2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 unsigned long max_huge_pages
;
26 unsigned long sysctl_overcommit_huge_pages
;
27 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
28 unsigned long hugepages_treat_as_movable
;
30 struct hstate default_hstate
;
33 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
35 static DEFINE_SPINLOCK(hugetlb_lock
);
38 * Region tracking -- allows tracking of reservations and instantiated pages
39 * across the pages in a mapping.
41 * The region data structures are protected by a combination of the mmap_sem
42 * and the hugetlb_instantion_mutex. To access or modify a region the caller
43 * must either hold the mmap_sem for write, or the mmap_sem for read and
44 * the hugetlb_instantiation mutex:
46 * down_write(&mm->mmap_sem);
48 * down_read(&mm->mmap_sem);
49 * mutex_lock(&hugetlb_instantiation_mutex);
52 struct list_head link
;
57 static long region_add(struct list_head
*head
, long f
, long t
)
59 struct file_region
*rg
, *nrg
, *trg
;
61 /* Locate the region we are either in or before. */
62 list_for_each_entry(rg
, head
, link
)
66 /* Round our left edge to the current segment if it encloses us. */
70 /* Check for and consume any regions we now overlap with. */
72 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
73 if (&rg
->link
== head
)
78 /* If this area reaches higher then extend our area to
79 * include it completely. If this is not the first area
80 * which we intend to reuse, free it. */
93 static long region_chg(struct list_head
*head
, long f
, long t
)
95 struct file_region
*rg
, *nrg
;
98 /* Locate the region we are before or in. */
99 list_for_each_entry(rg
, head
, link
)
103 /* If we are below the current region then a new region is required.
104 * Subtle, allocate a new region at the position but make it zero
105 * size such that we can guarantee to record the reservation. */
106 if (&rg
->link
== head
|| t
< rg
->from
) {
107 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
112 INIT_LIST_HEAD(&nrg
->link
);
113 list_add(&nrg
->link
, rg
->link
.prev
);
118 /* Round our left edge to the current segment if it encloses us. */
123 /* Check for and consume any regions we now overlap with. */
124 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
125 if (&rg
->link
== head
)
130 /* We overlap with this area, if it extends futher than
131 * us then we must extend ourselves. Account for its
132 * existing reservation. */
137 chg
-= rg
->to
- rg
->from
;
142 static long region_truncate(struct list_head
*head
, long end
)
144 struct file_region
*rg
, *trg
;
147 /* Locate the region we are either in or before. */
148 list_for_each_entry(rg
, head
, link
)
151 if (&rg
->link
== head
)
154 /* If we are in the middle of a region then adjust it. */
155 if (end
> rg
->from
) {
158 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
161 /* Drop any remaining regions. */
162 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
163 if (&rg
->link
== head
)
165 chg
+= rg
->to
- rg
->from
;
172 static long region_count(struct list_head
*head
, long f
, long t
)
174 struct file_region
*rg
;
177 /* Locate each segment we overlap with, and count that overlap. */
178 list_for_each_entry(rg
, head
, link
) {
187 seg_from
= max(rg
->from
, f
);
188 seg_to
= min(rg
->to
, t
);
190 chg
+= seg_to
- seg_from
;
197 * Convert the address within this vma to the page offset within
198 * the mapping, in pagecache page units; huge pages here.
200 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
201 struct vm_area_struct
*vma
, unsigned long address
)
203 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
204 (vma
->vm_pgoff
>> huge_page_order(h
));
208 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
209 * bits of the reservation map pointer, which are always clear due to
212 #define HPAGE_RESV_OWNER (1UL << 0)
213 #define HPAGE_RESV_UNMAPPED (1UL << 1)
214 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
217 * These helpers are used to track how many pages are reserved for
218 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
219 * is guaranteed to have their future faults succeed.
221 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
222 * the reserve counters are updated with the hugetlb_lock held. It is safe
223 * to reset the VMA at fork() time as it is not in use yet and there is no
224 * chance of the global counters getting corrupted as a result of the values.
226 * The private mapping reservation is represented in a subtly different
227 * manner to a shared mapping. A shared mapping has a region map associated
228 * with the underlying file, this region map represents the backing file
229 * pages which have ever had a reservation assigned which this persists even
230 * after the page is instantiated. A private mapping has a region map
231 * associated with the original mmap which is attached to all VMAs which
232 * reference it, this region map represents those offsets which have consumed
233 * reservation ie. where pages have been instantiated.
