[PATCH] ipw2100: RF kill switch timer power save
[linux-2.6/verdex.git] / drivers / net / wireless / ipw2100.c
blob072ede71e575a0fcfc224c4da1da53794c0f8ea4
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
167 #include "ipw2100.h"
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
296 #endif
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
433 len -= dif_len;
434 aligned_addr += 4;
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
471 len -= dif_len;
472 aligned_addr += 4;
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
521 return -EINVAL;
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530 return 0;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
560 *len = total_length;
561 if (!total_length)
562 return 0;
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
567 return 0;
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
573 return -EINVAL;
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596 return 0;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
603 return -EINVAL;
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
609 int out, i, j, l;
610 char c;
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
631 out += snprintf(buf + out, count - out, "%c", c);
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
638 return buf;
641 static void printk_buf(int level, const u8 * data, u32 len)
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802 return 0;
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
807 return err;
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
816 u32 data1, data2;
817 u32 address;
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
845 return -EIO;
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
885 return 0;
888 udelay(50);
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 int i;
904 u32 r;
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
920 if (i == 1000)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946 return 0;
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 u32 address;
963 int err;
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1047 #ifndef CONFIG_PM
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1076 return 0;
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 u32 reg = 0;
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 u32 addr, len;
1164 u32 val;
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200 return 0;
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 int i;
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1270 } while (i--);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1306 return 0;
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1312 return;
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 u32 reg;
1323 int i;
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1344 priv->status &= ~STATUS_RESET_PENDING;
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1362 return 0;
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1383 int err, i;
1384 u32 val1, val2;
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1404 return -EIO;
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1414 int err = 0;
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1460 int err, i;
1461 u32 reg;
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554 return 0;
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1564 int err = 0;
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1609 int err;
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1631 return err;
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1641 int err;
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1672 return err;
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1724 } else
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1772 round_jiffies(HZ));
1775 deferred = 1;
1778 /* Turn on the interrupt so that commands can be processed */
1779 ipw2100_enable_interrupts(priv);
1781 /* Send all of the commands that must be sent prior to
1782 * HOST_COMPLETE */
1783 if (ipw2100_adapter_setup(priv)) {
1784 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1790 if (!deferred) {
1791 /* Enable the adapter - sends HOST_COMPLETE */
1792 if (ipw2100_enable_adapter(priv)) {
1793 printk(KERN_ERR DRV_NAME ": "
1794 "%s: failed in call to enable adapter.\n",
1795 priv->net_dev->name);
1796 ipw2100_hw_stop_adapter(priv);
1797 rc = 1;
1798 goto exit;
1801 /* Start a scan . . . */
1802 ipw2100_set_scan_options(priv);
1803 ipw2100_start_scan(priv);
1806 exit:
1807 return rc;
1810 /* Called by register_netdev() */
1811 static int ipw2100_net_init(struct net_device *dev)
1813 struct ipw2100_priv *priv = ieee80211_priv(dev);
1814 return ipw2100_up(priv, 1);
1817 static void ipw2100_down(struct ipw2100_priv *priv)
1819 unsigned long flags;
1820 union iwreq_data wrqu = {
1821 .ap_addr = {
1822 .sa_family = ARPHRD_ETHER}
1824 int associated = priv->status & STATUS_ASSOCIATED;
1826 /* Kill the RF switch timer */
1827 if (!priv->stop_rf_kill) {
1828 priv->stop_rf_kill = 1;
1829 cancel_delayed_work(&priv->rf_kill);
1832 /* Kill the firmare hang check timer */
1833 if (!priv->stop_hang_check) {
1834 priv->stop_hang_check = 1;
1835 cancel_delayed_work(&priv->hang_check);
1838 /* Kill any pending resets */
1839 if (priv->status & STATUS_RESET_PENDING)
1840 cancel_delayed_work(&priv->reset_work);
1842 /* Make sure the interrupt is on so that FW commands will be
1843 * processed correctly */
1844 spin_lock_irqsave(&priv->low_lock, flags);
1845 ipw2100_enable_interrupts(priv);
1846 spin_unlock_irqrestore(&priv->low_lock, flags);
1848 if (ipw2100_hw_stop_adapter(priv))
1849 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1850 priv->net_dev->name);
1852 /* Do not disable the interrupt until _after_ we disable
1853 * the adaptor. Otherwise the CARD_DISABLE command will never
1854 * be ack'd by the firmware */
1855 spin_lock_irqsave(&priv->low_lock, flags);
1856 ipw2100_disable_interrupts(priv);
1857 spin_unlock_irqrestore(&priv->low_lock, flags);
1859 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1861 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1862 if (priv->config & CFG_C3_DISABLED) {
1863 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1864 acpi_set_cstate_limit(priv->cstate_limit);
1865 priv->config &= ~CFG_C3_DISABLED;
1867 #endif
1869 /* We have to signal any supplicant if we are disassociating */
1870 if (associated)
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1880 struct ipw2100_priv *priv =
1881 container_of(work, struct ipw2100_priv, reset_work.work);
1882 unsigned long flags;
1883 union iwreq_data wrqu = {
1884 .ap_addr = {
1885 .sa_family = ARPHRD_ETHER}
1887 int associated = priv->status & STATUS_ASSOCIATED;
1889 spin_lock_irqsave(&priv->low_lock, flags);
1890 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891 priv->resets++;
1892 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893 priv->status |= STATUS_SECURITY_UPDATED;
1895 /* Force a power cycle even if interface hasn't been opened
1896 * yet */
1897 cancel_delayed_work(&priv->reset_work);
1898 priv->status |= STATUS_RESET_PENDING;
1899 spin_unlock_irqrestore(&priv->low_lock, flags);
1901 mutex_lock(&priv->action_mutex);
1902 /* stop timed checks so that they don't interfere with reset */
1903 priv->stop_hang_check = 1;
1904 cancel_delayed_work(&priv->hang_check);
1906 /* We have to signal any supplicant if we are disassociating */
1907 if (associated)
1908 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1910 ipw2100_up(priv, 0);
1911 mutex_unlock(&priv->action_mutex);
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919 int ret, len, essid_len;
1920 char essid[IW_ESSID_MAX_SIZE];
1921 u32 txrate;
1922 u32 chan;
1923 char *txratename;
1924 u8 bssid[ETH_ALEN];
1927 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1928 * an actual MAC of the AP. Seems like FW sets this
1929 * address too late. Read it later and expose through
1930 * /proc or schedule a later task to query and update
1933 essid_len = IW_ESSID_MAX_SIZE;
1934 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1935 essid, &essid_len);
1936 if (ret) {
1937 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1938 __LINE__);
1939 return;
1942 len = sizeof(u32);
1943 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1944 if (ret) {
1945 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1946 __LINE__);
1947 return;
1950 len = sizeof(u32);
1951 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1952 if (ret) {
1953 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954 __LINE__);
1955 return;
1957 len = ETH_ALEN;
1958 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1959 if (ret) {
1960 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1961 __LINE__);
1962 return;
1964 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1966 switch (txrate) {
1967 case TX_RATE_1_MBIT:
1968 txratename = "1Mbps";
1969 break;
1970 case TX_RATE_2_MBIT:
1971 txratename = "2Mbsp";
1972 break;
1973 case TX_RATE_5_5_MBIT:
1974 txratename = "5.5Mbps";
1975 break;
1976 case TX_RATE_11_MBIT:
1977 txratename = "11Mbps";
1978 break;
1979 default:
1980 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1981 txratename = "unknown rate";
1982 break;
1985 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1986 MAC_FMT ")\n",
1987 priv->net_dev->name, escape_essid(essid, essid_len),
1988 txratename, chan, MAC_ARG(bssid));
1990 /* now we copy read ssid into dev */
1991 if (!(priv->config & CFG_STATIC_ESSID)) {
1992 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1993 memcpy(priv->essid, essid, priv->essid_len);
1995 priv->channel = chan;
1996 memcpy(priv->bssid, bssid, ETH_ALEN);
1998 priv->status |= STATUS_ASSOCIATING;
1999 priv->connect_start = get_seconds();
2001 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2004 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2005 int length, int batch_mode)
2007 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2008 struct host_command cmd = {
2009 .host_command = SSID,
2010 .host_command_sequence = 0,
2011 .host_command_length = ssid_len
2013 int err;
2015 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2017 if (ssid_len)
2018 memcpy(cmd.host_command_parameters, essid, ssid_len);
2020 if (!batch_mode) {
2021 err = ipw2100_disable_adapter(priv);
2022 if (err)
2023 return err;
2026 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2027 * disable auto association -- so we cheat by setting a bogus SSID */
2028 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2029 int i;
2030 u8 *bogus = (u8 *) cmd.host_command_parameters;
2031 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2032 bogus[i] = 0x18 + i;
2033 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2036 /* NOTE: We always send the SSID command even if the provided ESSID is
2037 * the same as what we currently think is set. */
2039 err = ipw2100_hw_send_command(priv, &cmd);
2040 if (!err) {
2041 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2042 memcpy(priv->essid, essid, ssid_len);
2043 priv->essid_len = ssid_len;
2046 if (!batch_mode) {
2047 if (ipw2100_enable_adapter(priv))
2048 err = -EIO;
2051 return err;
2054 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2056 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2057 "disassociated: '%s' " MAC_FMT " \n",
2058 escape_essid(priv->essid, priv->essid_len),
2059 MAC_ARG(priv->bssid));
2061 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2063 if (priv->status & STATUS_STOPPING) {
2064 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2065 return;
2068 memset(priv->bssid, 0, ETH_ALEN);
2069 memset(priv->ieee->bssid, 0, ETH_ALEN);
2071 netif_carrier_off(priv->net_dev);
2072 netif_stop_queue(priv->net_dev);
2074 if (!(priv->status & STATUS_RUNNING))
2075 return;
2077 if (priv->status & STATUS_SECURITY_UPDATED)
2078 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2080 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2083 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2085 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2086 priv->net_dev->name);
2088 /* RF_KILL is now enabled (else we wouldn't be here) */
2089 priv->status |= STATUS_RF_KILL_HW;
2091 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2092 if (priv->config & CFG_C3_DISABLED) {
2093 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2094 acpi_set_cstate_limit(priv->cstate_limit);
2095 priv->config &= ~CFG_C3_DISABLED;
2097 #endif
2099 /* Make sure the RF Kill check timer is running */
2100 priv->stop_rf_kill = 0;
2101 cancel_delayed_work(&priv->rf_kill);
2102 queue_delayed_work(priv->workqueue, &priv->rf_kill, round_jiffies(HZ));
2105 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2107 IPW_DEBUG_SCAN("scan complete\n");
2108 /* Age the scan results... */
2109 priv->ieee->scans++;
2110 priv->status &= ~STATUS_SCANNING;
2113 #ifdef CONFIG_IPW2100_DEBUG
2114 #define IPW2100_HANDLER(v, f) { v, f, # v }
2115 struct ipw2100_status_indicator {
2116 int status;
2117 void (*cb) (struct ipw2100_priv * priv, u32 status);
2118 char *name;
2120 #else
2121 #define IPW2100_HANDLER(v, f) { v, f }
2122 struct ipw2100_status_indicator {
2123 int status;
2124 void (*cb) (struct ipw2100_priv * priv, u32 status);
2126 #endif /* CONFIG_IPW2100_DEBUG */
2128 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2130 IPW_DEBUG_SCAN("Scanning...\n");
2131 priv->status |= STATUS_SCANNING;
2134 static const struct ipw2100_status_indicator status_handlers[] = {
2135 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2136 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2137 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2139 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2140 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2141 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2143 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2144 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2145 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2146 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2147 IPW2100_HANDLER(-1, NULL)
2150 static void isr_status_change(struct ipw2100_priv *priv, int status)
2152 int i;
2154 if (status == IPW_STATE_SCANNING &&
2155 priv->status & STATUS_ASSOCIATED &&
2156 !(priv->status & STATUS_SCANNING)) {
2157 IPW_DEBUG_INFO("Scan detected while associated, with "
2158 "no scan request. Restarting firmware.\n");
2160 /* Wake up any sleeping jobs */
2161 schedule_reset(priv);
2164 for (i = 0; status_handlers[i].status != -1; i++) {
2165 if (status == status_handlers[i].status) {
2166 IPW_DEBUG_NOTIF("Status change: %s\n",
2167 status_handlers[i].name);
2168 if (status_handlers[i].cb)
2169 status_handlers[i].cb(priv, status);
2170 priv->wstats.status = status;
2171 return;
2175 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2178 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2179 struct ipw2100_cmd_header *cmd)
2181 #ifdef CONFIG_IPW2100_DEBUG
2182 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2183 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2184 command_types[cmd->host_command_reg],
2185 cmd->host_command_reg);
2187 #endif
2188 if (cmd->host_command_reg == HOST_COMPLETE)
2189 priv->status |= STATUS_ENABLED;
2191 if (cmd->host_command_reg == CARD_DISABLE)
2192 priv->status &= ~STATUS_ENABLED;
2194 priv->status &= ~STATUS_CMD_ACTIVE;
2196 wake_up_interruptible(&priv->wait_command_queue);
2199 #ifdef CONFIG_IPW2100_DEBUG
2200 static const char *frame_types[] = {
2201 "COMMAND_STATUS_VAL",
2202 "STATUS_CHANGE_VAL",
2203 "P80211_DATA_VAL",
2204 "P8023_DATA_VAL",
2205 "HOST_NOTIFICATION_VAL"
2207 #endif
2209 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2210 struct ipw2100_rx_packet *packet)
2212 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2213 if (!packet->skb)
2214 return -ENOMEM;
2216 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2217 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2218 sizeof(struct ipw2100_rx),
2219 PCI_DMA_FROMDEVICE);
2220 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2221 * dma_addr */
2223 return 0;
2226 #define SEARCH_ERROR 0xffffffff
2227 #define SEARCH_FAIL 0xfffffffe
2228 #define SEARCH_SUCCESS 0xfffffff0
2229 #define SEARCH_DISCARD 0
2230 #define SEARCH_SNAPSHOT 1
2232 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2233 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2235 int i;
2236 if (!priv->snapshot[0])
2237 return;
2238 for (i = 0; i < 0x30; i++)
2239 kfree(priv->snapshot[i]);
2240 priv->snapshot[0] = NULL;
2243 #ifdef IPW2100_DEBUG_C3
2244 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2246 int i;
2247 if (priv->snapshot[0])
2248 return 1;
2249 for (i = 0; i < 0x30; i++) {
2250 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2251 if (!priv->snapshot[i]) {
2252 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2253 "buffer %d\n", priv->net_dev->name, i);
2254 while (i > 0)
2255 kfree(priv->snapshot[--i]);
2256 priv->snapshot[0] = NULL;
2257 return 0;
2261 return 1;
2264 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2265 size_t len, int mode)
2267 u32 i, j;
2268 u32 tmp;
2269 u8 *s, *d;
2270 u32 ret;
2272 s = in_buf;
2273 if (mode == SEARCH_SNAPSHOT) {
2274 if (!ipw2100_snapshot_alloc(priv))
2275 mode = SEARCH_DISCARD;
2278 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2279 read_nic_dword(priv->net_dev, i, &tmp);
2280 if (mode == SEARCH_SNAPSHOT)
2281 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2282 if (ret == SEARCH_FAIL) {
2283 d = (u8 *) & tmp;
2284 for (j = 0; j < 4; j++) {
2285 if (*s != *d) {
2286 s = in_buf;
2287 continue;
2290 s++;
2291 d++;
2293 if ((s - in_buf) == len)
2294 ret = (i + j) - len + 1;
2296 } else if (mode == SEARCH_DISCARD)
2297 return ret;
2300 return ret;
2302 #endif
2306 * 0) Disconnect the SKB from the firmware (just unmap)
2307 * 1) Pack the ETH header into the SKB
2308 * 2) Pass the SKB to the network stack
2310 * When packet is provided by the firmware, it contains the following:
2312 * . ieee80211_hdr
2313 * . ieee80211_snap_hdr
2315 * The size of the constructed ethernet
2318 #ifdef IPW2100_RX_DEBUG
2319 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2320 #endif
2322 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2324 #ifdef IPW2100_DEBUG_C3
2325 struct ipw2100_status *status = &priv->status_queue.drv[i];
2326 u32 match, reg;
2327 int j;
2328 #endif
2329 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2330 int limit;
2331 #endif
2333 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2334 i * sizeof(struct ipw2100_status));
2336 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2337 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2338 limit = acpi_get_cstate_limit();
2339 if (limit > 2) {
2340 priv->cstate_limit = limit;
2341 acpi_set_cstate_limit(2);
2342 priv->config |= CFG_C3_DISABLED;
2344 #endif
2346 #ifdef IPW2100_DEBUG_C3
2347 /* Halt the fimrware so we can get a good image */
2348 write_register(priv->net_dev, IPW_REG_RESET_REG,
2349 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2350 j = 5;
2351 do {
2352 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2353 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2355 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2356 break;
2357 } while (j--);
2359 match = ipw2100_match_buf(priv, (u8 *) status,
2360 sizeof(struct ipw2100_status),
2361 SEARCH_SNAPSHOT);
2362 if (match < SEARCH_SUCCESS)
2363 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2364 "offset 0x%06X, length %d:\n",
2365 priv->net_dev->name, match,
2366 sizeof(struct ipw2100_status));
2367 else
2368 IPW_DEBUG_INFO("%s: No DMA status match in "
2369 "Firmware.\n", priv->net_dev->name);
2371 printk_buf((u8 *) priv->status_queue.drv,
2372 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2373 #endif
2375 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2376 priv->ieee->stats.rx_errors++;
2377 schedule_reset(priv);
2380 static void isr_rx(struct ipw2100_priv *priv, int i,
2381 struct ieee80211_rx_stats *stats)
2383 struct ipw2100_status *status = &priv->status_queue.drv[i];
2384 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2386 IPW_DEBUG_RX("Handler...\n");
2388 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2389 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2390 " Dropping.\n",
2391 priv->net_dev->name,
2392 status->frame_size, skb_tailroom(packet->skb));
2393 priv->ieee->stats.rx_errors++;
2394 return;
2397 if (unlikely(!netif_running(priv->net_dev))) {
2398 priv->ieee->stats.rx_errors++;
2399 priv->wstats.discard.misc++;
2400 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2401 return;
2404 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2405 !(priv->status & STATUS_ASSOCIATED))) {
2406 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2407 priv->wstats.discard.misc++;
2408 return;
2411 pci_unmap_single(priv->pci_dev,
2412 packet->dma_addr,
2413 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2415 skb_put(packet->skb, status->frame_size);
2417 #ifdef IPW2100_RX_DEBUG
2418 /* Make a copy of the frame so we can dump it to the logs if
2419 * ieee80211_rx fails */
2420 skb_copy_from_linear_data(packet->skb, packet_data,
2421 min_t(u32, status->frame_size,
2422 IPW_RX_NIC_BUFFER_LENGTH));
2423 #endif
2425 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2426 #ifdef IPW2100_RX_DEBUG
2427 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2428 priv->net_dev->name);
2429 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2430 #endif
2431 priv->ieee->stats.rx_errors++;
2433 /* ieee80211_rx failed, so it didn't free the SKB */
2434 dev_kfree_skb_any(packet->skb);
2435 packet->skb = NULL;
2438 /* We need to allocate a new SKB and attach it to the RDB. */
2439 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2440 printk(KERN_WARNING DRV_NAME ": "
2441 "%s: Unable to allocate SKB onto RBD ring - disabling "
2442 "adapter.\n", priv->net_dev->name);
2443 /* TODO: schedule adapter shutdown */
2444 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2447 /* Update the RDB entry */
2448 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2451 #ifdef CONFIG_IPW2100_MONITOR
2453 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2454 struct ieee80211_rx_stats *stats)
2456 struct ipw2100_status *status = &priv->status_queue.drv[i];
2457 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2459 /* Magic struct that slots into the radiotap header -- no reason
2460 * to build this manually element by element, we can write it much
2461 * more efficiently than we can parse it. ORDER MATTERS HERE */
2462 struct ipw_rt_hdr {
2463 struct ieee80211_radiotap_header rt_hdr;
2464 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2465 } *ipw_rt;
2467 IPW_DEBUG_RX("Handler...\n");
2469 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2470 sizeof(struct ipw_rt_hdr))) {
2471 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472 " Dropping.\n",
2473 priv->net_dev->name,
2474 status->frame_size,
2475 skb_tailroom(packet->skb));
2476 priv->ieee->stats.rx_errors++;
2477 return;
2480 if (unlikely(!netif_running(priv->net_dev))) {
2481 priv->ieee->stats.rx_errors++;
2482 priv->wstats.discard.misc++;
2483 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2484 return;
2487 if (unlikely(priv->config & CFG_CRC_CHECK &&
2488 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2489 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2490 priv->ieee->stats.rx_errors++;
2491 return;
2494 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2495 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2497 packet->skb->data, status->frame_size);
2499 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2501 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2502 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2503 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2505 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2507 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2509 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2511 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2512 priv->ieee->stats.rx_errors++;
2514 /* ieee80211_rx failed, so it didn't free the SKB */
2515 dev_kfree_skb_any(packet->skb);
2516 packet->skb = NULL;
2519 /* We need to allocate a new SKB and attach it to the RDB. */
2520 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2521 IPW_DEBUG_WARNING(
2522 "%s: Unable to allocate SKB onto RBD ring - disabling "
2523 "adapter.\n", priv->net_dev->name);
2524 /* TODO: schedule adapter shutdown */
2525 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2528 /* Update the RDB entry */
2529 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2532 #endif
2534 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2536 struct ipw2100_status *status = &priv->status_queue.drv[i];
2537 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2538 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2540 switch (frame_type) {
2541 case COMMAND_STATUS_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.command));
2543 case STATUS_CHANGE_VAL:
2544 return (status->frame_size != sizeof(u->rx_data.status));
2545 case HOST_NOTIFICATION_VAL:
2546 return (status->frame_size < sizeof(u->rx_data.notification));
2547 case P80211_DATA_VAL:
2548 case P8023_DATA_VAL:
2549 #ifdef CONFIG_IPW2100_MONITOR
2550 return 0;
2551 #else
2552 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2553 case IEEE80211_FTYPE_MGMT:
2554 case IEEE80211_FTYPE_CTL:
2555 return 0;
2556 case IEEE80211_FTYPE_DATA:
2557 return (status->frame_size >
2558 IPW_MAX_802_11_PAYLOAD_LENGTH);
2560 #endif
2563 return 1;
2567 * ipw2100 interrupts are disabled at this point, and the ISR
2568 * is the only code that calls this method. So, we do not need
2569 * to play with any locks.
