[TCP]: Convert highest_sack to sk_buff to allow direct access
[linux-2.6/verdex.git] / net / ipv4 / tcp_input.c
blob31294b52ad42831a6d1948228f11c51d27897d92
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
130 icsk->icsk_ack.last_seg_size = 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 static void tcp_incr_quickack(struct sock *sk)
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 void tcp_enter_quickack_mode(struct sock *sk)
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock *sk)
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299 truesize >>= 1;
300 window >>= 1;
302 return 0;
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
308 struct tcp_sock *tp = tcp_sk(sk);
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock *sk)
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
351 static void tcp_init_buffer_space(struct sock *sk)
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
361 tp->rcvq_space.space = tp->rcv_wnd;
363 maxwin = tcp_full_space(sk);
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
390 icsk->icsk_ack.quick = 0;
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock *sk)
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
439 if (m == 0)
440 m = 1;
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
495 void tcp_rcv_space_adjust(struct sock *sk)
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
511 space = max(tp->rcvq_space.space, space);
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
516 tp->rcvq_space.space = space;
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
565 inet_csk_schedule_ack(sk);
567 tcp_measure_rcv_mss(sk, skb);
569 tcp_rcv_rtt_measure(tp);
571 now = tcp_time_stamp;
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
597 icsk->icsk_ack.lrcvtime = now;
599 TCP_ECN_check_ce(tp, skb);
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
605 static u32 tcp_rto_min(struct sock *sk)
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
690 static inline void tcp_set_rto(struct sock *sk)
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
715 static inline void tcp_bound_rto(struct sock *sk)
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 void tcp_update_metrics(struct sock *sk)
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
730 if (sysctl_tcp_nometrics_save)
731 return;
733 dst_confirm(dst);
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
815 /* Numbers are taken from RFC3390.
817 * John Heffner states:
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
856 tcp_set_ca_state(sk, TCP_CA_CWR);
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
864 static void tcp_disable_fack(struct tcp_sock *tp)
866 /* RFC3517 uses different metric in lost marker => reset on change */
867 if (tcp_is_fack(tp))
868 tp->lost_skb_hint = NULL;
869 tp->rx_opt.sack_ok &= ~2;
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
875 tp->rx_opt.sack_ok |= 4;
878 /* Initialize metrics on socket. */
880 static void tcp_init_metrics(struct sock *sk)
882 struct tcp_sock *tp = tcp_sk(sk);
883 struct dst_entry *dst = __sk_dst_get(sk);
885 if (dst == NULL)
886 goto reset;
888 dst_confirm(dst);
890 if (dst_metric_locked(dst, RTAX_CWND))
891 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 if (dst_metric(dst, RTAX_SSTHRESH)) {
893 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 tp->snd_ssthresh = tp->snd_cwnd_clamp;
897 if (dst_metric(dst, RTAX_REORDERING) &&
898 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
899 tcp_disable_fack(tp);
900 tp->reordering = dst_metric(dst, RTAX_REORDERING);
903 if (dst_metric(dst, RTAX_RTT) == 0)
904 goto reset;
906 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
907 goto reset;
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
923 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
927 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931 tcp_set_rto(sk);
932 tcp_bound_rto(sk);
933 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
934 goto reset;
935 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
936 tp->snd_cwnd_stamp = tcp_time_stamp;
937 return;
939 reset:
940 /* Play conservative. If timestamps are not
941 * supported, TCP will fail to recalculate correct
942 * rtt, if initial rto is too small. FORGET ALL AND RESET!
944 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
945 tp->srtt = 0;
946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 tp->reordering = min(TCP_MAX_REORDERING, metric);
958 /* This exciting event is worth to be remembered. 8) */
959 if (ts)
960 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
961 else if (tcp_is_reno(tp))
962 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
963 else if (tcp_is_fack(tp))
964 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
965 else
966 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
967 #if FASTRETRANS_DEBUG > 1
968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 tp->reordering,
971 tp->fackets_out,
972 tp->sacked_out,
973 tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 tcp_disable_fack(tp);
979 /* This procedure tags the retransmission queue when SACKs arrive.
981 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
982 * Packets in queue with these bits set are counted in variables
983 * sacked_out, retrans_out and lost_out, correspondingly.
985 * Valid combinations are:
986 * Tag InFlight Description
987 * 0 1 - orig segment is in flight.
988 * S 0 - nothing flies, orig reached receiver.
989 * L 0 - nothing flies, orig lost by net.
990 * R 2 - both orig and retransmit are in flight.
991 * L|R 1 - orig is lost, retransmit is in flight.
992 * S|R 1 - orig reached receiver, retrans is still in flight.
993 * (L|S|R is logically valid, it could occur when L|R is sacked,
994 * but it is equivalent to plain S and code short-curcuits it to S.
995 * L|S is logically invalid, it would mean -1 packet in flight 8))
997 * These 6 states form finite state machine, controlled by the following events:
998 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
999 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1000 * 3. Loss detection event of one of three flavors:
1001 * A. Scoreboard estimator decided the packet is lost.
1002 * A'. Reno "three dupacks" marks head of queue lost.
1003 * A''. Its FACK modfication, head until snd.fack is lost.
1004 * B. SACK arrives sacking data transmitted after never retransmitted
1005 * hole was sent out.
1006 * C. SACK arrives sacking SND.NXT at the moment, when the
1007 * segment was retransmitted.
1008 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1010 * It is pleasant to note, that state diagram turns out to be commutative,
1011 * so that we are allowed not to be bothered by order of our actions,
1012 * when multiple events arrive simultaneously. (see the function below).
1014 * Reordering detection.
1015 * --------------------
1016 * Reordering metric is maximal distance, which a packet can be displaced
1017 * in packet stream. With SACKs we can estimate it:
1019 * 1. SACK fills old hole and the corresponding segment was not
1020 * ever retransmitted -> reordering. Alas, we cannot use it
1021 * when segment was retransmitted.
1022 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1023 * for retransmitted and already SACKed segment -> reordering..
1024 * Both of these heuristics are not used in Loss state, when we cannot
1025 * account for retransmits accurately.
1027 * SACK block validation.
1028 * ----------------------
1030 * SACK block range validation checks that the received SACK block fits to
1031 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1032 * Note that SND.UNA is not included to the range though being valid because
1033 * it means that the receiver is rather inconsistent with itself reporting
1034 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1035 * perfectly valid, however, in light of RFC2018 which explicitly states
1036 * that "SACK block MUST reflect the newest segment. Even if the newest
1037 * segment is going to be discarded ...", not that it looks very clever
1038 * in case of head skb. Due to potentional receiver driven attacks, we
1039 * choose to avoid immediate execution of a walk in write queue due to
1040 * reneging and defer head skb's loss recovery to standard loss recovery
1041 * procedure that will eventually trigger (nothing forbids us doing this).
1043 * Implements also blockage to start_seq wrap-around. Problem lies in the
1044 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1045 * there's no guarantee that it will be before snd_nxt (n). The problem
1046 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * wrap (s_w):
1049 * <- outs wnd -> <- wrapzone ->
1050 * u e n u_w e_w s n_w
1051 * | | | | | | |
1052 * |<------------+------+----- TCP seqno space --------------+---------->|
1053 * ...-- <2^31 ->| |<--------...
1054 * ...---- >2^31 ------>| |<--------...
1056 * Current code wouldn't be vulnerable but it's better still to discard such
1057 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1058 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1059 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1060 * equal to the ideal case (infinite seqno space without wrap caused issues).
1062 * With D-SACK the lower bound is extended to cover sequence space below
1063 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1064 * again, D-SACK block must not to go across snd_una (for the same reason as
1065 * for the normal SACK blocks, explained above). But there all simplicity
1066 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1067 * fully below undo_marker they do not affect behavior in anyway and can
1068 * therefore be safely ignored. In rare cases (which are more or less
1069 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1070 * fragmentation and packet reordering past skb's retransmission. To consider
1071 * them correctly, the acceptable range must be extended even more though
1072 * the exact amount is rather hard to quantify. However, tp->max_window can
1073 * be used as an exaggerated estimate.
1075 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1076 u32 start_seq, u32 end_seq)
1078 /* Too far in future, or reversed (interpretation is ambiguous) */
1079 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 return 0;
1082 /* Nasty start_seq wrap-around check (see comments above) */
1083 if (!before(start_seq, tp->snd_nxt))
1084 return 0;
1086 /* In outstanding window? ...This is valid exit for D-SACKs too.
1087 * start_seq == snd_una is non-sensical (see comments above)
1089 if (after(start_seq, tp->snd_una))
1090 return 1;
1092 if (!is_dsack || !tp->undo_marker)
1093 return 0;
1095 /* ...Then it's D-SACK, and must reside below snd_una completely */
1096 if (!after(end_seq, tp->snd_una))
1097 return 0;
1099 if (!before(start_seq, tp->undo_marker))
1100 return 1;
1102 /* Too old */
1103 if (!after(end_seq, tp->undo_marker))
1104 return 0;
1106 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1107 * start_seq < undo_marker and end_seq >= undo_marker.
1109 return !before(start_seq, end_seq - tp->max_window);
1112 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1113 * Event "C". Later note: FACK people cheated me again 8), we have to account
1114 * for reordering! Ugly, but should help.
1116 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1117 * less than what is now known to be received by the other end (derived from
1118 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1119 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1121 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1123 struct tcp_sock *tp = tcp_sk(sk);
1124 struct sk_buff *skb;
1125 int flag = 0;
1126 int cnt = 0;
1127 u32 new_low_seq = tp->snd_nxt;
1129 tcp_for_write_queue(skb, sk) {
1130 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1132 if (skb == tcp_send_head(sk))
1133 break;
1134 if (cnt == tp->retrans_out)
1135 break;
1136 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1137 continue;
1139 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1140 continue;
1142 if (after(received_upto, ack_seq) &&
1143 (tcp_is_fack(tp) ||
1144 !before(received_upto,
1145 ack_seq + tp->reordering * tp->mss_cache))) {
1146 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1147 tp->retrans_out -= tcp_skb_pcount(skb);
1149 /* clear lost hint */
1150 tp->retransmit_skb_hint = NULL;
1152 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1153 tp->lost_out += tcp_skb_pcount(skb);
1154 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1155 flag |= FLAG_DATA_SACKED;
1156 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1158 } else {
1159 if (before(ack_seq, new_low_seq))
1160 new_low_seq = ack_seq;
1161 cnt += tcp_skb_pcount(skb);
1165 if (tp->retrans_out)
1166 tp->lost_retrans_low = new_low_seq;
1168 return flag;
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172 struct tcp_sack_block_wire *sp, int num_sacks,
1173 u32 prior_snd_una)
1175 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177 int dup_sack = 0;
1179 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180 dup_sack = 1;
1181 tcp_dsack_seen(tp);
1182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183 } else if (num_sacks > 1) {
1184 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1187 if (!after(end_seq_0, end_seq_1) &&
1188 !before(start_seq_0, start_seq_1)) {
1189 dup_sack = 1;
1190 tcp_dsack_seen(tp);
1191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1195 /* D-SACK for already forgotten data... Do dumb counting. */
1196 if (dup_sack &&
1197 !after(end_seq_0, prior_snd_una) &&
1198 after(end_seq_0, tp->undo_marker))
1199 tp->undo_retrans--;
1201 return dup_sack;
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205 * the incoming SACK may not exactly match but we can find smaller MSS
1206 * aligned portion of it that matches. Therefore we might need to fragment
1207 * which may fail and creates some hassle (caller must handle error case
1208 * returns).
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211 u32 start_seq, u32 end_seq)
1213 int in_sack, err;
1214 unsigned int pkt_len;
1216 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1219 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1222 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1224 if (!in_sack)
1225 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226 else
1227 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229 if (err < 0)
1230 return err;
1233 return in_sack;
1236 static int
1237 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1239 const struct inet_connection_sock *icsk = inet_csk(sk);
1240 struct tcp_sock *tp = tcp_sk(sk);
1241 unsigned char *ptr = (skb_transport_header(ack_skb) +
1242 TCP_SKB_CB(ack_skb)->sacked);
1243 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1244 struct sk_buff *cached_skb;
1245 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1246 int reord = tp->packets_out;
1247 int prior_fackets;
1248 u32 highest_sack_end_seq;
1249 int flag = 0;
1250 int found_dup_sack = 0;
1251 int cached_fack_count;
1252 int i;
1253 int first_sack_index;
1254 int force_one_sack;
1256 if (!tp->sacked_out) {
1257 if (WARN_ON(tp->fackets_out))
1258 tp->fackets_out = 0;
1259 tp->highest_sack = tcp_write_queue_head(sk);
1261 prior_fackets = tp->fackets_out;
1263 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1264 num_sacks, prior_snd_una);
1265 if (found_dup_sack)
1266 flag |= FLAG_DSACKING_ACK;
1268 /* Eliminate too old ACKs, but take into
1269 * account more or less fresh ones, they can
1270 * contain valid SACK info.
1272 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1273 return 0;
1275 if (!tp->packets_out)
1276 goto out;
1278 /* SACK fastpath:
1279 * if the only SACK change is the increase of the end_seq of
1280 * the first block then only apply that SACK block
1281 * and use retrans queue hinting otherwise slowpath */
1282 force_one_sack = 1;
1283 for (i = 0; i < num_sacks; i++) {
1284 __be32 start_seq = sp[i].start_seq;
1285 __be32 end_seq = sp[i].end_seq;
1287 if (i == 0) {
1288 if (tp->recv_sack_cache[i].start_seq != start_seq)
1289 force_one_sack = 0;
1290 } else {
1291 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1292 (tp->recv_sack_cache[i].end_seq != end_seq))
1293 force_one_sack = 0;
1295 tp->recv_sack_cache[i].start_seq = start_seq;
1296 tp->recv_sack_cache[i].end_seq = end_seq;
1298 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1299 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1300 tp->recv_sack_cache[i].start_seq = 0;
1301 tp->recv_sack_cache[i].end_seq = 0;
1304 first_sack_index = 0;
1305 if (force_one_sack)
1306 num_sacks = 1;
1307 else {
1308 int j;
1309 tp->fastpath_skb_hint = NULL;
1311 /* order SACK blocks to allow in order walk of the retrans queue */
1312 for (i = num_sacks-1; i > 0; i--) {
1313 for (j = 0; j < i; j++){
1314 if (after(ntohl(sp[j].start_seq),
1315 ntohl(sp[j+1].start_seq))){
1316 struct tcp_sack_block_wire tmp;
1318 tmp = sp[j];
1319 sp[j] = sp[j+1];
1320 sp[j+1] = tmp;
1322 /* Track where the first SACK block goes to */
1323 if (j == first_sack_index)
1324 first_sack_index = j+1;
1331 /* Use SACK fastpath hint if valid */
1332 cached_skb = tp->fastpath_skb_hint;
1333 cached_fack_count = tp->fastpath_cnt_hint;
1334 if (!cached_skb) {
1335 cached_skb = tcp_write_queue_head(sk);
1336 cached_fack_count = 0;
1339 for (i = 0; i < num_sacks; i++) {
1340 struct sk_buff *skb;
1341 __u32 start_seq = ntohl(sp->start_seq);
1342 __u32 end_seq = ntohl(sp->end_seq);
1343 int fack_count;
1344 int dup_sack = (found_dup_sack && (i == first_sack_index));
1345 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1347 sp++;
1349 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1350 if (dup_sack) {
1351 if (!tp->undo_marker)
1352 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1353 else
1354 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1355 } else {
1356 /* Don't count olds caused by ACK reordering */
1357 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1358 !after(end_seq, tp->snd_una))
1359 continue;
1360 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1362 continue;
1365 skb = cached_skb;
1366 fack_count = cached_fack_count;
1368 /* Event "B" in the comment above. */
1369 if (after(end_seq, tp->high_seq))
1370 flag |= FLAG_DATA_LOST;
1372 tcp_for_write_queue_from(skb, sk) {
1373 int in_sack = 0;
1374 u8 sacked;
1376 if (skb == tcp_send_head(sk))
1377 break;
1379 cached_skb = skb;
1380 cached_fack_count = fack_count;
1381 if (i == first_sack_index) {
1382 tp->fastpath_skb_hint = skb;
1383 tp->fastpath_cnt_hint = fack_count;
1386 /* The retransmission queue is always in order, so
1387 * we can short-circuit the walk early.