235 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
237 return (unsigned long)vma
->vm_private_data
;
240 static void set_vma_private_data(struct vm_area_struct
*vma
,
243 vma
->vm_private_data
= (void *)value
;
248 struct list_head regions
;
251 struct resv_map
*resv_map_alloc(void)
253 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
257 kref_init(&resv_map
->refs
);
258 INIT_LIST_HEAD(&resv_map
->regions
);
263 void resv_map_release(struct kref
*ref
)
265 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
267 /* Clear out any active regions before we release the map. */
268 region_truncate(&resv_map
->regions
, 0);
272 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
274 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
275 if (!(vma
->vm_flags
& VM_SHARED
))
276 return (struct resv_map
*)(get_vma_private_data(vma
) &
281 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
283 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
284 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
286 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
287 HPAGE_RESV_MASK
) | (unsigned long)map
);
290 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
292 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
293 VM_BUG_ON(vma
->vm_flags
& VM_SHARED
);
295 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
298 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
300 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
302 return (get_vma_private_data(vma
) & flag
) != 0;
305 /* Decrement the reserved pages in the hugepage pool by one */
306 static void decrement_hugepage_resv_vma(struct hstate
*h
,
307 struct vm_area_struct
*vma
)
309 if (vma
->vm_flags
& VM_NORESERVE
)
312 if (vma
->vm_flags
& VM_SHARED
) {
313 /* Shared mappings always use reserves */
314 h
->resv_huge_pages
--;
315 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
317 * Only the process that called mmap() has reserves for
320 h
->resv_huge_pages
--;
324 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
325 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
327 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
328 if (!(vma
->vm_flags
& VM_SHARED
))
329 vma
->vm_private_data
= (void *)0;
332 /* Returns true if the VMA has associated reserve pages */
333 static int vma_has_private_reserves(struct vm_area_struct
*vma
)
335 if (vma
->vm_flags
& VM_SHARED
)
337 if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
342 static void clear_huge_page(struct page
*page
,
343 unsigned long addr
, unsigned long sz
)
348 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
350 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
354 static void copy_huge_page(struct page
*dst
, struct page
*src
,
355 unsigned long addr
, struct vm_area_struct
*vma
)
358 struct hstate
*h
= hstate_vma(vma
);
361 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
363 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
367 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
369 int nid
= page_to_nid(page
);
370 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
371 h
->free_huge_pages
++;
372 h
->free_huge_pages_node
[nid
]++;
375 static struct page
*dequeue_huge_page(struct hstate
*h
)
378 struct page
*page
= NULL
;
380 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
381 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
382 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
384 list_del(&page
->lru
);
385 h
->free_huge_pages
--;
386 h
->free_huge_pages_node
[nid
]--;
393 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
394 struct vm_area_struct
*vma
,
395 unsigned long address
, int avoid_reserve
)
398 struct page
*page
= NULL
;
399 struct mempolicy
*mpol
;
400 nodemask_t
*nodemask
;
401 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
402 htlb_alloc_mask
, &mpol
, &nodemask
);
407 * A child process with MAP_PRIVATE mappings created by their parent
408 * have no page reserves. This check ensures that reservations are
409 * not "stolen". The child may still get SIGKILLed
411 if (!vma_has_private_reserves(vma
) &&
412 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
415 /* If reserves cannot be used, ensure enough pages are in the pool */
416 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
419 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
420 MAX_NR_ZONES
- 1, nodemask
) {
421 nid
= zone_to_nid(zone
);
422 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
) &&
423 !list_empty(&h
->hugepage_freelists
[nid
])) {
424 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
426 list_del(&page
->lru
);
427 h
->free_huge_pages
--;
428 h
->free_huge_pages_node
[nid
]--;
431 decrement_hugepage_resv_vma(h
, vma
);
440 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
445 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
446 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
447 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
448 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
449 1 << PG_private
| 1<< PG_writeback
);
451 set_compound_page_dtor(page
, NULL
);
452 set_page_refcounted(page
);
453 arch_release_hugepage(page
);
454 __free_pages(page
, huge_page_order(h
));
457 static void free_huge_page(struct page
*page
)
460 * Can't pass hstate in here because it is called from the
461 * compound page destructor.
463 struct hstate
*h
= &default_hstate
;
464 int nid
= page_to_nid(page
);
465 struct address_space
*mapping
;
467 mapping
= (struct address_space
*) page_private(page
);
468 set_page_private(page
, 0);
469 BUG_ON(page_count(page
));
470 INIT_LIST_HEAD(&page
->lru
);
472 spin_lock(&hugetlb_lock
);
473 if (h
->surplus_huge_pages_node
[nid
]) {
474 update_and_free_page(h
, page
);
475 h
->surplus_huge_pages
--;
476 h
->surplus_huge_pages_node
[nid
]--;
478 enqueue_huge_page(h
, page
);
480 spin_unlock(&hugetlb_lock
);
482 hugetlb_put_quota(mapping
, 1);
486 * Increment or decrement surplus_huge_pages. Keep node-specific counters
487 * balanced by operating on them in a round-robin fashion.
488 * Returns 1 if an adjustment was made.