2571 * RX Queue works as follows:
2573 * Read index - firmware places packet in entry identified by the
2574 * Read index and advances Read index. In this manner,
2575 * Read index will always point to the next packet to
2576 * be filled--but not yet valid.
2578 * Write index - driver fills this entry with an unused RBD entry.
2579 * This entry has not filled by the firmware yet.
2581 * In between the W and R indexes are the RBDs that have been received
2582 * but not yet processed.
2584 * The process of handling packets will start at WRITE + 1 and advance
2585 * until it reaches the READ index.
2587 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2590 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2592 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2593 struct ipw2100_status_queue *sq = &priv->status_queue;
2594 struct ipw2100_rx_packet *packet;
2595 u16 frame_type;
2596 u32 r, w, i, s;
2597 struct ipw2100_rx *u;
2598 struct ieee80211_rx_stats stats = {
2599 .mac_time = jiffies,
2602 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2603 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2605 if (r >= rxq->entries) {
2606 IPW_DEBUG_RX("exit - bad read index\n");
2607 return;
2610 i = (rxq->next + 1) % rxq->entries;
2611 s = i;
2612 while (i != r) {
2613 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2614 r, rxq->next, i); */
2616 packet = &priv->rx_buffers[i];
2618 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2619 * the correct values */
2620 pci_dma_sync_single_for_cpu(priv->pci_dev,
2621 sq->nic +
2622 sizeof(struct ipw2100_status) * i,
2623 sizeof(struct ipw2100_status),
2624 PCI_DMA_FROMDEVICE);
2626 /* Sync the DMA for the RX buffer so CPU is sure to get
2627 * the correct values */
2628 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2629 sizeof(struct ipw2100_rx),
2630 PCI_DMA_FROMDEVICE);
2632 if (unlikely(ipw2100_corruption_check(priv, i))) {
2633 ipw2100_corruption_detected(priv, i);
2634 goto increment;
2637 u = packet->rxp;
2638 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2639 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2640 stats.len = sq->drv[i].frame_size;
2642 stats.mask = 0;
2643 if (stats.rssi != 0)
2644 stats.mask |= IEEE80211_STATMASK_RSSI;
2645 stats.freq = IEEE80211_24GHZ_BAND;
2647 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2648 priv->net_dev->name, frame_types[frame_type],
2649 stats.len);
2651 switch (frame_type) {
2652 case COMMAND_STATUS_VAL:
2653 /* Reset Rx watchdog */
2654 isr_rx_complete_command(priv, &u->rx_data.command);
2655 break;
2657 case STATUS_CHANGE_VAL:
2658 isr_status_change(priv, u->rx_data.status);
2659 break;
2661 case P80211_DATA_VAL:
2662 case P8023_DATA_VAL:
2663 #ifdef CONFIG_IPW2100_MONITOR
2664 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2665 isr_rx_monitor(priv, i, &stats);
2666 break;
2668 #endif
2669 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2670 break;
2671 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2672 case IEEE80211_FTYPE_MGMT:
2673 ieee80211_rx_mgt(priv->ieee,
2674 &u->rx_data.header, &stats);
2675 break;
2677 case IEEE80211_FTYPE_CTL:
2678 break;
2680 case IEEE80211_FTYPE_DATA:
2681 isr_rx(priv, i, &stats);
2682 break;
2685 break;
2688 increment:
2689 /* clear status field associated with this RBD */
2690 rxq->drv[i].status.info.field = 0;
2692 i = (i + 1) % rxq->entries;
2695 if (i != s) {
2696 /* backtrack one entry, wrapping to end if at 0 */
2697 rxq->next = (i ? i : rxq->entries) - 1;
2699 write_register(priv->net_dev,
2700 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2705 * __ipw2100_tx_process
2707 * This routine will determine whether the next packet on
2708 * the fw_pend_list has been processed by the firmware yet.
2710 * If not, then it does nothing and returns.
2712 * If so, then it removes the item from the fw_pend_list, frees
2713 * any associated storage, and places the item back on the
2714 * free list of its source (either msg_free_list or tx_free_list)
2716 * TX Queue works as follows:
2718 * Read index - points to the next TBD that the firmware will
2719 * process. The firmware will read the data, and once
2720 * done processing, it will advance the Read index.
2722 * Write index - driver fills this entry with an constructed TBD
2723 * entry. The Write index is not advanced until the
2724 * packet has been configured.
2726 * In between the W and R indexes are the TBDs that have NOT been
2727 * processed. Lagging behind the R index are packets that have
2728 * been processed but have not been freed by the driver.
2730 * In order to free old storage, an internal index will be maintained
2731 * that points to the next packet to be freed. When all used
2732 * packets have been freed, the oldest index will be the same as the
2733 * firmware's read index.
2735 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2737 * Because the TBD structure can not contain arbitrary data, the
2738 * driver must keep an internal queue of cached allocations such that
2739 * it can put that data back into the tx_free_list and msg_free_list
2740 * for use by future command and data packets.
2743 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2745 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2746 struct ipw2100_bd *tbd;
2747 struct list_head *element;
2748 struct ipw2100_tx_packet *packet;
2749 int descriptors_used;
2750 int e, i;
2751 u32 r, w, frag_num = 0;
2753 if (list_empty(&priv->fw_pend_list))
2754 return 0;
2756 element = priv->fw_pend_list.next;
2758 packet = list_entry(element, struct ipw2100_tx_packet, list);
2759 tbd = &txq->drv[packet->index];
2761 /* Determine how many TBD entries must be finished... */
2762 switch (packet->type) {
2763 case COMMAND:
2764 /* COMMAND uses only one slot; don't advance */
2765 descriptors_used = 1;
2766 e = txq->oldest;
2767 break;
2769 case DATA:
2770 /* DATA uses two slots; advance and loop position. */
2771 descriptors_used = tbd->num_fragments;
2772 frag_num = tbd->num_fragments - 1;
2773 e = txq->oldest + frag_num;
2774 e %= txq->entries;
2775 break;
2777 default:
2778 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2779 priv->net_dev->name);
2780 return 0;
2783 /* if the last TBD is not done by NIC yet, then packet is
2784 * not ready to be released.
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2788 &r);
2789 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2790 &w);
2791 if (w != txq->next)
2792 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2793 priv->net_dev->name);
2796 * txq->next is the index of the last packet written txq->oldest is
2797 * the index of the r is the index of the next packet to be read by
2798 * firmware
2802 * Quick graphic to help you visualize the following
2803 * if / else statement
2805 * ===>| s---->|===============
2806 * e>|
2807 * | a | b | c | d | e | f | g | h | i | j | k | l
2808 * r---->|
2811 * w - updated by driver
2812 * r - updated by firmware
2813 * s - start of oldest BD entry (txq->oldest)
2814 * e - end of oldest BD entry
2817 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2818 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2819 return 0;
2822 list_del(element);
2823 DEC_STAT(&priv->fw_pend_stat);
2825 #ifdef CONFIG_IPW2100_DEBUG
2827 int i = txq->oldest;
2828 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2829 &txq->drv[i],
2830 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2831 txq->drv[i].host_addr, txq->drv[i].buf_length);
2833 if (packet->type == DATA) {
2834 i = (i + 1) % txq->entries;
2836 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2837 &txq->drv[i],
2838 (u32) (txq->nic + i *
2839 sizeof(struct ipw2100_bd)),
2840 (u32) txq->drv[i].host_addr,
2841 txq->drv[i].buf_length);
2844 #endif
2846 switch (packet->type) {
2847 case DATA:
2848 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2849 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2850 "Expecting DATA TBD but pulled "
2851 "something else: ids %d=%d.\n",
2852 priv->net_dev->name, txq->oldest, packet->index);
2854 /* DATA packet; we have to unmap and free the SKB */
2855 for (i = 0; i < frag_num; i++) {
2856 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2858 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2859 (packet->index + 1 + i) % txq->entries,
2860 tbd->host_addr, tbd->buf_length);
2862 pci_unmap_single(priv->pci_dev,
2863 tbd->host_addr,
2864 tbd->buf_length, PCI_DMA_TODEVICE);
2867 ieee80211_txb_free(packet->info.d_struct.txb);
2868 packet->info.d_struct.txb = NULL;
2870 list_add_tail(element, &priv->tx_free_list);
2871 INC_STAT(&priv->tx_free_stat);
2873 /* We have a free slot in the Tx queue, so wake up the
2874 * transmit layer if it is stopped. */
2875 if (priv->status & STATUS_ASSOCIATED)
2876 netif_wake_queue(priv->net_dev);
2878 /* A packet was processed by the hardware, so update the
2879 * watchdog */
2880 priv->net_dev->trans_start = jiffies;
2882 break;
2884 case COMMAND:
2885 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2886 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2887 "Expecting COMMAND TBD but pulled "
2888 "something else: ids %d=%d.\n",
2889 priv->net_dev->name, txq->oldest, packet->index);
2891 #ifdef CONFIG_IPW2100_DEBUG
2892 if (packet->info.c_struct.cmd->host_command_reg <
2893 ARRAY_SIZE(command_types))
2894 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2895 command_types[packet->info.c_struct.cmd->
2896 host_command_reg],
2897 packet->info.c_struct.cmd->
2898 host_command_reg,
2899 packet->info.c_struct.cmd->cmd_status_reg);
2900 #endif
2902 list_add_tail(element, &priv->msg_free_list);
2903 INC_STAT(&priv->msg_free_stat);
2904 break;
2907 /* advance oldest used TBD pointer to start of next entry */
2908 txq->oldest = (e + 1) % txq->entries;
2909 /* increase available TBDs number */
2910 txq->available += descriptors_used;
2911 SET_STAT(&priv->txq_stat, txq->available);
2913 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2914 jiffies - packet->jiffy_start);
2916 return (!list_empty(&priv->fw_pend_list));
2919 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2921 int i = 0;
2923 while (__ipw2100_tx_process(priv) && i < 200)
2924 i++;
2926 if (i == 200) {
2927 printk(KERN_WARNING DRV_NAME ": "
2928 "%s: Driver is running slow (%d iters).\n",
2929 priv->net_dev->name, i);
2933 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2935 struct list_head *element;
2936 struct ipw2100_tx_packet *packet;
2937 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2938 struct ipw2100_bd *tbd;
2939 int next = txq->next;
2941 while (!list_empty(&priv->msg_pend_list)) {
2942 /* if there isn't enough space in TBD queue, then
2943 * don't stuff a new one in.
2944 * NOTE: 3 are needed as a command will take one,
2945 * and there is a minimum of 2 that must be
2946 * maintained between the r and w indexes
2948 if (txq->available <= 3) {
2949 IPW_DEBUG_TX("no room in tx_queue\n");
2950 break;
2953 element = priv->msg_pend_list.next;
2954 list_del(element);
2955 DEC_STAT(&priv->msg_pend_stat);
2957 packet = list_entry(element, struct ipw2100_tx_packet, list);
2959 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2960 &txq->drv[txq->next],
2961 (void *)(txq->nic + txq->next *
2962 sizeof(struct ipw2100_bd)));
2964 packet->index = txq->next;
2966 tbd = &txq->drv[txq->next];
2968 /* initialize TBD */
2969 tbd->host_addr = packet->info.c_struct.cmd_phys;
2970 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2971 /* not marking number of fragments causes problems
2972 * with f/w debug version */
2973 tbd->num_fragments = 1;
2974 tbd->status.info.field =
2975 IPW_BD_STATUS_TX_FRAME_COMMAND |
2976 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2978 /* update TBD queue counters */
2979 txq->next++;
2980 txq->next %= txq->entries;
2981 txq->available--;
2982 DEC_STAT(&priv->txq_stat);
2984 list_add_tail(element, &priv->fw_pend_list);
2985 INC_STAT(&priv->fw_pend_stat);
2988 if (txq->next != next) {
2989 /* kick off the DMA by notifying firmware the
2990 * write index has moved; make sure TBD stores are sync'd */
2991 wmb();
2992 write_register(priv->net_dev,
2993 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2994 txq->next);
2999 * ipw2100_tx_send_data
3002 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3004 struct list_head *element;
3005 struct ipw2100_tx_packet *packet;
3006 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3007 struct ipw2100_bd *tbd;
3008 int next = txq->next;
3009 int i = 0;
3010 struct ipw2100_data_header *ipw_hdr;
3011 struct ieee80211_hdr_3addr *hdr;
3013 while (!list_empty(&priv->tx_pend_list)) {
3014 /* if there isn't enough space in TBD queue, then
3015 * don't stuff a new one in.
3016 * NOTE: 4 are needed as a data will take two,
3017 * and there is a minimum of 2 that must be
3018 * maintained between the r and w indexes
3020 element = priv->tx_pend_list.next;
3021 packet = list_entry(element, struct ipw2100_tx_packet, list);
3023 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3024 IPW_MAX_BDS)) {
3025 /* TODO: Support merging buffers if more than
3026 * IPW_MAX_BDS are used */
3027 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3028 "Increase fragmentation level.\n",
3029 priv->net_dev->name);
3032 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3033 IPW_DEBUG_TX("no room in tx_queue\n");
3034 break;
3037 list_del(element);
3038 DEC_STAT(&priv->tx_pend_stat);
3040 tbd = &txq->drv[txq->next];
3042 packet->index = txq->next;
3044 ipw_hdr = packet->info.d_struct.data;
3045 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3046 fragments[0]->data;
3048 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3049 /* To DS: Addr1 = BSSID, Addr2 = SA,
3050 Addr3 = DA */
3051 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3053 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3054 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3055 Addr3 = BSSID */
3056 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3057 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3060 ipw_hdr->host_command_reg = SEND;
3061 ipw_hdr->host_command_reg1 = 0;
3063 /* For now we only support host based encryption */
3064 ipw_hdr->needs_encryption = 0;
3065 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3066 if (packet->info.d_struct.txb->nr_frags > 1)
3067 ipw_hdr->fragment_size =
3068 packet->info.d_struct.txb->frag_size -
3069 IEEE80211_3ADDR_LEN;
3070 else
3071 ipw_hdr->fragment_size = 0;
3073 tbd->host_addr = packet->info.d_struct.data_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_data_header);
3075 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3076 tbd->status.info.field =
3077 IPW_BD_STATUS_TX_FRAME_802_3 |
3078 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3079 txq->next++;
3080 txq->next %= txq->entries;
3082 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3083 packet->index, tbd->host_addr, tbd->buf_length);
3084 #ifdef CONFIG_IPW2100_DEBUG
3085 if (packet->info.d_struct.txb->nr_frags > 1)
3086 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3087 packet->info.d_struct.txb->nr_frags);
3088 #endif
3090 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3091 tbd = &txq->drv[txq->next];
3092 if (i == packet->info.d_struct.txb->nr_frags - 1)
3093 tbd->status.info.field =
3094 IPW_BD_STATUS_TX_FRAME_802_3 |
3095 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3096 else
3097 tbd->status.info.field =
3098 IPW_BD_STATUS_TX_FRAME_802_3 |
3099 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3101 tbd->buf_length = packet->info.d_struct.txb->
3102 fragments[i]->len - IEEE80211_3ADDR_LEN;
3104 tbd->host_addr = pci_map_single(priv->pci_dev,
3105 packet->info.d_struct.
3106 txb->fragments[i]->
3107 data +
3108 IEEE80211_3ADDR_LEN,
3109 tbd->buf_length,
3110 PCI_DMA_TODEVICE);
3112 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3113 txq->next, tbd->host_addr,
3114 tbd->buf_length);
3116 pci_dma_sync_single_for_device(priv->pci_dev,
3117 tbd->host_addr,
3118 tbd->buf_length,
3119 PCI_DMA_TODEVICE);
3121 txq->next++;
3122 txq->next %= txq->entries;
3125 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3126 SET_STAT(&priv->txq_stat, txq->available);
3128 list_add_tail(element, &priv->fw_pend_list);
3129 INC_STAT(&priv->fw_pend_stat);
3132 if (txq->next != next) {
3133 /* kick off the DMA by notifying firmware the
3134 * write index has moved; make sure TBD stores are sync'd */
3135 write_register(priv->net_dev,
3136 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3137 txq->next);
3139 return;
3142 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3144 struct net_device *dev = priv->net_dev;
3145 unsigned long flags;
3146 u32 inta, tmp;
3148 spin_lock_irqsave(&priv->low_lock, flags);
3149 ipw2100_disable_interrupts(priv);
3151 read_register(dev, IPW_REG_INTA, &inta);
3153 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3154 (unsigned long)inta & IPW_INTERRUPT_MASK);
3156 priv->in_isr++;
3157 priv->interrupts++;
3159 /* We do not loop and keep polling for more interrupts as this
3160 * is frowned upon and doesn't play nicely with other potentially
3161 * chained IRQs */
3162 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3163 (unsigned long)inta & IPW_INTERRUPT_MASK);
3165 if (inta & IPW2100_INTA_FATAL_ERROR) {
3166 printk(KERN_WARNING DRV_NAME
3167 ": Fatal interrupt. Scheduling firmware restart.\n");
3168 priv->inta_other++;
3169 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3171 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3172 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3173 priv->net_dev->name, priv->fatal_error);
3175 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3176 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3177 priv->net_dev->name, tmp);
3179 /* Wake up any sleeping jobs */
3180 schedule_reset(priv);
3183 if (inta & IPW2100_INTA_PARITY_ERROR) {
3184 printk(KERN_ERR DRV_NAME
3185 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3186 priv->inta_other++;
3187 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3190 if (inta & IPW2100_INTA_RX_TRANSFER) {
3191 IPW_DEBUG_ISR("RX interrupt\n");
3193 priv->rx_interrupts++;
3195 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3197 __ipw2100_rx_process(priv);
3198 __ipw2100_tx_complete(priv);
3201 if (inta & IPW2100_INTA_TX_TRANSFER) {
3202 IPW_DEBUG_ISR("TX interrupt\n");
3204 priv->tx_interrupts++;
3206 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3208 __ipw2100_tx_complete(priv);
3209 ipw2100_tx_send_commands(priv);
3210 ipw2100_tx_send_data(priv);
3213 if (inta & IPW2100_INTA_TX_COMPLETE) {
3214 IPW_DEBUG_ISR("TX complete\n");
3215 priv->inta_other++;
3216 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3218 __ipw2100_tx_complete(priv);
3221 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3222 /* ipw2100_handle_event(dev); */
3223 priv->inta_other++;
3224 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3227 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3228 IPW_DEBUG_ISR("FW init done interrupt\n");
3229 priv->inta_other++;
3231 read_register(dev, IPW_REG_INTA, &tmp);
3232 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3233 IPW2100_INTA_PARITY_ERROR)) {
3234 write_register(dev, IPW_REG_INTA,
3235 IPW2100_INTA_FATAL_ERROR |
3236 IPW2100_INTA_PARITY_ERROR);
3239 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3242 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3243 IPW_DEBUG_ISR("Status change interrupt\n");
3244 priv->inta_other++;
3245 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3248 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3249 IPW_DEBUG_ISR("slave host mode interrupt\n");
3250 priv->inta_other++;
3251 write_register(dev, IPW_REG_INTA,
3252 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3255 priv->in_isr--;
3256 ipw2100_enable_interrupts(priv);
3258 spin_unlock_irqrestore(&priv->low_lock, flags);
3260 IPW_DEBUG_ISR("exit\n");
3263 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3265 struct ipw2100_priv *priv = data;
3266 u32 inta, inta_mask;
3268 if (!data)
3269 return IRQ_NONE;
3271 spin_lock(&priv->low_lock);
3273 /* We check to see if we should be ignoring interrupts before
3274 * we touch the hardware. During ucode load if we try and handle
3275 * an interrupt we can cause keyboard problems as well as cause
3276 * the ucode to fail to initialize */
3277 if (!(priv->status & STATUS_INT_ENABLED)) {
3278 /* Shared IRQ */
3279 goto none;
3282 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3283 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3285 if (inta == 0xFFFFFFFF) {
3286 /* Hardware disappeared */
3287 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3288 goto none;
3291 inta &= IPW_INTERRUPT_MASK;
3293 if (!(inta & inta_mask)) {
3294 /* Shared interrupt */
3295 goto none;
3298 /* We disable the hardware interrupt here just to prevent unneeded
3299 * calls to be made. We disable this again within the actual
3300 * work tasklet, so if another part of the code re-enables the
3301 * interrupt, that is fine */
3302 ipw2100_disable_interrupts(priv);
3304 tasklet_schedule(&priv->irq_tasklet);
3305 spin_unlock(&priv->low_lock);
3307 return IRQ_HANDLED;
3308 none:
3309 spin_unlock(&priv->low_lock);
3310 return IRQ_NONE;
3313 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3314 int pri)
3316 struct ipw2100_priv *priv = ieee80211_priv(dev);
3317 struct list_head *element;
3318 struct ipw2100_tx_packet *packet;
3319 unsigned long flags;
3321 spin_lock_irqsave(&priv->low_lock, flags);
3323 if (!(priv->status & STATUS_ASSOCIATED)) {
3324 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3325 priv->ieee->stats.tx_carrier_errors++;
3326 netif_stop_queue(dev);
3327 goto fail_unlock;
3330 if (list_empty(&priv->tx_free_list))
3331 goto fail_unlock;
3333 element = priv->tx_free_list.next;
3334 packet = list_entry(element, struct ipw2100_tx_packet, list);
3336 packet->info.d_struct.txb = txb;
3338 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3339 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3341 packet->jiffy_start = jiffies;
3343 list_del(element);
3344 DEC_STAT(&priv->tx_free_stat);
3346 list_add_tail(element, &priv->tx_pend_list);
3347 INC_STAT(&priv->tx_pend_stat);
3349 ipw2100_tx_send_data(priv);
3351 spin_unlock_irqrestore(&priv->low_lock, flags);
3352 return 0;
3354 fail_unlock:
3355 netif_stop_queue(dev);
3356 spin_unlock_irqrestore(&priv->low_lock, flags);
3357 return 1;
3360 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3362 int i, j, err = -EINVAL;
3363 void *v;
3364 dma_addr_t p;
3366 priv->msg_buffers =
3367 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3368 sizeof(struct
3369 ipw2100_tx_packet),
3370 GFP_KERNEL);
3371 if (!priv->msg_buffers) {
3372 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3373 "buffers.\n", priv->net_dev->name);
3374 return -ENOMEM;
3377 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3378 v = pci_alloc_consistent(priv->pci_dev,
3379 sizeof(struct ipw2100_cmd_header), &p);
3380 if (!v) {
3381 printk(KERN_ERR DRV_NAME ": "
3382 "%s: PCI alloc failed for msg "
3383 "buffers.\n", priv->net_dev->name);
3384 err = -ENOMEM;
3385 break;
3388 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3390 priv->msg_buffers[i].type = COMMAND;
3391 priv->msg_buffers[i].info.c_struct.cmd =
3392 (struct ipw2100_cmd_header *)v;
3393 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3396 if (i == IPW_COMMAND_POOL_SIZE)
3397 return 0;
3399 for (j = 0; j < i; j++) {
3400 pci_free_consistent(priv->pci_dev,
3401 sizeof(struct ipw2100_cmd_header),
3402 priv->msg_buffers[j].info.c_struct.cmd,
3403 priv->msg_buffers[j].info.c_struct.