1389 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1390 break;
1392 dup_sack = (found_dup_sack && (i == first_sack_index));
1394 /* Due to sorting DSACK may reside within this SACK block! */
1395 if (next_dup) {
1396 u32 dup_start = ntohl(sp->start_seq);
1397 u32 dup_end = ntohl(sp->end_seq);
1399 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1400 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1401 if (in_sack > 0)
1402 dup_sack = 1;
1406 /* DSACK info lost if out-of-mem, try SACK still */
1407 if (in_sack <= 0)
1408 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1409 if (unlikely(in_sack < 0))
1410 break;
1412 if (!in_sack) {
1413 fack_count += tcp_skb_pcount(skb);
1414 continue;
1417 sacked = TCP_SKB_CB(skb)->sacked;
1419 /* Account D-SACK for retransmitted packet. */
1420 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1421 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1422 tp->undo_retrans--;
1423 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una) &&
1424 (sacked & TCPCB_SACKED_ACKED))
1425 reord = min(fack_count, reord);
1429 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1430 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1431 fack_count += tcp_skb_pcount(skb);
1432 continue;
1435 if (!(sacked&TCPCB_SACKED_ACKED)) {
1436 if (sacked & TCPCB_SACKED_RETRANS) {
1437 /* If the segment is not tagged as lost,
1438 * we do not clear RETRANS, believing
1439 * that retransmission is still in flight.
1441 if (sacked & TCPCB_LOST) {
1442 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1443 tp->lost_out -= tcp_skb_pcount(skb);
1444 tp->retrans_out -= tcp_skb_pcount(skb);
1446 /* clear lost hint */
1447 tp->retransmit_skb_hint = NULL;
1449 } else {
1450 if (!(sacked & TCPCB_RETRANS)) {
1451 /* New sack for not retransmitted frame,
1452 * which was in hole. It is reordering.
1454 if (fack_count < prior_fackets)
1455 reord = min(fack_count, reord);
1457 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1459 flag |= FLAG_ONLY_ORIG_SACKED;
1462 if (sacked & TCPCB_LOST) {
1463 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1464 tp->lost_out -= tcp_skb_pcount(skb);
1466 /* clear lost hint */
1467 tp->retransmit_skb_hint = NULL;
1471 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1472 flag |= FLAG_DATA_SACKED;
1473 tp->sacked_out += tcp_skb_pcount(skb);
1475 fack_count += tcp_skb_pcount(skb);
1477 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1478 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1479 before(TCP_SKB_CB(skb)->seq,
1480 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1481 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1483 if (fack_count > tp->fackets_out)
1484 tp->fackets_out = fack_count;
1486 if (after(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1487 tp->highest_sack = skb;
1489 } else {
1490 if (dup_sack && (sacked&TCPCB_RETRANS))
1491 reord = min(fack_count, reord);
1493 fack_count += tcp_skb_pcount(skb);
1496 /* D-SACK. We can detect redundant retransmission
1497 * in S|R and plain R frames and clear it.
1498 * undo_retrans is decreased above, L|R frames
1499 * are accounted above as well.
1501 if (dup_sack &&
1502 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1503 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1504 tp->retrans_out -= tcp_skb_pcount(skb);
1505 tp->retransmit_skb_hint = NULL;
1509 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1510 * due to in-order walk
1512 if (after(end_seq, tp->frto_highmark))
1513 flag &= ~FLAG_ONLY_ORIG_SACKED;
1516 highest_sack_end_seq = TCP_SKB_CB(tp->highest_sack)->end_seq;
1517 if (tcp_is_fack(tp) && tp->retrans_out &&
1518 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1519 icsk->icsk_ca_state == TCP_CA_Recovery)
1520 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1522 tcp_verify_left_out(tp);
1524 if ((reord < tp->fackets_out) &&
1525 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1526 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1527 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1529 out:
1531 #if FASTRETRANS_DEBUG > 0
1532 BUG_TRAP((int)tp->sacked_out >= 0);
1533 BUG_TRAP((int)tp->lost_out >= 0);
1534 BUG_TRAP((int)tp->retrans_out >= 0);
1535 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1536 #endif
1537 return flag;
1540 /* If we receive more dupacks than we expected counting segments
1541 * in assumption of absent reordering, interpret this as reordering.
1542 * The only another reason could be bug in receiver TCP.
1544 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1546 struct tcp_sock *tp = tcp_sk(sk);
1547 u32 holes;
1549 holes = max(tp->lost_out, 1U);
1550 holes = min(holes, tp->packets_out);
1552 if ((tp->sacked_out + holes) > tp->packets_out) {
1553 tp->sacked_out = tp->packets_out - holes;
1554 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1558 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1560 static void tcp_add_reno_sack(struct sock *sk)
1562 struct tcp_sock *tp = tcp_sk(sk);
1563 tp->sacked_out++;
1564 tcp_check_reno_reordering(sk, 0);
1565 tcp_verify_left_out(tp);
1568 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1570 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1572 struct tcp_sock *tp = tcp_sk(sk);
1574 if (acked > 0) {
1575 /* One ACK acked hole. The rest eat duplicate ACKs. */
1576 if (acked-1 >= tp->sacked_out)
1577 tp->sacked_out = 0;
1578 else
1579 tp->sacked_out -= acked-1;
1581 tcp_check_reno_reordering(sk, acked);
1582 tcp_verify_left_out(tp);
1585 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1587 tp->sacked_out = 0;
1590 /* F-RTO can only be used if TCP has never retransmitted anything other than
1591 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1593 int tcp_use_frto(struct sock *sk)
1595 const struct tcp_sock *tp = tcp_sk(sk);
1596 struct sk_buff *skb;
1598 if (!sysctl_tcp_frto)
1599 return 0;
1601 if (IsSackFrto())
1602 return 1;
1604 /* Avoid expensive walking of rexmit queue if possible */
1605 if (tp->retrans_out > 1)
1606 return 0;
1608 skb = tcp_write_queue_head(sk);
1609 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1610 tcp_for_write_queue_from(skb, sk) {
1611 if (skb == tcp_send_head(sk))
1612 break;
1613 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1614 return 0;
1615 /* Short-circuit when first non-SACKed skb has been checked */
1616 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1617 break;
1619 return 1;
1622 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1623 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1624 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1625 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1626 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1627 * bits are handled if the Loss state is really to be entered (in
1628 * tcp_enter_frto_loss).
1630 * Do like tcp_enter_loss() would; when RTO expires the second time it
1631 * does:
1632 * "Reduce ssthresh if it has not yet been made inside this window."
1634 void tcp_enter_frto(struct sock *sk)
1636 const struct inet_connection_sock *icsk = inet_csk(sk);
1637 struct tcp_sock *tp = tcp_sk(sk);
1638 struct sk_buff *skb;
1640 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1641 tp->snd_una == tp->high_seq ||
1642 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1643 !icsk->icsk_retransmits)) {
1644 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1645 /* Our state is too optimistic in ssthresh() call because cwnd
1646 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1647 * recovery has not yet completed. Pattern would be this: RTO,
1648 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1649 * up here twice).
1650 * RFC4138 should be more specific on what to do, even though
1651 * RTO is quite unlikely to occur after the first Cumulative ACK
1652 * due to back-off and complexity of triggering events ...
1654 if (tp->frto_counter) {
1655 u32 stored_cwnd;
1656 stored_cwnd = tp->snd_cwnd;
1657 tp->snd_cwnd = 2;
1658 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1659 tp->snd_cwnd = stored_cwnd;
1660 } else {
1661 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1663 /* ... in theory, cong.control module could do "any tricks" in
1664 * ssthresh(), which means that ca_state, lost bits and lost_out
1665 * counter would have to be faked before the call occurs. We
1666 * consider that too expensive, unlikely and hacky, so modules
1667 * using these in ssthresh() must deal these incompatibility
1668 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1670 tcp_ca_event(sk, CA_EVENT_FRTO);
1673 tp->undo_marker = tp->snd_una;
1674 tp->undo_retrans = 0;
1676 skb = tcp_write_queue_head(sk);
1677 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1678 tp->undo_marker = 0;
1679 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1680 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1681 tp->retrans_out -= tcp_skb_pcount(skb);
1683 tcp_verify_left_out(tp);
1685 /* Too bad if TCP was application limited */
1686 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1688 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1689 * The last condition is necessary at least in tp->frto_counter case.
1691 if (IsSackFrto() && (tp->frto_counter ||
1692 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1693 after(tp->high_seq, tp->snd_una)) {
1694 tp->frto_highmark = tp->high_seq;
1695 } else {
1696 tp->frto_highmark = tp->snd_nxt;
1698 tcp_set_ca_state(sk, TCP_CA_Disorder);
1699 tp->high_seq = tp->snd_nxt;
1700 tp->frto_counter = 1;
1703 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1704 * which indicates that we should follow the traditional RTO recovery,
1705 * i.e. mark everything lost and do go-back-N retransmission.
1707 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1709 struct tcp_sock *tp = tcp_sk(sk);
1710 struct sk_buff *skb;
1712 tp->lost_out = 0;
1713 tp->retrans_out = 0;
1714 if (tcp_is_reno(tp))
1715 tcp_reset_reno_sack(tp);
1717 tcp_for_write_queue(skb, sk) {
1718 if (skb == tcp_send_head(sk))
1719 break;
1721 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1723 * Count the retransmission made on RTO correctly (only when
1724 * waiting for the first ACK and did not get it)...
1726 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1727 /* For some reason this R-bit might get cleared? */
1728 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1729 tp->retrans_out += tcp_skb_pcount(skb);
1730 /* ...enter this if branch just for the first segment */
1731 flag |= FLAG_DATA_ACKED;
1732 } else {
1733 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1734 tp->undo_marker = 0;
1735 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1738 /* Don't lost mark skbs that were fwd transmitted after RTO */
1739 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1740 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1741 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1742 tp->lost_out += tcp_skb_pcount(skb);
1745 tcp_verify_left_out(tp);
1747 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1748 tp->snd_cwnd_cnt = 0;
1749 tp->snd_cwnd_stamp = tcp_time_stamp;
1750 tp->frto_counter = 0;
1751 tp->bytes_acked = 0;
1753 tp->reordering = min_t(unsigned int, tp->reordering,
1754 sysctl_tcp_reordering);
1755 tcp_set_ca_state(sk, TCP_CA_Loss);
1756 tp->high_seq = tp->frto_highmark;
1757 TCP_ECN_queue_cwr(tp);
1759 tcp_clear_retrans_hints_partial(tp);
1762 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1764 tp->retrans_out = 0;
1765 tp->lost_out = 0;
1767 tp->undo_marker = 0;
1768 tp->undo_retrans = 0;
1771 void tcp_clear_retrans(struct tcp_sock *tp)
1773 tcp_clear_retrans_partial(tp);
1775 tp->fackets_out = 0;
1776 tp->sacked_out = 0;
1779 /* Enter Loss state. If "how" is not zero, forget all SACK information
1780 * and reset tags completely, otherwise preserve SACKs. If receiver
1781 * dropped its ofo queue, we will know this due to reneging detection.
1783 void tcp_enter_loss(struct sock *sk, int how)
1785 const struct inet_connection_sock *icsk = inet_csk(sk);
1786 struct tcp_sock *tp = tcp_sk(sk);
1787 struct sk_buff *skb;
1789 /* Reduce ssthresh if it has not yet been made inside this window. */
1790 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1791 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1792 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1793 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1794 tcp_ca_event(sk, CA_EVENT_LOSS);
1796 tp->snd_cwnd = 1;
1797 tp->snd_cwnd_cnt = 0;
1798 tp->snd_cwnd_stamp = tcp_time_stamp;
1800 tp->bytes_acked = 0;
1801 tcp_clear_retrans_partial(tp);
1803 if (tcp_is_reno(tp))
1804 tcp_reset_reno_sack(tp);
1806 if (!how) {
1807 /* Push undo marker, if it was plain RTO and nothing
1808 * was retransmitted. */
1809 tp->undo_marker = tp->snd_una;
1810 tcp_clear_retrans_hints_partial(tp);
1811 } else {
1812 tp->sacked_out = 0;
1813 tp->fackets_out = 0;
1814 tcp_clear_all_retrans_hints(tp);
1817 tcp_for_write_queue(skb, sk) {
1818 if (skb == tcp_send_head(sk))
1819 break;
1821 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1822 tp->undo_marker = 0;
1823 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1824 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1825 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1826 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1827 tp->lost_out += tcp_skb_pcount(skb);
1830 tcp_verify_left_out(tp);
1832 tp->reordering = min_t(unsigned int, tp->reordering,
1833 sysctl_tcp_reordering);
1834 tcp_set_ca_state(sk, TCP_CA_Loss);
1835 tp->high_seq = tp->snd_nxt;
1836 TCP_ECN_queue_cwr(tp);
1837 /* Abort F-RTO algorithm if one is in progress */
1838 tp->frto_counter = 0;
1841 static int tcp_check_sack_reneging(struct sock *sk)
1843 struct sk_buff *skb;
1845 /* If ACK arrived pointing to a remembered SACK,
1846 * it means that our remembered SACKs do not reflect
1847 * real state of receiver i.e.
1848 * receiver _host_ is heavily congested (or buggy).
1849 * Do processing similar to RTO timeout.
1851 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1852 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1853 struct inet_connection_sock *icsk = inet_csk(sk);
1854 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1856 tcp_enter_loss(sk, 1);
1857 icsk->icsk_retransmits++;
1858 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1859 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1860 icsk->icsk_rto, TCP_RTO_MAX);
1861 return 1;
1863 return 0;
1866 static inline int tcp_fackets_out(struct tcp_sock *tp)
1868 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1871 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1872 * counter when SACK is enabled (without SACK, sacked_out is used for
1873 * that purpose).
1875 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1876 * segments up to the highest received SACK block so far and holes in
1877 * between them.