490 static int adjust_pool_surplus(struct hstate
*h
, int delta
)
496 VM_BUG_ON(delta
!= -1 && delta
!= 1);
498 nid
= next_node(nid
, node_online_map
);
499 if (nid
== MAX_NUMNODES
)
500 nid
= first_node(node_online_map
);
502 /* To shrink on this node, there must be a surplus page */
503 if (delta
< 0 && !h
->surplus_huge_pages_node
[nid
])
505 /* Surplus cannot exceed the total number of pages */
506 if (delta
> 0 && h
->surplus_huge_pages_node
[nid
] >=
507 h
->nr_huge_pages_node
[nid
])
510 h
->surplus_huge_pages
+= delta
;
511 h
->surplus_huge_pages_node
[nid
] += delta
;
514 } while (nid
!= prev_nid
);
520 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
522 set_compound_page_dtor(page
, free_huge_page
);
523 spin_lock(&hugetlb_lock
);
525 h
->nr_huge_pages_node
[nid
]++;
526 spin_unlock(&hugetlb_lock
);
527 put_page(page
); /* free it into the hugepage allocator */
530 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
534 page
= alloc_pages_node(nid
,
535 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
536 __GFP_REPEAT
|__GFP_NOWARN
,
539 if (arch_prepare_hugepage(page
)) {
540 __free_pages(page
, HUGETLB_PAGE_ORDER
);
543 prep_new_huge_page(h
, page
, nid
);
549 static int alloc_fresh_huge_page(struct hstate
*h
)
556 start_nid
= h
->hugetlb_next_nid
;
559 page
= alloc_fresh_huge_page_node(h
, h
->hugetlb_next_nid
);
563 * Use a helper variable to find the next node and then
564 * copy it back to hugetlb_next_nid afterwards:
565 * otherwise there's a window in which a racer might
566 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
567 * But we don't need to use a spin_lock here: it really
568 * doesn't matter if occasionally a racer chooses the
569 * same nid as we do. Move nid forward in the mask even
570 * if we just successfully allocated a hugepage so that
571 * the next caller gets hugepages on the next node.
573 next_nid
= next_node(h
->hugetlb_next_nid
, node_online_map
);
574 if (next_nid
== MAX_NUMNODES
)
575 next_nid
= first_node(node_online_map
);
576 h
->hugetlb_next_nid
= next_nid
;
577 } while (!page
&& h
->hugetlb_next_nid
!= start_nid
);
580 count_vm_event(HTLB_BUDDY_PGALLOC
);
582 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
587 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
588 struct vm_area_struct
*vma
, unsigned long address
)
594 * Assume we will successfully allocate the surplus page to
595 * prevent racing processes from causing the surplus to exceed
598 * This however introduces a different race, where a process B
599 * tries to grow the static hugepage pool while alloc_pages() is
600 * called by process A. B will only examine the per-node
601 * counters in determining if surplus huge pages can be
602 * converted to normal huge pages in adjust_pool_surplus(). A
603 * won't be able to increment the per-node counter, until the
604 * lock is dropped by B, but B doesn't drop hugetlb_lock until
605 * no more huge pages can be converted from surplus to normal
606 * state (and doesn't try to convert again). Thus, we have a
607 * case where a surplus huge page exists, the pool is grown, and
608 * the surplus huge page still exists after, even though it
609 * should just have been converted to a normal huge page. This
610 * does not leak memory, though, as the hugepage will be freed
611 * once it is out of use. It also does not allow the counters to
612 * go out of whack in adjust_pool_surplus() as we don't modify
613 * the node values until we've gotten the hugepage and only the
614 * per-node value is checked there.
616 spin_lock(&hugetlb_lock
);
617 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
618 spin_unlock(&hugetlb_lock
);
622 h
->surplus_huge_pages
++;
624 spin_unlock(&hugetlb_lock
);
626 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
627 __GFP_REPEAT
|__GFP_NOWARN
,
630 spin_lock(&hugetlb_lock
);
633 * This page is now managed by the hugetlb allocator and has
634 * no users -- drop the buddy allocator's reference.
636 put_page_testzero(page
);
637 VM_BUG_ON(page_count(page
));
638 nid
= page_to_nid(page
);
639 set_compound_page_dtor(page
, free_huge_page
);
641 * We incremented the global counters already
643 h
->nr_huge_pages_node
[nid
]++;
644 h
->surplus_huge_pages_node
[nid
]++;
645 __count_vm_event(HTLB_BUDDY_PGALLOC
);
648 h
->surplus_huge_pages
--;
649 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
651 spin_unlock(&hugetlb_lock
);
657 * Increase the hugetlb pool such that it can accomodate a reservation
660 static int gather_surplus_pages(struct hstate
*h
, int delta
)
662 struct list_head surplus_list
;
663 struct page
*page
, *tmp
;
665 int needed
, allocated
;
667 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
669 h
->resv_huge_pages
+= delta
;
674 INIT_LIST_HEAD(&surplus_list
);
678 spin_unlock(&hugetlb_lock
);
679 for (i
= 0; i
< needed
; i
++) {
680 page
= alloc_buddy_huge_page(h
, NULL
, 0);
683 * We were not able to allocate enough pages to
684 * satisfy the entire reservation so we free what
685 * we've allocated so far.
687 spin_lock(&hugetlb_lock
);
692 list_add(&page
->lru
, &surplus_list
);
697 * After retaking hugetlb_lock, we need to recalculate 'needed'
698 * because either resv_huge_pages or free_huge_pages may have changed.
700 spin_lock(&hugetlb_lock
);
701 needed
= (h
->resv_huge_pages
+ delta
) -
702 (h
->free_huge_pages
+ allocated
);
707 * The surplus_list now contains _at_least_ the number of extra pages
708 * needed to accomodate the reservation. Add the appropriate number
709 * of pages to the hugetlb pool and free the extras back to the buddy
710 * allocator. Commit the entire reservation here to prevent another
711 * process from stealing the pages as they are added to the pool but
712 * before they are reserved.