3404 cmd_phys);
3407 kfree(priv->msg_buffers);
3408 priv->msg_buffers = NULL;
3410 return err;
3413 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3415 int i;
3417 INIT_LIST_HEAD(&priv->msg_free_list);
3418 INIT_LIST_HEAD(&priv->msg_pend_list);
3420 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3421 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3422 SET_STAT(&priv->msg_free_stat, i);
3424 return 0;
3427 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3429 int i;
3431 if (!priv->msg_buffers)
3432 return;
3434 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3435 pci_free_consistent(priv->pci_dev,
3436 sizeof(struct ipw2100_cmd_header),
3437 priv->msg_buffers[i].info.c_struct.cmd,
3438 priv->msg_buffers[i].info.c_struct.
3439 cmd_phys);
3442 kfree(priv->msg_buffers);
3443 priv->msg_buffers = NULL;
3446 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3447 char *buf)
3449 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3450 char *out = buf;
3451 int i, j;
3452 u32 val;
3454 for (i = 0; i < 16; i++) {
3455 out += sprintf(out, "[%08X] ", i * 16);
3456 for (j = 0; j < 16; j += 4) {
3457 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3458 out += sprintf(out, "%08X ", val);
3460 out += sprintf(out, "\n");
3463 return out - buf;
3466 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3468 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3469 char *buf)
3471 struct ipw2100_priv *p = d->driver_data;
3472 return sprintf(buf, "0x%08x\n", (int)p->config);
3475 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3477 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3478 char *buf)
3480 struct ipw2100_priv *p = d->driver_data;
3481 return sprintf(buf, "0x%08x\n", (int)p->status);
3484 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3486 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3487 char *buf)
3489 struct ipw2100_priv *p = d->driver_data;
3490 return sprintf(buf, "0x%08x\n", (int)p->capability);
3493 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3495 #define IPW2100_REG(x) { IPW_ ##x, #x }
3496 static const struct {
3497 u32 addr;
3498 const char *name;
3499 } hw_data[] = {
3500 IPW2100_REG(REG_GP_CNTRL),
3501 IPW2100_REG(REG_GPIO),
3502 IPW2100_REG(REG_INTA),
3503 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3504 #define IPW2100_NIC(x, s) { x, #x, s }
3505 static const struct {
3506 u32 addr;
3507 const char *name;
3508 size_t size;
3509 } nic_data[] = {
3510 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3511 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3512 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3513 static const struct {
3514 u8 index;
3515 const char *name;
3516 const char *desc;
3517 } ord_data[] = {
3518 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3520 "successful Host Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA,
3522 "successful Directed Tx's (MSDU)"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA1,
3524 "successful Directed Tx's (MSDU) @ 1MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA2,
3526 "successful Directed Tx's (MSDU) @ 2MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3528 "successful Directed Tx's (MSDU) @ 5_5MB"),
3529 IPW2100_ORD(STAT_TX_DIR_DATA11,
3530 "successful Directed Tx's (MSDU) @ 11MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3532 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3534 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3536 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3537 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3538 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3539 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3540 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3541 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3542 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3543 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3544 IPW2100_ORD(STAT_TX_ASSN_RESP,
3545 "successful Association response Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN,
3547 "successful Reassociation Tx's"),
3548 IPW2100_ORD(STAT_TX_REASSN_RESP,
3549 "successful Reassociation response Tx's"),
3550 IPW2100_ORD(STAT_TX_PROBE,
3551 "probes successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_PROBE_RESP,
3553 "probe responses successfully transmitted"),
3554 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3555 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3556 IPW2100_ORD(STAT_TX_DISASSN,
3557 "successful Disassociation TX"),
3558 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3559 IPW2100_ORD(STAT_TX_DEAUTH,
3560 "successful Deauthentication TX"),
3561 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3562 "Total successful Tx data bytes"),
3563 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3564 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3566 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3567 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3568 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3569 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3570 "times max tries in a hop failed"),
3571 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3572 "times disassociation failed"),
3573 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3574 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3575 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3578 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3580 "directed packets at 5.5MB"),
3581 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3582 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3584 "nondirected packets at 1MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3586 "nondirected packets at 2MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3588 "nondirected packets at 5.5MB"),
3589 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3590 "nondirected packets at 11MB"),
3591 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3592 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3593 "Rx CTS"),
3594 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3595 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3596 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3597 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3598 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3599 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3600 IPW2100_ORD(STAT_RX_REASSN_RESP,
3601 "Reassociation response Rx's"),
3602 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3603 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3604 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3605 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3606 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3607 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3608 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3609 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3610 "Total rx data bytes received"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3614 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3615 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE1,
3617 "duplicate rx packets at 1MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE2,
3619 "duplicate rx packets at 2MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3621 "duplicate rx packets at 5.5MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE11,
3623 "duplicate rx packets at 11MB"),
3624 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3625 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3626 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3627 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3628 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3629 "rx frames with invalid protocol"),
3630 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3631 IPW2100_ORD(STAT_RX_NO_BUFFER,
3632 "rx frames rejected due to no buffer"),
3633 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3634 "rx frames dropped due to missing fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3636 "rx frames dropped due to non-sequential fragment"),
3637 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3638 "rx frames dropped due to unmatched 1st frame"),
3639 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3640 "rx frames dropped due to uncompleted frame"),
3641 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3642 "ICV errors during decryption"),
3643 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3644 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3645 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3646 "poll response timeouts"),
3647 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3648 "timeouts waiting for last {broad,multi}cast pkt"),
3649 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3650 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3651 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3652 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3653 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3654 "current calculation of % missed beacons"),
3655 IPW2100_ORD(STAT_PERCENT_RETRIES,
3656 "current calculation of % missed tx retries"),
3657 IPW2100_ORD(ASSOCIATED_AP_PTR,
3658 "0 if not associated, else pointer to AP table entry"),
3659 IPW2100_ORD(AVAILABLE_AP_CNT,
3660 "AP's decsribed in the AP table"),
3661 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3662 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3663 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3664 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3665 "failures due to response fail"),
3666 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3667 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3668 IPW2100_ORD(STAT_ROAM_INHIBIT,
3669 "times roaming was inhibited due to activity"),
3670 IPW2100_ORD(RSSI_AT_ASSN,
3671 "RSSI of associated AP at time of association"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE1,
3673 "reassociation: no probe response or TX on hop"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE2,
3675 "reassociation: poor tx/rx quality"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE3,
3677 "reassociation: tx/rx quality (excessive AP load"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE4,
3679 "reassociation: AP RSSI level"),
3680 IPW2100_ORD(STAT_ASSN_CAUSE5,
3681 "reassociations due to load leveling"),
3682 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3683 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3684 "times authentication response failed"),
3685 IPW2100_ORD(STATION_TABLE_CNT,
3686 "entries in association table"),
3687 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3688 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3689 IPW2100_ORD(COUNTRY_CODE,
3690 "IEEE country code as recv'd from beacon"),
3691 IPW2100_ORD(COUNTRY_CHANNELS,
3692 "channels suported by country"),
3693 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3694 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3695 IPW2100_ORD(ANTENNA_DIVERSITY,
3696 "TRUE if antenna diversity is disabled"),
3697 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3698 IPW2100_ORD(OUR_FREQ,
3699 "current radio freq lower digits - channel ID"),
3700 IPW2100_ORD(RTC_TIME, "current RTC time"),
3701 IPW2100_ORD(PORT_TYPE, "operating mode"),
3702 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3703 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3704 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3705 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3706 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3707 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3708 IPW2100_ORD(CAPABILITIES,
3709 "Management frame capability field"),
3710 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3711 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3712 IPW2100_ORD(RTS_THRESHOLD,
3713 "Min packet length for RTS handshaking"),
3714 IPW2100_ORD(INT_MODE, "International mode"),
3715 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3716 "protocol frag threshold"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3718 "EEPROM offset in SRAM"),
3719 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3720 "EEPROM size in SRAM"),
3721 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3722 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3723 "EEPROM IBSS 11b channel set"),
3724 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3725 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3726 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3727 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3728 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3730 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3731 char *buf)
3733 int i;
3734 struct ipw2100_priv *priv = dev_get_drvdata(d);
3735 struct net_device *dev = priv->net_dev;
3736 char *out = buf;
3737 u32 val = 0;
3739 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3741 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3742 read_register(dev, hw_data[i].addr, &val);
3743 out += sprintf(out, "%30s [%08X] : %08X\n",
3744 hw_data[i].name, hw_data[i].addr, val);
3747 return out - buf;
3750 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3752 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3753 char *buf)
3755 struct ipw2100_priv *priv = dev_get_drvdata(d);
3756 struct net_device *dev = priv->net_dev;
3757 char *out = buf;
3758 int i;
3760 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3762 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3763 u8 tmp8;
3764 u16 tmp16;
3765 u32 tmp32;
3767 switch (nic_data[i].size) {
3768 case 1:
3769 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3770 out += sprintf(out, "%30s [%08X] : %02X\n",
3771 nic_data[i].name, nic_data[i].addr,
3772 tmp8);
3773 break;
3774 case 2:
3775 read_nic_word(dev, nic_data[i].addr, &tmp16);
3776 out += sprintf(out, "%30s [%08X] : %04X\n",
3777 nic_data[i].name, nic_data[i].addr,
3778 tmp16);
3779 break;
3780 case 4:
3781 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3782 out += sprintf(out, "%30s [%08X] : %08X\n",
3783 nic_data[i].name, nic_data[i].addr,
3784 tmp32);
3785 break;
3788 return out - buf;
3791 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3793 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3794 char *buf)
3796 struct ipw2100_priv *priv = dev_get_drvdata(d);
3797 struct net_device *dev = priv->net_dev;
3798 static unsigned long loop = 0;
3799 int len = 0;
3800 u32 buffer[4];
3801 int i;
3802 char line[81];
3804 if (loop >= 0x30000)
3805 loop = 0;
3807 /* sysfs provides us PAGE_SIZE buffer */
3808 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3810 if (priv->snapshot[0])
3811 for (i = 0; i < 4; i++)
3812 buffer[i] =
3813 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3814 else
3815 for (i = 0; i < 4; i++)
3816 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3818 if (priv->dump_raw)
3819 len += sprintf(buf + len,
3820 "%c%c%c%c"
3821 "%c%c%c%c"
3822 "%c%c%c%c"
3823 "%c%c%c%c",
3824 ((u8 *) buffer)[0x0],
3825 ((u8 *) buffer)[0x1],
3826 ((u8 *) buffer)[0x2],
3827 ((u8 *) buffer)[0x3],
3828 ((u8 *) buffer)[0x4],
3829 ((u8 *) buffer)[0x5],
3830 ((u8 *) buffer)[0x6],
3831 ((u8 *) buffer)[0x7],
3832 ((u8 *) buffer)[0x8],
3833 ((u8 *) buffer)[0x9],
3834 ((u8 *) buffer)[0xa],
3835 ((u8 *) buffer)[0xb],
3836 ((u8 *) buffer)[0xc],
3837 ((u8 *) buffer)[0xd],
3838 ((u8 *) buffer)[0xe],
3839 ((u8 *) buffer)[0xf]);
3840 else
3841 len += sprintf(buf + len, "%s\n",
3842 snprint_line(line, sizeof(line),
3843 (u8 *) buffer, 16, loop));
3844 loop += 16;
3847 return len;
3850 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3851 const char *buf, size_t count)
3853 struct ipw2100_priv *priv = dev_get_drvdata(d);
3854 struct net_device *dev = priv->net_dev;
3855 const char *p = buf;
3857 (void)dev; /* kill unused-var warning for debug-only code */
3859 if (count < 1)
3860 return count;
3862 if (p[0] == '1' ||
3863 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3864 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3865 dev->name);
3866 priv->dump_raw = 1;
3868 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3869 tolower(p[1]) == 'f')) {
3870 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3871 dev->name);
3872 priv->dump_raw = 0;
3874 } else if (tolower(p[0]) == 'r') {
3875 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3876 ipw2100_snapshot_free(priv);
3878 } else
3879 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3880 "reset = clear memory snapshot\n", dev->name);
3882 return count;
3885 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3887 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3888 char *buf)
3890 struct ipw2100_priv *priv = dev_get_drvdata(d);
3891 u32 val = 0;
3892 int len = 0;
3893 u32 val_len;
3894 static int loop = 0;
3896 if (priv->status & STATUS_RF_KILL_MASK)
3897 return 0;
3899 if (loop >= ARRAY_SIZE(ord_data))
3900 loop = 0;
3902 /* sysfs provides us PAGE_SIZE buffer */
3903 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3904 val_len = sizeof(u32);
3906 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907 &val_len))
3908 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3909 ord_data[loop].index,
3910 ord_data[loop].desc);
3911 else
3912 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913 ord_data[loop].index, val,
3914 ord_data[loop].desc);
3915 loop++;
3918 return len;
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924 char *buf)
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3927 char *out = buf;
3929 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930 priv->interrupts, priv->tx_interrupts,
3931 priv->rx_interrupts, priv->inta_other);
3932 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935 out += sprintf(out, "packet mismatch image: %s\n",
3936 priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3939 return out - buf;
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3946 int err;
3948 if (mode == priv->ieee->iw_mode)
3949 return 0;
3951 err = ipw2100_disable_adapter(priv);
3952 if (err) {
3953 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954 priv->net_dev->name, err);
3955 return err;
3958 switch (mode) {
3959 case IW_MODE_INFRA:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 case IW_MODE_ADHOC:
3963 priv->net_dev->type = ARPHRD_ETHER;
3964 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966 case IW_MODE_MONITOR:
3967 priv->last_mode = priv->ieee->iw_mode;
3968 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969 break;
3970 #endif /* CONFIG_IPW2100_MONITOR */
3973 priv->ieee->iw_mode = mode;
3975 #ifdef CONFIG_PM
3976 /* Indicate ipw2100_download_firmware download firmware
3977 * from disk instead of memory. */
3978 ipw2100_firmware.version = 0;
3979 #endif
3981 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982 priv->reset_backoff = 0;
3983 schedule_reset(priv);
3985 return 0;
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989 char *buf)
3991 struct ipw2100_priv *priv = dev_get_drvdata(d);
3992 int len = 0;
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3996 if (priv->status & STATUS_ASSOCIATED)
3997 len += sprintf(buf + len, "connected: %lu\n",
3998 get_seconds() - priv->connect_start);
3999 else
4000 len += sprintf(buf + len, "not connected\n");
4002 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003 DUMP_VAR(status, "08lx");
4004 DUMP_VAR(config, "08lx");
4005 DUMP_VAR(capability, "08lx");
4007 len +=
4008 sprintf(buf + len, "last_rtc: %lu\n",
4009 (unsigned long)priv->last_rtc);
4011 DUMP_VAR(fatal_error, "d");
4012 DUMP_VAR(stop_hang_check, "d");
4013 DUMP_VAR(stop_rf_kill, "d");
4014 DUMP_VAR(messages_sent, "d");
4016 DUMP_VAR(tx_pend_stat.value, "d");
4017 DUMP_VAR(tx_pend_stat.hi, "d");
4019 DUMP_VAR(tx_free_stat.value, "d");
4020 DUMP_VAR(tx_free_stat.lo, "d");
4022 DUMP_VAR(msg_free_stat.value, "d");
4023 DUMP_VAR(msg_free_stat.lo, "d");
4025 DUMP_VAR(msg_pend_stat.value, "d");
4026 DUMP_VAR(msg_pend_stat.hi, "d");
4028 DUMP_VAR(fw_pend_stat.value, "d");
4029 DUMP_VAR(fw_pend_stat.hi, "d");
4031 DUMP_VAR(txq_stat.value, "d");
4032 DUMP_VAR(txq_stat.lo, "d");
4034 DUMP_VAR(ieee->scans, "d");
4035 DUMP_VAR(reset_backoff, "d");
4037 return len;
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043 char *buf)
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 char essid[IW_ESSID_MAX_SIZE + 1];
4047 u8 bssid[ETH_ALEN];
4048 u32 chan = 0;
4049 char *out = buf;
4050 int length;
4051 int ret;
4053 if (priv->status & STATUS_RF_KILL_MASK)
4054 return 0;
4056 memset(essid, 0, sizeof(essid));
4057 memset(bssid, 0, sizeof(bssid));
4059 length = IW_ESSID_MAX_SIZE;
4060 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061 if (ret)
4062 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063 __LINE__);
4065 length = sizeof(bssid);
4066 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067 bssid, &length);
4068 if (ret)
4069 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070 __LINE__);
4072 length = sizeof(u32);
4073 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074 if (ret)
4075 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076 __LINE__);
4078 out += sprintf(out, "ESSID: %s\n", essid);
4079 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4080 bssid[0], bssid[1], bssid[2],
4081 bssid[3], bssid[4], bssid[5]);
4082 out += sprintf(out, "Channel: %d\n", chan);
4084 return out - buf;
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4092 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4095 static ssize_t store_debug_level(struct device_driver *d,
4096 const char *buf, size_t count)
4098 char *p = (char *)buf;
4099 u32 val;
4101 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102 p++;
4103 if (p[0] == 'x' || p[0] == 'X')
4104 p++;
4105 val = simple_strtoul(p, &p, 16);
4106 } else
4107 val = simple_strtoul(p, &p, 10);
4108 if (p == buf)
4109 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110 else
4111 ipw2100_debug_level = val;
4113 return strnlen(buf, count);
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117 store_debug_level);
4118 #endif /* CONFIG_IPW2100_DEBUG */
4120 static ssize_t show_fatal_error(struct device *d,
4121 struct device_attribute *attr, char *buf)
4123 struct ipw2100_priv *priv = dev_get_drvdata(d);
4124 char *out = buf;
4125 int i;
4127 if (priv->fatal_error)
4128 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129 else
4130 out += sprintf(out, "0\n");
4132 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134 IPW2100_ERROR_QUEUE])
4135 continue;
4137 out += sprintf(out, "%d. 0x%08X\n", i,
4138 priv->fatal_errors[(priv->fatal_index - i) %
4139 IPW2100_ERROR_QUEUE]);
4142 return out - buf;
4145 static ssize_t store_fatal_error(struct device *d,
4146 struct device_attribute *attr, const char *buf,
4147 size_t count)
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 schedule_reset(priv);
4151 return count;
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155 store_fatal_error);
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158 char *buf)
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165 const char *buf, size_t count)
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 struct net_device *dev = priv->net_dev;
4169 char buffer[] = "00000000";
4170 unsigned long len =
4171 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172 unsigned long val;
4173 char *p = buffer;
4175 (void)dev; /* kill unused-var warning for debug-only code */
4177 IPW_DEBUG_INFO("enter\n");
4179 strncpy(buffer, buf, len);
4180 buffer[len] = 0;
4182 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183 p++;
4184 if (p[0] == 'x' || p[0] == 'X')
4185 p++;
4186 val = simple_strtoul(p, &p, 16);
4187 } else
4188 val = simple_strtoul(p, &p, 10);
4189 if (p == buffer) {
4190 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191 } else {
4192 priv->ieee->scan_age = val;
4193 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4196 IPW_DEBUG_INFO("exit\n");
4197 return len;
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203 char *buf)
4205 /* 0 - RF kill not enabled
4206 1 - SW based RF kill active (sysfs)
4207 2 - HW based RF kill active
4208 3 - Both HW and SW baed RF kill active */
4209 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211 (rf_kill_active(priv) ? 0x2 : 0x0);
4212 return sprintf(buf, "%i\n", val);
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4217 if ((disable_radio ? 1 : 0) ==
4218 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219 return 0;
4221 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4222 disable_radio ? "OFF" : "ON");
4224 mutex_lock(&priv->action_mutex);
4226 if (disable_radio) {
4227 priv->status |= STATUS_RF_KILL_SW;
4228 ipw2100_down(priv);
4229 } else {
4230 priv->status &= ~STATUS_RF_KILL_SW;
4231 if (rf_kill_active(priv)) {
4232 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233 "disabled by HW switch\n");
4234 /* Make sure the RF_KILL check timer is running */
4235 priv->stop_rf_kill = 0;
4236 cancel_delayed_work(&priv->rf_kill);
4237 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4238 round_jiffies(HZ));
4239 } else
4240 schedule_reset(priv);
4243 mutex_unlock(&priv->action_mutex);
4244 return 1;
4247 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4248 const char *buf, size_t count)
4250 struct ipw2100_priv *priv = dev_get_drvdata(d);
4251 ipw_radio_kill_sw(priv, buf[0] == '1');
4252 return count;
4255 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4257 static struct attribute *ipw2100_sysfs_entries[] = {
4258 &dev_attr_hardware.attr,
4259 &dev_attr_registers.attr,
4260 &dev_attr_ordinals.attr,
4261 &dev_attr_pci.attr,
4262 &dev_attr_stats.attr,
4263 &dev_attr_internals.attr,
4264 &dev_attr_bssinfo.attr,
4265 &dev_attr_memory.attr,
4266 &dev_attr_scan_age.attr,
4267 &dev_attr_fatal_error.attr,
4268 &dev_attr_rf_kill.attr,
4269 &dev_attr_cfg.attr,
4270 &dev_attr_status.attr,
4271 &dev_attr_capability.attr,
4272 NULL,
4275 static struct attribute_group ipw2100_attribute_group = {
4276 .attrs = ipw2100_sysfs_entries,
4279 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4281 struct ipw2100_status_queue *q = &priv->status_queue;
4283 IPW_DEBUG_INFO("enter\n");
4285 q->size = entries * sizeof(struct ipw2100_status);
4286 q->drv =
4287 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4288 q->size, &q->nic);
4289 if (!q->drv) {
4290 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4291 return -ENOMEM;
4294 memset(q->drv, 0, q->size);
4296 IPW_DEBUG_INFO("exit\n");
4298 return 0;
4301 static void status_queue_free(struct ipw2100_priv *priv)
4303 IPW_DEBUG_INFO("enter\n");
4305 if (priv->status_queue.drv) {
4306 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4307 priv->status_queue.drv,
4308 priv->status_queue.nic);
4309 priv->status_queue.drv = NULL;
4312 IPW_DEBUG_INFO("exit\n");
4315 static int bd_queue_allocate(struct ipw2100_priv *priv,
4316 struct ipw2100_bd_queue *q, int entries)
4318 IPW_DEBUG_INFO("enter\n");
4320 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4322 q->entries = entries;
4323 q->size = entries * sizeof(struct ipw2100_bd);
4324 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4325 if (!q->drv) {
4326 IPW_DEBUG_INFO
4327 ("can't allocate shared memory for buffer descriptors\n");
4328 return -ENOMEM;
4330 memset(q->drv, 0, q->size);
4332 IPW_DEBUG_INFO("exit\n");
4334 return 0;
4337 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4339 IPW_DEBUG_INFO("enter\n");
4341 if (!q)
4342 return;
4344 if (q->drv) {
4345 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4346 q->drv = NULL;
4349 IPW_DEBUG_INFO("exit\n");
4352 static void bd_queue_initialize(struct ipw2100_priv *priv,
4353 struct ipw2100_bd_queue *q, u32 base, u32 size,
4354 u32 r, u32 w)
4356 IPW_DEBUG_INFO("enter\n");
4358 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4359 (u32) q->nic);
4361 write_register(priv->net_dev, base, q->nic);
4362 write_register(priv->net_dev, size, q->entries);
4363 write_register(priv->net_dev, r, q->oldest);
4364 write_register(priv->net_dev, w, q->next);
4366 IPW_DEBUG_INFO("exit\n");
4369 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4371 if (priv->workqueue) {
4372 priv->stop_rf_kill = 1;
4373 priv->stop_hang_check = 1;
4374 cancel_delayed_work(&priv->reset_work);
4375 cancel_delayed_work(&priv->security_work);
4376 cancel_delayed_work(&priv->wx_event_work);
4377 cancel_delayed_work(&priv->hang_check);
4378 cancel_delayed_work(&priv->rf_kill);
4379 destroy_workqueue(priv->workqueue);
4380 priv->workqueue = NULL;
4384 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4386 int i, j, err = -EINVAL;
4387 void *v;
4388 dma_addr_t p;
4390 IPW_DEBUG_INFO("enter\n");
4392 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4393 if (err) {
4394 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4395 priv->net_dev->name);
4396 return err;
4399 priv->tx_buffers =
4400 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4401 sizeof(struct
4402 ipw2100_tx_packet),
4403 GFP_ATOMIC);
4404 if (!priv->tx_buffers) {
4405 printk(KERN_ERR DRV_NAME
4406 ": %s: alloc failed form tx buffers.\n",
4407 priv->net_dev->name);
4408 bd_queue_free(priv, &priv->tx_queue);
4409 return -ENOMEM;
4412 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4413 v = pci_alloc_consistent(priv->pci_dev,
4414 sizeof(struct ipw2100_data_header),
4415 &p);
4416 if (!v) {
4417 printk(KERN_ERR DRV_NAME
4418 ": %s: PCI alloc failed for tx " "buffers.\n",
4419 priv->net_dev->name);
4420 err = -ENOMEM;
4421 break;
4424 priv->tx_buffers[i].type = DATA;
4425 priv->tx_buffers[i].info.d_struct.data =
4426 (struct ipw2100_data_header *)v;
4427 priv->tx_buffers[i].info.d_struct.data_phys = p;
4428 priv->tx_buffers[i].info.d_struct.txb = NULL;
4431 if (i == TX_PENDED_QUEUE_LENGTH)
4432 return 0;
4434 for (j = 0; j < i; j++) {
4435 pci_free_consistent(priv->pci_dev,
4436 sizeof(struct ipw2100_data_header),
4437 priv->tx_buffers[j].info.d_struct.data,
4438 priv->tx_buffers[j].info.d_struct.
