->stat.lpages;
1316 rmap_remove(kvm, &pt[i]);
1319 pt[i] = shadow_trap_nonpresent_pte;
1323 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1325 mmu_page_remove_parent_pte(sp, parent_pte);
1328 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1330 int i;
1332 for (i = 0; i < KVM_MAX_VCPUS; ++i)
1333 if (kvm->vcpus[i])
1334 kvm->vcpus[i]->arch.last_pte_updated = NULL;
1337 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1339 u64 *parent_pte;
1341 while (sp->multimapped || sp->parent_pte) {
1342 if (!sp->multimapped)
1343 parent_pte = sp->parent_pte;
1344 else {
1345 struct kvm_pte_chain *chain;
1347 chain = container_of(sp->parent_ptes.first,
1348 struct kvm_pte_chain, link);
1349 parent_pte = chain->parent_ptes[0];
1351 BUG_ON(!parent_pte);
1352 kvm_mmu_put_page(sp, parent_pte);
1353 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
1357 static int mmu_zap_unsync_children(struct kvm *kvm,
1358 struct kvm_mmu_page *parent)
1360 int i, zapped = 0;
1361 struct mmu_page_path parents;
1362 struct kvm_mmu_pages pages;
1364 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1365 return 0;
1367 kvm_mmu_pages_init(parent, &parents, &pages);
1368 while (mmu_unsync_walk(parent, &pages)) {
1369 struct kvm_mmu_page *sp;
1371 for_each_sp(pages, sp, parents, i) {
1372 kvm_mmu_zap_page(kvm, sp);
1373 mmu_pages_clear_parents(&parents);
1375 zapped += pages.nr;
1376 kvm_mmu_pages_init(parent, &parents, &pages);
1379 return zapped;
1382 static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1384 int ret;
1385 ++kvm->stat.mmu_shadow_zapped;
1386 ret = mmu_zap_unsync_children(kvm, sp);
1387 kvm_mmu_page_unlink_children(kvm, sp);
1388 kvm_mmu_unlink_parents(kvm, sp);
1389 kvm_flush_remote_tlbs(kvm);
1390 if (!sp->role.invalid && !sp->role.metaphysical)
1391 unaccount_shadowed(kvm, sp->gfn);
1392 if (sp->unsync)
1393 kvm_unlink_unsync_page(kvm, sp);
1394 if (!sp->root_count) {
1395 hlist_del(&sp->hash_link);
1396 kvm_mmu_free_page(kvm, sp);
1397 } else {
1398 sp->role.invalid = 1;
1399 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1400 kvm_reload_remote_mmus(kvm);
1402 kvm_mmu_reset_last_pte_updated(kvm);
1403 return ret;
1407 * Changing the number of mmu pages allocated to the vm
1408 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1410 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1413 * If we set the number of mmu pages to be smaller be than the
1414 * number of actived pages , we must to free some mmu pages before we
1415 * change the value
1418 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
1419 kvm_nr_mmu_pages) {
1420 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
1421 - kvm->arch.n_free_mmu_pages;
1423 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
1424 struct kvm_mmu_page *page;
1426 page = container_of(kvm->arch.active_mmu_pages.prev,
1427 struct kvm_mmu_page, link);
1428 kvm_mmu_zap_page(kvm, page);
1429 n_used_mmu_pages--;
1431 kvm->arch.n_free_mmu_pages = 0;
1433 else
1434 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1435 - kvm->arch.n_alloc_mmu_pages;
1437 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1440 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1442 unsigned index;
1443 struct hlist_head *bucket;
1444 struct kvm_mmu_page *sp;
1445 struct hlist_node *node, *n;
1446 int r;
1448 pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1449 r = 0;
1450 index = kvm_page_table_hashfn(gfn);
1451 bucket = &kvm->arch.mmu_page_hash[index];
1452 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
1453 if (sp->gfn == gfn && !sp->role.metaphysical) {
1454 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1455 sp->role.word);
1456 r = 1;
1457 if (kvm_mmu_zap_page(kvm, sp))
1458 n = bucket->first;
1460 return r;
1463 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1465 struct kvm_mmu_page *sp;
1467 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
1468 pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
1469 kvm_mmu_zap_page(kvm, sp);
1473 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1475 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
1476 struct kvm_mmu_page *sp = page_header(__pa(pte));
1478 __set_bit(slot, sp->slot_bitmap);
1481 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1483 int i;
1484 u64 *pt = sp->spt;
1486 if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1487 return;
1489 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1490 if (pt[i] == shadow_notrap_nonpresent_pte)
1491 set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
1495 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
1497 struct page *page;
1499 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1501 if (gpa == UNMAPPED_GVA)
1502 return NULL;
1504 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1506 return page;
1510 * The function is based on mtrr_type_lookup() in
1511 * arch/x86/kernel/cpu/mtrr/generic.c
1513 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1514 u64 start, u64 end)
1516 int i;
1517 u64 base, mask;
1518 u8 prev_match, curr_match;
1519 int num_var_ranges = KVM_NR_VAR_MTRR;
1521 if (!mtrr_state->enabled)
1522 return 0xFF;
1524 /* Make end inclusive end, instead of exclusive */
1525 end--;
1527 /* Look in fixed ranges. Just return the type as per start */
1528 if (mtrr_state->have_fixed && (start < 0x100000)) {
1529 int idx;
1531 if (start < 0x80000) {
1532 idx = 0;
1533 idx += (start >> 16);
1534 return mtrr_state->fixed_ranges[idx];
1535 } else if (start < 0xC0000) {
1536 idx = 1 * 8;
1537 idx += ((start - 0x80000) >> 14);
1538 return mtrr_state->fixed_ranges[idx];
1539 } else if (start < 0x1000000) {
1540 idx = 3 * 8;
1541 idx += ((start - 0xC0000) >> 12);
1542 return mtrr_state->fixed_ranges[idx];
1547 * Look in variable ranges
1548 * Look of multiple ranges matching this address and pick type
1549 * as per MTRR precedence
1551 if (!(mtrr_state->enabled & 2))