715 h
->resv_huge_pages
+= delta
;
718 /* Free the needed pages to the hugetlb pool */
719 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
722 list_del(&page
->lru
);
723 enqueue_huge_page(h
, page
);
726 /* Free unnecessary surplus pages to the buddy allocator */
727 if (!list_empty(&surplus_list
)) {
728 spin_unlock(&hugetlb_lock
);
729 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
730 list_del(&page
->lru
);
732 * The page has a reference count of zero already, so
733 * call free_huge_page directly instead of using
734 * put_page. This must be done with hugetlb_lock
735 * unlocked which is safe because free_huge_page takes
736 * hugetlb_lock before deciding how to free the page.
738 free_huge_page(page
);
740 spin_lock(&hugetlb_lock
);
747 * When releasing a hugetlb pool reservation, any surplus pages that were
748 * allocated to satisfy the reservation must be explicitly freed if they were
751 static void return_unused_surplus_pages(struct hstate
*h
,
752 unsigned long unused_resv_pages
)
756 unsigned long nr_pages
;
759 * We want to release as many surplus pages as possible, spread
760 * evenly across all nodes. Iterate across all nodes until we
761 * can no longer free unreserved surplus pages. This occurs when
762 * the nodes with surplus pages have no free pages.
764 unsigned long remaining_iterations
= num_online_nodes();
766 /* Uncommit the reservation */
767 h
->resv_huge_pages
-= unused_resv_pages
;
769 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
771 while (remaining_iterations
-- && nr_pages
) {
772 nid
= next_node(nid
, node_online_map
);
773 if (nid
== MAX_NUMNODES
)
774 nid
= first_node(node_online_map
);
776 if (!h
->surplus_huge_pages_node
[nid
])
779 if (!list_empty(&h
->hugepage_freelists
[nid
])) {
780 page
= list_entry(h
->hugepage_freelists
[nid
].next
,
782 list_del(&page
->lru
);
783 update_and_free_page(h
, page
);
784 h
->free_huge_pages
--;
785 h
->free_huge_pages_node
[nid
]--;
786 h
->surplus_huge_pages
--;
787 h
->surplus_huge_pages_node
[nid
]--;
789 remaining_iterations
= num_online_nodes();
795 * Determine if the huge page at addr within the vma has an associated
796 * reservation. Where it does not we will need to logically increase
797 * reservation and actually increase quota before an allocation can occur.
798 * Where any new reservation would be required the reservation change is
799 * prepared, but not committed. Once the page has been quota'd allocated
800 * an instantiated the change should be committed via vma_commit_reservation.
801 * No action is required on failure.
803 static int vma_needs_reservation(struct hstate
*h
,
804 struct vm_area_struct
*vma
, unsigned long addr
)
806 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
807 struct inode
*inode
= mapping
->host
;
809 if (vma
->vm_flags
& VM_SHARED
) {
810 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
811 return region_chg(&inode
->i_mapping
->private_list
,
814 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
819 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
820 struct resv_map
*reservations
= vma_resv_map(vma
);
822 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
828 static void vma_commit_reservation(struct hstate
*h
,
829 struct vm_area_struct
*vma
, unsigned long addr
)
831 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
832 struct inode
*inode
= mapping
->host
;
834 if (vma
->vm_flags
& VM_SHARED
) {
835 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
836 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
838 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
839 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
840 struct resv_map
*reservations
= vma_resv_map(vma
);
842 /* Mark this page used in the map. */
843 region_add(&reservations
->regions
, idx
, idx
+ 1);
847 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
848 unsigned long addr
, int avoid_reserve
)
850 struct hstate
*h
= hstate_vma(vma
);
852 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
853 struct inode
*inode
= mapping
->host
;
857 * Processes that did not create the mapping will have no reserves and
858 * will not have accounted against quota. Check that the quota can be
859 * made before satisfying the allocation
860 * MAP_NORESERVE mappings may also need pages and quota allocated
861 * if no reserve mapping overlaps.
863 chg
= vma_needs_reservation(h
, vma
, addr
);
867 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
868 return ERR_PTR(-ENOSPC
);
870 spin_lock(&hugetlb_lock
);
871 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
872 spin_unlock(&hugetlb_lock
);
875 page
= alloc_buddy_huge_page(h
, vma
, addr
);
877 hugetlb_put_quota(inode
->i_mapping
, chg
);
878 return ERR_PTR(-VM_FAULT_OOM
);
882 set_page_refcounted(page
);
883 set_page_private(page
, (unsigned long) mapping
);
885 vma_commit_reservation(h
, vma
, addr
);
890 static int __init
hugetlb_init(void)
893 struct hstate
*h
= &default_hstate
;
895 if (HPAGE_SHIFT
== 0)
899 h
->order
= HPAGE_SHIFT
- PAGE_SHIFT
;
900 h
->mask
= HPAGE_MASK
;
903 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
904 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
906 h
->hugetlb_next_nid
= first_node(node_online_map
);
908 for (i
= 0; i
< max_huge_pages
; ++i
) {
909 if (!alloc_fresh_huge_page(h
))
912 max_huge_pages
= h
->free_huge_pages
= h
->nr_huge_pages
= i
;
913 printk(KERN_INFO
"Total HugeTLB memory allocated, %ld\n",
917 module_init(hugetlb_init
);
919 static int __init
hugetlb_setup(char *s
)
921 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
925 __setup("hugepages=", hugetlb_setup
);
927 static unsigned int cpuset_mems_nr(unsigned int *array
)
932 for_each_node_mask(node
, cpuset_current_mems_allowed
)
939 #ifdef CONFIG_HIGHMEM
940 static void try_to_free_low(struct hstate
*h
, unsigned long count
)
944 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
945 struct page
*page
, *next
;
946 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
947 list_for_each_entry_safe(page
, next
, freel
, lru
) {
948 if (count
>= h
->nr_huge_pages
)
950 if (PageHighMem(page
))
952 list_del(&page
->lru
);
953 update_and_free_page(page
);
954 h
->free_huge_pages
--;
955 h
->free_huge_pages_node
[page_to_nid(page
)]--;
960 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
)
965 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
966 static unsigned long set_max_huge_pages(unsigned long count
)
968 unsigned long min_count
, ret
;
969 struct hstate
*h
= &default_hstate
;
972 * Increase the pool size
973 * First take pages out of surplus state. Then make up the
974 * remaining difference by allocating fresh huge pages.