4439 data_phys);
4442 kfree(priv->tx_buffers);
4443 priv->tx_buffers = NULL;
4445 return err;
4448 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4450 int i;
4452 IPW_DEBUG_INFO("enter\n");
4455 * reinitialize packet info lists
4457 INIT_LIST_HEAD(&priv->fw_pend_list);
4458 INIT_STAT(&priv->fw_pend_stat);
4461 * reinitialize lists
4463 INIT_LIST_HEAD(&priv->tx_pend_list);
4464 INIT_LIST_HEAD(&priv->tx_free_list);
4465 INIT_STAT(&priv->tx_pend_stat);
4466 INIT_STAT(&priv->tx_free_stat);
4468 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4469 /* We simply drop any SKBs that have been queued for
4470 * transmit */
4471 if (priv->tx_buffers[i].info.d_struct.txb) {
4472 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4473 txb);
4474 priv->tx_buffers[i].info.d_struct.txb = NULL;
4477 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4480 SET_STAT(&priv->tx_free_stat, i);
4482 priv->tx_queue.oldest = 0;
4483 priv->tx_queue.available = priv->tx_queue.entries;
4484 priv->tx_queue.next = 0;
4485 INIT_STAT(&priv->txq_stat);
4486 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4488 bd_queue_initialize(priv, &priv->tx_queue,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4492 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4494 IPW_DEBUG_INFO("exit\n");
4498 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4500 int i;
4502 IPW_DEBUG_INFO("enter\n");
4504 bd_queue_free(priv, &priv->tx_queue);
4506 if (!priv->tx_buffers)
4507 return;
4509 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510 if (priv->tx_buffers[i].info.d_struct.txb) {
4511 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4512 txb);
4513 priv->tx_buffers[i].info.d_struct.txb = NULL;
4515 if (priv->tx_buffers[i].info.d_struct.data)
4516 pci_free_consistent(priv->pci_dev,
4517 sizeof(struct ipw2100_data_header),
4518 priv->tx_buffers[i].info.d_struct.
4519 data,
4520 priv->tx_buffers[i].info.d_struct.
4521 data_phys);
4524 kfree(priv->tx_buffers);
4525 priv->tx_buffers = NULL;
4527 IPW_DEBUG_INFO("exit\n");
4530 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4532 int i, j, err = -EINVAL;
4534 IPW_DEBUG_INFO("enter\n");
4536 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4537 if (err) {
4538 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4539 return err;
4542 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4543 if (err) {
4544 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4545 bd_queue_free(priv, &priv->rx_queue);
4546 return err;
4550 * allocate packets
4552 priv->rx_buffers = (struct ipw2100_rx_packet *)
4553 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4554 GFP_KERNEL);
4555 if (!priv->rx_buffers) {
4556 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4558 bd_queue_free(priv, &priv->rx_queue);
4560 status_queue_free(priv);
4562 return -ENOMEM;
4565 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4566 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4568 err = ipw2100_alloc_skb(priv, packet);
4569 if (unlikely(err)) {
4570 err = -ENOMEM;
4571 break;
4574 /* The BD holds the cache aligned address */
4575 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4576 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4577 priv->status_queue.drv[i].status_fields = 0;
4580 if (i == RX_QUEUE_LENGTH)
4581 return 0;
4583 for (j = 0; j < i; j++) {
4584 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4585 sizeof(struct ipw2100_rx_packet),
4586 PCI_DMA_FROMDEVICE);
4587 dev_kfree_skb(priv->rx_buffers[j].skb);
4590 kfree(priv->rx_buffers);
4591 priv->rx_buffers = NULL;
4593 bd_queue_free(priv, &priv->rx_queue);
4595 status_queue_free(priv);
4597 return err;
4600 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4602 IPW_DEBUG_INFO("enter\n");
4604 priv->rx_queue.oldest = 0;
4605 priv->rx_queue.available = priv->rx_queue.entries - 1;
4606 priv->rx_queue.next = priv->rx_queue.entries - 1;
4608 INIT_STAT(&priv->rxq_stat);
4609 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4611 bd_queue_initialize(priv, &priv->rx_queue,
4612 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4613 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4614 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4615 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4617 /* set up the status queue */
4618 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4619 priv->status_queue.nic);
4621 IPW_DEBUG_INFO("exit\n");
4624 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4626 int i;
4628 IPW_DEBUG_INFO("enter\n");
4630 bd_queue_free(priv, &priv->rx_queue);
4631 status_queue_free(priv);
4633 if (!priv->rx_buffers)
4634 return;
4636 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4637 if (priv->rx_buffers[i].rxp) {
4638 pci_unmap_single(priv->pci_dev,
4639 priv->rx_buffers[i].dma_addr,
4640 sizeof(struct ipw2100_rx),
4641 PCI_DMA_FROMDEVICE);
4642 dev_kfree_skb(priv->rx_buffers[i].skb);
4646 kfree(priv->rx_buffers);
4647 priv->rx_buffers = NULL;
4649 IPW_DEBUG_INFO("exit\n");
4652 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4654 u32 length = ETH_ALEN;
4655 u8 mac[ETH_ALEN];
4657 int err;
4659 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4660 if (err) {
4661 IPW_DEBUG_INFO("MAC address read failed\n");
4662 return -EIO;
4664 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4665 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4667 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4669 return 0;
4672 /********************************************************************
4674 * Firmware Commands
4676 ********************************************************************/
4678 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4680 struct host_command cmd = {
4681 .host_command = ADAPTER_ADDRESS,
4682 .host_command_sequence = 0,
4683 .host_command_length = ETH_ALEN
4685 int err;
4687 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4689 IPW_DEBUG_INFO("enter\n");
4691 if (priv->config & CFG_CUSTOM_MAC) {
4692 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4693 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4694 } else
4695 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4696 ETH_ALEN);
4698 err = ipw2100_hw_send_command(priv, &cmd);
4700 IPW_DEBUG_INFO("exit\n");
4701 return err;
4704 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4705 int batch_mode)
4707 struct host_command cmd = {
4708 .host_command = PORT_TYPE,
4709 .host_command_sequence = 0,
4710 .host_command_length = sizeof(u32)
4712 int err;
4714 switch (port_type) {
4715 case IW_MODE_INFRA:
4716 cmd.host_command_parameters[0] = IPW_BSS;
4717 break;
4718 case IW_MODE_ADHOC:
4719 cmd.host_command_parameters[0] = IPW_IBSS;
4720 break;
4723 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4724 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4726 if (!batch_mode) {
4727 err = ipw2100_disable_adapter(priv);
4728 if (err) {
4729 printk(KERN_ERR DRV_NAME
4730 ": %s: Could not disable adapter %d\n",
4731 priv->net_dev->name, err);
4732 return err;
4736 /* send cmd to firmware */
4737 err = ipw2100_hw_send_command(priv, &cmd);
4739 if (!batch_mode)
4740 ipw2100_enable_adapter(priv);
4742 return err;
4745 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4746 int batch_mode)
4748 struct host_command cmd = {
4749 .host_command = CHANNEL,
4750 .host_command_sequence = 0,
4751 .host_command_length = sizeof(u32)
4753 int err;
4755 cmd.host_command_parameters[0] = channel;
4757 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4759 /* If BSS then we don't support channel selection */
4760 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4761 return 0;
4763 if ((channel != 0) &&
4764 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4765 return -EINVAL;
4767 if (!batch_mode) {
4768 err = ipw2100_disable_adapter(priv);
4769 if (err)
4770 return err;
4773 err = ipw2100_hw_send_command(priv, &cmd);
4774 if (err) {
4775 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4776 return err;
4779 if (channel)
4780 priv->config |= CFG_STATIC_CHANNEL;
4781 else
4782 priv->config &= ~CFG_STATIC_CHANNEL;
4784 priv->channel = channel;
4786 if (!batch_mode) {
4787 err = ipw2100_enable_adapter(priv);
4788 if (err)
4789 return err;
4792 return 0;
4795 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4797 struct host_command cmd = {
4798 .host_command = SYSTEM_CONFIG,
4799 .host_command_sequence = 0,
4800 .host_command_length = 12,
4802 u32 ibss_mask, len = sizeof(u32);
4803 int err;
4805 /* Set system configuration */
4807 if (!batch_mode) {
4808 err = ipw2100_disable_adapter(priv);
4809 if (err)
4810 return err;
4813 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4814 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4816 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4817 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4819 if (!(priv->config & CFG_LONG_PREAMBLE))
4820 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4822 err = ipw2100_get_ordinal(priv,
4823 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4824 &ibss_mask, &len);
4825 if (err)
4826 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4828 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4829 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4831 /* 11b only */
4832 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4834 err = ipw2100_hw_send_command(priv, &cmd);
4835 if (err)
4836 return err;
4838 /* If IPv6 is configured in the kernel then we don't want to filter out all
4839 * of the multicast packets as IPv6 needs some. */
4840 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4841 cmd.host_command = ADD_MULTICAST;
4842 cmd.host_command_sequence = 0;
4843 cmd.host_command_length = 0;
4845 ipw2100_hw_send_command(priv, &cmd);
4846 #endif
4847 if (!batch_mode) {
4848 err = ipw2100_enable_adapter(priv);
4849 if (err)
4850 return err;
4853 return 0;
4856 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4857 int batch_mode)
4859 struct host_command cmd = {
4860 .host_command = BASIC_TX_RATES,
4861 .host_command_sequence = 0,
4862 .host_command_length = 4
4864 int err;
4866 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4868 if (!batch_mode) {
4869 err = ipw2100_disable_adapter(priv);
4870 if (err)
4871 return err;
4874 /* Set BASIC TX Rate first */
4875 ipw2100_hw_send_command(priv, &cmd);
4877 /* Set TX Rate */
4878 cmd.host_command = TX_RATES;
4879 ipw2100_hw_send_command(priv, &cmd);
4881 /* Set MSDU TX Rate */
4882 cmd.host_command = MSDU_TX_RATES;
4883 ipw2100_hw_send_command(priv, &cmd);
4885 if (!batch_mode) {
4886 err = ipw2100_enable_adapter(priv);
4887 if (err)
4888 return err;
4891 priv->tx_rates = rate;
4893 return 0;
4896 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4898 struct host_command cmd = {
4899 .host_command = POWER_MODE,
4900 .host_command_sequence = 0,
4901 .host_command_length = 4
4903 int err;
4905 cmd.host_command_parameters[0] = power_level;
4907 err = ipw2100_hw_send_command(priv, &cmd);
4908 if (err)
4909 return err;
4911 if (power_level == IPW_POWER_MODE_CAM)
4912 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4913 else
4914 priv->power_mode = IPW_POWER_ENABLED | power_level;
4916 #ifdef IPW2100_TX_POWER
4917 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4918 /* Set beacon interval */
4919 cmd.host_command = TX_POWER_INDEX;
4920 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4922 err = ipw2100_hw_send_command(priv, &cmd);
4923 if (err)
4924 return err;
4926 #endif
4928 return 0;
4931 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4933 struct host_command cmd = {
4934 .host_command = RTS_THRESHOLD,
4935 .host_command_sequence = 0,
4936 .host_command_length = 4
4938 int err;
4940 if (threshold & RTS_DISABLED)
4941 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4942 else
4943 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4945 err = ipw2100_hw_send_command(priv, &cmd);
4946 if (err)
4947 return err;
4949 priv->rts_threshold = threshold;
4951 return 0;
4954 #if 0
4955 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4956 u32 threshold, int batch_mode)
4958 struct host_command cmd = {
4959 .host_command = FRAG_THRESHOLD,
4960 .host_command_sequence = 0,
4961 .host_command_length = 4,
4962 .host_command_parameters[0] = 0,
4964 int err;
4966 if (!batch_mode) {
4967 err = ipw2100_disable_adapter(priv);
4968 if (err)
4969 return err;
4972 if (threshold == 0)
4973 threshold = DEFAULT_FRAG_THRESHOLD;
4974 else {
4975 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4976 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4979 cmd.host_command_parameters[0] = threshold;
4981 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4983 err = ipw2100_hw_send_command(priv, &cmd);
4985 if (!batch_mode)
4986 ipw2100_enable_adapter(priv);
4988 if (!err)
4989 priv->frag_threshold = threshold;
4991 return err;
4993 #endif
4995 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4997 struct host_command cmd = {
4998 .host_command = SHORT_RETRY_LIMIT,
4999 .host_command_sequence = 0,
5000 .host_command_length = 4
5002 int err;
5004 cmd.host_command_parameters[0] = retry;
5006 err = ipw2100_hw_send_command(priv, &cmd);
5007 if (err)
5008 return err;
5010 priv->short_retry_limit = retry;
5012 return 0;
5015 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5017 struct host_command cmd = {
5018 .host_command = LONG_RETRY_LIMIT,
5019 .host_command_sequence = 0,
5020 .host_command_length = 4
5022 int err;
5024 cmd.host_command_parameters[0] = retry;
5026 err = ipw2100_hw_send_command(priv, &cmd);
5027 if (err)
5028 return err;
5030 priv->long_retry_limit = retry;
5032 return 0;
5035 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5036 int batch_mode)
5038 struct host_command cmd = {
5039 .host_command = MANDATORY_BSSID,
5040 .host_command_sequence = 0,
5041 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5043 int err;
5045 #ifdef CONFIG_IPW2100_DEBUG
5046 if (bssid != NULL)
5047 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5048 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5049 bssid[5]);
5050 else
5051 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5052 #endif
5053 /* if BSSID is empty then we disable mandatory bssid mode */
5054 if (bssid != NULL)
5055 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5057 if (!batch_mode) {
5058 err = ipw2100_disable_adapter(priv);
5059 if (err)
5060 return err;
5063 err = ipw2100_hw_send_command(priv, &cmd);
5065 if (!batch_mode)
5066 ipw2100_enable_adapter(priv);
5068 return err;
5071 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5073 struct host_command cmd = {
5074 .host_command = DISASSOCIATION_BSSID,
5075 .host_command_sequence = 0,
5076 .host_command_length = ETH_ALEN
5078 int err;
5079 int len;
5081 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5083 len = ETH_ALEN;
5084 /* The Firmware currently ignores the BSSID and just disassociates from
5085 * the currently associated AP -- but in the off chance that a future
5086 * firmware does use the BSSID provided here, we go ahead and try and
5087 * set it to the currently associated AP's BSSID */
5088 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5090 err = ipw2100_hw_send_command(priv, &cmd);
5092 return err;
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5096 struct ipw2100_wpa_assoc_frame *, int)
5097 __attribute__ ((unused));
5099 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5100 struct ipw2100_wpa_assoc_frame *wpa_frame,
5101 int batch_mode)
5103 struct host_command cmd = {
5104 .host_command = SET_WPA_IE,
5105 .host_command_sequence = 0,
5106 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5108 int err;
5110 IPW_DEBUG_HC("SET_WPA_IE\n");
5112 if (!batch_mode) {
5113 err = ipw2100_disable_adapter(priv);
5114 if (err)
5115 return err;
5118 memcpy(cmd.host_command_parameters, wpa_frame,
5119 sizeof(struct ipw2100_wpa_assoc_frame));
5121 err = ipw2100_hw_send_command(priv, &cmd);
5123 if (!batch_mode) {
5124 if (ipw2100_enable_adapter(priv))
5125 err = -EIO;
5128 return err;
5131 struct security_info_params {
5132 u32 allowed_ciphers;
5133 u16 version;
5134 u8 auth_mode;
5135 u8 replay_counters_number;
5136 u8 unicast_using_group;
5137 } __attribute__ ((packed));
5139 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5140 int auth_mode,
5141 int security_level,
5142 int unicast_using_group,
5143 int batch_mode)
5145 struct host_command cmd = {
5146 .host_command = SET_SECURITY_INFORMATION,
5147 .host_command_sequence = 0,
5148 .host_command_length = sizeof(struct security_info_params)
5150 struct security_info_params *security =
5151 (struct security_info_params *)&cmd.host_command_parameters;
5152 int err;
5153 memset(security, 0, sizeof(*security));
5155 /* If shared key AP authentication is turned on, then we need to
5156 * configure the firmware to try and use it.