1879 * With reordering, holes may still be in flight, so RFC3517 recovery
1880 * uses pure sacked_out (total number of SACKed segments) even though
1881 * it violates the RFC that uses duplicate ACKs, often these are equal
1882 * but when e.g. out-of-window ACKs or packet duplication occurs,
1883 * they differ. Since neither occurs due to loss, TCP should really
1884 * ignore them.
1886 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1888 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1891 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1893 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1896 static inline int tcp_head_timedout(struct sock *sk)
1898 struct tcp_sock *tp = tcp_sk(sk);
1900 return tp->packets_out &&
1901 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1904 /* Linux NewReno/SACK/FACK/ECN state machine.
1905 * --------------------------------------
1907 * "Open" Normal state, no dubious events, fast path.
1908 * "Disorder" In all the respects it is "Open",
1909 * but requires a bit more attention. It is entered when
1910 * we see some SACKs or dupacks. It is split of "Open"
1911 * mainly to move some processing from fast path to slow one.
1912 * "CWR" CWND was reduced due to some Congestion Notification event.
1913 * It can be ECN, ICMP source quench, local device congestion.
1914 * "Recovery" CWND was reduced, we are fast-retransmitting.
1915 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1917 * tcp_fastretrans_alert() is entered:
1918 * - each incoming ACK, if state is not "Open"
1919 * - when arrived ACK is unusual, namely:
1920 * * SACK
1921 * * Duplicate ACK.
1922 * * ECN ECE.
1924 * Counting packets in flight is pretty simple.
1926 * in_flight = packets_out - left_out + retrans_out
1928 * packets_out is SND.NXT-SND.UNA counted in packets.
1930 * retrans_out is number of retransmitted segments.
1932 * left_out is number of segments left network, but not ACKed yet.
1934 * left_out = sacked_out + lost_out
1936 * sacked_out: Packets, which arrived to receiver out of order
1937 * and hence not ACKed. With SACKs this number is simply
1938 * amount of SACKed data. Even without SACKs
1939 * it is easy to give pretty reliable estimate of this number,
1940 * counting duplicate ACKs.
1942 * lost_out: Packets lost by network. TCP has no explicit
1943 * "loss notification" feedback from network (for now).
1944 * It means that this number can be only _guessed_.
1945 * Actually, it is the heuristics to predict lossage that
1946 * distinguishes different algorithms.
1948 * F.e. after RTO, when all the queue is considered as lost,
1949 * lost_out = packets_out and in_flight = retrans_out.
1951 * Essentially, we have now two algorithms counting
1952 * lost packets.
1954 * FACK: It is the simplest heuristics. As soon as we decided
1955 * that something is lost, we decide that _all_ not SACKed
1956 * packets until the most forward SACK are lost. I.e.
1957 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1958 * It is absolutely correct estimate, if network does not reorder
1959 * packets. And it loses any connection to reality when reordering
1960 * takes place. We use FACK by default until reordering
1961 * is suspected on the path to this destination.
1963 * NewReno: when Recovery is entered, we assume that one segment
1964 * is lost (classic Reno). While we are in Recovery and
1965 * a partial ACK arrives, we assume that one more packet
1966 * is lost (NewReno). This heuristics are the same in NewReno
1967 * and SACK.
1969 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1970 * deflation etc. CWND is real congestion window, never inflated, changes
1971 * only according to classic VJ rules.
1973 * Really tricky (and requiring careful tuning) part of algorithm
1974 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1975 * The first determines the moment _when_ we should reduce CWND and,
1976 * hence, slow down forward transmission. In fact, it determines the moment
1977 * when we decide that hole is caused by loss, rather than by a reorder.
1979 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1980 * holes, caused by lost packets.
1982 * And the most logically complicated part of algorithm is undo
1983 * heuristics. We detect false retransmits due to both too early
1984 * fast retransmit (reordering) and underestimated RTO, analyzing
1985 * timestamps and D-SACKs. When we detect that some segments were
1986 * retransmitted by mistake and CWND reduction was wrong, we undo
1987 * window reduction and abort recovery phase. This logic is hidden
1988 * inside several functions named tcp_try_undo_<something>.
1991 /* This function decides, when we should leave Disordered state
1992 * and enter Recovery phase, reducing congestion window.
1994 * Main question: may we further continue forward transmission
1995 * with the same cwnd?
1997 static int tcp_time_to_recover(struct sock *sk)
1999 struct tcp_sock *tp = tcp_sk(sk);
2000 __u32 packets_out;
2002 /* Do not perform any recovery during F-RTO algorithm */
2003 if (tp->frto_counter)
2004 return 0;
2006 /* Trick#1: The loss is proven. */
2007 if (tp->lost_out)
2008 return 1;
2010 /* Not-A-Trick#2 : Classic rule... */
2011 if (tcp_dupack_heurestics(tp) > tp->reordering)
2012 return 1;
2014 /* Trick#3 : when we use RFC2988 timer restart, fast
2015 * retransmit can be triggered by timeout of queue head.
2017 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2018 return 1;
2020 /* Trick#4: It is still not OK... But will it be useful to delay
2021 * recovery more?
2023 packets_out = tp->packets_out;
2024 if (packets_out <= tp->reordering &&
2025 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2026 !tcp_may_send_now(sk)) {
2027 /* We have nothing to send. This connection is limited
2028 * either by receiver window or by application.
2030 return 1;
2033 return 0;
2036 /* RFC: This is from the original, I doubt that this is necessary at all:
2037 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2038 * retransmitted past LOST markings in the first place? I'm not fully sure
2039 * about undo and end of connection cases, which can cause R without L?
2041 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2042 struct sk_buff *skb)
2044 if ((tp->retransmit_skb_hint != NULL) &&
2045 before(TCP_SKB_CB(skb)->seq,
2046 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2047 tp->retransmit_skb_hint = NULL;
2050 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2051 * is against sacked "cnt", otherwise it's against facked "cnt"
2053 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2055 struct tcp_sock *tp = tcp_sk(sk);
2056 struct sk_buff *skb;
2057 int cnt;
2059 BUG_TRAP(packets <= tp->packets_out);
2060 if (tp->lost_skb_hint) {
2061 skb = tp->lost_skb_hint;
2062 cnt = tp->lost_cnt_hint;
2063 } else {
2064 skb = tcp_write_queue_head(sk);
2065 cnt = 0;
2068 tcp_for_write_queue_from(skb, sk) {
2069 if (skb == tcp_send_head(sk))
2070 break;
2071 /* TODO: do this better */
2072 /* this is not the most efficient way to do this... */
2073 tp->lost_skb_hint = skb;
2074 tp->lost_cnt_hint = cnt;
2076 if (tcp_is_fack(tp) ||
2077 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2078 cnt += tcp_skb_pcount(skb);
2080 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2081 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2082 break;
2083 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2084 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2085 tp->lost_out += tcp_skb_pcount(skb);
2086 tcp_verify_retransmit_hint(tp, skb);
2089 tcp_verify_left_out(tp);
2092 /* Account newly detected lost packet(s) */
2094 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2096 struct tcp_sock *tp = tcp_sk(sk);
2098 if (tcp_is_reno(tp)) {
2099 tcp_mark_head_lost(sk, 1, fast_rexmit);
2100 } else if (tcp_is_fack(tp)) {
2101 int lost = tp->fackets_out - tp->reordering;
2102 if (lost <= 0)
2103 lost = 1;
2104 tcp_mark_head_lost(sk, lost, fast_rexmit);
2105 } else {
2106 int sacked_upto = tp->sacked_out - tp->reordering;
2107 if (sacked_upto < 0)
2108 sacked_upto = 0;
2109 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2112 /* New heuristics: it is possible only after we switched
2113 * to restart timer each time when something is ACKed.
2114 * Hence, we can detect timed out packets during fast
2115 * retransmit without falling to slow start.
2117 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2118 struct sk_buff *skb;
2120 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2121 : tcp_write_queue_head(sk);
2123 tcp_for_write_queue_from(skb, sk) {
2124 if (skb == tcp_send_head(sk))
2125 break;
2126 if (!tcp_skb_timedout(sk, skb))
2127 break;
2129 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2130 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2131 tp->lost_out += tcp_skb_pcount(skb);
2132 tcp_verify_retransmit_hint(tp, skb);
2136 tp->scoreboard_skb_hint = skb;
2138 tcp_verify_left_out(tp);
2142 /* CWND moderation, preventing bursts due to too big ACKs
2143 * in dubious situations.
2145 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2147 tp->snd_cwnd = min(tp->snd_cwnd,
2148 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2149 tp->snd_cwnd_stamp = tcp_time_stamp;
2152 /* Lower bound on congestion window is slow start threshold
2153 * unless congestion avoidance choice decides to overide it.
2155 static inline u32 tcp_cwnd_min(const struct sock *sk)
2157 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2159 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2162 /* Decrease cwnd each second ack. */
2163 static void tcp_cwnd_down(struct sock *sk, int flag)
2165 struct tcp_sock *tp = tcp_sk(sk);
2166 int decr = tp->snd_cwnd_cnt + 1;
2168 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2169 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2170 tp->snd_cwnd_cnt = decr&1;
2171 decr >>= 1;
2173 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2174 tp->snd_cwnd -= decr;
2176 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2177 tp->snd_cwnd_stamp = tcp_time_stamp;
2181 /* Nothing was retransmitted or returned timestamp is less
2182 * than timestamp of the first retransmission.
2184 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2186 return !tp->retrans_stamp ||
2187 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2188 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2191 /* Undo procedures. */
2193 #if FASTRETRANS_DEBUG > 1
2194 static void DBGUNDO(struct sock *sk, const char *msg)
2196 struct tcp_sock *tp = tcp_sk(sk);
2197 struct inet_sock *inet = inet_sk(sk);
2199 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2200 msg,
2201 NIPQUAD(inet->daddr), ntohs(inet->dport),
2202 tp->snd_cwnd, tcp_left_out(tp),
2203 tp->snd_ssthresh, tp->prior_ssthresh,
2204 tp->packets_out);
2206 #else
2207 #define DBGUNDO(x...) do { } while (0)
2208 #endif
2210 static void tcp_undo_cwr(struct sock *sk, const int undo)
2212 struct tcp_sock *tp = tcp_sk(sk);
2214 if (tp->prior_ssthresh) {
2215 const struct inet_connection_sock *icsk = inet_csk(sk);
2217 if (icsk->icsk_ca_ops->undo_cwnd)
2218 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2219 else
2220 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2222 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2223 tp->snd_ssthresh = tp->prior_ssthresh;
2224 TCP_ECN_withdraw_cwr(tp);
2226 } else {
2227 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2229 tcp_moderate_cwnd(tp);
2230 tp->snd_cwnd_stamp = tcp_time_stamp;
2232 /* There is something screwy going on with the retrans hints after
2233 an undo */
2234 tcp_clear_all_retrans_hints(tp);
2237 static inline int tcp_may_undo(struct tcp_sock *tp)
2239 return tp->undo_marker &&
2240 (!tp->undo_retrans || tcp_packet_delayed(tp));
2243 /* People celebrate: "We love our President!" */
2244 static int tcp_try_undo_recovery(struct sock *sk)
2246 struct tcp_sock *tp = tcp_sk(sk);
2248 if (tcp_may_undo(tp)) {
2249 /* Happy end! We did not retransmit anything
2250 * or our original transmission succeeded.
2252 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2253 tcp_undo_cwr(sk, 1);
2254 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2255 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2256 else
2257 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2258 tp->undo_marker = 0;
2260 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2261 /* Hold old state until something *above* high_seq
2262 * is ACKed. For Reno it is MUST to prevent false
2263 * fast retransmits (RFC2582). SACK TCP is safe. */
2264 tcp_moderate_cwnd(tp);
2265 return 1;
2267 tcp_set_ca_state(sk, TCP_CA_Open);
2268 return 0;
2271 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2272 static void tcp_try_undo_dsack(struct sock *sk)
2274 struct tcp_sock *tp = tcp_sk(sk);
2276 if (tp->undo_marker && !tp->undo_retrans) {
2277 DBGUNDO(sk, "D-SACK");
2278 tcp_undo_cwr(sk, 1);
2279 tp->undo_marker = 0;
2280 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2284 /* Undo during fast recovery after partial ACK. */
2286 static int tcp_try_undo_partial(struct sock *sk, int acked)
2288 struct tcp_sock *tp = tcp_sk(sk);
2289 /* Partial ACK arrived. Force Hoe's retransmit. */
2290 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2292 if (tcp_may_undo(tp)) {
2293 /* Plain luck! Hole if filled with delayed
2294 * packet, rather than with a retransmit.
2296 if (tp->retrans_out == 0)
2297 tp->retrans_stamp = 0;
2299 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2301 DBGUNDO(sk, "Hoe");
2302 tcp_undo_cwr(sk, 0);
2303 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2305 /* So... Do not make Hoe's retransmit yet.
2306 * If the first packet was delayed, the rest
2307 * ones are most probably delayed as well.
2309 failed = 0;
2311 return failed;
2314 /* Undo during loss recovery after partial ACK. */
2315 static int tcp_try_undo_loss(struct sock *sk)
2317 struct tcp_sock *tp = tcp_sk(sk);
2319 if (tcp_may_undo(tp)) {
2320 struct sk_buff *skb;
2321 tcp_for_write_queue(skb, sk) {
2322 if (skb == tcp_send_head(sk))
2323 break;
2324 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2327 tcp_clear_all_retrans_hints(tp);
2329 DBGUNDO(sk, "partial loss");
2330 tp->lost_out = 0;
2331 tcp_undo_cwr(sk, 1);
2332 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2333 inet_csk(sk)->icsk_retransmits = 0;
2334 tp->undo_marker = 0;
2335 if (tcp_is_sack(tp))
2336 tcp_set_ca_state(sk, TCP_CA_Open);
2337 return 1;
2339 return 0;
2342 static inline void tcp_complete_cwr(struct sock *sk)
2344 struct tcp_sock *tp = tcp_sk(sk);
2345 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2346 tp->snd_cwnd_stamp = tcp_time_stamp;
2347 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2350 static void tcp_try_to_open(struct sock *sk, int flag)
2352 struct tcp_sock *tp = tcp_sk(sk);
2354 tcp_verify_left_out(tp);
2356 if (tp->retrans_out == 0)
2357 tp->retrans_stamp = 0;
2359 if (flag&FLAG_ECE)
2360 tcp_enter_cwr(sk, 1);
2362 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2363 int state = TCP_CA_Open;
2365 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2366 state = TCP_CA_Disorder;
2368 if (inet_csk(sk)->icsk_ca_state != state) {
2369 tcp_set_ca_state(sk, state);
2370 tp->high_seq = tp->snd_nxt;
2372 tcp_moderate_cwnd(tp);
2373 } else {
2374 tcp_cwnd_down(sk, flag);
2378 static void tcp_mtup_probe_failed(struct sock *sk)
2380 struct inet_connection_sock *icsk = inet_csk(sk);
2382 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2383 icsk->icsk_mtup.probe_size = 0;
2386 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2388 struct tcp_sock *tp = tcp_sk(sk);
2389 struct inet_connection_sock *icsk = inet_csk(sk);
2391 /* FIXME: breaks with very large cwnd */
2392 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2393 tp->snd_cwnd = tp->snd_cwnd *
2394 tcp_mss_to_mtu(sk, tp->mss_cache) /
2395 icsk->icsk_mtup.probe_size;
2396 tp->snd_cwnd_cnt = 0;
2397 tp->snd_cwnd_stamp = tcp_time_stamp;
2398 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2400 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2401 icsk->icsk_mtup.probe_size = 0;
2402 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2406 /* Process an event, which can update packets-in-flight not trivially.