976 * We might race with alloc_buddy_huge_page() here and be unable
977 * to convert a surplus huge page to a normal huge page. That is
978 * not critical, though, it just means the overall size of the
979 * pool might be one hugepage larger than it needs to be, but
980 * within all the constraints specified by the sysctls.
982 spin_lock(&hugetlb_lock
);
983 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
984 if (!adjust_pool_surplus(h
, -1))
988 while (count
> persistent_huge_pages(h
)) {
990 * If this allocation races such that we no longer need the
991 * page, free_huge_page will handle it by freeing the page
992 * and reducing the surplus.
994 spin_unlock(&hugetlb_lock
);
995 ret
= alloc_fresh_huge_page(h
);
996 spin_lock(&hugetlb_lock
);
1003 * Decrease the pool size
1004 * First return free pages to the buddy allocator (being careful
1005 * to keep enough around to satisfy reservations). Then place
1006 * pages into surplus state as needed so the pool will shrink
1007 * to the desired size as pages become free.
1009 * By placing pages into the surplus state independent of the
1010 * overcommit value, we are allowing the surplus pool size to
1011 * exceed overcommit. There are few sane options here. Since
1012 * alloc_buddy_huge_page() is checking the global counter,
1013 * though, we'll note that we're not allowed to exceed surplus
1014 * and won't grow the pool anywhere else. Not until one of the
1015 * sysctls are changed, or the surplus pages go out of use.
1017 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1018 min_count
= max(count
, min_count
);
1019 try_to_free_low(h
, min_count
);
1020 while (min_count
< persistent_huge_pages(h
)) {
1021 struct page
*page
= dequeue_huge_page(h
);
1024 update_and_free_page(h
, page
);
1026 while (count
< persistent_huge_pages(h
)) {
1027 if (!adjust_pool_surplus(h
, 1))
1031 ret
= persistent_huge_pages(h
);
1032 spin_unlock(&hugetlb_lock
);
1036 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1037 struct file
*file
, void __user
*buffer
,
1038 size_t *length
, loff_t
*ppos
)
1040 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1041 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
1045 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1046 struct file
*file
, void __user
*buffer
,
1047 size_t *length
, loff_t
*ppos
)
1049 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
1050 if (hugepages_treat_as_movable
)
1051 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1053 htlb_alloc_mask
= GFP_HIGHUSER
;
1057 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1058 struct file
*file
, void __user
*buffer
,
1059 size_t *length
, loff_t
*ppos
)
1061 struct hstate
*h
= &default_hstate
;
1062 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
1063 spin_lock(&hugetlb_lock
);
1064 h
->nr_overcommit_huge_pages
= sysctl_overcommit_huge_pages
;
1065 spin_unlock(&hugetlb_lock
);
1069 #endif /* CONFIG_SYSCTL */
1071 int hugetlb_report_meminfo(char *buf
)
1073 struct hstate
*h
= &default_hstate
;
1075 "HugePages_Total: %5lu\n"
1076 "HugePages_Free: %5lu\n"
1077 "HugePages_Rsvd: %5lu\n"
1078 "HugePages_Surp: %5lu\n"
1079 "Hugepagesize: %5lu kB\n",
1083 h
->surplus_huge_pages
,
1084 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1087 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1089 struct hstate
*h
= &default_hstate
;
1091 "Node %d HugePages_Total: %5u\n"
1092 "Node %d HugePages_Free: %5u\n"
1093 "Node %d HugePages_Surp: %5u\n",
1094 nid
, h
->nr_huge_pages_node
[nid
],
1095 nid
, h
->free_huge_pages_node
[nid
],
1096 nid
, h
->surplus_huge_pages_node
[nid
]);
1099 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1100 unsigned long hugetlb_total_pages(void)
1102 struct hstate
*h
= &default_hstate
;
1103 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1106 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
1110 spin_lock(&hugetlb_lock
);
1112 * When cpuset is configured, it breaks the strict hugetlb page
1113 * reservation as the accounting is done on a global variable. Such
1114 * reservation is completely rubbish in the presence of cpuset because
1115 * the reservation is not checked against page availability for the
1116 * current cpuset. Application can still potentially OOM'ed by kernel
1117 * with lack of free htlb page in cpuset that the task is in.
1118 * Attempt to enforce strict accounting with cpuset is almost
1119 * impossible (or too ugly) because cpuset is too fluid that
1120 * task or memory node can be dynamically moved between cpusets.