5158 * Actual data encryption/decryption is handled by the host. */
5159 security->auth_mode = auth_mode;
5160 security->unicast_using_group = unicast_using_group;
5162 switch (security_level) {
5163 default:
5164 case SEC_LEVEL_0:
5165 security->allowed_ciphers = IPW_NONE_CIPHER;
5166 break;
5167 case SEC_LEVEL_1:
5168 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169 IPW_WEP104_CIPHER;
5170 break;
5171 case SEC_LEVEL_2:
5172 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5174 break;
5175 case SEC_LEVEL_2_CKIP:
5176 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5178 break;
5179 case SEC_LEVEL_3:
5180 security->allowed_ciphers = IPW_WEP40_CIPHER |
5181 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5182 break;
5185 IPW_DEBUG_HC
5186 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5187 security->auth_mode, security->allowed_ciphers, security_level);
5189 security->replay_counters_number = 0;
5191 if (!batch_mode) {
5192 err = ipw2100_disable_adapter(priv);
5193 if (err)
5194 return err;
5197 err = ipw2100_hw_send_command(priv, &cmd);
5199 if (!batch_mode)
5200 ipw2100_enable_adapter(priv);
5202 return err;
5205 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5207 struct host_command cmd = {
5208 .host_command = TX_POWER_INDEX,
5209 .host_command_sequence = 0,
5210 .host_command_length = 4
5212 int err = 0;
5213 u32 tmp = tx_power;
5215 if (tx_power != IPW_TX_POWER_DEFAULT)
5216 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5217 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5219 cmd.host_command_parameters[0] = tmp;
5221 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5222 err = ipw2100_hw_send_command(priv, &cmd);
5223 if (!err)
5224 priv->tx_power = tx_power;
5226 return 0;
5229 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5230 u32 interval, int batch_mode)
5232 struct host_command cmd = {
5233 .host_command = BEACON_INTERVAL,
5234 .host_command_sequence = 0,
5235 .host_command_length = 4
5237 int err;
5239 cmd.host_command_parameters[0] = interval;
5241 IPW_DEBUG_INFO("enter\n");
5243 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5244 if (!batch_mode) {
5245 err = ipw2100_disable_adapter(priv);
5246 if (err)
5247 return err;
5250 ipw2100_hw_send_command(priv, &cmd);
5252 if (!batch_mode) {
5253 err = ipw2100_enable_adapter(priv);
5254 if (err)
5255 return err;
5259 IPW_DEBUG_INFO("exit\n");
5261 return 0;
5264 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5266 ipw2100_tx_initialize(priv);
5267 ipw2100_rx_initialize(priv);
5268 ipw2100_msg_initialize(priv);
5271 void ipw2100_queues_free(struct ipw2100_priv *priv)
5273 ipw2100_tx_free(priv);
5274 ipw2100_rx_free(priv);
5275 ipw2100_msg_free(priv);
5278 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5280 if (ipw2100_tx_allocate(priv) ||
5281 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5282 goto fail;
5284 return 0;
5286 fail:
5287 ipw2100_tx_free(priv);
5288 ipw2100_rx_free(priv);
5289 ipw2100_msg_free(priv);
5290 return -ENOMEM;
5293 #define IPW_PRIVACY_CAPABLE 0x0008
5295 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5296 int batch_mode)
5298 struct host_command cmd = {
5299 .host_command = WEP_FLAGS,
5300 .host_command_sequence = 0,
5301 .host_command_length = 4
5303 int err;
5305 cmd.host_command_parameters[0] = flags;
5307 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5309 if (!batch_mode) {
5310 err = ipw2100_disable_adapter(priv);
5311 if (err) {
5312 printk(KERN_ERR DRV_NAME
5313 ": %s: Could not disable adapter %d\n",
5314 priv->net_dev->name, err);
5315 return err;
5319 /* send cmd to firmware */
5320 err = ipw2100_hw_send_command(priv, &cmd);
5322 if (!batch_mode)
5323 ipw2100_enable_adapter(priv);
5325 return err;
5328 struct ipw2100_wep_key {
5329 u8 idx;
5330 u8 len;
5331 u8 key[13];
5334 /* Macros to ease up priting WEP keys */
5335 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5336 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5337 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5338 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5341 * Set a the wep key
5343 * @priv: struct to work on
5344 * @idx: index of the key we want to set
5345 * @key: ptr to the key data to set
5346 * @len: length of the buffer at @key
5347 * @batch_mode: FIXME perform the operation in batch mode, not
5348 * disabling the device.
5350 * @returns 0 if OK, < 0 errno code on error.
5352 * Fill out a command structure with the new wep key, length an
5353 * index and send it down the wire.
5355 static int ipw2100_set_key(struct ipw2100_priv *priv,
5356 int idx, char *key, int len, int batch_mode)
5358 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5359 struct host_command cmd = {
5360 .host_command = WEP_KEY_INFO,
5361 .host_command_sequence = 0,
5362 .host_command_length = sizeof(struct ipw2100_wep_key),
5364 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5365 int err;
5367 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5368 idx, keylen, len);
5370 /* NOTE: We don't check cached values in case the firmware was reset
5371 * or some other problem is occurring. If the user is setting the key,
5372 * then we push the change */
5374 wep_key->idx = idx;
5375 wep_key->len = keylen;
5377 if (keylen) {
5378 memcpy(wep_key->key, key, len);
5379 memset(wep_key->key + len, 0, keylen - len);
5382 /* Will be optimized out on debug not being configured in */
5383 if (keylen == 0)
5384 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5385 priv->net_dev->name, wep_key->idx);
5386 else if (keylen == 5)
5387 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5388 priv->net_dev->name, wep_key->idx, wep_key->len,
5389 WEP_STR_64(wep_key->key));
5390 else
5391 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5392 "\n",
5393 priv->net_dev->name, wep_key->idx, wep_key->len,
5394 WEP_STR_128(wep_key->key));
5396 if (!batch_mode) {
5397 err = ipw2100_disable_adapter(priv);
5398 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5399 if (err) {
5400 printk(KERN_ERR DRV_NAME
5401 ": %s: Could not disable adapter %d\n",
5402 priv->net_dev->name, err);
5403 return err;
5407 /* send cmd to firmware */
5408 err = ipw2100_hw_send_command(priv, &cmd);
5410 if (!batch_mode) {
5411 int err2 = ipw2100_enable_adapter(priv);
5412 if (err == 0)
5413 err = err2;
5415 return err;
5418 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5419 int idx, int batch_mode)
5421 struct host_command cmd = {
5422 .host_command = WEP_KEY_INDEX,
5423 .host_command_sequence = 0,
5424 .host_command_length = 4,
5425 .host_command_parameters = {idx},
5427 int err;
5429 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5431 if (idx < 0 || idx > 3)
5432 return -EINVAL;
5434 if (!batch_mode) {
5435 err = ipw2100_disable_adapter(priv);
5436 if (err) {
5437 printk(KERN_ERR DRV_NAME
5438 ": %s: Could not disable adapter %d\n",
5439 priv->net_dev->name, err);
5440 return err;
5444 /* send cmd to firmware */
5445 err = ipw2100_hw_send_command(priv, &cmd);
5447 if (!batch_mode)
5448 ipw2100_enable_adapter(priv);
5450 return err;
5453 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5455 int i, err, auth_mode, sec_level, use_group;
5457 if (!(priv->status & STATUS_RUNNING))
5458 return 0;
5460 if (!batch_mode) {
5461 err = ipw2100_disable_adapter(priv);
5462 if (err)
5463 return err;
5466 if (!priv->ieee->sec.enabled) {
5467 err =
5468 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5469 SEC_LEVEL_0, 0, 1);
5470 } else {
5471 auth_mode = IPW_AUTH_OPEN;
5472 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5473 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5474 auth_mode = IPW_AUTH_SHARED;
5475 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5476 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5479 sec_level = SEC_LEVEL_0;
5480 if (priv->ieee->sec.flags & SEC_LEVEL)
5481 sec_level = priv->ieee->sec.level;
5483 use_group = 0;
5484 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5485 use_group = priv->ieee->sec.unicast_uses_group;
5487 err =
5488 ipw2100_set_security_information(priv, auth_mode, sec_level,
5489 use_group, 1);
5492 if (err)
5493 goto exit;
5495 if (priv->ieee->sec.enabled) {
5496 for (i = 0; i < 4; i++) {
5497 if (!(priv->ieee->sec.flags & (1 << i))) {
5498 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5499 priv->ieee->sec.key_sizes[i] = 0;
5500 } else {
5501 err = ipw2100_set_key(priv, i,
5502 priv->ieee->sec.keys[i],
5503 priv->ieee->sec.
5504 key_sizes[i], 1);
5505 if (err)
5506 goto exit;
5510 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5513 /* Always enable privacy so the Host can filter WEP packets if
5514 * encrypted data is sent up */
5515 err =
5516 ipw2100_set_wep_flags(priv,
5517 priv->ieee->sec.
5518 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5519 if (err)
5520 goto exit;
5522 priv->status &= ~STATUS_SECURITY_UPDATED;
5524 exit:
5525 if (!batch_mode)
5526 ipw2100_enable_adapter(priv);
5528 return err;
5531 static void ipw2100_security_work(struct work_struct *work)
5533 struct ipw2100_priv *priv =
5534 container_of(work, struct ipw2100_priv, security_work.work);
5536 /* If we happen to have reconnected before we get a chance to
5537 * process this, then update the security settings--which causes
5538 * a disassociation to occur */
5539 if (!(priv->status & STATUS_ASSOCIATED) &&
5540 priv->status & STATUS_SECURITY_UPDATED)
5541 ipw2100_configure_security(priv, 0);
5544 static void shim__set_security(struct net_device *dev,
5545 struct ieee80211_security *sec)
5547 struct ipw2100_priv *priv = ieee80211_priv(dev);
5548 int i, force_update = 0;
5550 mutex_lock(&priv->action_mutex);
5551 if (!(priv->status & STATUS_INITIALIZED))
5552 goto done;
5554 for (i = 0; i < 4; i++) {
5555 if (sec->flags & (1 << i)) {
5556 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5557 if (sec->key_sizes[i] == 0)
5558 priv->ieee->sec.flags &= ~(1 << i);
5559 else
5560 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5561 sec->key_sizes[i]);
5562 if (sec->level == SEC_LEVEL_1) {
5563 priv->ieee->sec.flags |= (1 << i);
5564 priv->status |= STATUS_SECURITY_UPDATED;
5565 } else
5566 priv->ieee->sec.flags &= ~(1 << i);
5570 if ((sec->flags & SEC_ACTIVE_KEY) &&
5571 priv->ieee->sec.active_key != sec->active_key) {
5572 if (sec->active_key <= 3) {
5573 priv->ieee->sec.active_key = sec->active_key;
5574 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5575 } else
5576 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5578 priv->status |= STATUS_SECURITY_UPDATED;
5581 if ((sec->flags & SEC_AUTH_MODE) &&
5582 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5583 priv->ieee->sec.auth_mode = sec->auth_mode;
5584 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5585 priv->status |= STATUS_SECURITY_UPDATED;
5588 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5589 priv->ieee->sec.flags |= SEC_ENABLED;
5590 priv->ieee->sec.enabled = sec->enabled;
5591 priv->status |= STATUS_SECURITY_UPDATED;
5592 force_update = 1;
5595 if (sec->flags & SEC_ENCRYPT)
5596 priv->ieee->sec.encrypt = sec->encrypt;
5598 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5599 priv->ieee->sec.level = sec->level;
5600 priv->ieee->sec.flags |= SEC_LEVEL;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5604 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5605 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5615 /* As a temporary work around to enable WPA until we figure out why
5616 * wpa_supplicant toggles the security capability of the driver, which
5617 * forces a disassocation with force_update...
5619 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5620 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5621 ipw2100_configure_security(priv, 0);
5622 done:
5623 mutex_unlock(&priv->action_mutex);
5626 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5628 int err;
5629 int batch_mode = 1;
5630 u8 *bssid;
5632 IPW_DEBUG_INFO("enter\n");
5634 err = ipw2100_disable_adapter(priv);
5635 if (err)
5636 return err;
5637 #ifdef CONFIG_IPW2100_MONITOR
5638 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5639 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5640 if (err)
5641 return err;
5643 IPW_DEBUG_INFO("exit\n");
5645 return 0;
5647 #endif /* CONFIG_IPW2100_MONITOR */
5649 err = ipw2100_read_mac_address(priv);
5650 if (err)
5651 return -EIO;
5653 err = ipw2100_set_mac_address(priv, batch_mode);
5654 if (err)
5655 return err;
5657 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5658 if (err)
5659 return err;
5661 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5662 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5663 if (err)
5664 return err;
5667 err = ipw2100_system_config(priv, batch_mode);
5668 if (err)
5669 return err;
5671 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5672 if (err)
5673 return err;
5675 /* Default to power mode OFF */
5676 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5677 if (err)
5678 return err;
5680 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5681 if (err)
5682 return err;
5684 if (priv->config & CFG_STATIC_BSSID)
5685 bssid = priv->bssid;
5686 else
5687 bssid = NULL;
5688 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5689 if (err)
5690 return err;
5692 if (priv->config & CFG_STATIC_ESSID)
5693 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5694 batch_mode);
5695 else
5696 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5697 if (err)
5698 return err;
5700 err = ipw2100_configure_security(priv, batch_mode);
5701 if (err)
5702 return err;
5704 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5705 err =
5706 ipw2100_set_ibss_beacon_interval(priv,
5707 priv->beacon_interval,
5708 batch_mode);
5709 if (err)
5710 return err;
5712 err = ipw2100_set_tx_power(priv, priv->tx_power);
5713 if (err)
5714 return err;
5718 err = ipw2100_set_fragmentation_threshold(
5719 priv, priv->frag_threshold, batch_mode);
5720 if (err)
5721 return err;
5724 IPW_DEBUG_INFO("exit\n");
5726 return 0;
5729 /*************************************************************************
5731 * EXTERNALLY CALLED METHODS
5733 *************************************************************************/
5735 /* This method is called by the network layer -- not to be confused with
5736 * ipw2100_set_mac_address() declared above called by this driver (and this
5737 * method as well) to talk to the firmware */
5738 static int ipw2100_set_address(struct net_device *dev, void *p)
5740 struct ipw2100_priv *priv = ieee80211_priv(dev);
5741 struct sockaddr *addr = p;
5742 int err = 0;
5744 if (!is_valid_ether_addr(addr->sa_data))
5745 return -EADDRNOTAVAIL;
5747 mutex_lock(&priv->action_mutex);
5749 priv->config |= CFG_CUSTOM_MAC;
5750 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5752 err = ipw2100_set_mac_address(priv, 0);
5753 if (err)
5754 goto done;
5756 priv->reset_backoff = 0;
5757 mutex_unlock(&priv->action_mutex);
5758 ipw2100_reset_adapter(&priv->reset_work.work);
5759 return 0;
5761 done:
5762 mutex_unlock(&priv->action_mutex);
5763 return err;
5766 static int ipw2100_open(struct net_device *dev)
5768 struct ipw2100_priv *priv = ieee80211_priv(dev);
5769 unsigned long flags;
5770 IPW_DEBUG_INFO("dev->open\n");
5772 spin_lock_irqsave(&priv->low_lock, flags);
5773 if (priv->status & STATUS_ASSOCIATED) {
5774 netif_carrier_on(dev);
5775 netif_start_queue(dev);
5777 spin_unlock_irqrestore(&priv->low_lock, flags);
5779 return 0;
5782 static int ipw2100_close(struct net_device *dev)
5784 struct ipw2100_priv *priv = ieee80211_priv(dev);
5785 unsigned long flags;
5786 struct list_head *element;
5787 struct ipw2100_tx_packet *packet;
5789 IPW_DEBUG_INFO("enter\n");
5791 spin_lock_irqsave(&priv->low_lock, flags);
5793 if (priv->status & STATUS_ASSOCIATED)
5794 netif_carrier_off(dev);
5795 netif_stop_queue(dev);
5797 /* Flush the TX queue ... */
5798 while (!list_empty(&priv->tx_pend_list)) {
5799 element = priv->tx_pend_list.next;
5800 packet = list_entry(element, struct ipw2100_tx_packet, list);
5802 list_del(element);
5803 DEC_STAT(&priv->tx_pend_stat);
5805 ieee80211_txb_free(packet->info.d_struct.txb);
5806 packet->info.d_struct.txb = NULL;
5808 list_add_tail(element, &priv->tx_free_list);
5809 INC_STAT(&priv->tx_free_stat);
5811 spin_unlock_irqrestore(&priv->low_lock, flags);
5813 IPW_DEBUG_INFO("exit\n");
5815 return 0;
5819 * TODO: Fix this function... its just wrong
5821 static void ipw2100_tx_timeout(struct net_device *dev)
5823 struct ipw2100_priv *priv = ieee80211_priv(dev);
5825 priv->ieee->stats.tx_errors++;
5827 #ifdef CONFIG_IPW2100_MONITOR
5828 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5829 return;
5830 #endif
5832 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5833 dev->name);
5834 schedule_reset(priv);
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5839 /* This is called when wpa_supplicant loads and closes the driver
5840 * interface. */
5841 priv->ieee->wpa_enabled = value;
5842 return 0;
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5848 struct ieee80211_device *ieee = priv->ieee;
5849 struct ieee80211_security sec = {
5850 .flags = SEC_AUTH_MODE,
5852 int ret = 0;
5854 if (value & IW_AUTH_ALG_SHARED_KEY) {
5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856 ieee->open_wep = 0;
5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858 sec.auth_mode = WLAN_AUTH_OPEN;
5859 ieee->open_wep = 1;
5860 } else if (value & IW_AUTH_ALG_LEAP) {
5861 sec.auth_mode = WLAN_AUTH_LEAP;
5862 ieee->open_wep = 1;
5863 } else
5864 return -EINVAL;
5866 if (ieee->set_security)
5867 ieee->set_security(ieee->dev, &sec);
5868 else
5869 ret = -EOPNOTSUPP;
5871 return ret;
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875 char *wpa_ie, int wpa_ie_len)
5878 struct ipw2100_wpa_assoc_frame frame;
5880 frame.fixed_ie_mask = 0;
5882 /* copy WPA IE */
5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884 frame.var_ie_len = wpa_ie_len;
5886 /* make sure WPA is enabled */
5887 ipw2100_wpa_enable(priv, 1);
5888 ipw2100_set_wpa_ie(priv, &frame, 0);
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892 struct ethtool_drvinfo *info)
5894 struct ipw2100_priv *priv = ieee80211_priv(dev);
5895 char fw_ver[64], ucode_ver[64];
5897 strcpy(info->driver, DRV_NAME);
5898 strcpy(info->version, DRV_VERSION);
5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5903 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904 fw_ver, priv->eeprom_version, ucode_ver);
5906 strcpy(info->bus_info, pci_name(priv->pci_dev));
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5911 struct ipw2100_priv *priv = ieee80211_priv(dev);
5912 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5915 static const struct ethtool_ops ipw2100_ethtool_ops = {
5916 .get_link = ipw2100_ethtool_get_link,
5917 .get_drvinfo = ipw_ethtool_get_drvinfo,
5920 static void ipw2100_hang_check(struct work_struct *work)
5922 struct ipw2100_priv *priv =
5923 container_of(work, struct ipw2100_priv, hang_check.work);
5924 unsigned long flags;
5925 u32 rtc = 0xa5a5a5a5;
5926 u32 len = sizeof(rtc);
5927 int restart = 0;
5929 spin_lock_irqsave(&priv->low_lock, flags);
5931 if (priv->fatal_error != 0) {
5932 /* If fatal_error is set then we need to restart */
5933 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5934 priv->net_dev->name);
5936 restart = 1;
5937 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5938 (rtc == priv->last_rtc)) {
5939 /* Check if firmware is hung */
5940 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5941 priv->net_dev->name);
5943 restart = 1;
5946 if (restart) {
5947 /* Kill timer */
5948 priv->stop_hang_check = 1;
5949 priv->hangs++;
5951 /* Restart the NIC */
5952 schedule_reset(priv);
5955 priv->last_rtc = rtc;
5957 if (!priv->stop_hang_check)
5958 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5960 spin_unlock_irqrestore(&priv->low_lock, flags);
5963 static void ipw2100_rf_kill(struct work_struct *work)
5965 struct ipw2100_priv *priv =
5966 container_of(work, struct ipw2100_priv, rf_kill.work);
5967 unsigned long flags;
5969 spin_lock_irqsave(&priv->low_lock, flags);
5971 if (rf_kill_active(priv)) {
5972 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5973 if (!priv->stop_rf_kill)
5974 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5975 round_jiffies(HZ));
5976 goto exit_unlock;
5979 /* RF Kill is now disabled, so bring the device back up */
5981 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5982 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5983 "device\n");
5984 schedule_reset(priv);
5985 } else
5986 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5987 "enabled\n");
5989 exit_unlock:
5990 spin_unlock_irqrestore(&priv->low_lock, flags);
5993 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5995 /* Look into using netdev destructor to shutdown ieee80211? */
5997 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5998 void __iomem * base_addr,
5999 unsigned long mem_start,
6000 unsigned long mem_len)
6002 struct ipw2100_priv *priv;
6003 struct net_device *dev;
6005 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6006 if (!dev)
6007 return NULL;
6008 priv = ieee80211_priv(dev);
6009 priv->ieee = netdev_priv(dev);
6010 priv->pci_dev = pci_dev;
6011 priv->net_dev = dev;
6013 priv->ieee->hard_start_xmit = ipw2100_tx;
6014 priv->ieee->set_security = shim__set_security;
6016 priv->ieee->perfect_rssi = -20;
6017 priv->ieee->worst_rssi = -85;
6019 dev->open = ipw2100_open;
6020 dev->stop = ipw2100_close;
6021 dev->init = ipw2100_net_init;
6022 dev->ethtool_ops = &ipw2100_ethtool_ops;
6023 dev->tx_timeout = ipw2100_tx_timeout;
6024 dev->wireless_handlers = &ipw2100_wx_handler_def;
6025 priv->wireless_data.ieee80211 = priv->ieee;
6026 dev->wireless_data = &priv->wireless_data;
6027 dev->set_mac_address = ipw2100_set_address;
6028 dev->watchdog_timeo = 3 * HZ;
6029 dev->irq = 0;
6031 dev->base_addr = (unsigned long)base_addr;
6032 dev->mem_start = mem_start;
6033 dev->mem_end = dev->mem_start + mem_len - 1;
6035 /* NOTE: We don't use the wireless_handlers hook
6036 * in dev as the system will start throwing WX requests
6037 * to us before we're actually initialized and it just
6038 * ends up causing problems. So, we just handle
6039 * the WX extensions through the ipw2100_ioctl interface */
6041 /* memset() puts everything to 0, so we only have explicitely set
6042 * those values that need to be something else */
6044 /* If power management is turned on, default to AUTO mode */
6045 priv->power_mode = IPW_POWER_AUTO;
6047 #ifdef CONFIG_IPW2100_MONITOR
6048 priv->config |= CFG_CRC_CHECK;
6049 #endif
6050 priv->ieee->wpa_enabled = 0;
6051 priv->ieee->drop_unencrypted = 0;
6052 priv->ieee->privacy_invoked = 0;
6053 priv->ieee->ieee802_1x = 1;
6055 /* Set module parameters */
6056 switch (mode) {
6057 case 1:
6058 priv->ieee->iw_mode = IW_MODE_ADHOC;
6059 break;
6060 #ifdef CONFIG_IPW2100_MONITOR
6061 case 2:
6062 priv->ieee->iw_mode = IW_MODE_MONITOR;
6063 break;
6064 #endif
6065 default:
6066 case 0:
6067 priv->ieee->iw_mode = IW_MODE_INFRA;
6068 break;
6071 if (disable == 1)
6072 priv->status |= STATUS_RF_KILL_SW;
6074 if (channel != 0 &&
6075 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6076 priv->config |= CFG_STATIC_CHANNEL;
6077 priv->channel = channel;
6080 if (associate)
6081 priv->config |= CFG_ASSOCIATE;
6083 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6084 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6085 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6086 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6087 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6088 priv->tx_power = IPW_TX_POWER_DEFAULT;
6089 priv->tx_rates = DEFAULT_TX_RATES;
6091 strcpy(priv->nick, "ipw2100");
6093 spin_lock_init(&priv->low_lock);
6094 mutex_init(&priv->action_mutex);
6095 mutex_init(&priv->adapter_mutex);
6097 init_waitqueue_head(&priv->wait_command_queue);
6099 netif_carrier_off(dev);
6101 INIT_LIST_HEAD(&priv->msg_free_list);
6102 INIT_LIST_HEAD(&priv->msg_pend_list);
6103 INIT_STAT(&priv->msg_free_stat);
6104 INIT_STAT(&priv->msg_pend_stat);
6106 INIT_LIST_HEAD(&priv->tx_free_list);
6107 INIT_LIST_HEAD(&priv->tx_pend_list);
6108 INIT_STAT(&priv->tx_free_stat);
6109 INIT_STAT(&priv->tx_pend_stat);
6111 INIT_LIST_HEAD(&priv->fw_pend_list);
6112 INIT_STAT(&priv->fw_pend_stat);
6114 priv->workqueue = create_workqueue(DRV_NAME);
6116 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6117 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6118 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6119 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6120 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6122 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123 ipw2100_irq_tasklet, (unsigned long)priv);
6125 /* NOTE: We do not start the deferred work for status checks yet */
6126 priv->stop_rf_kill = 1;
6127 priv->stop_hang_check = 1;
6129 return dev;
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133 const struct pci_device_id *ent)
6135 unsigned long mem_start, mem_len, mem_flags;
6136 void __iomem *base_addr = NULL;
6137 struct net_device *dev = NULL;
6138 struct ipw2100_priv *priv = NULL;
6139 int err = 0;
6140 int registered = 0;
6141 u32 val;
6143 IPW_DEBUG_INFO("enter\n");
6145 mem_start = pci_resource_start(pci_dev, 0);
6146 mem_len = pci_resource_len(pci_dev, 0);
6147 mem_flags = pci_resource_flags(pci_dev, 0);
6149 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151 err = -ENODEV;
6152 goto fail;
6155 base_addr = ioremap_nocache(mem_start, mem_len);
6156 if (!base_addr) {
6157 printk(KERN_WARNING DRV_NAME
6158 "Error calling ioremap_nocache.\n");
6159 err = -EIO;
6160 goto fail;
6163 /* allocate and initialize our net_device */
6164 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165 if (!dev) {
6166 printk(KERN_WARNING DRV_NAME
6167 "Error calling ipw2100_alloc_device.\n");
6168 err = -ENOMEM;
6169 goto fail;
6172 /* set up PCI mappings for device */
6173 err = pci_enable_device(pci_dev);
6174 if (err) {
6175 printk(KERN_WARNING DRV_NAME
6176 "Error calling pci_enable_device.\n");
6177 return err;
6180 priv = ieee80211_priv(dev);
6182 pci_set_master(pci_dev);
6183 pci_set_drvdata(pci_dev, priv);
6185 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_set_dma_mask.\n");
6189 pci_disable_device(pci_dev);
6190 return err;
6193 err = pci_request_regions(pci_dev, DRV_NAME);
6194 if (err) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling pci_request_regions.\n");
6197 pci_disable_device(pci_dev);
6198 return err;
6201 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202 * PCI Tx retries from interfering with C3 CPU state */
6203 pci_read_config_dword(pci_dev, 0x40, &val);
6204 if ((val & 0x0000ff00) != 0)
6205 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6207 pci_set_power_state(pci_dev, PCI_D0);
6209 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210 printk(KERN_WARNING DRV_NAME
6211 "Device not found via register read.\n");
6212 err = -ENODEV;
6213 goto fail;
6216 SET_NETDEV_DEV(dev, &pci_dev->dev);
6218 /* Force interrupts to be shut off on the device */
6219 priv->status |= STATUS_INT_ENABLED;
6220 ipw2100_disable_interrupts(priv);
6222 /* Allocate and initialize the Tx/Rx queues and lists */
6223 if (ipw2100_queues_allocate(priv)) {
6224 printk(KERN_WARNING DRV_NAME
6225 "Error calling ipw2100_queues_allocate.\n");
6226 err = -ENOMEM;
6227 goto fail;
6229 ipw2100_queues_initialize(priv);
6231 err = request_irq(pci_dev->irq,
6232 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233 if (err) {
6234 printk(KERN_WARNING DRV_NAME
6235 "Error calling request_irq: %d.\n", pci_dev->irq);
6236 goto fail;
6238 dev->irq = pci_dev->irq;
6240 IPW_DEBUG_INFO("Attempting to register device...\n");
6242 SET_MODULE_OWNER(dev);
6244 printk(KERN_INFO DRV_NAME
6245 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247 /* Bring up the interface. Pre 0.46, after we registered the
6248 * network device we would call ipw2100_up. This introduced a race
6249 * condition with newer hotplug configurations (network was coming
6250 * up and making calls before the device was initialized).