1552 return mtrr_state->def_type;
1554 prev_match = 0xFF;
1555 for (i = 0; i < num_var_ranges; ++i) {
1556 unsigned short start_state, end_state;
1558 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1559 continue;
1561 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1562 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1563 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1564 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1566 start_state = ((start & mask) == (base & mask));
1567 end_state = ((end & mask) == (base & mask));
1568 if (start_state != end_state)
1569 return 0xFE;
1571 if ((start & mask) != (base & mask))
1572 continue;
1574 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1575 if (prev_match == 0xFF) {
1576 prev_match = curr_match;
1577 continue;
1580 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1581 curr_match == MTRR_TYPE_UNCACHABLE)
1582 return MTRR_TYPE_UNCACHABLE;
1584 if ((prev_match == MTRR_TYPE_WRBACK &&
1585 curr_match == MTRR_TYPE_WRTHROUGH) ||
1586 (prev_match == MTRR_TYPE_WRTHROUGH &&
1587 curr_match == MTRR_TYPE_WRBACK)) {
1588 prev_match = MTRR_TYPE_WRTHROUGH;
1589 curr_match = MTRR_TYPE_WRTHROUGH;
1592 if (prev_match != curr_match)
1593 return MTRR_TYPE_UNCACHABLE;
1596 if (prev_match != 0xFF)
1597 return prev_match;
1599 return mtrr_state->def_type;
1602 static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 u8 mtrr;
1606 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1607 (gfn << PAGE_SHIFT) + PAGE_SIZE);
1608 if (mtrr == 0xfe || mtrr == 0xff)
1609 mtrr = MTRR_TYPE_WRBACK;
1610 return mtrr;
1613 static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1615 unsigned index;
1616 struct hlist_head *bucket;
1617 struct kvm_mmu_page *s;
1618 struct hlist_node *node, *n;
1620 index = kvm_page_table_hashfn(sp->gfn);
1621 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1622 /* don't unsync if pagetable is shadowed with multiple roles */
1623 hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
1624 if (s->gfn != sp->gfn || s->role.metaphysical)
1625 continue;
1626 if (s->role.word != sp->role.word)
1627 return 1;
1629 ++vcpu->kvm->stat.mmu_unsync;
1630 sp->unsync = 1;
1632 if (sp->global) {
1633 list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
1634 ++vcpu->kvm->stat.mmu_unsync_global;
1635 } else
1636 kvm_mmu_mark_parents_unsync(vcpu, sp);
1638 mmu_convert_notrap(sp);
1639 return 0;
1642 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1643 bool can_unsync)
1645 struct kvm_mmu_page *shadow;
1647 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
1648 if (shadow) {
1649 if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
1650 return 1;
1651 if (shadow->unsync)
1652 return 0;
1653 if (can_unsync && oos_shadow)
1654 return kvm_unsync_page(vcpu, shadow);
1655 return 1;
1657 return 0;
1660 static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1661 unsigned pte_access, int user_fault,
1662 int write_fault, int dirty, int largepage,
1663 int global, gfn_t gfn, pfn_t pfn, bool speculative,
1664 bool can_unsync)
1666 u64 spte;
1667 int ret = 0;
1668 u64 mt_mask = shadow_mt_mask;
1669 struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
1671 if (!(vcpu->arch.cr4 & X86_CR4_PGE))
1672 global = 0;
1673 if (!global && sp->global) {
1674 sp->global = 0;
1675 if (sp->unsync) {
1676 kvm_unlink_unsync_global(vcpu->kvm, sp);
1677 kvm_mmu_mark_parents_unsync(vcpu, sp);
1682 * We don't set the accessed bit, since we sometimes want to see
1683 * whether the guest actually used the pte (in order to detect
1684 * demand paging).
1686 spte = shadow_base_present_pte | shadow_dirty_mask;
1687 if (!speculative)
1688 spte |= shadow_accessed_mask;
1689 if (!dirty)
1690 pte_access &= ~ACC_WRITE_MASK;
1691 if (pte_access & ACC_EXEC_MASK)
1692 spte |= shadow_x_mask;
1693 else
1694 spte |= shadow_nx_mask;
1695 if (pte_access & ACC_USER_MASK)
1696 spte |= shadow_user_mask;
1697 if (largepage)
1698 spte |= PT_PAGE_SIZE_MASK;
1699 if (mt_mask) {
1700 if (!kvm_is_mmio_pfn(pfn)) {
1701 mt_mask = get_memory_type(vcpu, gfn) <<
1702 kvm_x86_ops->get_mt_mask_shift();
1703 mt_mask |= VMX_EPT_IGMT_BIT;
1704 } else
1705 mt_mask = MTRR_TYPE_UNCACHABLE <<
1706 kvm_x86_ops->get_mt_mask_shift();
1707 spte |= mt_mask;
1710 spte |= (u64)pfn << PAGE_SHIFT;
1712 if ((pte_access & ACC_WRITE_MASK)
1713 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
1715 if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
1716 ret = 1;
1717 spte = shadow_trap_nonpresent_pte;
1718 goto set_pte;
1721 spte |= PT_WRITABLE_MASK;
1724 * Optimization: for pte sync, if spte was writable the hash
1725 * lookup is unnecessary (and expensive). Write protection
1726 * is responsibility of mmu_get_page / kvm_sync_page.
1727 * Same reasoning can be applied to dirty page accounting.
1729 if (!can_unsync && is_writeble_pte(*shadow_pte))
1730 goto set_pte;
1732 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1733 pgprintk("%s: found shadow page for %lx, marking ro\n",
1734 __func__, gfn);
1735 ret = 1;
1736 pte_access &= ~ACC_WRITE_MASK;
1737 if (is_writeble_pte(spte))
1738 spte &= ~PT_WRITABLE_MASK;
1742 if (pte_access & ACC_WRITE_MASK)
1743 mark_page_dirty(vcpu->kvm, gfn);
1745 set_pte:
1746 set_shadow_pte(shadow_pte, spte);
1747 return ret;
1750 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
1751 unsigned pt_access, unsigned pte_access,
1752 int user_fault, int write_fault, int dirty,
1753 int *ptwrite, int largepage, int global,
1754 gfn_t gfn, pfn_t pfn, bool speculative)
1756 int was_rmapped = 0;
1757 int was_writeble = is_writeble_pte(*shadow_pte);
1759 pgprintk("%s: spte %llx access %x write_fault %d"
1760 " user_fault %d gfn %lx\n",
1761 __func__, *shadow_pte, pt_access,
1762 write_fault, user_fault, gfn);
1764 if (is_rmap_pte(*shadow_pte)) {
1766 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
1767 * the parent of the now unreachable PTE.