2407 * Main goal of this function is to calculate new estimate for left_out,
2408 * taking into account both packets sitting in receiver's buffer and
2409 * packets lost by network.
2411 * Besides that it does CWND reduction, when packet loss is detected
2412 * and changes state of machine.
2414 * It does _not_ decide what to send, it is made in function
2415 * tcp_xmit_retransmit_queue().
2417 static void
2418 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2420 struct inet_connection_sock *icsk = inet_csk(sk);
2421 struct tcp_sock *tp = tcp_sk(sk);
2422 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2423 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2424 (tcp_fackets_out(tp) > tp->reordering));
2425 int fast_rexmit = 0;
2427 /* Some technical things:
2428 * 1. Reno does not count dupacks (sacked_out) automatically. */
2429 if (!tp->packets_out)
2430 tp->sacked_out = 0;
2432 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2433 tp->fackets_out = 0;
2435 /* Now state machine starts.
2436 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2437 if (flag&FLAG_ECE)
2438 tp->prior_ssthresh = 0;
2440 /* B. In all the states check for reneging SACKs. */
2441 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2442 return;
2444 /* C. Process data loss notification, provided it is valid. */
2445 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2446 before(tp->snd_una, tp->high_seq) &&
2447 icsk->icsk_ca_state != TCP_CA_Open &&
2448 tp->fackets_out > tp->reordering) {
2449 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, 0);
2450 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2453 /* D. Check consistency of the current state. */
2454 tcp_verify_left_out(tp);
2456 /* E. Check state exit conditions. State can be terminated
2457 * when high_seq is ACKed. */
2458 if (icsk->icsk_ca_state == TCP_CA_Open) {
2459 BUG_TRAP(tp->retrans_out == 0);
2460 tp->retrans_stamp = 0;
2461 } else if (!before(tp->snd_una, tp->high_seq)) {
2462 switch (icsk->icsk_ca_state) {
2463 case TCP_CA_Loss:
2464 icsk->icsk_retransmits = 0;
2465 if (tcp_try_undo_recovery(sk))
2466 return;
2467 break;
2469 case TCP_CA_CWR:
2470 /* CWR is to be held something *above* high_seq
2471 * is ACKed for CWR bit to reach receiver. */
2472 if (tp->snd_una != tp->high_seq) {
2473 tcp_complete_cwr(sk);
2474 tcp_set_ca_state(sk, TCP_CA_Open);
2476 break;
2478 case TCP_CA_Disorder:
2479 tcp_try_undo_dsack(sk);
2480 if (!tp->undo_marker ||
2481 /* For SACK case do not Open to allow to undo
2482 * catching for all duplicate ACKs. */
2483 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2484 tp->undo_marker = 0;
2485 tcp_set_ca_state(sk, TCP_CA_Open);
2487 break;
2489 case TCP_CA_Recovery:
2490 if (tcp_is_reno(tp))
2491 tcp_reset_reno_sack(tp);
2492 if (tcp_try_undo_recovery(sk))
2493 return;
2494 tcp_complete_cwr(sk);
2495 break;
2499 /* F. Process state. */
2500 switch (icsk->icsk_ca_state) {
2501 case TCP_CA_Recovery:
2502 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2503 if (tcp_is_reno(tp) && is_dupack)
2504 tcp_add_reno_sack(sk);
2505 } else
2506 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2507 break;
2508 case TCP_CA_Loss:
2509 if (flag&FLAG_DATA_ACKED)
2510 icsk->icsk_retransmits = 0;
2511 if (!tcp_try_undo_loss(sk)) {
2512 tcp_moderate_cwnd(tp);
2513 tcp_xmit_retransmit_queue(sk);
2514 return;
2516 if (icsk->icsk_ca_state != TCP_CA_Open)
2517 return;
2518 /* Loss is undone; fall through to processing in Open state. */
2519 default:
2520 if (tcp_is_reno(tp)) {
2521 if (flag & FLAG_SND_UNA_ADVANCED)
2522 tcp_reset_reno_sack(tp);
2523 if (is_dupack)
2524 tcp_add_reno_sack(sk);
2527 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2528 tcp_try_undo_dsack(sk);
2530 if (!tcp_time_to_recover(sk)) {
2531 tcp_try_to_open(sk, flag);
2532 return;
2535 /* MTU probe failure: don't reduce cwnd */
2536 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2537 icsk->icsk_mtup.probe_size &&
2538 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2539 tcp_mtup_probe_failed(sk);
2540 /* Restores the reduction we did in tcp_mtup_probe() */
2541 tp->snd_cwnd++;
2542 tcp_simple_retransmit(sk);
2543 return;
2546 /* Otherwise enter Recovery state */
2548 if (tcp_is_reno(tp))
2549 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2550 else
2551 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2553 tp->high_seq = tp->snd_nxt;
2554 tp->prior_ssthresh = 0;
2555 tp->undo_marker = tp->snd_una;
2556 tp->undo_retrans = tp->retrans_out;
2558 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2559 if (!(flag&FLAG_ECE))
2560 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2561 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2562 TCP_ECN_queue_cwr(tp);
2565 tp->bytes_acked = 0;
2566 tp->snd_cwnd_cnt = 0;
2567 tcp_set_ca_state(sk, TCP_CA_Recovery);
2568 fast_rexmit = 1;
2571 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2572 tcp_update_scoreboard(sk, fast_rexmit);
2573 tcp_cwnd_down(sk, flag);
2574 tcp_xmit_retransmit_queue(sk);
2577 /* Read draft-ietf-tcplw-high-performance before mucking
2578 * with this code. (Supersedes RFC1323)
2580 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2582 /* RTTM Rule: A TSecr value received in a segment is used to
2583 * update the averaged RTT measurement only if the segment
2584 * acknowledges some new data, i.e., only if it advances the
2585 * left edge of the send window.
2587 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2588 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2590 * Changed: reset backoff as soon as we see the first valid sample.
2591 * If we do not, we get strongly overestimated rto. With timestamps
2592 * samples are accepted even from very old segments: f.e., when rtt=1
2593 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2594 * answer arrives rto becomes 120 seconds! If at least one of segments
2595 * in window is lost... Voila. --ANK (010210)
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2599 tcp_rtt_estimator(sk, seq_rtt);
2600 tcp_set_rto(sk);
2601 inet_csk(sk)->icsk_backoff = 0;
2602 tcp_bound_rto(sk);
2605 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2607 /* We don't have a timestamp. Can only use
2608 * packets that are not retransmitted to determine
2609 * rtt estimates. Also, we must not reset the
2610 * backoff for rto until we get a non-retransmitted
2611 * packet. This allows us to deal with a situation
2612 * where the network delay has increased suddenly.
2613 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2616 if (flag & FLAG_RETRANS_DATA_ACKED)
2617 return;
2619 tcp_rtt_estimator(sk, seq_rtt);
2620 tcp_set_rto(sk);
2621 inet_csk(sk)->icsk_backoff = 0;
2622 tcp_bound_rto(sk);
2625 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2626 const s32 seq_rtt)
2628 const struct tcp_sock *tp = tcp_sk(sk);
2629 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2630 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2631 tcp_ack_saw_tstamp(sk, flag);
2632 else if (seq_rtt >= 0)
2633 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2636 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2637 u32 in_flight, int good)
2639 const struct inet_connection_sock *icsk = inet_csk(sk);
2640 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2641 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2644 /* Restart timer after forward progress on connection.
2645 * RFC2988 recommends to restart timer to now+rto.
2647 static void tcp_rearm_rto(struct sock *sk)
2649 struct tcp_sock *tp = tcp_sk(sk);
2651 if (!tp->packets_out) {
2652 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2653 } else {
2654 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2658 /* If we get here, the whole TSO packet has not been acked. */
2659 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2661 struct tcp_sock *tp = tcp_sk(sk);
2662 u32 packets_acked;
2664 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2666 packets_acked = tcp_skb_pcount(skb);
2667 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2668 return 0;
2669 packets_acked -= tcp_skb_pcount(skb);
2671 if (packets_acked) {
2672 BUG_ON(tcp_skb_pcount(skb) == 0);
2673 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2676 return packets_acked;
2679 /* Remove acknowledged frames from the retransmission queue. If our packet
2680 * is before the ack sequence we can discard it as it's confirmed to have
2681 * arrived at the other end.
2683 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2684 int prior_fackets)
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 const struct inet_connection_sock *icsk = inet_csk(sk);
2688 struct sk_buff *skb;
2689 u32 now = tcp_time_stamp;
2690 int fully_acked = 1;
2691 int flag = 0;
2692 int prior_packets = tp->packets_out;
2693 u32 cnt = 0;
2694 u32 reord = tp->packets_out;
2695 s32 seq_rtt = -1;
2696 s32 ca_seq_rtt = -1;
2697 ktime_t last_ackt = net_invalid_timestamp();
2699 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2700 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2701 u32 end_seq;
2702 u32 packets_acked;
2703 u8 sacked = scb->sacked;
2705 /* Determine how many packets and what bytes were acked, tso and else */
2706 if (after(scb->end_seq, tp->snd_una)) {
2707 if (tcp_skb_pcount(skb) == 1 ||
2708 !after(tp->snd_una, scb->seq))
2709 break;
2711 packets_acked = tcp_tso_acked(sk, skb);
2712 if (!packets_acked)
2713 break;
2715 fully_acked = 0;
2716 end_seq = tp->snd_una;
2717 } else {
2718 packets_acked = tcp_skb_pcount(skb);
2719 end_seq = scb->end_seq;
2722 /* MTU probing checks */
2723 if (fully_acked && icsk->icsk_mtup.probe_size &&
2724 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2725 tcp_mtup_probe_success(sk, skb);
2728 if (sacked) {
2729 if (sacked & TCPCB_RETRANS) {
2730 if (sacked & TCPCB_SACKED_RETRANS)
2731 tp->retrans_out -= packets_acked;
2732 flag |= FLAG_RETRANS_DATA_ACKED;
2733 ca_seq_rtt = -1;
2734 seq_rtt = -1;
2735 if ((flag & FLAG_DATA_ACKED) ||
2736 (packets_acked > 1))
2737 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2738 } else {
2739 ca_seq_rtt = now - scb->when;
2740 last_ackt = skb->tstamp;
2741 if (seq_rtt < 0) {
2742 seq_rtt = ca_seq_rtt;
2744 if (!(sacked & TCPCB_SACKED_ACKED))
2745 reord = min(cnt, reord);
2748 if (sacked & TCPCB_SACKED_ACKED)
2749 tp->sacked_out -= packets_acked;
2750 if (sacked & TCPCB_LOST)
2751 tp->lost_out -= packets_acked;
2753 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2754 !before(end_seq, tp->snd_up))
2755 tp->urg_mode = 0;
2756 } else {
2757 ca_seq_rtt = now - scb->when;
2758 last_ackt = skb->tstamp;
2759 if (seq_rtt < 0) {
2760 seq_rtt = ca_seq_rtt;
2762 reord = min(cnt, reord);
2764 tp->packets_out -= packets_acked;
2765 cnt += packets_acked;
2767 /* Initial outgoing SYN's get put onto the write_queue
2768 * just like anything else we transmit. It is not
2769 * true data, and if we misinform our callers that
2770 * this ACK acks real data, we will erroneously exit
2771 * connection startup slow start one packet too
2772 * quickly. This is severely frowned upon behavior.
2774 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2775 flag |= FLAG_DATA_ACKED;
2776 } else {
2777 flag |= FLAG_SYN_ACKED;
2778 tp->retrans_stamp = 0;
2781 if (!fully_acked)
2782 break;
2784 tcp_unlink_write_queue(skb, sk);
2785 sk_stream_free_skb(sk, skb);
2786 tcp_clear_all_retrans_hints(tp);
2789 if (flag & FLAG_ACKED) {
2790 u32 pkts_acked = prior_packets - tp->packets_out;
2791 const struct tcp_congestion_ops *ca_ops
2792 = inet_csk(sk)->icsk_ca_ops;
2794 tcp_ack_update_rtt(sk, flag, seq_rtt);
2795 tcp_rearm_rto(sk);
2797 if (tcp_is_reno(tp)) {
2798 tcp_remove_reno_sacks(sk, pkts_acked);
2799 } else {
2800 /* Non-retransmitted hole got filled? That's reordering */
2801 if (reord < prior_fackets)
2802 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2805 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2806 /* hint's skb might be NULL but we don't need to care */
2807 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2808 tp->fastpath_cnt_hint);
2809 if (ca_ops->pkts_acked) {
2810 s32 rtt_us = -1;
2812 /* Is the ACK triggering packet unambiguous? */
2813 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2814 /* High resolution needed and available? */
2815 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2816 !ktime_equal(last_ackt,
2817 net_invalid_timestamp()))
2818 rtt_us = ktime_us_delta(ktime_get_real(),
2819 last_ackt);
2820 else if (ca_seq_rtt > 0)
2821 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2824 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2828 #if FASTRETRANS_DEBUG > 0
2829 BUG_TRAP((int)tp->sacked_out >= 0);
2830 BUG_TRAP((int)tp->lost_out >= 0);
2831 BUG_TRAP((int)tp->retrans_out >= 0);
2832 if (!tp->packets_out && tcp_is_sack(tp)) {
2833 icsk = inet_csk(sk);
2834 if (tp->lost_out) {
2835 printk(KERN_DEBUG "Leak l=%u %d\n",
2836 tp->lost_out, icsk->icsk_ca_state);
2837 tp->lost_out = 0;
2839 if (tp->sacked_out) {
2840 printk(KERN_DEBUG "Leak s=%u %d\n",
2841 tp->sacked_out, icsk->icsk_ca_state);
2842 tp->sacked_out = 0;
2844 if (tp->retrans_out) {
2845 printk(KERN_DEBUG "Leak r=%u %d\n",
2846 tp->retrans_out, icsk->icsk_ca_state);
2847 tp->retrans_out = 0;
2850 #endif
2851 *seq_rtt_p = seq_rtt;
2852 return flag;
2855 static void tcp_ack_probe(struct sock *sk)
2857 const struct tcp_sock *tp = tcp_sk(sk);
2858 struct inet_connection_sock *icsk = inet_csk(sk);
2860 /* Was it a usable window open? */
2862 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2863 tp->snd_una + tp->snd_wnd)) {
2864 icsk->icsk_backoff = 0;
2865 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2866 /* Socket must be waked up by subsequent tcp_data_snd_check().
2867 * This function is not for random using!
2869 } else {
2870 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2871 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2872 TCP_RTO_MAX);
2876 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2878 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2879 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2882 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2884 const struct tcp_sock *tp = tcp_sk(sk);
2885 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2886 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2889 /* Check that window update is acceptable.
2890 * The function assumes that snd_una<=ack<=snd_next.