6252 * If we called ipw2100_up before we registered the device, then the
6253 * device name wasn't registered. So, we instead use the net_dev->init
6254 * member to call a function that then just turns and calls ipw2100_up.
6255 * net_dev->init is called after name allocation but before the
6256 * notifier chain is called */
6257 err = register_netdev(dev);
6258 if (err) {
6259 printk(KERN_WARNING DRV_NAME
6260 "Error calling register_netdev.\n");
6261 goto fail;
6264 mutex_lock(&priv->action_mutex);
6265 registered = 1;
6267 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6269 /* perform this after register_netdev so that dev->name is set */
6270 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271 if (err)
6272 goto fail_unlock;
6274 /* If the RF Kill switch is disabled, go ahead and complete the
6275 * startup sequence */
6276 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6277 /* Enable the adapter - sends HOST_COMPLETE */
6278 if (ipw2100_enable_adapter(priv)) {
6279 printk(KERN_WARNING DRV_NAME
6280 ": %s: failed in call to enable adapter.\n",
6281 priv->net_dev->name);
6282 ipw2100_hw_stop_adapter(priv);
6283 err = -EIO;
6284 goto fail_unlock;
6287 /* Start a scan . . . */
6288 ipw2100_set_scan_options(priv);
6289 ipw2100_start_scan(priv);
6292 IPW_DEBUG_INFO("exit\n");
6294 priv->status |= STATUS_INITIALIZED;
6296 mutex_unlock(&priv->action_mutex);
6298 return 0;
6300 fail_unlock:
6301 mutex_unlock(&priv->action_mutex);
6303 fail:
6304 if (dev) {
6305 if (registered)
6306 unregister_netdev(dev);
6308 ipw2100_hw_stop_adapter(priv);
6310 ipw2100_disable_interrupts(priv);
6312 if (dev->irq)
6313 free_irq(dev->irq, priv);
6315 ipw2100_kill_workqueue(priv);
6317 /* These are safe to call even if they weren't allocated */
6318 ipw2100_queues_free(priv);
6319 sysfs_remove_group(&pci_dev->dev.kobj,
6320 &ipw2100_attribute_group);
6322 free_ieee80211(dev);
6323 pci_set_drvdata(pci_dev, NULL);
6326 if (base_addr)
6327 iounmap(base_addr);
6329 pci_release_regions(pci_dev);
6330 pci_disable_device(pci_dev);
6332 return err;
6335 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6337 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6338 struct net_device *dev;
6340 if (priv) {
6341 mutex_lock(&priv->action_mutex);
6343 priv->status &= ~STATUS_INITIALIZED;
6345 dev = priv->net_dev;
6346 sysfs_remove_group(&pci_dev->dev.kobj,
6347 &ipw2100_attribute_group);
6349 #ifdef CONFIG_PM
6350 if (ipw2100_firmware.version)
6351 ipw2100_release_firmware(priv, &ipw2100_firmware);
6352 #endif
6353 /* Take down the hardware */
6354 ipw2100_down(priv);
6356 /* Release the mutex so that the network subsystem can
6357 * complete any needed calls into the driver... */
6358 mutex_unlock(&priv->action_mutex);
6360 /* Unregister the device first - this results in close()
6361 * being called if the device is open. If we free storage
6362 * first, then close() will crash. */
6363 unregister_netdev(dev);
6365 /* ipw2100_down will ensure that there is no more pending work
6366 * in the workqueue's, so we can safely remove them now. */
6367 ipw2100_kill_workqueue(priv);
6369 ipw2100_queues_free(priv);
6371 /* Free potential debugging firmware snapshot */
6372 ipw2100_snapshot_free(priv);
6374 if (dev->irq)
6375 free_irq(dev->irq, priv);
6377 if (dev->base_addr)
6378 iounmap((void __iomem *)dev->base_addr);
6380 free_ieee80211(dev);
6383 pci_release_regions(pci_dev);
6384 pci_disable_device(pci_dev);
6386 IPW_DEBUG_INFO("exit\n");
6389 #ifdef CONFIG_PM
6390 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6392 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6393 struct net_device *dev = priv->net_dev;
6395 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6397 mutex_lock(&priv->action_mutex);
6398 if (priv->status & STATUS_INITIALIZED) {
6399 /* Take down the device; powers it off, etc. */
6400 ipw2100_down(priv);
6403 /* Remove the PRESENT state of the device */
6404 netif_device_detach(dev);
6406 pci_save_state(pci_dev);
6407 pci_disable_device(pci_dev);
6408 pci_set_power_state(pci_dev, PCI_D3hot);
6410 mutex_unlock(&priv->action_mutex);
6412 return 0;
6415 static int ipw2100_resume(struct pci_dev *pci_dev)
6417 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418 struct net_device *dev = priv->net_dev;
6419 int err;
6420 u32 val;
6422 if (IPW2100_PM_DISABLED)
6423 return 0;
6425 mutex_lock(&priv->action_mutex);
6427 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6429 pci_set_power_state(pci_dev, PCI_D0);
6430 err = pci_enable_device(pci_dev);
6431 if (err) {
6432 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6433 dev->name);
6434 return err;
6436 pci_restore_state(pci_dev);
6439 * Suspend/Resume resets the PCI configuration space, so we have to
6440 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6441 * from interfering with C3 CPU state. pci_restore_state won't help
6442 * here since it only restores the first 64 bytes pci config header.
6444 pci_read_config_dword(pci_dev, 0x40, &val);
6445 if ((val & 0x0000ff00) != 0)
6446 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6448 /* Set the device back into the PRESENT state; this will also wake
6449 * the queue of needed */
6450 netif_device_attach(dev);
6452 /* Bring the device back up */
6453 if (!(priv->status & STATUS_RF_KILL_SW))
6454 ipw2100_up(priv, 0);
6456 mutex_unlock(&priv->action_mutex);
6458 return 0;
6460 #endif
6462 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6464 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6465 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6466 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6468 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6469 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6470 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6472 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6476 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6479 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6486 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6487 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6488 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6493 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6503 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6504 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6505 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6507 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6511 {0,},
6514 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6516 static struct pci_driver ipw2100_pci_driver = {
6517 .name = DRV_NAME,
6518 .id_table = ipw2100_pci_id_table,
6519 .probe = ipw2100_pci_init_one,
6520 .remove = __devexit_p(ipw2100_pci_remove_one),
6521 #ifdef CONFIG_PM
6522 .suspend = ipw2100_suspend,
6523 .resume = ipw2100_resume,
6524 #endif
6528 * Initialize the ipw2100 driver/module
6530 * @returns 0 if ok, < 0 errno node con error.
6532 * Note: we cannot init the /proc stuff until the PCI driver is there,
6533 * or we risk an unlikely race condition on someone accessing
6534 * uninitialized data in the PCI dev struct through /proc.
6536 static int __init ipw2100_init(void)
6538 int ret;
6540 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6541 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6543 ret = pci_register_driver(&ipw2100_pci_driver);
6544 if (ret)
6545 goto out;
6547 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6548 #ifdef CONFIG_IPW2100_DEBUG
6549 ipw2100_debug_level = debug;
6550 ret = driver_create_file(&ipw2100_pci_driver.driver,
6551 &driver_attr_debug_level);
6552 #endif
6554 out:
6555 return ret;
6559 * Cleanup ipw2100 driver registration
6561 static void __exit ipw2100_exit(void)
6563 /* FIXME: IPG: check that we have no instances of the devices open */
6564 #ifdef CONFIG_IPW2100_DEBUG
6565 driver_remove_file(&ipw2100_pci_driver.driver,
6566 &driver_attr_debug_level);
6567 #endif
6568 pci_unregister_driver(&ipw2100_pci_driver);
6569 remove_acceptable_latency("ipw2100");
6572 module_init(ipw2100_init);
6573 module_exit(ipw2100_exit);
6575 #define WEXT_USECHANNELS 1
6577 static const long ipw2100_frequencies[] = {
6578 2412, 2417, 2422, 2427,
6579 2432, 2437, 2442, 2447,
6580 2452, 2457, 2462, 2467,
6581 2472, 2484
6584 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6585 sizeof(ipw2100_frequencies[0]))
6587 static const long ipw2100_rates_11b[] = {
6588 1000000,
6589 2000000,
6590 5500000,
6591 11000000
6594 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6596 static int ipw2100_wx_get_name(struct net_device *dev,
6597 struct iw_request_info *info,
6598 union iwreq_data *wrqu, char *extra)
6601 * This can be called at any time. No action lock required
6604 struct ipw2100_priv *priv = ieee80211_priv(dev);
6605 if (!(priv->status & STATUS_ASSOCIATED))
6606 strcpy(wrqu->name, "unassociated");
6607 else
6608 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6610 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6611 return 0;
6614 static int ipw2100_wx_set_freq(struct net_device *dev,
6615 struct iw_request_info *info,
6616 union iwreq_data *wrqu, char *extra)
6618 struct ipw2100_priv *priv = ieee80211_priv(dev);
6619 struct iw_freq *fwrq = &wrqu->freq;
6620 int err = 0;
6622 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6623 return -EOPNOTSUPP;
6625 mutex_lock(&priv->action_mutex);
6626 if (!(priv->status & STATUS_INITIALIZED)) {
6627 err = -EIO;
6628 goto done;
6631 /* if setting by freq convert to channel */
6632 if (fwrq->e == 1) {
6633 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6634 int f = fwrq->m / 100000;
6635 int c = 0;
6637 while ((c < REG_MAX_CHANNEL) &&
6638 (f != ipw2100_frequencies[c]))
6639 c++;
6641 /* hack to fall through */
6642 fwrq->e = 0;
6643 fwrq->m = c + 1;
6647 if (fwrq->e > 0 || fwrq->m > 1000) {
6648 err = -EOPNOTSUPP;
6649 goto done;
6650 } else { /* Set the channel */
6651 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6652 err = ipw2100_set_channel(priv, fwrq->m, 0);
6655 done:
6656 mutex_unlock(&priv->action_mutex);
6657 return err;
6660 static int ipw2100_wx_get_freq(struct net_device *dev,
6661 struct iw_request_info *info,
6662 union iwreq_data *wrqu, char *extra)
6665 * This can be called at any time. No action lock required
6668 struct ipw2100_priv *priv = ieee80211_priv(dev);
6670 wrqu->freq.e = 0;
6672 /* If we are associated, trying to associate, or have a statically
6673 * configured CHANNEL then return that; otherwise return ANY */
6674 if (priv->config & CFG_STATIC_CHANNEL ||
6675 priv->status & STATUS_ASSOCIATED)
6676 wrqu->freq.m = priv->channel;
6677 else
6678 wrqu->freq.m = 0;
6680 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6681 return 0;
6685 static int ipw2100_wx_set_mode(struct net_device *dev,
6686 struct iw_request_info *info,
6687 union iwreq_data *wrqu, char *extra)
6689 struct ipw2100_priv *priv = ieee80211_priv(dev);
6690 int err = 0;
6692 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6694 if (wrqu->mode == priv->ieee->iw_mode)
6695 return 0;
6697 mutex_lock(&priv->action_mutex);
6698 if (!(priv->status & STATUS_INITIALIZED)) {
6699 err = -EIO;
6700 goto done;
6703 switch (wrqu->mode) {
6704 #ifdef CONFIG_IPW2100_MONITOR
6705 case IW_MODE_MONITOR:
6706 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6707 break;
6708 #endif /* CONFIG_IPW2100_MONITOR */
6709 case IW_MODE_ADHOC:
6710 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6711 break;
6712 case IW_MODE_INFRA:
6713 case IW_MODE_AUTO:
6714 default:
6715 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6716 break;
6719 done:
6720 mutex_unlock(&priv->action_mutex);
6721 return err;
6724 static int ipw2100_wx_get_mode(struct net_device *dev,
6725 struct iw_request_info *info,
6726 union iwreq_data *wrqu, char *extra)
6729 * This can be called at any time. No action lock required
6732 struct ipw2100_priv *priv = ieee80211_priv(dev);
6734 wrqu->mode = priv->ieee->iw_mode;
6735 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6737 return 0;
6740 #define POWER_MODES 5
6742 /* Values are in microsecond */
6743 static const s32 timeout_duration[POWER_MODES] = {
6744 350000,
6745 250000,
6746 75000,
6747 37000,
6748 25000,
6751 static const s32 period_duration[POWER_MODES] = {
6752 400000,
6753 700000,
6754 1000000,
6755 1000000,
6756 1000000
6759 static int ipw2100_wx_get_range(struct net_device *dev,
6760 struct iw_request_info *info,
6761 union iwreq_data *wrqu, char *extra)
6764 * This can be called at any time. No action lock required
6767 struct ipw2100_priv *priv = ieee80211_priv(dev);
6768 struct iw_range *range = (struct iw_range *)extra;
6769 u16 val;
6770 int i, level;
6772 wrqu->data.length = sizeof(*range);
6773 memset(range, 0, sizeof(*range));
6775 /* Let's try to keep this struct in the same order as in
6776 * linux/include/wireless.h
6779 /* TODO: See what values we can set, and remove the ones we can't
6780 * set, or fill them with some default data.