1769 if (largepage && !is_large_pte(*shadow_pte)) {
1770 struct kvm_mmu_page *child;
1771 u64 pte = *shadow_pte;
1773 child = page_header(pte & PT64_BASE_ADDR_MASK);
1774 mmu_page_remove_parent_pte(child, shadow_pte);
1775 } else if (pfn != spte_to_pfn(*shadow_pte)) {
1776 pgprintk("hfn old %lx new %lx\n",
1777 spte_to_pfn(*shadow_pte), pfn);
1778 rmap_remove(vcpu->kvm, shadow_pte);
1779 } else {
1780 if (largepage)
1781 was_rmapped = is_large_pte(*shadow_pte);
1782 else
1783 was_rmapped = 1;
1786 if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
1787 dirty, largepage, global, gfn, pfn, speculative, true)) {
1788 if (write_fault)
1789 *ptwrite = 1;
1790 kvm_x86_ops->tlb_flush(vcpu);
1793 pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
1794 pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
1795 is_large_pte(*shadow_pte)? "2MB" : "4kB",
1796 is_present_pte(*shadow_pte)?"RW":"R", gfn,
1797 *shadow_pte, shadow_pte);
1798 if (!was_rmapped && is_large_pte(*shadow_pte))
1799 ++vcpu->kvm->stat.lpages;
1801 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
1802 if (!was_rmapped) {
1803 rmap_add(vcpu, shadow_pte, gfn, largepage);
1804 if (!is_rmap_pte(*shadow_pte))
1805 kvm_release_pfn_clean(pfn);
1806 } else {
1807 if (was_writeble)
1808 kvm_release_pfn_dirty(pfn);
1809 else
1810 kvm_release_pfn_clean(pfn);
1812 if (speculative) {
1813 vcpu->arch.last_pte_updated = shadow_pte;
1814 vcpu->arch.last_pte_gfn = gfn;
1818 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
1822 struct direct_shadow_walk {
1823 struct kvm_shadow_walk walker;
1824 pfn_t pfn;
1825 int write;
1826 int largepage;
1827 int pt_write;
1830 static int direct_map_entry(struct kvm_shadow_walk *_walk,
1831 struct kvm_vcpu *vcpu,
1832 u64 addr, u64 *sptep, int level)
1834 struct direct_shadow_walk *walk =
1835 container_of(_walk, struct direct_shadow_walk, walker);
1836 struct kvm_mmu_page *sp;
1837 gfn_t pseudo_gfn;
1838 gfn_t gfn = addr >> PAGE_SHIFT;
1840 if (level == PT_PAGE_TABLE_LEVEL
1841 || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
1842 mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
1843 0, walk->write, 1, &walk->pt_write,
1844 walk->largepage, 0, gfn, walk->pfn, false);
1845 ++vcpu->stat.pf_fixed;
1846 return 1;
1849 if (*sptep == shadow_trap_nonpresent_pte) {
1850 pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
1851 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
1852 1, ACC_ALL, sptep);
1853 if (!sp) {
1854 pgprintk("nonpaging_map: ENOMEM\n");
1855 kvm_release_pfn_clean(walk->pfn);
1856 return -ENOMEM;
1859 set_shadow_pte(sptep,
1860 __pa(sp->spt)
1861 | PT_PRESENT_MASK | PT_WRITABLE_MASK
1862 | shadow_user_mask | shadow_x_mask);
1864 return 0;
1867 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
1868 int largepage, gfn_t gfn, pfn_t pfn)
1870 int r;
1871 struct direct_shadow_walk walker = {
1872 .walker = { .entry = direct_map_entry, },
1873 .pfn = pfn,
1874 .largepage = largepage,
1875 .write = write,
1876 .pt_write = 0,
1879 r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
1880 if (r < 0)
1881 return r;
1882 return walker.pt_write;
1885 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
1887 int r;
1888 int largepage = 0;
1889 pfn_t pfn;
1890 unsigned long mmu_seq;
1892 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
1893 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
1894 largepage = 1;
1897 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1898 smp_rmb();
1899 pfn = gfn_to_pfn(vcpu->kvm, gfn);
1901 /* mmio */
1902 if (is_error_pfn(pfn)) {
1903 kvm_release_pfn_clean(pfn);
1904 return 1;
1907 spin_lock(&vcpu->kvm->mmu_lock);
1908 if (mmu_notifier_retry(vcpu, mmu_seq))
1909 goto out_unlock;
1910 kvm_mmu_free_some_pages(vcpu);
1911 r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
1912 spin_unlock(&vcpu->kvm->mmu_lock);
1915 return r;
1917 out_unlock:
1918 spin_unlock(&vcpu->kvm->mmu_lock);
1919 kvm_release_pfn_clean(pfn);
1920 return 0;
1924 static void mmu_free_roots(struct kvm_vcpu *vcpu)
1926 int i;
1927 struct kvm_mmu_page *sp;
1929 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1930 return;
1931 spin_lock(&vcpu->kvm->mmu_lock);
1932 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1933 hpa_t root = vcpu->arch.mmu.root_hpa;
1935 sp = page_header(root);
1936 --sp->root_count;
1937 if (!sp->root_count && sp->role.invalid)
1938 kvm_mmu_zap_page(vcpu->kvm, sp);
1939 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1940 spin_unlock(&vcpu->kvm->mmu_lock);
1941 return;
1943 for (i = 0; i < 4; ++i) {
1944 hpa_t root = vcpu->arch.mmu.pae_root[i];
1946 if (root) {
1947 root &= PT64_BASE_ADDR_MASK;
1948 sp = page_header(root);
1949 --sp->root_count;
1950 if (!sp->root_count && sp->role.invalid)
1951 kvm_mmu_zap_page(vcpu->kvm, sp);
1953 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1955 spin_unlock(&vcpu->kvm->mmu_lock);
1956 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1959 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1961 int i;
1962 gfn_t root_gfn;
1963 struct kvm_mmu_page *sp;
1964 int metaphysical = 0;
1966 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1968 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1969 hpa_t root = vcpu->arch.mmu.root_hpa;
1971 ASSERT(!VALID_PAGE(root));
1972 if (tdp_enabled)
1973 metaphysical = 1;
1974 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1975 PT64_ROOT_LEVEL, metaphysical,
1976 ACC_ALL, NULL);
1977 root = __pa(sp->spt);