1122 * The change of semantics for shared hugetlb mapping with cpuset is
1123 * undesirable. However, in order to preserve some of the semantics,
1124 * we fall back to check against current free page availability as
1125 * a best attempt and hopefully to minimize the impact of changing
1126 * semantics that cpuset has.
1129 if (gather_surplus_pages(h
, delta
) < 0)
1132 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
1133 return_unused_surplus_pages(h
, delta
);
1140 return_unused_surplus_pages(h
, (unsigned long) -delta
);
1143 spin_unlock(&hugetlb_lock
);
1147 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
1149 struct resv_map
*reservations
= vma_resv_map(vma
);
1152 * This new VMA should share its siblings reservation map if present.
1153 * The VMA will only ever have a valid reservation map pointer where
1154 * it is being copied for another still existing VMA. As that VMA
1155 * has a reference to the reservation map it cannot dissappear until
1156 * after this open call completes. It is therefore safe to take a
1157 * new reference here without additional locking.
1160 kref_get(&reservations
->refs
);
1163 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
1165 struct hstate
*h
= hstate_vma(vma
);
1166 struct resv_map
*reservations
= vma_resv_map(vma
);
1167 unsigned long reserve
;
1168 unsigned long start
;
1172 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
1173 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
1175 reserve
= (end
- start
) -
1176 region_count(&reservations
->regions
, start
, end
);
1178 kref_put(&reservations
->refs
, resv_map_release
);
1181 hugetlb_acct_memory(h
, -reserve
);
1186 * We cannot handle pagefaults against hugetlb pages at all. They cause
1187 * handle_mm_fault() to try to instantiate regular-sized pages in the
1188 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1191 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1197 struct vm_operations_struct hugetlb_vm_ops
= {
1198 .fault
= hugetlb_vm_op_fault
,
1199 .open
= hugetlb_vm_op_open
,
1200 .close
= hugetlb_vm_op_close
,
1203 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
1210 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
1212 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
1214 entry
= pte_mkyoung(entry
);
1215 entry
= pte_mkhuge(entry
);
1220 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
1221 unsigned long address
, pte_t
*ptep
)
1225 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
1226 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
1227 update_mmu_cache(vma
, address
, entry
);
1232 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
1233 struct vm_area_struct
*vma
)
1235 pte_t
*src_pte
, *dst_pte
, entry
;
1236 struct page
*ptepage
;
1239 struct hstate
*h
= hstate_vma(vma
);
1240 unsigned long sz
= huge_page_size(h
);
1242 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
1244 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
1245 src_pte
= huge_pte_offset(src
, addr
);
1248 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
1252 /* If the pagetables are shared don't copy or take references */
1253 if (dst_pte
== src_pte
)
1256 spin_lock(&dst
->page_table_lock
);
1257 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
1258 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
1260 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
1261 entry
= huge_ptep_get(src_pte
);
1262 ptepage
= pte_page(entry
);
1264 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
1266 spin_unlock(&src
->page_table_lock
);
1267 spin_unlock(&dst
->page_table_lock
);
1275 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1276 unsigned long end
, struct page
*ref_page
)
1278 struct mm_struct
*mm
= vma
->vm_mm
;
1279 unsigned long address
;
1284 struct hstate
*h
= hstate_vma(vma
);
1285 unsigned long sz
= huge_page_size(h
);
1288 * A page gathering list, protected by per file i_mmap_lock. The
1289 * lock is used to avoid list corruption from multiple unmapping
1290 * of the same page since we are using page->lru.
1292 LIST_HEAD(page_list
);
1294 WARN_ON(!is_vm_hugetlb_page(vma
));
1295 BUG_ON(start
& ~huge_page_mask(h
));
1296 BUG_ON(end
& ~huge_page_mask(h
));
1298 spin_lock(&mm
->page_table_lock
);
1299 for (address
= start
; address
< end
; address
+= sz
) {
1300 ptep
= huge_pte_offset(mm
, address
);
1304 if (huge_pmd_unshare(mm
, &address
, ptep
))
1308 * If a reference page is supplied, it is because a specific
1309 * page is being unmapped, not a range. Ensure the page we
1310 * are about to unmap is the actual page of interest.
1313 pte
= huge_ptep_get(ptep
);
1314 if (huge_pte_none(pte
))
1316 page
= pte_page(pte
);
1317 if (page
!= ref_page
)
1321 * Mark the VMA as having unmapped its page so that
1322 * future faults in this VMA will fail rather than
1323 * looking like data was lost
1325 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
1328 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1329 if (huge_pte_none(pte
))
1332 page
= pte_page(pte
);
1334 set_page_dirty(page
);
1335 list_add(&page
->lru
, &page_list
);
1337 spin_unlock(&mm
->page_table_lock
);
1338 flush_tlb_range(vma
, start
, end
);
1339 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
1340 list_del(&page
->lru
);
1345 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
1346 unsigned long end
, struct page
*ref_page
)
1349 * It is undesirable to test vma->vm_file as it should be non-null
1350 * for valid hugetlb area. However, vm_file will be NULL in the error
1351 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1352 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1353 * to clean up. Since no pte has actually been setup, it is safe to
1354 * do nothing in this case.