2892 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2893 const u32 ack_seq, const u32 nwin)
2895 return (after(ack, tp->snd_una) ||
2896 after(ack_seq, tp->snd_wl1) ||
2897 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2900 /* Update our send window.
2902 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2903 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2905 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2906 u32 ack_seq)
2908 struct tcp_sock *tp = tcp_sk(sk);
2909 int flag = 0;
2910 u32 nwin = ntohs(tcp_hdr(skb)->window);
2912 if (likely(!tcp_hdr(skb)->syn))
2913 nwin <<= tp->rx_opt.snd_wscale;
2915 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2916 flag |= FLAG_WIN_UPDATE;
2917 tcp_update_wl(tp, ack, ack_seq);
2919 if (tp->snd_wnd != nwin) {
2920 tp->snd_wnd = nwin;
2922 /* Note, it is the only place, where
2923 * fast path is recovered for sending TCP.
2925 tp->pred_flags = 0;
2926 tcp_fast_path_check(sk);
2928 if (nwin > tp->max_window) {
2929 tp->max_window = nwin;
2930 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2935 tp->snd_una = ack;
2937 return flag;
2940 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2941 * continue in congestion avoidance.
2943 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2945 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2946 tp->snd_cwnd_cnt = 0;
2947 tp->bytes_acked = 0;
2948 TCP_ECN_queue_cwr(tp);
2949 tcp_moderate_cwnd(tp);
2952 /* A conservative spurious RTO response algorithm: reduce cwnd using
2953 * rate halving and continue in congestion avoidance.
2955 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2957 tcp_enter_cwr(sk, 0);
2960 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2962 if (flag&FLAG_ECE)
2963 tcp_ratehalving_spur_to_response(sk);
2964 else
2965 tcp_undo_cwr(sk, 1);
2968 /* F-RTO spurious RTO detection algorithm (RFC4138)
2970 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2971 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2972 * window (but not to or beyond highest sequence sent before RTO):
2973 * On First ACK, send two new segments out.
2974 * On Second ACK, RTO was likely spurious. Do spurious response (response
2975 * algorithm is not part of the F-RTO detection algorithm
2976 * given in RFC4138 but can be selected separately).
2977 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2978 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2979 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2980 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2982 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2983 * original window even after we transmit two new data segments.
2985 * SACK version:
2986 * on first step, wait until first cumulative ACK arrives, then move to
2987 * the second step. In second step, the next ACK decides.
2989 * F-RTO is implemented (mainly) in four functions:
2990 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2991 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2992 * called when tcp_use_frto() showed green light
2993 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2994 * - tcp_enter_frto_loss() is called if there is not enough evidence
2995 * to prove that the RTO is indeed spurious. It transfers the control
2996 * from F-RTO to the conventional RTO recovery
2998 static int tcp_process_frto(struct sock *sk, int flag)
3000 struct tcp_sock *tp = tcp_sk(sk);
3002 tcp_verify_left_out(tp);
3004 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3005 if (flag&FLAG_DATA_ACKED)
3006 inet_csk(sk)->icsk_retransmits = 0;
3008 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3009 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3010 tp->undo_marker = 0;
3012 if (!before(tp->snd_una, tp->frto_highmark)) {
3013 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3014 return 1;
3017 if (!IsSackFrto() || tcp_is_reno(tp)) {
3018 /* RFC4138 shortcoming in step 2; should also have case c):
3019 * ACK isn't duplicate nor advances window, e.g., opposite dir
3020 * data, winupdate
3022 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
3023 return 1;
3025 if (!(flag&FLAG_DATA_ACKED)) {
3026 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3027 flag);
3028 return 1;
3030 } else {
3031 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3032 /* Prevent sending of new data. */
3033 tp->snd_cwnd = min(tp->snd_cwnd,
3034 tcp_packets_in_flight(tp));
3035 return 1;
3038 if ((tp->frto_counter >= 2) &&
3039 (!(flag&FLAG_FORWARD_PROGRESS) ||
3040 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
3041 /* RFC4138 shortcoming (see comment above) */
3042 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
3043 return 1;
3045 tcp_enter_frto_loss(sk, 3, flag);
3046 return 1;
3050 if (tp->frto_counter == 1) {
3051 /* tcp_may_send_now needs to see updated state */
3052 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3053 tp->frto_counter = 2;
3055 if (!tcp_may_send_now(sk))
3056 tcp_enter_frto_loss(sk, 2, flag);
3058 return 1;
3059 } else {
3060 switch (sysctl_tcp_frto_response) {
3061 case 2:
3062 tcp_undo_spur_to_response(sk, flag);
3063 break;
3064 case 1:
3065 tcp_conservative_spur_to_response(tp);
3066 break;
3067 default:
3068 tcp_ratehalving_spur_to_response(sk);
3069 break;
3071 tp->frto_counter = 0;
3072 tp->undo_marker = 0;
3073 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3075 return 0;
3078 /* This routine deals with incoming acks, but not outgoing ones. */
3079 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3081 struct inet_connection_sock *icsk = inet_csk(sk);
3082 struct tcp_sock *tp = tcp_sk(sk);
3083 u32 prior_snd_una = tp->snd_una;
3084 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3085 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3086 u32 prior_in_flight;
3087 u32 prior_fackets;
3088 s32 seq_rtt;
3089 int prior_packets;
3090 int frto_cwnd = 0;
3092 /* If the ack is newer than sent or older than previous acks
3093 * then we can probably ignore it.
3095 if (after(ack, tp->snd_nxt))
3096 goto uninteresting_ack;
3098 if (before(ack, prior_snd_una))
3099 goto old_ack;
3101 if (after(ack, prior_snd_una))
3102 flag |= FLAG_SND_UNA_ADVANCED;
3104 if (sysctl_tcp_abc) {
3105 if (icsk->icsk_ca_state < TCP_CA_CWR)
3106 tp->bytes_acked += ack - prior_snd_una;
3107 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3108 /* we assume just one segment left network */
3109 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3112 prior_fackets = tp->fackets_out;
3113 prior_in_flight = tcp_packets_in_flight(tp);
3115 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3116 /* Window is constant, pure forward advance.
3117 * No more checks are required.
3118 * Note, we use the fact that SND.UNA>=SND.WL2.
3120 tcp_update_wl(tp, ack, ack_seq);
3121 tp->snd_una = ack;
3122 flag |= FLAG_WIN_UPDATE;
3124 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3126 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3127 } else {
3128 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3129 flag |= FLAG_DATA;
3130 else
3131 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3133 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3135 if (TCP_SKB_CB(skb)->sacked)
3136 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3138 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3139 flag |= FLAG_ECE;
3141 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3144 /* We passed data and got it acked, remove any soft error
3145 * log. Something worked...
3147 sk->sk_err_soft = 0;
3148 tp->rcv_tstamp = tcp_time_stamp;
3149 prior_packets = tp->packets_out;
3150 if (!prior_packets)
3151 goto no_queue;
3153 /* See if we can take anything off of the retransmit queue. */
3154 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets);
3156 if (tp->frto_counter)
3157 frto_cwnd = tcp_process_frto(sk, flag);
3158 /* Guarantee sacktag reordering detection against wrap-arounds */
3159 if (before(tp->frto_highmark, tp->snd_una))
3160 tp->frto_highmark = 0;
3162 if (tcp_ack_is_dubious(sk, flag)) {
3163 /* Advance CWND, if state allows this. */
3164 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3165 tcp_may_raise_cwnd(sk, flag))
3166 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3167 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3168 } else {
3169 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3170 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3173 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3174 dst_confirm(sk->sk_dst_cache);
3176 return 1;
3178 no_queue:
3179 icsk->icsk_probes_out = 0;
3181 /* If this ack opens up a zero window, clear backoff. It was
3182 * being used to time the probes, and is probably far higher than
3183 * it needs to be for normal retransmission.
3185 if (tcp_send_head(sk))
3186 tcp_ack_probe(sk);
3187 return 1;
3189 old_ack:
3190 if (TCP_SKB_CB(skb)->sacked)
3191 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3193 uninteresting_ack:
3194 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3195 return 0;
3199 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3200 * But, this can also be called on packets in the established flow when
3201 * the fast version below fails.
3203 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3205 unsigned char *ptr;
3206 struct tcphdr *th = tcp_hdr(skb);
3207 int length=(th->doff*4)-sizeof(struct tcphdr);
3209 ptr = (unsigned char *)(th + 1);
3210 opt_rx->saw_tstamp = 0;
3212 while (length > 0) {
3213 int opcode=*ptr++;
3214 int opsize;
3216 switch (opcode) {
3217 case TCPOPT_EOL:
3218 return;
3219 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3220 length--;
3221 continue;
3222 default:
3223 opsize=*ptr++;
3224 if (opsize < 2) /* "silly options" */
3225 return;
3226 if (opsize > length)
3227 return; /* don't parse partial options */
3228 switch (opcode) {
3229 case TCPOPT_MSS:
3230 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3231 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3232 if (in_mss) {
3233 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3234 in_mss = opt_rx->user_mss;
3235 opt_rx->mss_clamp = in_mss;
3238 break;
3239 case TCPOPT_WINDOW:
3240 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3241 if (sysctl_tcp_window_scaling) {
3242 __u8 snd_wscale = *(__u8 *) ptr;
3243 opt_rx->wscale_ok = 1;
3244 if (snd_wscale > 14) {
3245 if (net_ratelimit())
3246 printk(KERN_INFO "tcp_parse_options: Illegal window "
3247 "scaling value %d >14 received.\n",
3248 snd_wscale);
3249 snd_wscale = 14;
3251 opt_rx->snd_wscale = snd_wscale;
3253 break;
3254 case TCPOPT_TIMESTAMP:
3255 if (opsize==TCPOLEN_TIMESTAMP) {
3256 if ((estab && opt_rx->tstamp_ok) ||
3257 (!estab && sysctl_tcp_timestamps)) {
3258 opt_rx->saw_tstamp = 1;
3259 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3260 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3263 break;
3264 case TCPOPT_SACK_PERM:
3265 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3266 if (sysctl_tcp_sack) {
3267 opt_rx->sack_ok = 1;
3268 tcp_sack_reset(opt_rx);
3271 break;
3273 case TCPOPT_SACK:
3274 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3275 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3276 opt_rx->sack_ok) {
3277 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3279 break;
3280 #ifdef CONFIG_TCP_MD5SIG
3281 case TCPOPT_MD5SIG:
3283 * The MD5 Hash has already been
3284 * checked (see tcp_v{4,6}_do_rcv()).
3286 break;
3287 #endif
3290 ptr+=opsize-2;
3291 length-=opsize;
3296 /* Fast parse options. This hopes to only see timestamps.
3297 * If it is wrong it falls back on tcp_parse_options().
3299 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3300 struct tcp_sock *tp)
3302 if (th->doff == sizeof(struct tcphdr)>>2) {
3303 tp->rx_opt.saw_tstamp = 0;
3304 return 0;
3305 } else if (tp->rx_opt.tstamp_ok &&
3306 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3307 __be32 *ptr = (__be32 *)(th + 1);
3308 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3309 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3310 tp->rx_opt.saw_tstamp = 1;
3311 ++ptr;
3312 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3313 ++ptr;
3314 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3315 return 1;
3318 tcp_parse_options(skb, &tp->rx_opt, 1);
3319 return 1;
3322 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3324 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3325 tp->rx_opt.ts_recent_stamp = get_seconds();
3328 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3330 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3331 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3332 * extra check below makes sure this can only happen
3333 * for pure ACK frames. -DaveM
3335 * Not only, also it occurs for expired timestamps.
3338 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3339 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3340 tcp_store_ts_recent(tp);
3344 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3346 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3347 * it can pass through stack. So, the following predicate verifies that
3348 * this segment is not used for anything but congestion avoidance or
3349 * fast retransmit. Moreover, we even are able to eliminate most of such
3350 * second order effects, if we apply some small "replay" window (~RTO)
3351 * to timestamp space.
3353 * All these measures still do not guarantee that we reject wrapped ACKs
3354 * on networks with high bandwidth, when sequence space is recycled fastly,
3355 * but it guarantees that such events will be very rare and do not affect
3356 * connection seriously. This doesn't look nice, but alas, PAWS is really
3357 * buggy extension.
3359 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3360 * states that events when retransmit arrives after original data are rare.
3361 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3362 * the biggest problem on large power networks even with minor reordering.
3363 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3364 * up to bandwidth of 18Gigabit/sec. 8) ]
3367 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3369 struct tcp_sock *tp = tcp_sk(sk);
3370 struct tcphdr *th = tcp_hdr(skb);
3371 u32 seq = TCP_SKB_CB(skb)->seq;
3372 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3374 return (/* 1. Pure ACK with correct sequence number. */
3375 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3377 /* 2. ... and duplicate ACK. */
3378 ack == tp->snd_una &&
3380 /* 3. ... and does not update window. */
3381 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3383 /* 4. ... and sits in replay window. */
3384 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3387 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3389 const struct tcp_sock *tp = tcp_sk(sk);
3390 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3391 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3392 !tcp_disordered_ack(sk, skb));
3395 /* Check segment sequence number for validity.
3397 * Segment controls are considered valid, if the segment
3398 * fits to the window after truncation to the window. Acceptability
3399 * of data (and SYN, FIN, of course) is checked separately.
3400 * See tcp_data_queue(), for example.
3402 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3403 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3404 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3405 * (borrowed from freebsd)
3408 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3410 return !before(end_seq, tp->rcv_wup) &&
3411 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3414 /* When we get a reset we do this. */
3415 static void tcp_reset(struct sock *sk)
3417 /* We want the right error as BSD sees it (and indeed as we do). */
3418 switch (sk->sk_state) {
3419 case TCP_SYN_SENT:
3420 sk->sk_err = ECONNREFUSED;
3421 break;
3422 case TCP_CLOSE_WAIT:
3423 sk->sk_err = EPIPE;
3424 break;
3425 case TCP_CLOSE:
3426 return;
3427 default:
3428 sk->sk_err = ECONNRESET;
3431 if (!sock_flag(sk, SOCK_DEAD))
3432 sk->sk_error_report(sk);
3434 tcp_done(sk);
3438 * Process the FIN bit. This now behaves as it is supposed to work
3439 * and the FIN takes effect when it is validly part of sequence
3440 * space. Not before when we get holes.
3442 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3443 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3444 * TIME-WAIT)
3446 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3447 * close and we go into CLOSING (and later onto TIME-WAIT)
3449 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3451 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3453 struct tcp_sock *tp = tcp_sk(sk);
3455 inet_csk_schedule_ack(sk);
3457 sk->sk_shutdown |= RCV_SHUTDOWN;
3458 sock_set_flag(sk, SOCK_DONE);
3460 switch (sk->sk_state) {
3461 case TCP_SYN_RECV:
3462 case TCP_ESTABLISHED:
3463 /* Move to CLOSE_WAIT */
3464 tcp_set_state(sk, TCP_CLOSE_WAIT);
3465 inet_csk(sk)->icsk_ack.pingpong = 1;
3466 break;
3468 case TCP_CLOSE_WAIT:
3469 case TCP_CLOSING:
3470 /* Received a retransmission of the FIN, do
3471 * nothing.