1978 ++sp->root_count;
1979 vcpu->arch.mmu.root_hpa = root;
1980 return;
1982 metaphysical = !is_paging(vcpu);
1983 if (tdp_enabled)
1984 metaphysical = 1;
1985 for (i = 0; i < 4; ++i) {
1986 hpa_t root = vcpu->arch.mmu.pae_root[i];
1988 ASSERT(!VALID_PAGE(root));
1989 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1990 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1991 vcpu->arch.mmu.pae_root[i] = 0;
1992 continue;
1994 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1995 } else if (vcpu->arch.mmu.root_level == 0)
1996 root_gfn = 0;
1997 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1998 PT32_ROOT_LEVEL, metaphysical,
1999 ACC_ALL, NULL);
2000 root = __pa(sp->spt);
2001 ++sp->root_count;
2002 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2004 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2007 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2009 int i;
2010 struct kvm_mmu_page *sp;
2012 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2013 return;
2014 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2015 hpa_t root = vcpu->arch.mmu.root_hpa;
2016 sp = page_header(root);
2017 mmu_sync_children(vcpu, sp);
2018 return;
2020 for (i = 0; i < 4; ++i) {
2021 hpa_t root = vcpu->arch.mmu.pae_root[i];
2023 if (root) {
2024 root &= PT64_BASE_ADDR_MASK;
2025 sp = page_header(root);
2026 mmu_sync_children(vcpu, sp);
2031 static void mmu_sync_global(struct kvm_vcpu *vcpu)
2033 struct kvm *kvm = vcpu->kvm;
2034 struct kvm_mmu_page *sp, *n;
2036 list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
2037 kvm_sync_page(vcpu, sp);
2040 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2042 spin_lock(&vcpu->kvm->mmu_lock);
2043 mmu_sync_roots(vcpu);
2044 spin_unlock(&vcpu->kvm->mmu_lock);
2047 void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
2049 spin_lock(&vcpu->kvm->mmu_lock);
2050 mmu_sync_global(vcpu);
2051 spin_unlock(&vcpu->kvm->mmu_lock);
2054 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
2056 return vaddr;
2059 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2060 u32 error_code)
2062 gfn_t gfn;
2063 int r;
2065 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2066 r = mmu_topup_memory_caches(vcpu);
2067 if (r)
2068 return r;
2070 ASSERT(vcpu);
2071 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2073 gfn = gva >> PAGE_SHIFT;
2075 return nonpaging_map(vcpu, gva & PAGE_MASK,
2076 error_code & PFERR_WRITE_MASK, gfn);
2079 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2080 u32 error_code)
2082 pfn_t pfn;
2083 int r;
2084 int largepage = 0;
2085 gfn_t gfn = gpa >> PAGE_SHIFT;
2086 unsigned long mmu_seq;
2088 ASSERT(vcpu);
2089 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2091 r = mmu_topup_memory_caches(vcpu);
2092 if (r)
2093 return r;
2095 if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
2096 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2097 largepage = 1;
2099 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2100 smp_rmb();
2101 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2102 if (is_error_pfn(pfn)) {
2103 kvm_release_pfn_clean(pfn);
2104 return 1;
2106 spin_lock(&vcpu->kvm->mmu_lock);
2107 if (mmu_notifier_retry(vcpu, mmu_seq))
2108 goto out_unlock;
2109 kvm_mmu_free_some_pages(vcpu);
2110 r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2111 largepage, gfn, pfn);
2112 spin_unlock(&vcpu->kvm->mmu_lock);
2114 return r;
2116 out_unlock:
2117 spin_unlock(&vcpu->kvm->mmu_lock);
2118 kvm_release_pfn_clean(pfn);
2119 return 0;
2122 static void nonpaging_free(struct kvm_vcpu *vcpu)
2124 mmu_free_roots(vcpu);
2127 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2129 struct kvm_mmu *context = &vcpu->arch.mmu;
2131 context->new_cr3 = nonpaging_new_cr3;
2132 context->page_fault = nonpaging_page_fault;
2133 context->gva_to_gpa = nonpaging_gva_to_gpa;
2134 context->free = nonpaging_free;
2135 context->prefetch_page = nonpaging_prefetch_page;
2136 context->sync_page = nonpaging_sync_page;
2137 context->invlpg = nonpaging_invlpg;
2138 context->root_level = 0;
2139 context->shadow_root_level = PT32E_ROOT_LEVEL;
2140 context->root_hpa = INVALID_PAGE;
2141 return 0;
2144 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2146 ++vcpu->stat.tlb_flush;
2147 kvm_x86_ops->tlb_flush(vcpu);
2150 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2152 pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2153 mmu_free_roots(vcpu);
2156 static void inject_page_fault(struct kvm_vcpu *vcpu,
2157 u64 addr,
2158 u32 err_code)
2160 kvm_inject_page_fault(vcpu, addr, err_code);
2163 static void paging_free(struct kvm_vcpu *vcpu)
2165 nonpaging_free(vcpu);
2168 #define PTTYPE 64
2169 #include "paging_tmpl.h"
2170 #undef PTTYPE
2172 #define PTTYPE 32
2173 #include "paging_tmpl.h"
2174 #undef PTTYPE
2176 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2178 struct kvm_mmu *context = &vcpu->arch.mmu;
2180 ASSERT(is_pae(vcpu));
2181 context->new_cr3 = paging_new_cr3;
2182 context->page_fault = paging64_page_fault;
2183 context->gva_to_gpa = paging64_gva_to_gpa;
2184 context->prefetch_page = paging64_prefetch_page;
2185 context->sync_page = paging64_sync_page;
2186 context->invlpg = paging64_invlpg;
2187 context->free = paging_free;
2188 context->root_level = level;
2189 context->shadow_root_level = level;
2190 context->root_hpa = INVALID_PAGE;
2191 return 0;
2194 static int paging64_init_context(struct kvm_vcpu *vcpu)
2196 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2199 static int paging32_init_context(struct kvm_vcpu *vcpu)