1357 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1358 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
1359 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1364 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1365 * mappping it owns the reserve page for. The intention is to unmap the page
1366 * from other VMAs and let the children be SIGKILLed if they are faulting the
1369 int unmap_ref_private(struct mm_struct
*mm
,
1370 struct vm_area_struct
*vma
,
1372 unsigned long address
)
1374 struct vm_area_struct
*iter_vma
;
1375 struct address_space
*mapping
;
1376 struct prio_tree_iter iter
;
1380 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1381 * from page cache lookup which is in HPAGE_SIZE units.
1383 address
= address
& huge_page_mask(hstate_vma(vma
));
1384 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
1385 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
1386 mapping
= (struct address_space
*)page_private(page
);
1388 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1389 /* Do not unmap the current VMA */
1390 if (iter_vma
== vma
)
1394 * Unmap the page from other VMAs without their own reserves.
1395 * They get marked to be SIGKILLed if they fault in these
1396 * areas. This is because a future no-page fault on this VMA
1397 * could insert a zeroed page instead of the data existing
1398 * from the time of fork. This would look like data corruption
1400 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
1401 unmap_hugepage_range(iter_vma
,
1402 address
, address
+ HPAGE_SIZE
,
1409 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1410 unsigned long address
, pte_t
*ptep
, pte_t pte
,
1411 struct page
*pagecache_page
)
1413 struct hstate
*h
= hstate_vma(vma
);
1414 struct page
*old_page
, *new_page
;
1416 int outside_reserve
= 0;
1418 old_page
= pte_page(pte
);
1421 /* If no-one else is actually using this page, avoid the copy
1422 * and just make the page writable */
1423 avoidcopy
= (page_count(old_page
) == 1);
1425 set_huge_ptep_writable(vma
, address
, ptep
);
1430 * If the process that created a MAP_PRIVATE mapping is about to
1431 * perform a COW due to a shared page count, attempt to satisfy
1432 * the allocation without using the existing reserves. The pagecache
1433 * page is used to determine if the reserve at this address was
1434 * consumed or not. If reserves were used, a partial faulted mapping
1435 * at the time of fork() could consume its reserves on COW instead
1436 * of the full address range.
1438 if (!(vma
->vm_flags
& VM_SHARED
) &&
1439 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
1440 old_page
!= pagecache_page
)
1441 outside_reserve
= 1;
1443 page_cache_get(old_page
);
1444 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
1446 if (IS_ERR(new_page
)) {
1447 page_cache_release(old_page
);
1450 * If a process owning a MAP_PRIVATE mapping fails to COW,
1451 * it is due to references held by a child and an insufficient
1452 * huge page pool. To guarantee the original mappers
1453 * reliability, unmap the page from child processes. The child
1454 * may get SIGKILLed if it later faults.
1456 if (outside_reserve
) {
1457 BUG_ON(huge_pte_none(pte
));
1458 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
1459 BUG_ON(page_count(old_page
) != 1);
1460 BUG_ON(huge_pte_none(pte
));
1461 goto retry_avoidcopy
;
1466 return -PTR_ERR(new_page
);
1469 spin_unlock(&mm
->page_table_lock
);
1470 copy_huge_page(new_page
, old_page
, address
, vma
);
1471 __SetPageUptodate(new_page
);
1472 spin_lock(&mm
->page_table_lock
);
1474 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
1475 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
1477 huge_ptep_clear_flush(vma
, address
, ptep
);
1478 set_huge_pte_at(mm
, address
, ptep
,
1479 make_huge_pte(vma
, new_page
, 1));
1480 /* Make the old page be freed below */
1481 new_page
= old_page
;
1483 page_cache_release(new_page
);
1484 page_cache_release(old_page
);
1488 /* Return the pagecache page at a given address within a VMA */
1489 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
1490 struct vm_area_struct
*vma
, unsigned long address
)
1492 struct address_space
*mapping
;
1495 mapping
= vma
->vm_file
->f_mapping
;
1496 idx
= vma_hugecache_offset(h
, vma
, address
);
1498 return find_lock_page(mapping
, idx
);
1501 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1502 unsigned long address
, pte_t
*ptep
, int write_access
)
1504 struct hstate
*h
= hstate_vma(vma
);
1505 int ret
= VM_FAULT_SIGBUS
;
1509 struct address_space
*mapping
;
1513 * Currently, we are forced to kill the process in the event the
1514 * original mapper has unmapped pages from the child due to a failed
1515 * COW. Warn that such a situation has occured as it may not be obvious
1517 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
1519 "PID %d killed due to inadequate hugepage pool\n",
1524 mapping
= vma
->vm_file
->f_mapping
;
1525 idx
= vma_hugecache_offset(h
, vma
, address
);
1528 * Use page lock to guard against racing truncation
1529 * before we get page_table_lock.