3473 break;
3474 case TCP_LAST_ACK:
3475 /* RFC793: Remain in the LAST-ACK state. */
3476 break;
3478 case TCP_FIN_WAIT1:
3479 /* This case occurs when a simultaneous close
3480 * happens, we must ack the received FIN and
3481 * enter the CLOSING state.
3483 tcp_send_ack(sk);
3484 tcp_set_state(sk, TCP_CLOSING);
3485 break;
3486 case TCP_FIN_WAIT2:
3487 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3488 tcp_send_ack(sk);
3489 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3490 break;
3491 default:
3492 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3493 * cases we should never reach this piece of code.
3495 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3496 __FUNCTION__, sk->sk_state);
3497 break;
3500 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3501 * Probably, we should reset in this case. For now drop them.
3503 __skb_queue_purge(&tp->out_of_order_queue);
3504 if (tcp_is_sack(tp))
3505 tcp_sack_reset(&tp->rx_opt);
3506 sk_stream_mem_reclaim(sk);
3508 if (!sock_flag(sk, SOCK_DEAD)) {
3509 sk->sk_state_change(sk);
3511 /* Do not send POLL_HUP for half duplex close. */
3512 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3513 sk->sk_state == TCP_CLOSE)
3514 sk_wake_async(sk, 1, POLL_HUP);
3515 else
3516 sk_wake_async(sk, 1, POLL_IN);
3520 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3522 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3523 if (before(seq, sp->start_seq))
3524 sp->start_seq = seq;
3525 if (after(end_seq, sp->end_seq))
3526 sp->end_seq = end_seq;
3527 return 1;
3529 return 0;
3532 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3534 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3535 if (before(seq, tp->rcv_nxt))
3536 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3537 else
3538 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3540 tp->rx_opt.dsack = 1;
3541 tp->duplicate_sack[0].start_seq = seq;
3542 tp->duplicate_sack[0].end_seq = end_seq;
3543 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3547 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3549 if (!tp->rx_opt.dsack)
3550 tcp_dsack_set(tp, seq, end_seq);
3551 else
3552 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3555 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3557 struct tcp_sock *tp = tcp_sk(sk);
3559 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3560 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3561 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3562 tcp_enter_quickack_mode(sk);
3564 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3565 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3567 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3568 end_seq = tp->rcv_nxt;
3569 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3573 tcp_send_ack(sk);
3576 /* These routines update the SACK block as out-of-order packets arrive or
3577 * in-order packets close up the sequence space.
3579 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3581 int this_sack;
3582 struct tcp_sack_block *sp = &tp->selective_acks[0];
3583 struct tcp_sack_block *swalk = sp+1;
3585 /* See if the recent change to the first SACK eats into
3586 * or hits the sequence space of other SACK blocks, if so coalesce.
3588 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3589 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3590 int i;
3592 /* Zap SWALK, by moving every further SACK up by one slot.
3593 * Decrease num_sacks.
3595 tp->rx_opt.num_sacks--;
3596 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3597 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3598 sp[i] = sp[i+1];
3599 continue;
3601 this_sack++, swalk++;
3605 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3607 __u32 tmp;
3609 tmp = sack1->start_seq;
3610 sack1->start_seq = sack2->start_seq;
3611 sack2->start_seq = tmp;
3613 tmp = sack1->end_seq;
3614 sack1->end_seq = sack2->end_seq;
3615 sack2->end_seq = tmp;
3618 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3620 struct tcp_sock *tp = tcp_sk(sk);
3621 struct tcp_sack_block *sp = &tp->selective_acks[0];
3622 int cur_sacks = tp->rx_opt.num_sacks;
3623 int this_sack;
3625 if (!cur_sacks)
3626 goto new_sack;
3628 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3629 if (tcp_sack_extend(sp, seq, end_seq)) {
3630 /* Rotate this_sack to the first one. */
3631 for (; this_sack>0; this_sack--, sp--)
3632 tcp_sack_swap(sp, sp-1);
3633 if (cur_sacks > 1)
3634 tcp_sack_maybe_coalesce(tp);
3635 return;
3639 /* Could not find an adjacent existing SACK, build a new one,
3640 * put it at the front, and shift everyone else down. We
3641 * always know there is at least one SACK present already here.
3643 * If the sack array is full, forget about the last one.
3645 if (this_sack >= 4) {
3646 this_sack--;
3647 tp->rx_opt.num_sacks--;
3648 sp--;
3650 for (; this_sack > 0; this_sack--, sp--)
3651 *sp = *(sp-1);
3653 new_sack:
3654 /* Build the new head SACK, and we're done. */
3655 sp->start_seq = seq;
3656 sp->end_seq = end_seq;
3657 tp->rx_opt.num_sacks++;
3658 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3661 /* RCV.NXT advances, some SACKs should be eaten. */
3663 static void tcp_sack_remove(struct tcp_sock *tp)
3665 struct tcp_sack_block *sp = &tp->selective_acks[0];
3666 int num_sacks = tp->rx_opt.num_sacks;
3667 int this_sack;
3669 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3670 if (skb_queue_empty(&tp->out_of_order_queue)) {
3671 tp->rx_opt.num_sacks = 0;
3672 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3673 return;
3676 for (this_sack = 0; this_sack < num_sacks; ) {
3677 /* Check if the start of the sack is covered by RCV.NXT. */
3678 if (!before(tp->rcv_nxt, sp->start_seq)) {
3679 int i;
3681 /* RCV.NXT must cover all the block! */
3682 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3684 /* Zap this SACK, by moving forward any other SACKS. */
3685 for (i=this_sack+1; i < num_sacks; i++)
3686 tp->selective_acks[i-1] = tp->selective_acks[i];
3687 num_sacks--;
3688 continue;
3690 this_sack++;
3691 sp++;
3693 if (num_sacks != tp->rx_opt.num_sacks) {
3694 tp->rx_opt.num_sacks = num_sacks;
3695 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3699 /* This one checks to see if we can put data from the
3700 * out_of_order queue into the receive_queue.
3702 static void tcp_ofo_queue(struct sock *sk)
3704 struct tcp_sock *tp = tcp_sk(sk);
3705 __u32 dsack_high = tp->rcv_nxt;
3706 struct sk_buff *skb;
3708 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3709 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3710 break;
3712 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3713 __u32 dsack = dsack_high;
3714 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3715 dsack_high = TCP_SKB_CB(skb)->end_seq;
3716 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3719 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3720 SOCK_DEBUG(sk, "ofo packet was already received \n");
3721 __skb_unlink(skb, &tp->out_of_order_queue);
3722 __kfree_skb(skb);
3723 continue;
3725 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3726 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3727 TCP_SKB_CB(skb)->end_seq);
3729 __skb_unlink(skb, &tp->out_of_order_queue);
3730 __skb_queue_tail(&sk->sk_receive_queue, skb);
3731 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3732 if (tcp_hdr(skb)->fin)
3733 tcp_fin(skb, sk, tcp_hdr(skb));
3737 static int tcp_prune_queue(struct sock *sk);
3739 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3741 struct tcphdr *th = tcp_hdr(skb);
3742 struct tcp_sock *tp = tcp_sk(sk);
3743 int eaten = -1;
3745 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3746 goto drop;
3748 __skb_pull(skb, th->doff*4);
3750 TCP_ECN_accept_cwr(tp, skb);
3752 if (tp->rx_opt.dsack) {
3753 tp->rx_opt.dsack = 0;
3754 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3755 4 - tp->rx_opt.tstamp_ok);
3758 /* Queue data for delivery to the user.
3759 * Packets in sequence go to the receive queue.
3760 * Out of sequence packets to the out_of_order_queue.
3762 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3763 if (tcp_receive_window(tp) == 0)
3764 goto out_of_window;
3766 /* Ok. In sequence. In window. */
3767 if (tp->ucopy.task == current &&
3768 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3769 sock_owned_by_user(sk) && !tp->urg_data) {
3770 int chunk = min_t(unsigned int, skb->len,
3771 tp->ucopy.len);
3773 __set_current_state(TASK_RUNNING);
3775 local_bh_enable();
3776 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3777 tp->ucopy.len -= chunk;
3778 tp->copied_seq += chunk;
3779 eaten = (chunk == skb->len && !th->fin);
3780 tcp_rcv_space_adjust(sk);
3782 local_bh_disable();
3785 if (eaten <= 0) {
3786 queue_and_out:
3787 if (eaten < 0 &&
3788 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3789 !sk_stream_rmem_schedule(sk, skb))) {
3790 if (tcp_prune_queue(sk) < 0 ||
3791 !sk_stream_rmem_schedule(sk, skb))
3792 goto drop;
3794 sk_stream_set_owner_r(skb, sk);
3795 __skb_queue_tail(&sk->sk_receive_queue, skb);
3797 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3798 if (skb->len)
3799 tcp_event_data_recv(sk, skb);
3800 if (th->fin)
3801 tcp_fin(skb, sk, th);
3803 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3804 tcp_ofo_queue(sk);
3806 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3807 * gap in queue is filled.
3809 if (skb_queue_empty(&tp->out_of_order_queue))
3810 inet_csk(sk)->icsk_ack.pingpong = 0;
3813 if (tp->rx_opt.num_sacks)
3814 tcp_sack_remove(tp);
3816 tcp_fast_path_check(sk);
3818 if (eaten > 0)
3819 __kfree_skb(skb);
3820 else if (!sock_flag(sk, SOCK_DEAD))
3821 sk->sk_data_ready(sk, 0);
3822 return;
3825 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3826 /* A retransmit, 2nd most common case. Force an immediate ack. */
3827 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3828 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3830 out_of_window:
3831 tcp_enter_quickack_mode(sk);
3832 inet_csk_schedule_ack(sk);
3833 drop:
3834 __kfree_skb(skb);
3835 return;
3838 /* Out of window. F.e. zero window probe. */
3839 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3840 goto out_of_window;
3842 tcp_enter_quickack_mode(sk);
3844 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3845 /* Partial packet, seq < rcv_next < end_seq */
3846 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3847 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3848 TCP_SKB_CB(skb)->end_seq);
3850 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3852 /* If window is closed, drop tail of packet. But after
3853 * remembering D-SACK for its head made in previous line.
3855 if (!tcp_receive_window(tp))
3856 goto out_of_window;
3857 goto queue_and_out;
3860 TCP_ECN_check_ce(tp, skb);
3862 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3863 !sk_stream_rmem_schedule(sk, skb)) {
3864 if (tcp_prune_queue(sk) < 0 ||
3865 !sk_stream_rmem_schedule(sk, skb))
3866 goto drop;
3869 /* Disable header prediction. */
3870 tp->pred_flags = 0;
3871 inet_csk_schedule_ack(sk);
3873 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3874 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3876 sk_stream_set_owner_r(skb, sk);
3878 if (!skb_peek(&tp->out_of_order_queue)) {
3879 /* Initial out of order segment, build 1 SACK. */
3880 if (tcp_is_sack(tp)) {
3881 tp->rx_opt.num_sacks = 1;
3882 tp->rx_opt.dsack = 0;
3883 tp->rx_opt.eff_sacks = 1;
3884 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3885 tp->selective_acks[0].end_seq =
3886 TCP_SKB_CB(skb)->end_seq;
3888 __skb_queue_head(&tp->out_of_order_queue,skb);
3889 } else {
3890 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3891 u32 seq = TCP_SKB_CB(skb)->seq;
3892 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3894 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3895 __skb_append(skb1, skb, &tp->out_of_order_queue);
3897 if (!tp->rx_opt.num_sacks ||
3898 tp->selective_acks[0].end_seq != seq)
3899 goto add_sack;
3901 /* Common case: data arrive in order after hole. */
3902 tp->selective_acks[0].end_seq = end_seq;
3903 return;
3906 /* Find place to insert this segment. */
3907 do {
3908 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3909 break;
3910 } while ((skb1 = skb1->prev) !=
3911 (struct sk_buff*)&tp->out_of_order_queue);
3913 /* Do skb overlap to previous one? */
3914 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3915 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3916 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3917 /* All the bits are present. Drop. */
3918 __kfree_skb(skb);
3919 tcp_dsack_set(tp, seq, end_seq);
3920 goto add_sack;
3922 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3923 /* Partial overlap. */
3924 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3925 } else {
3926 skb1 = skb1->prev;
3929 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3931 /* And clean segments covered by new one as whole. */
3932 while ((skb1 = skb->next) !=
3933 (struct sk_buff*)&tp->out_of_order_queue &&
3934 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3935 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3936 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3937 break;
3939 __skb_unlink(skb1, &tp->out_of_order_queue);
3940 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3941 __kfree_skb(skb1);
3944 add_sack:
3945 if (tcp_is_sack(tp))
3946 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3950 /* Collapse contiguous sequence of skbs head..tail with
3951 * sequence numbers start..end.
3952 * Segments with FIN/SYN are not collapsed (only because this
3953 * simplifies code)
3955 static void
3956 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3957 struct sk_buff *head, struct sk_buff *tail,
3958 u32 start, u32 end)
3960 struct sk_buff *skb;
3962 /* First, check that queue is collapsible and find
3963 * the point where collapsing can be useful. */
3964 for (skb = head; skb != tail; ) {
3965 /* No new bits? It is possible on ofo queue. */
3966 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3967 struct sk_buff *next = skb->next;
3968 __skb_unlink(skb, list);
3969 __kfree_skb(skb);
3970 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3971 skb = next;
3972 continue;
3975 /* The first skb to collapse is:
3976 * - not SYN/FIN and
3977 * - bloated or contains data before "start" or
3978 * overlaps to the next one.
3980 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3981 (tcp_win_from_space(skb->truesize) > skb->len ||
3982 before(TCP_SKB_CB(skb)->seq, start) ||
3983 (skb->next != tail &&
3984 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3985 break;
3987 /* Decided to skip this, advance start seq. */
3988 start = TCP_SKB_CB(skb)->end_seq;
3989 skb = skb->next;
3991 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3992 return;
3994 while (before(start, end)) {
3995 struct sk_buff *nskb;
3996 unsigned int header = skb_headroom(skb);
3997 int copy = SKB_MAX_ORDER(header, 0);
3999 /* Too big header? This can happen with IPv6. */
4000 if (copy < 0)
4001 return;
4002 if (end-start < copy)
4003 copy = end-start;
4004 nskb = alloc_skb(copy+header, GFP_ATOMIC);
4005 if (!nskb)
4006 return;
4008 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4009 skb_set_network_header(nskb, (skb_network_header(skb) -
4010 skb->head));
4011 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4012 skb->head));
4013 skb_reserve(nskb, header);
4014 memcpy(nskb->head, skb->head, header);
4015 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4016 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4017 __skb_insert(nskb, skb->prev, skb, list);
4018 sk_stream_set_owner_r(nskb, sk);
4020 /* Copy data, releasing collapsed skbs. */
4021 while (copy > 0) {
4022 int offset = start - TCP_SKB_CB(skb)->seq;
4023 int size = TCP_SKB_CB(skb)->end_seq - start;
4025 BUG_ON(offset < 0);
4026 if (size > 0) {
4027 size = min(copy, size);
4028 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4029 BUG();
4030 TCP_SKB_CB(nskb)->end_seq += size;
4031 copy -= size;
4032 start += size;
4034 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4035 struct sk_buff *next = skb->next;
4036 __skb_unlink(skb, list);
4037 __kfree_skb(skb);
4038 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4039 skb = next;
4040 if (skb == tail ||
4041 tcp_hdr(skb)->syn ||
4042 tcp_hdr(skb)->fin)
4043 return;
4049 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4050 * and tcp_collapse() them until all the queue is collapsed.