2201 struct kvm_mmu *context = &vcpu->arch.mmu;
2203 context->new_cr3 = paging_new_cr3;
2204 context->page_fault = paging32_page_fault;
2205 context->gva_to_gpa = paging32_gva_to_gpa;
2206 context->free = paging_free;
2207 context->prefetch_page = paging32_prefetch_page;
2208 context->sync_page = paging32_sync_page;
2209 context->invlpg = paging32_invlpg;
2210 context->root_level = PT32_ROOT_LEVEL;
2211 context->shadow_root_level = PT32E_ROOT_LEVEL;
2212 context->root_hpa = INVALID_PAGE;
2213 return 0;
2216 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2218 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2221 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2223 struct kvm_mmu *context = &vcpu->arch.mmu;
2225 context->new_cr3 = nonpaging_new_cr3;
2226 context->page_fault = tdp_page_fault;
2227 context->free = nonpaging_free;
2228 context->prefetch_page = nonpaging_prefetch_page;
2229 context->sync_page = nonpaging_sync_page;
2230 context->invlpg = nonpaging_invlpg;
2231 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2232 context->root_hpa = INVALID_PAGE;
2234 if (!is_paging(vcpu)) {
2235 context->gva_to_gpa = nonpaging_gva_to_gpa;
2236 context->root_level = 0;
2237 } else if (is_long_mode(vcpu)) {
2238 context->gva_to_gpa = paging64_gva_to_gpa;
2239 context->root_level = PT64_ROOT_LEVEL;
2240 } else if (is_pae(vcpu)) {
2241 context->gva_to_gpa = paging64_gva_to_gpa;
2242 context->root_level = PT32E_ROOT_LEVEL;
2243 } else {
2244 context->gva_to_gpa = paging32_gva_to_gpa;
2245 context->root_level = PT32_ROOT_LEVEL;
2248 return 0;
2251 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2253 int r;
2255 ASSERT(vcpu);
2256 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2258 if (!is_paging(vcpu))
2259 r = nonpaging_init_context(vcpu);
2260 else if (is_long_mode(vcpu))
2261 r = paging64_init_context(vcpu);
2262 else if (is_pae(vcpu))
2263 r = paging32E_init_context(vcpu);
2264 else
2265 r = paging32_init_context(vcpu);
2267 vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
2269 return r;
2272 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2274 vcpu->arch.update_pte.pfn = bad_pfn;
2276 if (tdp_enabled)
2277 return init_kvm_tdp_mmu(vcpu);
2278 else
2279 return init_kvm_softmmu(vcpu);
2282 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2284 ASSERT(vcpu);
2285 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
2286 vcpu->arch.mmu.free(vcpu);
2287 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2291 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2293 destroy_kvm_mmu(vcpu);
2294 return init_kvm_mmu(vcpu);
2296 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2298 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2300 int r;
2302 r = mmu_topup_memory_caches(vcpu);
2303 if (r)
2304 goto out;
2305 spin_lock(&vcpu->kvm->mmu_lock);
2306 kvm_mmu_free_some_pages(vcpu);
2307 mmu_alloc_roots(vcpu);
2308 mmu_sync_roots(vcpu);
2309 spin_unlock(&vcpu->kvm->mmu_lock);
2310 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2311 kvm_mmu_flush_tlb(vcpu);
2312 out:
2313 return r;
2315 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2317 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2319 mmu_free_roots(vcpu);
2322 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2323 struct kvm_mmu_page *sp,
2324 u64 *spte)
2326 u64 pte;
2327 struct kvm_mmu_page *child;
2329 pte = *spte;
2330 if (is_shadow_present_pte(pte)) {
2331 if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
2332 is_large_pte(pte))
2333 rmap_remove(vcpu->kvm, spte);
2334 else {
2335 child = page_header(pte & PT64_BASE_ADDR_MASK);
2336 mmu_page_remove_parent_pte(child, spte);
2339 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
2340 if (is_large_pte(pte))
2341 --vcpu->kvm->stat.lpages;
2344 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2345 struct kvm_mmu_page *sp,
2346 u64 *spte,
2347 const void *new)
2349 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2350 if (!vcpu->arch.update_pte.largepage ||
2351 sp->role.glevels == PT32_ROOT_LEVEL) {
2352 ++vcpu->kvm->stat.mmu_pde_zapped;
2353 return;
2357 ++vcpu->kvm->stat.mmu_pte_updated;
2358 if (sp->role.glevels == PT32_ROOT_LEVEL)
2359 paging32_update_pte(vcpu, sp, spte, new);
2360 else
2361 paging64_update_pte(vcpu, sp, spte, new);
2364 static bool need_remote_flush(u64 old, u64 new)
2366 if (!is_shadow_present_pte(old))
2367 return false;
2368 if (!is_shadow_present_pte(new))
2369 return true;
2370 if ((old ^ new) & PT64_BASE_ADDR_MASK)
2371 return true;
2372 old ^= PT64_NX_MASK;
2373 new ^= PT64_NX_MASK;
2374 return (old & ~new & PT64_PERM_MASK) != 0;
2377 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
2379 if (need_remote_flush(old, new))
2380 kvm_flush_remote_tlbs(vcpu->kvm);
2381 else
2382 kvm_mmu_flush_tlb(vcpu);
2385 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2387 u64 *spte = vcpu->arch.last_pte_updated;
2389 return !!(spte && (*spte & shadow_accessed_mask));
2392 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2393 const u8 *new, int bytes)
2395 gfn_t gfn;
2396 int r;
2397 u64 gpte = 0;
2398 pfn_t pfn;
2400 vcpu->arch.update_pte.largepage = 0;
2402 if (bytes != 4 && bytes != 8)
2403 return;
2406 * Assume that the pte write on a page table of the same type
2407 * as the current vcpu paging mode. This is nearly always true
2408 * (might be false while changing modes). Note it is verified later
2409 * by update_pte().