6783 /* ~5 Mb/s real (802.11b) */
6784 range->throughput = 5 * 1000 * 1000;
6786 // range->sensitivity; /* signal level threshold range */
6788 range->max_qual.qual = 100;
6789 /* TODO: Find real max RSSI and stick here */
6790 range->max_qual.level = 0;
6791 range->max_qual.noise = 0;
6792 range->max_qual.updated = 7; /* Updated all three */
6794 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6795 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6796 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6797 range->avg_qual.noise = 0;
6798 range->avg_qual.updated = 7; /* Updated all three */
6800 range->num_bitrates = RATE_COUNT;
6802 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6803 range->bitrate[i] = ipw2100_rates_11b[i];
6806 range->min_rts = MIN_RTS_THRESHOLD;
6807 range->max_rts = MAX_RTS_THRESHOLD;
6808 range->min_frag = MIN_FRAG_THRESHOLD;
6809 range->max_frag = MAX_FRAG_THRESHOLD;
6811 range->min_pmp = period_duration[0]; /* Minimal PM period */
6812 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6813 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6814 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6816 /* How to decode max/min PM period */
6817 range->pmp_flags = IW_POWER_PERIOD;
6818 /* How to decode max/min PM period */
6819 range->pmt_flags = IW_POWER_TIMEOUT;
6820 /* What PM options are supported */
6821 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6823 range->encoding_size[0] = 5;
6824 range->encoding_size[1] = 13; /* Different token sizes */
6825 range->num_encoding_sizes = 2; /* Number of entry in the list */
6826 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6827 // range->encoding_login_index; /* token index for login token */
6829 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6830 range->txpower_capa = IW_TXPOW_DBM;
6831 range->num_txpower = IW_MAX_TXPOWER;
6832 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6833 i < IW_MAX_TXPOWER;
6834 i++, level -=
6835 ((IPW_TX_POWER_MAX_DBM -
6836 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6837 range->txpower[i] = level / 16;
6838 } else {
6839 range->txpower_capa = 0;
6840 range->num_txpower = 0;
6843 /* Set the Wireless Extension versions */
6844 range->we_version_compiled = WIRELESS_EXT;
6845 range->we_version_source = 18;
6847 // range->retry_capa; /* What retry options are supported */
6848 // range->retry_flags; /* How to decode max/min retry limit */
6849 // range->r_time_flags; /* How to decode max/min retry life */
6850 // range->min_retry; /* Minimal number of retries */
6851 // range->max_retry; /* Maximal number of retries */
6852 // range->min_r_time; /* Minimal retry lifetime */
6853 // range->max_r_time; /* Maximal retry lifetime */
6855 range->num_channels = FREQ_COUNT;
6857 val = 0;
6858 for (i = 0; i < FREQ_COUNT; i++) {
6859 // TODO: Include only legal frequencies for some countries
6860 // if (local->channel_mask & (1 << i)) {
6861 range->freq[val].i = i + 1;
6862 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6863 range->freq[val].e = 1;
6864 val++;
6865 // }
6866 if (val == IW_MAX_FREQUENCIES)
6867 break;
6869 range->num_frequency = val;
6871 /* Event capability (kernel + driver) */
6872 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6873 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6874 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6876 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6877 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6879 IPW_DEBUG_WX("GET Range\n");
6881 return 0;
6884 static int ipw2100_wx_set_wap(struct net_device *dev,
6885 struct iw_request_info *info,
6886 union iwreq_data *wrqu, char *extra)
6888 struct ipw2100_priv *priv = ieee80211_priv(dev);
6889 int err = 0;
6891 static const unsigned char any[] = {
6892 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6894 static const unsigned char off[] = {
6895 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6898 // sanity checks
6899 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6900 return -EINVAL;
6902 mutex_lock(&priv->action_mutex);
6903 if (!(priv->status & STATUS_INITIALIZED)) {
6904 err = -EIO;
6905 goto done;
6908 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6909 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6910 /* we disable mandatory BSSID association */
6911 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6912 priv->config &= ~CFG_STATIC_BSSID;
6913 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6914 goto done;
6917 priv->config |= CFG_STATIC_BSSID;
6918 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6920 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6922 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6923 wrqu->ap_addr.sa_data[0] & 0xff,
6924 wrqu->ap_addr.sa_data[1] & 0xff,
6925 wrqu->ap_addr.sa_data[2] & 0xff,
6926 wrqu->ap_addr.sa_data[3] & 0xff,
6927 wrqu->ap_addr.sa_data[4] & 0xff,
6928 wrqu->ap_addr.sa_data[5] & 0xff);
6930 done:
6931 mutex_unlock(&priv->action_mutex);
6932 return err;
6935 static int ipw2100_wx_get_wap(struct net_device *dev,
6936 struct iw_request_info *info,
6937 union iwreq_data *wrqu, char *extra)
6940 * This can be called at any time. No action lock required
6943 struct ipw2100_priv *priv = ieee80211_priv(dev);
6945 /* If we are associated, trying to associate, or have a statically
6946 * configured BSSID then return that; otherwise return ANY */
6947 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6948 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6949 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6950 } else
6951 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6953 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6954 MAC_ARG(wrqu->ap_addr.sa_data));
6955 return 0;
6958 static int ipw2100_wx_set_essid(struct net_device *dev,
6959 struct iw_request_info *info,
6960 union iwreq_data *wrqu, char *extra)
6962 struct ipw2100_priv *priv = ieee80211_priv(dev);
6963 char *essid = ""; /* ANY */
6964 int length = 0;
6965 int err = 0;
6967 mutex_lock(&priv->action_mutex);
6968 if (!(priv->status & STATUS_INITIALIZED)) {
6969 err = -EIO;
6970 goto done;
6973 if (wrqu->essid.flags && wrqu->essid.length) {
6974 length = wrqu->essid.length;
6975 essid = extra;
6978 if (length == 0) {
6979 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6980 priv->config &= ~CFG_STATIC_ESSID;
6981 err = ipw2100_set_essid(priv, NULL, 0, 0);
6982 goto done;
6985 length = min(length, IW_ESSID_MAX_SIZE);
6987 priv->config |= CFG_STATIC_ESSID;
6989 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6990 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6991 err = 0;
6992 goto done;
6995 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6996 length);
6998 priv->essid_len = length;
6999 memcpy(priv->essid, essid, priv->essid_len);
7001 err = ipw2100_set_essid(priv, essid, length, 0);
7003 done:
7004 mutex_unlock(&priv->action_mutex);
7005 return err;
7008 static int ipw2100_wx_get_essid(struct net_device *dev,
7009 struct iw_request_info *info,
7010 union iwreq_data *wrqu, char *extra)
7013 * This can be called at any time. No action lock required
7016 struct ipw2100_priv *priv = ieee80211_priv(dev);
7018 /* If we are associated, trying to associate, or have a statically
7019 * configured ESSID then return that; otherwise return ANY */
7020 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7021 IPW_DEBUG_WX("Getting essid: '%s'\n",
7022 escape_essid(priv->essid, priv->essid_len));
7023 memcpy(extra, priv->essid, priv->essid_len);
7024 wrqu->essid.length = priv->essid_len;
7025 wrqu->essid.flags = 1; /* active */
7026 } else {
7027 IPW_DEBUG_WX("Getting essid: ANY\n");
7028 wrqu->essid.length = 0;
7029 wrqu->essid.flags = 0; /* active */
7032 return 0;
7035 static int ipw2100_wx_set_nick(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7040 * This can be called at any time. No action lock required
7043 struct ipw2100_priv *priv = ieee80211_priv(dev);
7045 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7046 return -E2BIG;
7048 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7049 memset(priv->nick, 0, sizeof(priv->nick));
7050 memcpy(priv->nick, extra, wrqu->data.length);
7052 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7054 return 0;
7057 static int ipw2100_wx_get_nick(struct net_device *dev,
7058 struct iw_request_info *info,
7059 union iwreq_data *wrqu, char *extra)
7062 * This can be called at any time. No action lock required
7065 struct ipw2100_priv *priv = ieee80211_priv(dev);
7067 wrqu->data.length = strlen(priv->nick);
7068 memcpy(extra, priv->nick, wrqu->data.length);
7069 wrqu->data.flags = 1; /* active */
7071 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7073 return 0;
7076 static int ipw2100_wx_set_rate(struct net_device *dev,
7077 struct iw_request_info *info,
7078 union iwreq_data *wrqu, char *extra)
7080 struct ipw2100_priv *priv = ieee80211_priv(dev);
7081 u32 target_rate = wrqu->bitrate.value;
7082 u32 rate;
7083 int err = 0;
7085 mutex_lock(&priv->action_mutex);
7086 if (!(priv->status & STATUS_INITIALIZED)) {
7087 err = -EIO;
7088 goto done;
7091 rate = 0;
7093 if (target_rate == 1000000 ||
7094 (!wrqu->bitrate.fixed && target_rate > 1000000))
7095 rate |= TX_RATE_1_MBIT;
7096 if (target_rate == 2000000 ||
7097 (!wrqu->bitrate.fixed && target_rate > 2000000))
7098 rate |= TX_RATE_2_MBIT;
7099 if (target_rate == 5500000 ||
7100 (!wrqu->bitrate.fixed && target_rate > 5500000))
7101 rate |= TX_RATE_5_5_MBIT;
7102 if (target_rate == 11000000 ||
7103 (!wrqu->bitrate.fixed && target_rate > 11000000))
7104 rate |= TX_RATE_11_MBIT;
7105 if (rate == 0)
7106 rate = DEFAULT_TX_RATES;
7108 err = ipw2100_set_tx_rates(priv, rate, 0);
7110 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7111 done:
7112 mutex_unlock(&priv->action_mutex);
7113 return err;
7116 static int ipw2100_wx_get_rate(struct net_device *dev,
7117 struct iw_request_info *info,
7118 union iwreq_data *wrqu, char *extra)
7120 struct ipw2100_priv *priv = ieee80211_priv(dev);
7121 int val;
7122 int len = sizeof(val);
7123 int err = 0;
7125 if (!(priv->status & STATUS_ENABLED) ||
7126 priv->status & STATUS_RF_KILL_MASK ||
7127 !(priv->status & STATUS_ASSOCIATED)) {
7128 wrqu->bitrate.value = 0;
7129 return 0;
7132 mutex_lock(&priv->action_mutex);
7133 if (!(priv->status & STATUS_INITIALIZED)) {
7134 err = -EIO;
7135 goto done;
7138 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7139 if (err) {
7140 IPW_DEBUG_WX("failed querying ordinals.\n");
7141 return err;
7144 switch (val & TX_RATE_MASK) {
7145 case TX_RATE_1_MBIT:
7146 wrqu->bitrate.value = 1000000;
7147 break;
7148 case TX_RATE_2_MBIT:
7149 wrqu->bitrate.value = 2000000;
7150 break;
7151 case TX_RATE_5_5_MBIT:
7152 wrqu->bitrate.value = 5500000;
7153 break;
7154 case TX_RATE_11_MBIT:
7155 wrqu->bitrate.value = 11000000;
7156 break;
7157 default:
7158 wrqu->bitrate.value = 0;
7161 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7163 done:
7164 mutex_unlock(&priv->action_mutex);
7165 return err;
7168 static int ipw2100_wx_set_rts(struct net_device *dev,
7169 struct iw_request_info *info,
7170 union iwreq_data *wrqu, char *extra)
7172 struct ipw2100_priv *priv = ieee80211_priv(dev);
7173 int value, err;
7175 /* Auto RTS not yet supported */
7176 if (wrqu->rts.fixed == 0)
7177 return -EINVAL;
7179 mutex_lock(&priv->action_mutex);
7180 if (!(priv->status & STATUS_INITIALIZED)) {
7181 err = -EIO;
7182 goto done;
7185 if (wrqu->rts.disabled)
7186 value = priv->rts_threshold | RTS_DISABLED;
7187 else {
7188 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7189 err = -EINVAL;
7190 goto done;
7192 value = wrqu->rts.value;
7195 err = ipw2100_set_rts_threshold(priv, value);
7197 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7198 done:
7199 mutex_unlock(&priv->action_mutex);
7200 return err;
7203 static int ipw2100_wx_get_rts(struct net_device *dev,
7204 struct iw_request_info *info,
7205 union iwreq_data *wrqu, char *extra)
7208 * This can be called at any time. No action lock required
7211 struct ipw2100_priv *priv = ieee80211_priv(dev);
7213 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7214 wrqu->rts.fixed = 1; /* no auto select */
7216 /* If RTS is set to the default value, then it is disabled */
7217 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7219 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7221 return 0;
7224 static int ipw2100_wx_set_txpow(struct net_device *dev,
7225 struct iw_request_info *info,
7226 union iwreq_data *wrqu, char *extra)
7228 struct ipw2100_priv *priv = ieee80211_priv(dev);
7229 int err = 0, value;
7231 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7232 return -EINPROGRESS;
7234 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7235 return 0;
7237 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7238 return -EINVAL;
7240 if (wrqu->txpower.fixed == 0)
7241 value = IPW_TX_POWER_DEFAULT;
7242 else {
7243 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7244 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7245 return -EINVAL;
7247 value = wrqu->txpower.value;
7250 mutex_lock(&priv->action_mutex);
7251 if (!(priv->status & STATUS_INITIALIZED)) {
7252 err = -EIO;
7253 goto done;
7256 err = ipw2100_set_tx_power(priv, value);
7258 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7260 done:
7261 mutex_unlock(&priv->action_mutex);
7262 return err;
7265 static int ipw2100_wx_get_txpow(struct net_device *dev,
7266 struct iw_request_info *info,
7267 union iwreq_data *wrqu, char *extra)
7270 * This can be called at any time. No action lock required
7273 struct ipw2100_priv *priv = ieee80211_priv(dev);
7275 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7277 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7278 wrqu->txpower.fixed = 0;
7279 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7280 } else {
7281 wrqu->txpower.fixed = 1;
7282 wrqu->txpower.value = priv->tx_power;
7285 wrqu->txpower.flags = IW_TXPOW_DBM;
7287 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7289 return 0;
7292 static int ipw2100_wx_set_frag(struct net_device *dev,
7293 struct iw_request_info *info,
7294 union iwreq_data *wrqu, char *extra)
7297 * This can be called at any time. No action lock required
7300 struct ipw2100_priv *priv = ieee80211_priv(dev);
7302 if (!wrqu->frag.fixed)
7303 return -EINVAL;
7305 if (wrqu->frag.disabled) {
7306 priv->frag_threshold |= FRAG_DISABLED;
7307 priv->ieee->fts = DEFAULT_FTS;
7308 } else {
7309 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7310 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7311 return -EINVAL;
7313 priv->ieee->fts = wrqu->frag.value & ~0x1;
7314 priv->frag_threshold = priv->ieee->fts;
7317 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7319 return 0;
7322 static int ipw2100_wx_get_frag(struct net_device *dev,
7323 struct iw_request_info *info,
7324 union iwreq_data *wrqu, char *extra)
7327 * This can be called at any time. No action lock required
7330 struct ipw2100_priv *priv = ieee80211_priv(dev);
7331 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7332 wrqu->frag.fixed = 0; /* no auto select */
7333 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7335 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7337 return 0;
7340 static int ipw2100_wx_set_retry(struct net_device *dev,
7341 struct iw_request_info *info,
7342 union iwreq_data *wrqu, char *extra)
7344 struct ipw2100_priv *priv = ieee80211_priv(dev);
7345 int err = 0;
7347 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7348 return -EINVAL;
7350 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7351 return 0;
7353 mutex_lock(&priv->action_mutex);
7354 if (!(priv->status & STATUS_INITIALIZED)) {
7355 err = -EIO;
7356 goto done;
7359 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7360 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7362 wrqu->retry.value);
7363 goto done;
7366 if (wrqu->retry.flags & IW_RETRY_LONG) {
7367 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7369 wrqu->retry.value);
7370 goto done;
7373 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374 if (!err)
7375 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7377 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7379 done:
7380 mutex_unlock(&priv->action_mutex);
7381 return err;
7384 static int ipw2100_wx_get_retry(struct net_device *dev,
7385 struct iw_request_info *info,
7386 union iwreq_data *wrqu, char *extra)
7389 * This can be called at any time. No action lock required
7392 struct ipw2100_priv *priv = ieee80211_priv(dev);
7394 wrqu->retry.disabled = 0; /* can't be disabled */
7396 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7397 return -EINVAL;
7399 if (wrqu->retry.flags & IW_RETRY_LONG) {
7400 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7401 wrqu->retry.value = priv->long_retry_limit;
7402 } else {
7403 wrqu->retry.flags =
7404 (priv->short_retry_limit !=
7405 priv->long_retry_limit) ?
7406 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7408 wrqu->retry.value = priv->short_retry_limit;
7411 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7413 return 0;
7416 static int ipw2100_wx_set_scan(struct net_device *dev,
7417 struct iw_request_info *info,
7418 union iwreq_data *wrqu, char *extra)
7420 struct ipw2100_priv *priv = ieee80211_priv(dev);
7421 int err = 0;
7423 mutex_lock(&priv->action_mutex);
7424 if (!(priv->status & STATUS_INITIALIZED)) {
7425 err = -EIO;
7426 goto done;
7429 IPW_DEBUG_WX("Initiating scan...\n");
7430 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7431 IPW_DEBUG_WX("Start scan failed.\n");
7433 /* TODO: Mark a scan as pending so when hardware initialized
7434 * a scan starts */
7437 done:
7438 mutex_unlock(&priv->action_mutex);
7439 return err;
7442 static int ipw2100_wx_get_scan(struct net_device *dev,
7443 struct iw_request_info *info,
7444 union iwreq_data *wrqu, char *extra)
7447 * This can be called at any time. No action lock required
7450 struct ipw2100_priv *priv = ieee80211_priv(dev);
7451 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7455 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7457 static int ipw2100_wx_set_encode(struct net_device *dev,
7458 struct iw_request_info *info,
7459 union iwreq_data *wrqu, char *key)
7462 * No check of STATUS_INITIALIZED required
7465 struct ipw2100_priv *priv = ieee80211_priv(dev);
7466 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7469 static int ipw2100_wx_get_encode(struct net_device *dev,
7470 struct iw_request_info *info,
7471 union iwreq_data *wrqu, char *key)
7474 * This can be called at any time. No action lock required
7477 struct ipw2100_priv *priv = ieee80211_priv(dev);
7478 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7481 static int ipw2100_wx_set_power(struct net_device *dev,
7482 struct iw_request_info *info,
7483 union iwreq_data *wrqu, char *extra)
7485 struct ipw2100_priv *priv = ieee80211_priv(dev);
7486 int err = 0;
7488 mutex_lock(&priv->action_mutex);
7489 if (!(priv->status & STATUS_INITIALIZED)) {
7490 err = -EIO;
7491 goto done;
7494 if (wrqu->power.disabled) {
7495 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7496 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7497 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7498 goto done;
7501 switch (wrqu->power.flags & IW_POWER_MODE) {
7502 case IW_POWER_ON: /* If not specified */
7503 case IW_POWER_MODE: /* If set all mask */
7504 case IW_POWER_ALL_R: /* If explicitely state all */
7505 break;
7506 default: /* Otherwise we don't support it */
7507 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7508 wrqu->power.flags);
7509 err = -EOPNOTSUPP;
7510 goto done;
7513 /* If the user hasn't specified a power management mode yet, default
7514 * to BATTERY */
7515 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7516 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7518 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7520 done:
7521 mutex_unlock(&priv->action_mutex);
7522 return err;
7526 static int ipw2100_wx_get_power(struct net_device *dev,
7527 struct iw_request_info *info,
7528 union iwreq_data *wrqu, char *extra)
7531 * This can be called at any time. No action lock required
7534 struct ipw2100_priv *priv = ieee80211_priv(dev);
7536 if (!(priv->power_mode & IPW_POWER_ENABLED))
7537 wrqu->power.disabled = 1;
7538 else {
7539 wrqu->power.disabled = 0;
7540 wrqu->power.flags = 0;
7543 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7545 return 0;
7549 * WE-18 WPA support
7552 /* SIOCSIWGENIE */
7553 static int ipw2100_wx_set_genie(struct net_device *dev,
7554 struct iw_request_info *info,
7555 union iwreq_data *wrqu, char *extra)
7558 struct ipw2100_priv *priv = ieee80211_priv(dev);
7559 struct ieee80211_device *ieee = priv->ieee;
7560 u8 *buf;
7562 if (!ieee->wpa_enabled)
7563 return -EOPNOTSUPP;
7565 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7566 (wrqu->data.length && extra == NULL))
7567 return -EINVAL;
7569 if (wrqu->data.length) {
7570 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7571 if (buf == NULL)
7572 return -ENOMEM;
7574 kfree(ieee->wpa_ie);
7575 ieee->wpa_ie = buf;
7576 ieee->wpa_ie_len = wrqu->data.length;
7577 } else {
7578 kfree(ieee->wpa_ie);
7579 ieee->wpa_ie = NULL;
7580 ieee->wpa_ie_len = 0;
7583 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7585 return 0;
7588 /* SIOCGIWGENIE */
7589 static int ipw2100_wx_get_genie(struct net_device *dev,
7590 struct iw_request_info *info,
7591 union iwreq_data *wrqu, char *extra)
7593 struct ipw2100_priv *priv = ieee80211_priv(dev);
7594 struct ieee80211_device *ieee = priv->ieee;
7596 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7597 wrqu->data.length = 0;
7598 return 0;
7601 if (wrqu->data.length < ieee->wpa_ie_len)
7602 return -E2BIG;
7604 wrqu->data.length = ieee->wpa_ie_len;
7605 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7607 return 0;
7610 /* SIOCSIWAUTH */
7611 static int ipw2100_wx_set_auth(struct net_device *dev,
7612 struct iw_request_info *info,
7613 union iwreq_data *wrqu, char *extra)
7615 struct ipw2100_priv *priv = ieee80211_priv(dev);
7616 struct ieee80211_device *ieee = priv->ieee;
7617 struct iw_param *param = &wrqu->param;
7618 struct ieee80211_crypt_data *crypt;
7619 unsigned long flags;
7620 int ret = 0;
7622 switch (param->flags & IW_AUTH_INDEX) {
7623 case IW_AUTH_WPA_VERSION:
7624 case IW_AUTH_CIPHER_PAIRWISE:
7625 case IW_AUTH_CIPHER_GROUP:
7626 case IW_AUTH_KEY_MGMT:
7628 * ipw2200 does not use these parameters
7630 break;
7632 case IW_AUTH_TKIP_COUNTERMEASURES:
7633 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7634 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7635 break;
7637 flags = crypt->ops->get_flags(crypt->priv);
7639 if (param->value)
7640 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641 else
7642 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7644 crypt->ops->set_flags(flags, crypt->priv);
7646 break;
7648 case IW_AUTH_DROP_UNENCRYPTED:{
7649 /* HACK:
7651 * wpa_supplicant calls set_wpa_enabled when the driver
7652 * is loaded and unloaded, regardless of if WPA is being
7653 * used. No other calls are made which can be used to
7654 * determine if encryption will be used or not prior to
7655 * association being expected. If encryption is not being
7656 * used, drop_unencrypted is set to false, else true -- we
7657 * can use this to determine if the CAP_PRIVACY_ON bit should
7658 * be set.
7660 struct ieee80211_security sec = {
7661 .flags = SEC_ENABLED,
7662 .enabled = param->value,
7664 priv->ieee->drop_unencrypted = param->value;
7665 /* We only change SEC_LEVEL for open mode. Others
7666 * are set by ipw_wpa_set_encryption.