4052 static void tcp_collapse_ofo_queue(struct sock *sk)
4054 struct tcp_sock *tp = tcp_sk(sk);
4055 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4056 struct sk_buff *head;
4057 u32 start, end;
4059 if (skb == NULL)
4060 return;
4062 start = TCP_SKB_CB(skb)->seq;
4063 end = TCP_SKB_CB(skb)->end_seq;
4064 head = skb;
4066 for (;;) {
4067 skb = skb->next;
4069 /* Segment is terminated when we see gap or when
4070 * we are at the end of all the queue. */
4071 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4072 after(TCP_SKB_CB(skb)->seq, end) ||
4073 before(TCP_SKB_CB(skb)->end_seq, start)) {
4074 tcp_collapse(sk, &tp->out_of_order_queue,
4075 head, skb, start, end);
4076 head = skb;
4077 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4078 break;
4079 /* Start new segment */
4080 start = TCP_SKB_CB(skb)->seq;
4081 end = TCP_SKB_CB(skb)->end_seq;
4082 } else {
4083 if (before(TCP_SKB_CB(skb)->seq, start))
4084 start = TCP_SKB_CB(skb)->seq;
4085 if (after(TCP_SKB_CB(skb)->end_seq, end))
4086 end = TCP_SKB_CB(skb)->end_seq;
4091 /* Reduce allocated memory if we can, trying to get
4092 * the socket within its memory limits again.
4094 * Return less than zero if we should start dropping frames
4095 * until the socket owning process reads some of the data
4096 * to stabilize the situation.
4098 static int tcp_prune_queue(struct sock *sk)
4100 struct tcp_sock *tp = tcp_sk(sk);
4102 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4104 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4106 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4107 tcp_clamp_window(sk);
4108 else if (tcp_memory_pressure)
4109 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4111 tcp_collapse_ofo_queue(sk);
4112 tcp_collapse(sk, &sk->sk_receive_queue,
4113 sk->sk_receive_queue.next,
4114 (struct sk_buff*)&sk->sk_receive_queue,
4115 tp->copied_seq, tp->rcv_nxt);
4116 sk_stream_mem_reclaim(sk);
4118 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4119 return 0;
4121 /* Collapsing did not help, destructive actions follow.
4122 * This must not ever occur. */
4124 /* First, purge the out_of_order queue. */
4125 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4126 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4127 __skb_queue_purge(&tp->out_of_order_queue);
4129 /* Reset SACK state. A conforming SACK implementation will
4130 * do the same at a timeout based retransmit. When a connection
4131 * is in a sad state like this, we care only about integrity
4132 * of the connection not performance.
4134 if (tcp_is_sack(tp))
4135 tcp_sack_reset(&tp->rx_opt);
4136 sk_stream_mem_reclaim(sk);
4139 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4140 return 0;
4142 /* If we are really being abused, tell the caller to silently
4143 * drop receive data on the floor. It will get retransmitted
4144 * and hopefully then we'll have sufficient space.
4146 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4148 /* Massive buffer overcommit. */
4149 tp->pred_flags = 0;
4150 return -1;
4154 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4155 * As additional protections, we do not touch cwnd in retransmission phases,
4156 * and if application hit its sndbuf limit recently.
4158 void tcp_cwnd_application_limited(struct sock *sk)
4160 struct tcp_sock *tp = tcp_sk(sk);
4162 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4163 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4164 /* Limited by application or receiver window. */
4165 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4166 u32 win_used = max(tp->snd_cwnd_used, init_win);
4167 if (win_used < tp->snd_cwnd) {
4168 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4169 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4171 tp->snd_cwnd_used = 0;
4173 tp->snd_cwnd_stamp = tcp_time_stamp;
4176 static int tcp_should_expand_sndbuf(struct sock *sk)
4178 struct tcp_sock *tp = tcp_sk(sk);
4180 /* If the user specified a specific send buffer setting, do
4181 * not modify it.
4183 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4184 return 0;
4186 /* If we are under global TCP memory pressure, do not expand. */
4187 if (tcp_memory_pressure)
4188 return 0;
4190 /* If we are under soft global TCP memory pressure, do not expand. */
4191 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4192 return 0;
4194 /* If we filled the congestion window, do not expand. */
4195 if (tp->packets_out >= tp->snd_cwnd)
4196 return 0;
4198 return 1;
4201 /* When incoming ACK allowed to free some skb from write_queue,
4202 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4203 * on the exit from tcp input handler.
4205 * PROBLEM: sndbuf expansion does not work well with largesend.
4207 static void tcp_new_space(struct sock *sk)
4209 struct tcp_sock *tp = tcp_sk(sk);
4211 if (tcp_should_expand_sndbuf(sk)) {
4212 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4213 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4214 demanded = max_t(unsigned int, tp->snd_cwnd,
4215 tp->reordering + 1);
4216 sndmem *= 2*demanded;
4217 if (sndmem > sk->sk_sndbuf)
4218 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4219 tp->snd_cwnd_stamp = tcp_time_stamp;
4222 sk->sk_write_space(sk);
4225 static void tcp_check_space(struct sock *sk)
4227 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4228 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4229 if (sk->sk_socket &&
4230 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4231 tcp_new_space(sk);
4235 static inline void tcp_data_snd_check(struct sock *sk)
4237 tcp_push_pending_frames(sk);
4238 tcp_check_space(sk);
4242 * Check if sending an ack is needed.
4244 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4246 struct tcp_sock *tp = tcp_sk(sk);
4248 /* More than one full frame received... */
4249 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4250 /* ... and right edge of window advances far enough.
4251 * (tcp_recvmsg() will send ACK otherwise). Or...
4253 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4254 /* We ACK each frame or... */
4255 tcp_in_quickack_mode(sk) ||
4256 /* We have out of order data. */
4257 (ofo_possible &&
4258 skb_peek(&tp->out_of_order_queue))) {
4259 /* Then ack it now */
4260 tcp_send_ack(sk);
4261 } else {
4262 /* Else, send delayed ack. */
4263 tcp_send_delayed_ack(sk);
4267 static inline void tcp_ack_snd_check(struct sock *sk)
4269 if (!inet_csk_ack_scheduled(sk)) {
4270 /* We sent a data segment already. */
4271 return;
4273 __tcp_ack_snd_check(sk, 1);
4277 * This routine is only called when we have urgent data
4278 * signaled. Its the 'slow' part of tcp_urg. It could be
4279 * moved inline now as tcp_urg is only called from one
4280 * place. We handle URGent data wrong. We have to - as
4281 * BSD still doesn't use the correction from RFC961.
4282 * For 1003.1g we should support a new option TCP_STDURG to permit
4283 * either form (or just set the sysctl tcp_stdurg).
4286 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4288 struct tcp_sock *tp = tcp_sk(sk);
4289 u32 ptr = ntohs(th->urg_ptr);
4291 if (ptr && !sysctl_tcp_stdurg)
4292 ptr--;
4293 ptr += ntohl(th->seq);
4295 /* Ignore urgent data that we've already seen and read. */
4296 if (after(tp->copied_seq, ptr))
4297 return;
4299 /* Do not replay urg ptr.
4301 * NOTE: interesting situation not covered by specs.
4302 * Misbehaving sender may send urg ptr, pointing to segment,
4303 * which we already have in ofo queue. We are not able to fetch
4304 * such data and will stay in TCP_URG_NOTYET until will be eaten
4305 * by recvmsg(). Seems, we are not obliged to handle such wicked
4306 * situations. But it is worth to think about possibility of some
4307 * DoSes using some hypothetical application level deadlock.
4309 if (before(ptr, tp->rcv_nxt))
4310 return;
4312 /* Do we already have a newer (or duplicate) urgent pointer? */
4313 if (tp->urg_data && !after(ptr, tp->urg_seq))
4314 return;
4316 /* Tell the world about our new urgent pointer. */
4317 sk_send_sigurg(sk);
4319 /* We may be adding urgent data when the last byte read was
4320 * urgent. To do this requires some care. We cannot just ignore
4321 * tp->copied_seq since we would read the last urgent byte again
4322 * as data, nor can we alter copied_seq until this data arrives
4323 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4325 * NOTE. Double Dutch. Rendering to plain English: author of comment
4326 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4327 * and expect that both A and B disappear from stream. This is _wrong_.
4328 * Though this happens in BSD with high probability, this is occasional.
4329 * Any application relying on this is buggy. Note also, that fix "works"
4330 * only in this artificial test. Insert some normal data between A and B and we will
4331 * decline of BSD again. Verdict: it is better to remove to trap
4332 * buggy users.
4334 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4335 !sock_flag(sk, SOCK_URGINLINE) &&
4336 tp->copied_seq != tp->rcv_nxt) {
4337 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4338 tp->copied_seq++;
4339 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4340 __skb_unlink(skb, &sk->sk_receive_queue);
4341 __kfree_skb(skb);
4345 tp->urg_data = TCP_URG_NOTYET;
4346 tp->urg_seq = ptr;
4348 /* Disable header prediction. */
4349 tp->pred_flags = 0;
4352 /* This is the 'fast' part of urgent handling. */
4353 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4355 struct tcp_sock *tp = tcp_sk(sk);
4357 /* Check if we get a new urgent pointer - normally not. */
4358 if (th->urg)
4359 tcp_check_urg(sk,th);
4361 /* Do we wait for any urgent data? - normally not... */
4362 if (tp->urg_data == TCP_URG_NOTYET) {
4363 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4364 th->syn;
4366 /* Is the urgent pointer pointing into this packet? */
4367 if (ptr < skb->len) {
4368 u8 tmp;
4369 if (skb_copy_bits(skb, ptr, &tmp, 1))
4370 BUG();
4371 tp->urg_data = TCP_URG_VALID | tmp;
4372 if (!sock_flag(sk, SOCK_DEAD))
4373 sk->sk_data_ready(sk, 0);
4378 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4380 struct tcp_sock *tp = tcp_sk(sk);
4381 int chunk = skb->len - hlen;
4382 int err;
4384 local_bh_enable();
4385 if (skb_csum_unnecessary(skb))
4386 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4387 else
4388 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4389 tp->ucopy.iov);
4391 if (!err) {
4392 tp->ucopy.len -= chunk;
4393 tp->copied_seq += chunk;
4394 tcp_rcv_space_adjust(sk);
4397 local_bh_disable();
4398 return err;
4401 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4403 __sum16 result;
4405 if (sock_owned_by_user(sk)) {
4406 local_bh_enable();
4407 result = __tcp_checksum_complete(skb);
4408 local_bh_disable();
4409 } else {
4410 result = __tcp_checksum_complete(skb);
4412 return result;
4415 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4417 return !skb_csum_unnecessary(skb) &&
4418 __tcp_checksum_complete_user(sk, skb);
4421 #ifdef CONFIG_NET_DMA
4422 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4424 struct tcp_sock *tp = tcp_sk(sk);
4425 int chunk = skb->len - hlen;
4426 int dma_cookie;
4427 int copied_early = 0;
4429 if (tp->ucopy.wakeup)
4430 return 0;
4432 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4433 tp->ucopy.dma_chan = get_softnet_dma();
4435 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4437 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4438 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4440 if (dma_cookie < 0)
4441 goto out;
4443 tp->ucopy.dma_cookie = dma_cookie;
4444 copied_early = 1;
4446 tp->ucopy.len -= chunk;
4447 tp->copied_seq += chunk;
4448 tcp_rcv_space_adjust(sk);
4450 if ((tp->ucopy.len == 0) ||
4451 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4452 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4453 tp->ucopy.wakeup = 1;
4454 sk->sk_data_ready(sk, 0);
4456 } else if (chunk > 0) {
4457 tp->ucopy.wakeup = 1;
4458 sk->sk_data_ready(sk, 0);
4460 out:
4461 return copied_early;
4463 #endif /* CONFIG_NET_DMA */
4466 * TCP receive function for the ESTABLISHED state.
4468 * It is split into a fast path and a slow path. The fast path is
4469 * disabled when:
4470 * - A zero window was announced from us - zero window probing
4471 * is only handled properly in the slow path.
4472 * - Out of order segments arrived.
4473 * - Urgent data is expected.
4474 * - There is no buffer space left
4475 * - Unexpected TCP flags/window values/header lengths are received
4476 * (detected by checking the TCP header against pred_flags)
4477 * - Data is sent in both directions. Fast path only supports pure senders
4478 * or pure receivers (this means either the sequence number or the ack
4479 * value must stay constant)
4480 * - Unexpected TCP option.
4482 * When these conditions are not satisfied it drops into a standard
4483 * receive procedure patterned after RFC793 to handle all cases.
4484 * The first three cases are guaranteed by proper pred_flags setting,
4485 * the rest is checked inline. Fast processing is turned on in
4486 * tcp_data_queue when everything is OK.
4488 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4489 struct tcphdr *th, unsigned len)
4491 struct tcp_sock *tp = tcp_sk(sk);
4494 * Header prediction.
4495 * The code loosely follows the one in the famous
4496 * "30 instruction TCP receive" Van Jacobson mail.
4498 * Van's trick is to deposit buffers into socket queue
4499 * on a device interrupt, to call tcp_recv function
4500 * on the receive process context and checksum and copy
4501 * the buffer to user space. smart...
4503 * Our current scheme is not silly either but we take the
4504 * extra cost of the net_bh soft interrupt processing...
4505 * We do checksum and copy also but from device to kernel.
4508 tp->rx_opt.saw_tstamp = 0;
4510 /* pred_flags is 0xS?10 << 16 + snd_wnd
4511 * if header_prediction is to be made
4512 * 'S' will always be tp->tcp_header_len >> 2
4513 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4514 * turn it off (when there are holes in the receive
4515 * space for instance)
4516 * PSH flag is ignored.
4519 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4520 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4521 int tcp_header_len = tp->tcp_header_len;
4523 /* Timestamp header prediction: tcp_header_len
4524 * is automatically equal to th->doff*4 due to pred_flags
4525 * match.
4528 /* Check timestamp */
4529 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4530 __be32 *ptr = (__be32 *)(th + 1);
4532 /* No? Slow path! */
4533 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4534 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4535 goto slow_path;
4537 tp->rx_opt.saw_tstamp = 1;
4538 ++ptr;
4539 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4540 ++ptr;
4541 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4543 /* If PAWS failed, check it more carefully in slow path */
4544 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4545 goto slow_path;
4547 /* DO NOT update ts_recent here, if checksum fails
4548 * and timestamp was corrupted part, it will result
4549 * in a hung connection since we will drop all
4550 * future packets due to the PAWS test.
4554 if (len <= tcp_header_len) {
4555 /* Bulk data transfer: sender */
4556 if (len == tcp_header_len) {
4557 /* Predicted packet is in window by definition.