2411 if (is_pae(vcpu)) {
2412 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2413 if ((bytes == 4) && (gpa % 4 == 0)) {
2414 r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
2415 if (r)
2416 return;
2417 memcpy((void *)&gpte + (gpa % 8), new, 4);
2418 } else if ((bytes == 8) && (gpa % 8 == 0)) {
2419 memcpy((void *)&gpte, new, 8);
2421 } else {
2422 if ((bytes == 4) && (gpa % 4 == 0))
2423 memcpy((void *)&gpte, new, 4);
2425 if (!is_present_pte(gpte))
2426 return;
2427 gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2429 if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
2430 gfn &= ~(KVM_PAGES_PER_HPAGE-1);
2431 vcpu->arch.update_pte.largepage = 1;
2433 vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2434 smp_rmb();
2435 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2437 if (is_error_pfn(pfn)) {
2438 kvm_release_pfn_clean(pfn);
2439 return;
2441 vcpu->arch.update_pte.gfn = gfn;
2442 vcpu->arch.update_pte.pfn = pfn;
2445 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2447 u64 *spte = vcpu->arch.last_pte_updated;
2449 if (spte
2450 && vcpu->arch.last_pte_gfn == gfn
2451 && shadow_accessed_mask
2452 && !(*spte & shadow_accessed_mask)
2453 && is_shadow_present_pte(*spte))
2454 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2457 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2458 const u8 *new, int bytes,
2459 bool guest_initiated)
2461 gfn_t gfn = gpa >> PAGE_SHIFT;
2462 struct kvm_mmu_page *sp;
2463 struct hlist_node *node, *n;
2464 struct hlist_head *bucket;
2465 unsigned index;
2466 u64 entry, gentry;
2467 u64 *spte;
2468 unsigned offset = offset_in_page(gpa);
2469 unsigned pte_size;
2470 unsigned page_offset;
2471 unsigned misaligned;
2472 unsigned quadrant;
2473 int level;
2474 int flooded = 0;
2475 int npte;
2476 int r;
2478 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2479 mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
2480 spin_lock(&vcpu->kvm->mmu_lock);
2481 kvm_mmu_access_page(vcpu, gfn);
2482 kvm_mmu_free_some_pages(vcpu);
2483 ++vcpu->kvm->stat.mmu_pte_write;
2484 kvm_mmu_audit(vcpu, "pre pte write");
2485 if (guest_initiated) {
2486 if (gfn == vcpu->arch.last_pt_write_gfn
2487 && !last_updated_pte_accessed(vcpu)) {
2488 ++vcpu->arch.last_pt_write_count;
2489 if (vcpu->arch.last_pt_write_count >= 3)
2490 flooded = 1;
2491 } else {
2492 vcpu->arch.last_pt_write_gfn = gfn;
2493 vcpu->arch.last_pt_write_count = 1;
2494 vcpu->arch.last_pte_updated = NULL;
2497 index = kvm_page_table_hashfn(gfn);
2498 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
2499 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
2500 if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
2501 continue;
2502 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
2503 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2504 misaligned |= bytes < 4;
2505 if (misaligned || flooded) {
2507 * Misaligned accesses are too much trouble to fix
2508 * up; also, they usually indicate a page is not used
2509 * as a page table.
2511 * If we're seeing too many writes to a page,
2512 * it may no longer be a page table, or we may be
2513 * forking, in which case it is better to unmap the
2514 * page.
2516 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2517 gpa, bytes, sp->role.word);
2518 if (kvm_mmu_zap_page(vcpu->kvm, sp))
2519 n = bucket->first;
2520 ++vcpu->kvm->stat.mmu_flooded;
2521 continue;
2523 page_offset = offset;
2524 level = sp->role.level;
2525 npte = 1;
2526 if (sp->role.glevels == PT32_ROOT_LEVEL) {
2527 page_offset <<= 1; /* 32->64 */
2529 * A 32-bit pde maps 4MB while the shadow pdes map
2530 * only 2MB. So we need to double the offset again
2531 * and zap two pdes instead of one.
2533 if (level == PT32_ROOT_LEVEL) {
2534 page_offset &= ~7; /* kill rounding error */
2535 page_offset <<= 1;
2536 npte = 2;
2538 quadrant = page_offset >> PAGE_SHIFT;
2539 page_offset &= ~PAGE_MASK;
2540 if (quadrant != sp->role.quadrant)
2541 continue;
2543 spte = &sp->spt[page_offset / sizeof(*spte)];
2544 if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
2545 gentry = 0;
2546 r = kvm_read_guest_atomic(vcpu->kvm,
2547 gpa & ~(u64)(pte_size - 1),
2548 &gentry, pte_size);
2549 new = (const void *)&gentry;
2550 if (r < 0)
2551 new = NULL;
2553 while (npte--) {
2554 entry = *spte;
2555 mmu_pte_write_zap_pte(vcpu, sp, spte);
2556 if (new)
2557 mmu_pte_write_new_pte(vcpu, sp, spte, new);
2558 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
2559 ++spte;
2562 kvm_mmu_audit(vcpu, "post pte write");
2563 spin_unlock(&vcpu->kvm->mmu_lock);
2564 if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2565 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2566 vcpu->arch.update_pte.pfn = bad_pfn;
2570 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2572 gpa_t gpa;
2573 int r;
2575 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
2577 spin_lock(&vcpu->kvm->mmu_lock);
2578 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2579 spin_unlock(&vcpu->kvm->mmu_lock);
2580 return r;
2582 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2584 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2586 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
2587 struct kvm_mmu_page *sp;
2589 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2590 struct kvm_mmu_page, link);
2591 kvm_mmu_zap_page(vcpu->kvm, sp);
2592 ++vcpu->kvm->stat.mmu_recycled;
2596 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2598 int r;
2599 enum emulation_result er;
2601 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2602 if (r < 0)
2603 goto out;
2605 if (!r) {
2606 r = 1;
2607 goto out;
2610 r = mmu_topup_memory_caches(vcpu);
2611 if (r)
2612 goto out;
2614 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
2616 switch (er) {
2617 case EMULATE_DONE:
2618 return 1;
2619 case EMULATE_DO_MMIO:
2620 ++vcpu->stat.mmio_exits;
2621 return 0;
2622 case EMULATE_FAIL:
2623 kvm_report_emulation_failure(vcpu, "pagetable");
2624 return 1;
2625 default:
2626 BUG();
2628 out:
2629 return r;
2631 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2633 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2635 vcpu->arch.mmu.invlpg(vcpu, gva);
2636 kvm_mmu_flush_tlb(vcpu);
2637 ++vcpu->stat.invlpg;
2639 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2641 void kvm_enable_tdp(void)
2643 tdp_enabled = true;
2645 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
2647 void kvm_disable_tdp(void)
2649 tdp_enabled = false;
2651 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
2653 static void free_mmu_pages(struct kvm_vcpu *vcpu)
2655 struct kvm_mmu_page *sp;
2657 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2658 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
2659 struct kvm_mmu_page, link);
2660 kvm_mmu_zap_page(vcpu->kvm, sp);
2661 cond_resched();
2663 free_page((unsigned long)vcpu->arch.mmu.pae_root);
2666 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
2668 struct page *page;
2669 int i;
2671 ASSERT(vcpu);
2673 if (vcpu->kvm->arch.n_requested_mmu_pages)
2674 vcpu->kvm->arch.n_free_mmu_pages =
2675 vcpu->kvm->arch.n_requested_mmu_pages;
2676 else
2677 vcpu->kvm->arch.n_free_mmu_pages =
2678 vcpu->kvm->arch.n_alloc_mmu_pages;
2680 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
2681 * Therefore we need to allocate shadow page tables in the first
2682 * 4GB of memory, which happens to fit the DMA32 zone.