1532 page
= find_lock_page(mapping
, idx
);
1534 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1537 page
= alloc_huge_page(vma
, address
, 0);
1539 ret
= -PTR_ERR(page
);
1542 clear_huge_page(page
, address
, huge_page_size(h
));
1543 __SetPageUptodate(page
);
1545 if (vma
->vm_flags
& VM_SHARED
) {
1547 struct inode
*inode
= mapping
->host
;
1549 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
1557 spin_lock(&inode
->i_lock
);
1558 inode
->i_blocks
+= blocks_per_huge_page(h
);
1559 spin_unlock(&inode
->i_lock
);
1564 spin_lock(&mm
->page_table_lock
);
1565 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
1570 if (!huge_pte_none(huge_ptep_get(ptep
)))
1573 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
1574 && (vma
->vm_flags
& VM_SHARED
)));
1575 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
1577 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1578 /* Optimization, do the COW without a second fault */
1579 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
1582 spin_unlock(&mm
->page_table_lock
);
1588 spin_unlock(&mm
->page_table_lock
);
1594 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1595 unsigned long address
, int write_access
)
1600 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
1601 struct hstate
*h
= hstate_vma(vma
);
1603 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
1605 return VM_FAULT_OOM
;
1608 * Serialize hugepage allocation and instantiation, so that we don't
1609 * get spurious allocation failures if two CPUs race to instantiate
1610 * the same page in the page cache.
1612 mutex_lock(&hugetlb_instantiation_mutex
);
1613 entry
= huge_ptep_get(ptep
);
1614 if (huge_pte_none(entry
)) {
1615 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
1616 mutex_unlock(&hugetlb_instantiation_mutex
);
1622 spin_lock(&mm
->page_table_lock
);
1623 /* Check for a racing update before calling hugetlb_cow */
1624 if (likely(pte_same(entry
, huge_ptep_get(ptep
))))
1625 if (write_access
&& !pte_write(entry
)) {
1627 page
= hugetlbfs_pagecache_page(h
, vma
, address
);
1628 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
, page
);
1634 spin_unlock(&mm
->page_table_lock
);
1635 mutex_unlock(&hugetlb_instantiation_mutex
);
1640 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1641 struct page
**pages
, struct vm_area_struct
**vmas
,
1642 unsigned long *position
, int *length
, int i
,
1645 unsigned long pfn_offset
;
1646 unsigned long vaddr
= *position
;
1647 int remainder
= *length
;
1648 struct hstate
*h
= hstate_vma(vma
);
1650 spin_lock(&mm
->page_table_lock
);
1651 while (vaddr
< vma
->vm_end
&& remainder
) {
1656 * Some archs (sparc64, sh*) have multiple pte_ts to
1657 * each hugepage. We have to make * sure we get the
1658 * first, for the page indexing below to work.
1660 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
1662 if (!pte
|| huge_pte_none(huge_ptep_get(pte
)) ||
1663 (write
&& !pte_write(huge_ptep_get(pte
)))) {
1666 spin_unlock(&mm
->page_table_lock
);
1667 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
1668 spin_lock(&mm
->page_table_lock
);
1669 if (!(ret
& VM_FAULT_ERROR
))
1678 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
1679 page
= pte_page(huge_ptep_get(pte
));
1683 pages
[i
] = page
+ pfn_offset
;
1693 if (vaddr
< vma
->vm_end
&& remainder
&&
1694 pfn_offset
< pages_per_huge_page(h
)) {
1696 * We use pfn_offset to avoid touching the pageframes
1697 * of this compound page.
1702 spin_unlock(&mm
->page_table_lock
);
1703 *length
= remainder
;
1709 void hugetlb_change_protection(struct vm_area_struct
*vma
,
1710 unsigned long address
, unsigned long end
, pgprot_t newprot
)
1712 struct mm_struct
*mm
= vma
->vm_mm
;
1713 unsigned long start
= address
;
1716 struct hstate
*h
= hstate_vma(vma
);
1718 BUG_ON(address
>= end
);
1719 flush_cache_range(vma
, address
, end
);
1721 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1722 spin_lock(&mm
->page_table_lock
);
1723 for (; address
< end
; address
+= huge_page_size(h
)) {
1724 ptep
= huge_pte_offset(mm
, address
);
1727 if (huge_pmd_unshare(mm
, &address
, ptep
))
1729 if (!huge_pte_none(huge_ptep_get(ptep
))) {
1730 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1731 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
1732 set_huge_pte_at(mm
, address
, ptep
, pte
);
1735 spin_unlock(&mm
->page_table_lock
);
1736 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1738 flush_tlb_range(vma
, start
, end
);
1741 int hugetlb_reserve_pages(struct inode
*inode
,
1743 struct vm_area_struct
*vma
)
1746 struct hstate
*h
= hstate_inode(inode
);
1748 if (vma
&& vma
->vm_flags
& VM_NORESERVE
)
1752 * Shared mappings base their reservation on the number of pages that
1753 * are already allocated on behalf of the file. Private mappings need
1754 * to reserve the full area even if read-only as mprotect() may be
1755 * called to make the mapping read-write. Assume !vma is a shm mapping
1757 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
1758 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1760 struct resv_map
*resv_map
= resv_map_alloc();
1766 set_vma_resv_map(vma
, resv_map
);
1767 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
1773 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1775 ret
= hugetlb_acct_memory(h
, chg
);
1777 hugetlb_put_quota(inode
->i_mapping
, chg
);
1780 if (!vma
|| vma
->vm_flags
& VM_SHARED
)
1781 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1785 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1787 struct hstate
*h
= hstate_inode(inode
);
1788 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1790 spin_lock(&inode
->i_lock
);
1791 inode
->i_blocks
-= blocks_per_huge_page(h
);
1792 spin_unlock(&inode
->i_lock
);
1794 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1795 hugetlb_acct_memory(h
, -(chg
- freed
));