7668 if (!param->value) {
7669 sec.flags |= SEC_LEVEL;
7670 sec.level = SEC_LEVEL_0;
7671 } else {
7672 sec.flags |= SEC_LEVEL;
7673 sec.level = SEC_LEVEL_1;
7675 if (priv->ieee->set_security)
7676 priv->ieee->set_security(priv->ieee->dev, &sec);
7677 break;
7680 case IW_AUTH_80211_AUTH_ALG:
7681 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7682 break;
7684 case IW_AUTH_WPA_ENABLED:
7685 ret = ipw2100_wpa_enable(priv, param->value);
7686 break;
7688 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7689 ieee->ieee802_1x = param->value;
7690 break;
7692 //case IW_AUTH_ROAMING_CONTROL:
7693 case IW_AUTH_PRIVACY_INVOKED:
7694 ieee->privacy_invoked = param->value;
7695 break;
7697 default:
7698 return -EOPNOTSUPP;
7700 return ret;
7703 /* SIOCGIWAUTH */
7704 static int ipw2100_wx_get_auth(struct net_device *dev,
7705 struct iw_request_info *info,
7706 union iwreq_data *wrqu, char *extra)
7708 struct ipw2100_priv *priv = ieee80211_priv(dev);
7709 struct ieee80211_device *ieee = priv->ieee;
7710 struct ieee80211_crypt_data *crypt;
7711 struct iw_param *param = &wrqu->param;
7712 int ret = 0;
7714 switch (param->flags & IW_AUTH_INDEX) {
7715 case IW_AUTH_WPA_VERSION:
7716 case IW_AUTH_CIPHER_PAIRWISE:
7717 case IW_AUTH_CIPHER_GROUP:
7718 case IW_AUTH_KEY_MGMT:
7720 * wpa_supplicant will control these internally
7722 ret = -EOPNOTSUPP;
7723 break;
7725 case IW_AUTH_TKIP_COUNTERMEASURES:
7726 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7727 if (!crypt || !crypt->ops->get_flags) {
7728 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7729 "crypt not set!\n");
7730 break;
7733 param->value = (crypt->ops->get_flags(crypt->priv) &
7734 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7736 break;
7738 case IW_AUTH_DROP_UNENCRYPTED:
7739 param->value = ieee->drop_unencrypted;
7740 break;
7742 case IW_AUTH_80211_AUTH_ALG:
7743 param->value = priv->ieee->sec.auth_mode;
7744 break;
7746 case IW_AUTH_WPA_ENABLED:
7747 param->value = ieee->wpa_enabled;
7748 break;
7750 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7751 param->value = ieee->ieee802_1x;
7752 break;
7754 case IW_AUTH_ROAMING_CONTROL:
7755 case IW_AUTH_PRIVACY_INVOKED:
7756 param->value = ieee->privacy_invoked;
7757 break;
7759 default:
7760 return -EOPNOTSUPP;
7762 return 0;
7765 /* SIOCSIWENCODEEXT */
7766 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7767 struct iw_request_info *info,
7768 union iwreq_data *wrqu, char *extra)
7770 struct ipw2100_priv *priv = ieee80211_priv(dev);
7771 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7774 /* SIOCGIWENCODEEXT */
7775 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7776 struct iw_request_info *info,
7777 union iwreq_data *wrqu, char *extra)
7779 struct ipw2100_priv *priv = ieee80211_priv(dev);
7780 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7783 /* SIOCSIWMLME */
7784 static int ipw2100_wx_set_mlme(struct net_device *dev,
7785 struct iw_request_info *info,
7786 union iwreq_data *wrqu, char *extra)
7788 struct ipw2100_priv *priv = ieee80211_priv(dev);
7789 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7790 u16 reason;
7792 reason = cpu_to_le16(mlme->reason_code);
7794 switch (mlme->cmd) {
7795 case IW_MLME_DEAUTH:
7796 // silently ignore
7797 break;
7799 case IW_MLME_DISASSOC:
7800 ipw2100_disassociate_bssid(priv);
7801 break;
7803 default:
7804 return -EOPNOTSUPP;
7806 return 0;
7811 * IWPRIV handlers
7814 #ifdef CONFIG_IPW2100_MONITOR
7815 static int ipw2100_wx_set_promisc(struct net_device *dev,
7816 struct iw_request_info *info,
7817 union iwreq_data *wrqu, char *extra)
7819 struct ipw2100_priv *priv = ieee80211_priv(dev);
7820 int *parms = (int *)extra;
7821 int enable = (parms[0] > 0);
7822 int err = 0;
7824 mutex_lock(&priv->action_mutex);
7825 if (!(priv->status & STATUS_INITIALIZED)) {
7826 err = -EIO;
7827 goto done;
7830 if (enable) {
7831 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7832 err = ipw2100_set_channel(priv, parms[1], 0);
7833 goto done;
7835 priv->channel = parms[1];
7836 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7837 } else {
7838 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7839 err = ipw2100_switch_mode(priv, priv->last_mode);
7841 done:
7842 mutex_unlock(&priv->action_mutex);
7843 return err;
7846 static int ipw2100_wx_reset(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7850 struct ipw2100_priv *priv = ieee80211_priv(dev);
7851 if (priv->status & STATUS_INITIALIZED)
7852 schedule_reset(priv);
7853 return 0;
7856 #endif
7858 static int ipw2100_wx_set_powermode(struct net_device *dev,
7859 struct iw_request_info *info,
7860 union iwreq_data *wrqu, char *extra)
7862 struct ipw2100_priv *priv = ieee80211_priv(dev);
7863 int err = 0, mode = *(int *)extra;
7865 mutex_lock(&priv->action_mutex);
7866 if (!(priv->status & STATUS_INITIALIZED)) {
7867 err = -EIO;
7868 goto done;
7871 if ((mode < 1) || (mode > POWER_MODES))
7872 mode = IPW_POWER_AUTO;
7874 if (priv->power_mode != mode)
7875 err = ipw2100_set_power_mode(priv, mode);
7876 done:
7877 mutex_unlock(&priv->action_mutex);
7878 return err;
7881 #define MAX_POWER_STRING 80
7882 static int ipw2100_wx_get_powermode(struct net_device *dev,
7883 struct iw_request_info *info,
7884 union iwreq_data *wrqu, char *extra)
7887 * This can be called at any time. No action lock required
7890 struct ipw2100_priv *priv = ieee80211_priv(dev);
7891 int level = IPW_POWER_LEVEL(priv->power_mode);
7892 s32 timeout, period;
7894 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7895 snprintf(extra, MAX_POWER_STRING,
7896 "Power save level: %d (Off)", level);
7897 } else {
7898 switch (level) {
7899 case IPW_POWER_MODE_CAM:
7900 snprintf(extra, MAX_POWER_STRING,
7901 "Power save level: %d (None)", level);
7902 break;
7903 case IPW_POWER_AUTO:
7904 snprintf(extra, MAX_POWER_STRING,
7905 "Power save level: %d (Auto)", 0);
7906 break;
7907 default:
7908 timeout = timeout_duration[level - 1] / 1000;
7909 period = period_duration[level - 1] / 1000;
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d "
7912 "(Timeout %dms, Period %dms)",
7913 level, timeout, period);
7917 wrqu->data.length = strlen(extra) + 1;
7919 return 0;
7922 static int ipw2100_wx_set_preamble(struct net_device *dev,
7923 struct iw_request_info *info,
7924 union iwreq_data *wrqu, char *extra)
7926 struct ipw2100_priv *priv = ieee80211_priv(dev);
7927 int err, mode = *(int *)extra;
7929 mutex_lock(&priv->action_mutex);
7930 if (!(priv->status & STATUS_INITIALIZED)) {
7931 err = -EIO;
7932 goto done;
7935 if (mode == 1)
7936 priv->config |= CFG_LONG_PREAMBLE;
7937 else if (mode == 0)
7938 priv->config &= ~CFG_LONG_PREAMBLE;
7939 else {
7940 err = -EINVAL;
7941 goto done;
7944 err = ipw2100_system_config(priv, 0);
7946 done:
7947 mutex_unlock(&priv->action_mutex);
7948 return err;
7951 static int ipw2100_wx_get_preamble(struct net_device *dev,
7952 struct iw_request_info *info,
7953 union iwreq_data *wrqu, char *extra)
7956 * This can be called at any time. No action lock required
7959 struct ipw2100_priv *priv = ieee80211_priv(dev);
7961 if (priv->config & CFG_LONG_PREAMBLE)
7962 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7963 else
7964 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7966 return 0;
7969 #ifdef CONFIG_IPW2100_MONITOR
7970 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7971 struct iw_request_info *info,
7972 union iwreq_data *wrqu, char *extra)
7974 struct ipw2100_priv *priv = ieee80211_priv(dev);
7975 int err, mode = *(int *)extra;
7977 mutex_lock(&priv->action_mutex);
7978 if (!(priv->status & STATUS_INITIALIZED)) {
7979 err = -EIO;
7980 goto done;
7983 if (mode == 1)
7984 priv->config |= CFG_CRC_CHECK;
7985 else if (mode == 0)
7986 priv->config &= ~CFG_CRC_CHECK;
7987 else {
7988 err = -EINVAL;
7989 goto done;
7991 err = 0;
7993 done:
7994 mutex_unlock(&priv->action_mutex);
7995 return err;
7998 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7999 struct iw_request_info *info,
8000 union iwreq_data *wrqu, char *extra)
8003 * This can be called at any time. No action lock required
8006 struct ipw2100_priv *priv = ieee80211_priv(dev);
8008 if (priv->config & CFG_CRC_CHECK)
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8010 else
8011 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8013 return 0;
8015 #endif /* CONFIG_IPW2100_MONITOR */
8017 static iw_handler ipw2100_wx_handlers[] = {
8018 NULL, /* SIOCSIWCOMMIT */
8019 ipw2100_wx_get_name, /* SIOCGIWNAME */
8020 NULL, /* SIOCSIWNWID */
8021 NULL, /* SIOCGIWNWID */
8022 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8023 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8024 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8025 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8026 NULL, /* SIOCSIWSENS */
8027 NULL, /* SIOCGIWSENS */
8028 NULL, /* SIOCSIWRANGE */
8029 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8030 NULL, /* SIOCSIWPRIV */
8031 NULL, /* SIOCGIWPRIV */
8032 NULL, /* SIOCSIWSTATS */
8033 NULL, /* SIOCGIWSTATS */
8034 NULL, /* SIOCSIWSPY */
8035 NULL, /* SIOCGIWSPY */
8036 NULL, /* SIOCGIWTHRSPY */
8037 NULL, /* SIOCWIWTHRSPY */
8038 ipw2100_wx_set_wap, /* SIOCSIWAP */
8039 ipw2100_wx_get_wap, /* SIOCGIWAP */
8040 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8041 NULL, /* SIOCGIWAPLIST -- deprecated */
8042 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8043 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8044 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8045 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8046 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8047 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8048 NULL, /* -- hole -- */
8049 NULL, /* -- hole -- */
8050 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8051 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8052 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8053 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8054 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8055 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8056 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8057 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8058 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8059 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8060 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8061 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8062 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8063 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8064 NULL, /* -- hole -- */
8065 NULL, /* -- hole -- */
8066 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8067 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8068 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8069 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8070 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8071 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8072 NULL, /* SIOCSIWPMKSA */
8075 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8076 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8077 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8078 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8079 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8080 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8081 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8082 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8084 static const struct iw_priv_args ipw2100_private_args[] = {
8086 #ifdef CONFIG_IPW2100_MONITOR
8088 IPW2100_PRIV_SET_MONITOR,
8089 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8091 IPW2100_PRIV_RESET,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8093 #endif /* CONFIG_IPW2100_MONITOR */
8096 IPW2100_PRIV_SET_POWER,
8097 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8099 IPW2100_PRIV_GET_POWER,
8100 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8101 "get_power"},
8103 IPW2100_PRIV_SET_LONGPREAMBLE,
8104 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8106 IPW2100_PRIV_GET_LONGPREAMBLE,
8107 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8108 #ifdef CONFIG_IPW2100_MONITOR
8110 IPW2100_PRIV_SET_CRC_CHECK,
8111 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8113 IPW2100_PRIV_GET_CRC_CHECK,
8114 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8115 #endif /* CONFIG_IPW2100_MONITOR */
8118 static iw_handler ipw2100_private_handler[] = {
8119 #ifdef CONFIG_IPW2100_MONITOR
8120 ipw2100_wx_set_promisc,
8121 ipw2100_wx_reset,
8122 #else /* CONFIG_IPW2100_MONITOR */
8123 NULL,
8124 NULL,
8125 #endif /* CONFIG_IPW2100_MONITOR */
8126 ipw2100_wx_set_powermode,
8127 ipw2100_wx_get_powermode,
8128 ipw2100_wx_set_preamble,
8129 ipw2100_wx_get_preamble,
8130 #ifdef CONFIG_IPW2100_MONITOR
8131 ipw2100_wx_set_crc_check,
8132 ipw2100_wx_get_crc_check,
8133 #else /* CONFIG_IPW2100_MONITOR */
8134 NULL,
8135 NULL,
8136 #endif /* CONFIG_IPW2100_MONITOR */
8140 * Get wireless statistics.
8141 * Called by /proc/net/wireless
8142 * Also called by SIOCGIWSTATS
8144 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8146 enum {
8147 POOR = 30,
8148 FAIR = 60,
8149 GOOD = 80,
8150 VERY_GOOD = 90,
8151 EXCELLENT = 95,
8152 PERFECT = 100
8154 int rssi_qual;
8155 int tx_qual;
8156 int beacon_qual;
8158 struct ipw2100_priv *priv = ieee80211_priv(dev);
8159 struct iw_statistics *wstats;
8160 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8161 u32 ord_len = sizeof(u32);
8163 if (!priv)
8164 return (struct iw_statistics *)NULL;
8166 wstats = &priv->wstats;
8168 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8169 * ipw2100_wx_wireless_stats seems to be called before fw is
8170 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8171 * and associated; if not associcated, the values are all meaningless
8172 * anyway, so set them all to NULL and INVALID */
8173 if (!(priv->status & STATUS_ASSOCIATED)) {
8174 wstats->miss.beacon = 0;
8175 wstats->discard.retries = 0;
8176 wstats->qual.qual = 0;
8177 wstats->qual.level = 0;
8178 wstats->qual.noise = 0;
8179 wstats->qual.updated = 7;
8180 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8181 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8182 return wstats;
8185 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8186 &missed_beacons, &ord_len))
8187 goto fail_get_ordinal;
8189 /* If we don't have a connection the quality and level is 0 */
8190 if (!(priv->status & STATUS_ASSOCIATED)) {
8191 wstats->qual.qual = 0;
8192 wstats->qual.level = 0;
8193 } else {
8194 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8195 &rssi, &ord_len))
8196 goto fail_get_ordinal;
8197 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8198 if (rssi < 10)
8199 rssi_qual = rssi * POOR / 10;
8200 else if (rssi < 15)
8201 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8202 else if (rssi < 20)
8203 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8204 else if (rssi < 30)
8205 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8206 10 + GOOD;
8207 else
8208 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8209 10 + VERY_GOOD;
8211 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8212 &tx_retries, &ord_len))
8213 goto fail_get_ordinal;
8215 if (tx_retries > 75)
8216 tx_qual = (90 - tx_retries) * POOR / 15;
8217 else if (tx_retries > 70)
8218 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8219 else if (tx_retries > 65)
8220 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8221 else if (tx_retries > 50)
8222 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8223 15 + GOOD;
8224 else
8225 tx_qual = (50 - tx_retries) *
8226 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8228 if (missed_beacons > 50)
8229 beacon_qual = (60 - missed_beacons) * POOR / 10;
8230 else if (missed_beacons > 40)
8231 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8232 10 + POOR;
8233 else if (missed_beacons > 32)
8234 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8235 18 + FAIR;
8236 else if (missed_beacons > 20)
8237 beacon_qual = (32 - missed_beacons) *
8238 (VERY_GOOD - GOOD) / 20 + GOOD;
8239 else
8240 beacon_qual = (20 - missed_beacons) *
8241 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8243 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8245 #ifdef CONFIG_IPW2100_DEBUG
8246 if (beacon_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8248 else if (tx_qual == quality)
8249 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8250 else if (quality != 100)
8251 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8252 else
8253 IPW_DEBUG_WX("Quality not clamped.\n");
8254 #endif
8256 wstats->qual.qual = quality;
8257 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8260 wstats->qual.noise = 0;
8261 wstats->qual.updated = 7;
8262 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8264 /* FIXME: this is percent and not a # */
8265 wstats->miss.beacon = missed_beacons;
8267 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8268 &tx_failures, &ord_len))
8269 goto fail_get_ordinal;
8270 wstats->discard.retries = tx_failures;
8272 return wstats;
8274 fail_get_ordinal:
8275 IPW_DEBUG_WX("failed querying ordinals.\n");
8277 return (struct iw_statistics *)NULL;
8280 static struct iw_handler_def ipw2100_wx_handler_def = {
8281 .standard = ipw2100_wx_handlers,
8282 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8283 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8284 .num_private_args = sizeof(ipw2100_private_args) /
8285 sizeof(struct iw_priv_args),
8286 .private = (iw_handler *) ipw2100_private_handler,
8287 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8288 .get_wireless_stats = ipw2100_wx_wireless_stats,
8291 static void ipw2100_wx_event_work(struct work_struct *work)
8293 struct ipw2100_priv *priv =
8294 container_of(work, struct ipw2100_priv, wx_event_work.work);
8295 union iwreq_data wrqu;
8296 int len = ETH_ALEN;
8298 if (priv->status & STATUS_STOPPING)
8299 return;
8301 mutex_lock(&priv->action_mutex);
8303 IPW_DEBUG_WX("enter\n");
8305 mutex_unlock(&priv->action_mutex);
8307 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8309 /* Fetch BSSID from the hardware */
8310 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311 priv->status & STATUS_RF_KILL_MASK ||
8312 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313 &priv->bssid, &len)) {
8314 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315 } else {
8316 /* We now have the BSSID, so can finish setting to the full
8317 * associated state */
8318 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320 priv->status &= ~STATUS_ASSOCIATING;
8321 priv->status |= STATUS_ASSOCIATED;
8322 netif_carrier_on(priv->net_dev);
8323 netif_wake_queue(priv->net_dev);
8326 if (!(priv->status & STATUS_ASSOCIATED)) {
8327 IPW_DEBUG_WX("Configuring ESSID\n");
8328 mutex_lock(&priv->action_mutex);
8329 /* This is a disassociation event, so kick the firmware to
8330 * look for another AP */
8331 if (priv->config & CFG_STATIC_ESSID)
8332 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8334 else
8335 ipw2100_set_essid(priv, NULL, 0, 0);
8336 mutex_unlock(&priv->action_mutex);
8339 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349 IPW2100_FW_MAJOR_VERSION)
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8358 BINARY FIRMWARE HEADER FORMAT
8360 offset length desc
8361 0 2 version
8362 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8363 4 4 fw_len
8364 8 4 uc_len
8365 C fw_len firmware data
8366 12 + fw_len uc_len microcode data
8370 struct ipw2100_fw_header {
8371 short version;
8372 short mode;
8373 unsigned int fw_size;
8374 unsigned int uc_size;
8375 } __attribute__ ((packed));
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8379 struct ipw2100_fw_header *h =
8380 (struct ipw2100_fw_header *)fw->fw_entry->data;
8382 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384 "(detected version id of %u). "
8385 "See Documentation/networking/README.ipw2100\n",
8386 h->version);
8387 return 1;
8390 fw->version = h->version;
8391 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392 fw->fw.size = h->fw_size;
8393 fw->uc.data = fw->fw.data + h->fw_size;
8394 fw->uc.size = h->uc_size;
8396 return 0;
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400 struct ipw2100_fw *fw)
8402 char *fw_name;
8403 int rc;
8405 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406 priv->net_dev->name);
8408 switch (priv->ieee->iw_mode) {
8409 case IW_MODE_ADHOC:
8410 fw_name = IPW2100_FW_NAME("-i");
8411 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413 case IW_MODE_MONITOR:
8414 fw_name = IPW2100_FW_NAME("-p");
8415 break;
8416 #endif
8417 case IW_MODE_INFRA:
8418 default:
8419 fw_name = IPW2100_FW_NAME("");
8420 break;
8423 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8425 if (rc < 0) {
8426 printk(KERN_ERR DRV_NAME ": "
8427 "%s: Firmware '%s' not available or load failed.\n",
8428 priv->net_dev->name, fw_name);
8429 return rc;
8431 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432 fw->fw_entry->size);
8434 ipw2100_mod_firmware_load(fw);
8436 return 0;
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440 struct ipw2100_fw *fw)
8442 fw->version = 0;
8443 if (fw->fw_entry)
8444 release_firmware(fw->fw_entry);
8445 fw->fw_entry = NULL;
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449 size_t max)
8451 char ver[MAX_FW_VERSION_LEN];
8452 u32 len = MAX_FW_VERSION_LEN;
8453 u32 tmp;
8454 int i;
8455 /* firmware version is an ascii string (max len of 14) */
8456 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457 return -EIO;
8458 tmp = max;
8459 if (len >= max)
8460 len = max - 1;
8461 for (i = 0; i < len; i++)
8462 buf[i] = ver[i];
8463 buf[i] = '\0';
8464 return tmp;
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468 size_t max)
8470 u32 ver;
8471 u32 len = sizeof(ver);
8472 /* microcode version is a 32 bit integer */
8473 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474 return -EIO;
8475 return snprintf(buf, max, "%08X", ver);
8479 * On exit, the firmware will have been freed from the fw list
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8483 /* firmware is constructed of N contiguous entries, each entry is
8484 * structured as:
8486 * offset sie desc
8487 * 0 4 address to write to
8488 * 4 2 length of data run
8489 * 6 length data
8491 unsigned int addr;
8492 unsigned short len;
8494 const unsigned char *firmware_data = fw->fw.data;
8495 unsigned int firmware_data_left = fw->fw.size;
8497 while (firmware_data_left > 0) {
8498 addr = *(u32 *) (firmware_data);
8499 firmware_data += 4;
8500 firmware_data_left -= 4;
8502 len = *(u16 *) (firmware_data);
8503 firmware_data += 2;
8504 firmware_data_left -= 2;
8506 if (len > 32) {
8507 printk(KERN_ERR DRV_NAME ": "
8508 "Invalid firmware run-length of %d bytes\n",
8509 len);
8510 return -EINVAL;
8513 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514 firmware_data += len;
8515 firmware_data_left -= len;
8518 return 0;
8521 struct symbol_alive_response {
8522 u8 cmd_id;
8523 u8 seq_num;
8524 u8 ucode_rev;
8525 u8 eeprom_valid;
8526 u16 valid_flags;
8527 u8 IEEE_addr[6];
8528 u16 flags;
8529 u16 pcb_rev;
8530 u16 clock_settle_time; // 1us LSB
8531 u16 powerup_settle_time; // 1us LSB
8532 u16 hop_settle_time; // 1us LSB
8533 u8 date[3]; // month, day, year
8534 u8 time[2]; // hours, minutes
8535 u8 ucode_valid;
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539 struct ipw2100_fw *fw)
8541 struct net_device *dev = priv->net_dev;
8542 const unsigned char *microcode_data = fw->uc.data;
8543 unsigned int microcode_data_left = fw->uc.size;
8544 void __iomem *reg = (void __iomem *)dev->base_addr;
8546 struct symbol_alive_response response;
8547 int i, j;
8548 u8 data;
8550 /* Symbol control */
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552 readl(reg);
8553 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554 readl(reg);
8556 /* HW config */
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8558 readl(reg);
8559 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8560 readl(reg);
8562 /* EN_CS_ACCESS bit to reset control store pointer */
8563 write_nic_byte(dev, 0x210000, 0x40);
8564 readl(reg);
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567 write_nic_byte(dev, 0x210000, 0x40);
8568 readl(reg);
8570 /* copy microcode from buffer into Symbol */
8572 while (microcode_data_left > 0) {
8573 write_nic_byte(dev, 0x210010, *microcode_data++);
8574 write_nic_byte(dev, 0x210010, *microcode_data++);
8575 microcode_data_left -= 2;
8578 /* EN_CS_ACCESS bit to reset the control store pointer */
8579 write_nic_byte(dev, 0x210000, 0x0);
8580 readl(reg);
8582 /* Enable System (Reg 0)
8583 * first enable causes garbage in RX FIFO */
8584 write_nic_byte(dev, 0x210000, 0x0);
8585 readl(reg);
8586 write_nic_byte(dev, 0x210000, 0x80);
8587 readl(reg);
8589 /* Reset External Baseband Reg */
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591 readl(reg);
8592 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593 readl(reg);
8595 /* HW Config (Reg 5) */
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8597 readl(reg);
8598 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8599 readl(reg);
8601 /* Enable System (Reg 0)
8602 * second enable should be OK */
8603 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8604 readl(reg);
8605 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8607 /* check Symbol is enabled - upped this from 5 as it wasn't always
8608 * catching the update */
8609 for (i = 0; i < 10; i++) {
8610 udelay(10);
8612 /* check Dino is enabled bit */
8613 read_nic_byte(dev, 0x210000, &data);
8614 if (data & 0x1)
8615 break;
8618 if (i == 10) {
8619 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620 dev->name);
8621 return -EIO;
8624 /* Get Symbol alive response */
8625 for (i = 0; i < 30; i++) {
8626 /* Read alive response structure */
8627 for (j = 0;
8628 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8631 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632 break;
8633 udelay(10);
8636 if (i == 30) {
8637 printk(KERN_ERR DRV_NAME
8638 ": %s: No response from Symbol - hw not alive\n",
8639 dev->name);
8640 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641 return -EIO;
8644 return 0;