2684 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
2685 if (!page)
2686 goto error_1;
2687 vcpu->arch.mmu.pae_root = page_address(page);
2688 for (i = 0; i < 4; ++i)
2689 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2691 return 0;
2693 error_1:
2694 free_mmu_pages(vcpu);
2695 return -ENOMEM;
2698 int kvm_mmu_create(struct kvm_vcpu *vcpu)
2700 ASSERT(vcpu);
2701 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2703 return alloc_mmu_pages(vcpu);
2706 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
2708 ASSERT(vcpu);
2709 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2711 return init_kvm_mmu(vcpu);
2714 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
2716 ASSERT(vcpu);
2718 destroy_kvm_mmu(vcpu);
2719 free_mmu_pages(vcpu);
2720 mmu_free_memory_caches(vcpu);
2723 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
2725 struct kvm_mmu_page *sp;
2727 spin_lock(&kvm->mmu_lock);
2728 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
2729 int i;
2730 u64 *pt;
2732 if (!test_bit(slot, sp->slot_bitmap))
2733 continue;
2735 pt = sp->spt;
2736 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2737 /* avoid RMW */
2738 if (pt[i] & PT_WRITABLE_MASK)
2739 pt[i] &= ~PT_WRITABLE_MASK;
2741 kvm_flush_remote_tlbs(kvm);
2742 spin_unlock(&kvm->mmu_lock);
2745 void kvm_mmu_zap_all(struct kvm *kvm)
2747 struct kvm_mmu_page *sp, *node;
2749 spin_lock(&kvm->mmu_lock);
2750 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
2751 if (kvm_mmu_zap_page(kvm, sp))
2752 node = container_of(kvm->arch.active_mmu_pages.next,
2753 struct kvm_mmu_page, link);
2754 spin_unlock(&kvm->mmu_lock);
2756 kvm_flush_remote_tlbs(kvm);
2759 static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
2761 struct kvm_mmu_page *page;
2763 page = container_of(kvm->arch.active_mmu_pages.prev,
2764 struct kvm_mmu_page, link);
2765 kvm_mmu_zap_page(kvm, page);
2768 static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
2770 struct kvm *kvm;
2771 struct kvm *kvm_freed = NULL;
2772 int cache_count = 0;
2774 spin_lock(&kvm_lock);
2776 list_for_each_entry(kvm, &vm_list, vm_list) {
2777 int npages;
2779 if (!down_read_trylock(&kvm->slots_lock))
2780 continue;
2781 spin_lock(&kvm->mmu_lock);
2782 npages = kvm->arch.n_alloc_mmu_pages -
2783 kvm->arch.n_free_mmu_pages;
2784 cache_count += npages;
2785 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
2786 kvm_mmu_remove_one_alloc_mmu_page(kvm);
2787 cache_count--;
2788 kvm_freed = kvm;
2790 nr_to_scan--;
2792 spin_unlock(&kvm->mmu_lock);
2793 up_read(&kvm->slots_lock);
2795 if (kvm_freed)
2796 list_move_tail(&kvm_freed->vm_list, &vm_list);
2798 spin_unlock(&kvm_lock);
2800 return cache_count;
2803 static struct shrinker mmu_shrinker = {
2804 .shrink = mmu_shrink,
2805 .seeks = DEFAULT_SEEKS * 10,
2808 static void mmu_destroy_caches(void)
2810 if (pte_chain_cache)
2811 kmem_cache_destroy(pte_chain_cache);
2812 if (rmap_desc_cache)
2813 kmem_cache_destroy(rmap_desc_cache);
2814 if (mmu_page_header_cache)
2815 kmem_cache_destroy(mmu_page_header_cache);
2818 void kvm_mmu_module_exit(void)
2820 mmu_destroy_caches();
2821 unregister_shrinker(&mmu_shrinker);
2824 int kvm_mmu_module_init(void)
2826 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
2827 sizeof(struct kvm_pte_chain),
2828 0, 0, NULL);
2829 if (!pte_chain_cache)
2830 goto nomem;
2831 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
2832 sizeof(struct kvm_rmap_desc),
2833 0, 0, NULL);
2834 if (!rmap_desc_cache)
2835 goto nomem;
2837 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
2838 sizeof(struct kvm_mmu_page),
2839 0, 0, NULL);
2840 if (!mmu_page_header_cache)
2841 goto nomem;
2843 register_shrinker(&mmu_shrinker);
2845 return 0;
2847 nomem:
2848 mmu_destroy_caches();
2849 return -ENOMEM;
2853 * Caculate mmu pages needed for kvm.
2855 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
2857 int i;
2858 unsigned int nr_mmu_pages;
2859 unsigned int nr_pages = 0;
2861 for (i = 0; i < kvm->nmemslots; i++)
2862 nr_pages += kvm->memslots[i].npages;
2864 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
2865 nr_mmu_pages = max(nr_mmu_pages,
2866 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
2868 return nr_mmu_pages;
2871 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2872 unsigned len)
2874 if (len > buffer->len)
2875 return NULL;
2876 return buffer->ptr;
2879 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
2880 unsigned len)
2882 void *ret;
2884 ret = pv_mmu_peek_buffer(buffer, len);
2885 if (!ret)
2886 return ret;
2887 buffer->ptr += len;
2888 buffer->len -= len;
2889 buffer->processed += len;
2890 return ret;
2893 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
2894 gpa_t addr, gpa_t value)
2896 int bytes = 8;
2897 int r;
2899 if (!is_long_mode(vcpu) && !is_pae(vcpu))
2900 bytes = 4;
2902 r = mmu_topup_memory_caches(vcpu);
2903 if (r)
2904 return r;
2906 if (!emulator_write_phys(vcpu, addr, &value, bytes))
2907 return -EFAULT;
2909 return 1;
2912 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2914 kvm_x86_ops->tlb_flush(vcpu);
2915 set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
2916 return 1;
2919 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
2921 spin_lock(&vcpu->kvm->mmu_lock);
2922 mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
2923 spin_unlock(&vcpu->kvm->mmu_lock);
2924 return 1;
2927 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
2928 struct kvm_pv_mmu_op_buffer *buffer)
2930 struct kvm_mmu_op_header *header;
2932 header = pv_mmu_peek_buffer(buffer, sizeof *header);
2933 if (!header)
2934 return 0;
2935 switch (header->op) {
2936 case KVM_MMU_OP_WRITE_PTE: {
2937 struct kvm_mmu_op_write_pte *wpte;
2939 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
2940 if (!wpte)
2941 return 0;
2942 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
2943 wpte->pte_val);
2945 case KVM_MMU_OP_FLUSH_TLB: {
2946 struct kvm_mmu_op_flush_tlb *ftlb;
2948 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
2949 if (!ftlb)
2950 return 0;
2951 return kvm_pv_mmu_flush_tlb(vcpu);
2953 case KVM_MMU_OP_RELEASE_PT: {
2954 struct kvm_mmu_op_release_pt *rpt;
2956 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
2957 if (!rpt)
2958 return 0;
2959 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
2961 default: return 0;
2965 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
2966 gpa_t addr, unsigned long *ret)
2968 int r;
2969 struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
2971 buffer->ptr = buffer->buf;
2972 buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
2973 buffer->processed = 0;
2975 r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
2976 if (r)
2977 goto out;
2979 while (buffer->len) {
2980 r = kvm_pv_mmu_op_one(vcpu, buffer);
2981 if (r < 0)
2982 goto out;
2983 if (r == 0)
2984 break;
2987 r = 1;
2988 out:
2989 *ret = buffer->processed;
2990 return r;
2993 #ifdef AUDIT
2995 static const char *audit_msg;
2997 static gva_t canonicalize(gva_t gva)
2999 #ifdef CONFIG_X86_64
3000 gva = (long long)(gva << 16) >> 16;
3001 #endif
3002 return gva;
3005 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3006 gva_t va, int level)
3008 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3009 int i;
3010 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3012 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3013 u64 ent = pt[i];
3015 if (ent == shadow_trap_nonpresent_pte)
3016 continue;
3018 va = canonicalize(va);
3019 if (level > 1) {
3020 if (ent == shadow_notrap_nonpresent_pte)
3021 printk(KERN_ERR "audit: (%s) nontrapping pte"
3022 " in nonleaf level: levels %d gva %lx"
3023 " level %d pte %llx\n", audit_msg,
3024 vcpu->arch.mmu.root_level, va, level, ent);
3026 audit_mappings_page(vcpu, ent, va, level - 1);
3027 } else {
3028 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
3029 hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
3031 if (is_shadow_present_pte(ent)
3032 && (ent & PT64_BASE_ADDR_MASK) != hpa)
3033 printk(KERN_ERR "xx audit error: (%s) levels %d"
3034 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3035 audit_msg, vcpu->arch.mmu.root_level,
3036 va, gpa, hpa, ent,
3037 is_shadow_present_pte(ent));
3038 else if (ent == shadow_notrap_nonpresent_pte
3039 && !is_error_hpa(hpa))
3040 printk(KERN_ERR "audit: (%s) notrap shadow,"
3041 " valid guest gva %lx\n", audit_msg, va);
3042 kvm_release_pfn_clean(pfn);
3048 static void audit_mappings(struct kvm_vcpu *vcpu)
3050 unsigned i;
3052 if (vcpu->arch.mmu.root_level == 4)
3053 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3054 else
3055 for (i = 0; i < 4; ++i)
3056 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3057 audit_mappings_page(vcpu,
3058 vcpu->arch.mmu.pae_root[i],
3059 i << 30,
3063 static int count_rmaps(struct kvm_vcpu *vcpu)
3065 int nmaps = 0;
3066 int i, j, k;
3068 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3069 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
3070 struct kvm_rmap_desc *d;
3072 for (j = 0; j < m->npages; ++j) {
3073 unsigned long *rmapp = &m->rmap[j];
3075 if (!*rmapp)
3076 continue;
3077 if (!(*rmapp & 1)) {
3078 ++nmaps;
3079 continue;
3081 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3082 while (d) {
3083 for (k = 0; k < RMAP_EXT; ++k)
3084 if (d->shadow_ptes[k])
3085 ++nmaps;
3086 else
3087 break;
3088 d = d->more;
3092 return nmaps;
3095 static int count_writable_mappings(struct kvm_vcpu *vcpu)
3097 int nmaps = 0;
3098 struct kvm_mmu_page *sp;
3099 int i;
3101 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3102 u64 *pt = sp->spt;
3104 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3105 continue;
3107 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3108 u64 ent = pt[i];
3110 if (!(ent & PT_PRESENT_MASK))
3111 continue;
3112 if (!(ent & PT_WRITABLE_MASK))
3113 continue;
3114 ++nmaps;
3117 return nmaps;
3120 static void audit_rmap(struct kvm_vcpu *vcpu)
3122 int n_rmap = count_rmaps(vcpu);
3123 int n_actual = count_writable_mappings(vcpu);
3125 if (n_rmap != n_actual)
3126 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
3127 __func__, audit_msg, n_rmap, n_actual);
3130 static void audit_write_protection(struct kvm_vcpu *vcpu)
3132 struct kvm_mmu_page *sp;
3133 struct kvm_memory_slot *slot;
3134 unsigned long *rmapp;
3135 gfn_t gfn;
3137 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3138 if (sp->role.metaphysical)
3139 continue;
3141 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
3142 slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
3143 rmapp = &slot->rmap[gfn - slot->base_gfn];
3144 if (*rmapp)
3145 printk(KERN_ERR "%s: (%s) shadow page has writable"
3146 " mappings: gfn %lx role %x\n",
3147 __func__, audit_msg, sp->gfn,
3148 sp->role.word);
3152 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3154 int olddbg = dbg;
3156 dbg = 0;
3157 audit_msg = msg;
3158 audit_rmap(vcpu);
3159 audit_write_protection(vcpu);
3160 audit_mappings(vcpu);
3161 dbg = olddbg;
3164 #endif