4558 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4559 * Hence, check seq<=rcv_wup reduces to:
4561 if (tcp_header_len ==
4562 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4563 tp->rcv_nxt == tp->rcv_wup)
4564 tcp_store_ts_recent(tp);
4566 /* We know that such packets are checksummed
4567 * on entry.
4569 tcp_ack(sk, skb, 0);
4570 __kfree_skb(skb);
4571 tcp_data_snd_check(sk);
4572 return 0;
4573 } else { /* Header too small */
4574 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4575 goto discard;
4577 } else {
4578 int eaten = 0;
4579 int copied_early = 0;
4581 if (tp->copied_seq == tp->rcv_nxt &&
4582 len - tcp_header_len <= tp->ucopy.len) {
4583 #ifdef CONFIG_NET_DMA
4584 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4585 copied_early = 1;
4586 eaten = 1;
4588 #endif
4589 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4590 __set_current_state(TASK_RUNNING);
4592 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4593 eaten = 1;
4595 if (eaten) {
4596 /* Predicted packet is in window by definition.
4597 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4598 * Hence, check seq<=rcv_wup reduces to:
4600 if (tcp_header_len ==
4601 (sizeof(struct tcphdr) +
4602 TCPOLEN_TSTAMP_ALIGNED) &&
4603 tp->rcv_nxt == tp->rcv_wup)
4604 tcp_store_ts_recent(tp);
4606 tcp_rcv_rtt_measure_ts(sk, skb);
4608 __skb_pull(skb, tcp_header_len);
4609 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4610 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4612 if (copied_early)
4613 tcp_cleanup_rbuf(sk, skb->len);
4615 if (!eaten) {
4616 if (tcp_checksum_complete_user(sk, skb))
4617 goto csum_error;
4619 /* Predicted packet is in window by definition.
4620 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4621 * Hence, check seq<=rcv_wup reduces to:
4623 if (tcp_header_len ==
4624 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4625 tp->rcv_nxt == tp->rcv_wup)
4626 tcp_store_ts_recent(tp);
4628 tcp_rcv_rtt_measure_ts(sk, skb);
4630 if ((int)skb->truesize > sk->sk_forward_alloc)
4631 goto step5;
4633 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4635 /* Bulk data transfer: receiver */
4636 __skb_pull(skb,tcp_header_len);
4637 __skb_queue_tail(&sk->sk_receive_queue, skb);
4638 sk_stream_set_owner_r(skb, sk);
4639 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4642 tcp_event_data_recv(sk, skb);
4644 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4645 /* Well, only one small jumplet in fast path... */
4646 tcp_ack(sk, skb, FLAG_DATA);
4647 tcp_data_snd_check(sk);
4648 if (!inet_csk_ack_scheduled(sk))
4649 goto no_ack;
4652 __tcp_ack_snd_check(sk, 0);
4653 no_ack:
4654 #ifdef CONFIG_NET_DMA
4655 if (copied_early)
4656 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4657 else
4658 #endif
4659 if (eaten)
4660 __kfree_skb(skb);
4661 else
4662 sk->sk_data_ready(sk, 0);
4663 return 0;
4667 slow_path:
4668 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4669 goto csum_error;
4672 * RFC1323: H1. Apply PAWS check first.
4674 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4675 tcp_paws_discard(sk, skb)) {
4676 if (!th->rst) {
4677 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4678 tcp_send_dupack(sk, skb);
4679 goto discard;
4681 /* Resets are accepted even if PAWS failed.
4683 ts_recent update must be made after we are sure
4684 that the packet is in window.
4689 * Standard slow path.
4692 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4693 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4694 * (RST) segments are validated by checking their SEQ-fields."
4695 * And page 69: "If an incoming segment is not acceptable,
4696 * an acknowledgment should be sent in reply (unless the RST bit
4697 * is set, if so drop the segment and return)".
4699 if (!th->rst)
4700 tcp_send_dupack(sk, skb);
4701 goto discard;
4704 if (th->rst) {
4705 tcp_reset(sk);
4706 goto discard;
4709 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4711 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4712 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4713 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4714 tcp_reset(sk);
4715 return 1;
4718 step5:
4719 if (th->ack)
4720 tcp_ack(sk, skb, FLAG_SLOWPATH);
4722 tcp_rcv_rtt_measure_ts(sk, skb);
4724 /* Process urgent data. */
4725 tcp_urg(sk, skb, th);
4727 /* step 7: process the segment text */
4728 tcp_data_queue(sk, skb);
4730 tcp_data_snd_check(sk);
4731 tcp_ack_snd_check(sk);
4732 return 0;
4734 csum_error:
4735 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4737 discard:
4738 __kfree_skb(skb);
4739 return 0;
4742 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4743 struct tcphdr *th, unsigned len)
4745 struct tcp_sock *tp = tcp_sk(sk);
4746 struct inet_connection_sock *icsk = inet_csk(sk);
4747 int saved_clamp = tp->rx_opt.mss_clamp;
4749 tcp_parse_options(skb, &tp->rx_opt, 0);
4751 if (th->ack) {
4752 /* rfc793:
4753 * "If the state is SYN-SENT then
4754 * first check the ACK bit
4755 * If the ACK bit is set
4756 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4757 * a reset (unless the RST bit is set, if so drop
4758 * the segment and return)"
4760 * We do not send data with SYN, so that RFC-correct
4761 * test reduces to:
4763 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4764 goto reset_and_undo;
4766 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4767 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4768 tcp_time_stamp)) {
4769 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4770 goto reset_and_undo;
4773 /* Now ACK is acceptable.
4775 * "If the RST bit is set
4776 * If the ACK was acceptable then signal the user "error:
4777 * connection reset", drop the segment, enter CLOSED state,
4778 * delete TCB, and return."
4781 if (th->rst) {
4782 tcp_reset(sk);
4783 goto discard;
4786 /* rfc793:
4787 * "fifth, if neither of the SYN or RST bits is set then
4788 * drop the segment and return."
4790 * See note below!
4791 * --ANK(990513)
4793 if (!th->syn)
4794 goto discard_and_undo;
4796 /* rfc793:
4797 * "If the SYN bit is on ...
4798 * are acceptable then ...
4799 * (our SYN has been ACKed), change the connection
4800 * state to ESTABLISHED..."
4803 TCP_ECN_rcv_synack(tp, th);
4805 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4806 tcp_ack(sk, skb, FLAG_SLOWPATH);
4808 /* Ok.. it's good. Set up sequence numbers and
4809 * move to established.
4811 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4812 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4814 /* RFC1323: The window in SYN & SYN/ACK segments is
4815 * never scaled.
4817 tp->snd_wnd = ntohs(th->window);
4818 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4820 if (!tp->rx_opt.wscale_ok) {
4821 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4822 tp->window_clamp = min(tp->window_clamp, 65535U);
4825 if (tp->rx_opt.saw_tstamp) {
4826 tp->rx_opt.tstamp_ok = 1;
4827 tp->tcp_header_len =
4828 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4829 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4830 tcp_store_ts_recent(tp);
4831 } else {
4832 tp->tcp_header_len = sizeof(struct tcphdr);
4835 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4836 tcp_enable_fack(tp);
4838 tcp_mtup_init(sk);
4839 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4840 tcp_initialize_rcv_mss(sk);
4842 /* Remember, tcp_poll() does not lock socket!
4843 * Change state from SYN-SENT only after copied_seq
4844 * is initialized. */
4845 tp->copied_seq = tp->rcv_nxt;
4846 smp_mb();
4847 tcp_set_state(sk, TCP_ESTABLISHED);
4849 security_inet_conn_established(sk, skb);
4851 /* Make sure socket is routed, for correct metrics. */
4852 icsk->icsk_af_ops->rebuild_header(sk);
4854 tcp_init_metrics(sk);
4856 tcp_init_congestion_control(sk);
4858 /* Prevent spurious tcp_cwnd_restart() on first data
4859 * packet.
4861 tp->lsndtime = tcp_time_stamp;
4863 tcp_init_buffer_space(sk);
4865 if (sock_flag(sk, SOCK_KEEPOPEN))
4866 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4868 if (!tp->rx_opt.snd_wscale)
4869 __tcp_fast_path_on(tp, tp->snd_wnd);
4870 else
4871 tp->pred_flags = 0;
4873 if (!sock_flag(sk, SOCK_DEAD)) {
4874 sk->sk_state_change(sk);
4875 sk_wake_async(sk, 0, POLL_OUT);
4878 if (sk->sk_write_pending ||
4879 icsk->icsk_accept_queue.rskq_defer_accept ||
4880 icsk->icsk_ack.pingpong) {
4881 /* Save one ACK. Data will be ready after
4882 * several ticks, if write_pending is set.
4884 * It may be deleted, but with this feature tcpdumps
4885 * look so _wonderfully_ clever, that I was not able
4886 * to stand against the temptation 8) --ANK
4888 inet_csk_schedule_ack(sk);
4889 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4890 icsk->icsk_ack.ato = TCP_ATO_MIN;
4891 tcp_incr_quickack(sk);
4892 tcp_enter_quickack_mode(sk);
4893 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4894 TCP_DELACK_MAX, TCP_RTO_MAX);
4896 discard:
4897 __kfree_skb(skb);
4898 return 0;
4899 } else {
4900 tcp_send_ack(sk);
4902 return -1;
4905 /* No ACK in the segment */
4907 if (th->rst) {
4908 /* rfc793:
4909 * "If the RST bit is set
4911 * Otherwise (no ACK) drop the segment and return."
4914 goto discard_and_undo;
4917 /* PAWS check. */
4918 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4919 goto discard_and_undo;
4921 if (th->syn) {
4922 /* We see SYN without ACK. It is attempt of
4923 * simultaneous connect with crossed SYNs.
4924 * Particularly, it can be connect to self.
4926 tcp_set_state(sk, TCP_SYN_RECV);
4928 if (tp->rx_opt.saw_tstamp) {
4929 tp->rx_opt.tstamp_ok = 1;
4930 tcp_store_ts_recent(tp);
4931 tp->tcp_header_len =
4932 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4933 } else {
4934 tp->tcp_header_len = sizeof(struct tcphdr);
4937 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4938 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4940 /* RFC1323: The window in SYN & SYN/ACK segments is
4941 * never scaled.
4943 tp->snd_wnd = ntohs(th->window);
4944 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4945 tp->max_window = tp->snd_wnd;
4947 TCP_ECN_rcv_syn(tp, th);
4949 tcp_mtup_init(sk);
4950 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4951 tcp_initialize_rcv_mss(sk);
4954 tcp_send_synack(sk);
4955 #if 0
4956 /* Note, we could accept data and URG from this segment.
4957 * There are no obstacles to make this.
4959 * However, if we ignore data in ACKless segments sometimes,
4960 * we have no reasons to accept it sometimes.
4961 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4962 * is not flawless. So, discard packet for sanity.
4963 * Uncomment this return to process the data.
4965 return -1;
4966 #else
4967 goto discard;
4968 #endif
4970 /* "fifth, if neither of the SYN or RST bits is set then
4971 * drop the segment and return."
4974 discard_and_undo:
4975 tcp_clear_options(&tp->rx_opt);
4976 tp->rx_opt.mss_clamp = saved_clamp;
4977 goto discard;
4979 reset_and_undo:
4980 tcp_clear_options(&tp->rx_opt);
4981 tp->rx_opt.mss_clamp = saved_clamp;
4982 return 1;
4987 * This function implements the receiving procedure of RFC 793 for
4988 * all states except ESTABLISHED and TIME_WAIT.
4989 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4990 * address independent.
4993 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4994 struct tcphdr *th, unsigned len)
4996 struct tcp_sock *tp = tcp_sk(sk);
4997 struct inet_connection_sock *icsk = inet_csk(sk);
4998 int queued = 0;
5000 tp->rx_opt.saw_tstamp = 0;
5002 switch (sk->sk_state) {
5003 case TCP_CLOSE:
5004 goto discard;
5006 case TCP_LISTEN:
5007 if (th->ack)
5008 return 1;
5010 if (th->rst)
5011 goto discard;
5013 if (th->syn) {
5014 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5015 return 1;
5017 /* Now we have several options: In theory there is
5018 * nothing else in the frame. KA9Q has an option to
5019 * send data with the syn, BSD accepts data with the
5020 * syn up to the [to be] advertised window and
5021 * Solaris 2.1 gives you a protocol error. For now
5022 * we just ignore it, that fits the spec precisely
5023 * and avoids incompatibilities. It would be nice in
5024 * future to drop through and process the data.
5026 * Now that TTCP is starting to be used we ought to
5027 * queue this data.
5028 * But, this leaves one open to an easy denial of
5029 * service attack, and SYN cookies can't defend
5030 * against this problem. So, we drop the data
5031 * in the interest of security over speed unless
5032 * it's still in use.
5034 kfree_skb(skb);
5035 return 0;
5037 goto discard;
5039 case TCP_SYN_SENT:
5040 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5041 if (queued >= 0)
5042 return queued;
5044 /* Do step6 onward by hand. */
5045 tcp_urg(sk, skb, th);
5046 __kfree_skb(skb);
5047 tcp_data_snd_check(sk);
5048 return 0;
5051 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5052 tcp_paws_discard(sk, skb)) {
5053 if (!th->rst) {
5054 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5055 tcp_send_dupack(sk, skb);
5056 goto discard;
5058 /* Reset is accepted even if it did not pass PAWS. */
5061 /* step 1: check sequence number */
5062 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5063 if (!th->rst)
5064 tcp_send_dupack(sk, skb);
5065 goto discard;
5068 /* step 2: check RST bit */
5069 if (th->rst) {
5070 tcp_reset(sk);
5071 goto discard;
5074 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5076 /* step 3: check security and precedence [ignored] */
5078 /* step 4:
5080 * Check for a SYN in window.
5082 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5083 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5084 tcp_reset(sk);
5085 return 1;
5088 /* step 5: check the ACK field */
5089 if (th->ack) {
5090 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5092 switch (sk->sk_state) {
5093 case TCP_SYN_RECV:
5094 if (acceptable) {
5095 tp->copied_seq = tp->rcv_nxt;
5096 smp_mb();
5097 tcp_set_state(sk, TCP_ESTABLISHED);
5098 sk->sk_state_change(sk);
5100 /* Note, that this wakeup is only for marginal
5101 * crossed SYN case. Passively open sockets
5102 * are not waked up, because sk->sk_sleep ==
5103 * NULL and sk->sk_socket == NULL.
5105 if (sk->sk_socket) {
5106 sk_wake_async(sk,0,POLL_OUT);
5109 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5110 tp->snd_wnd = ntohs(th->window) <<
5111 tp->rx_opt.snd_wscale;
5112 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5113 TCP_SKB_CB(skb)->seq);
5115 /* tcp_ack considers this ACK as duplicate
5116 * and does not calculate rtt.
5117 * Fix it at least with timestamps.
5119 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5120 !tp->srtt)
5121 tcp_ack_saw_tstamp(sk, 0);
5123 if (tp->rx_opt.tstamp_ok)
5124 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5126 /* Make sure socket is routed, for
5127 * correct metrics.
5129 icsk->icsk_af_ops->rebuild_header(sk);
5131 tcp_init_metrics(sk);
5133 tcp_init_congestion_control(sk);
5135 /* Prevent spurious tcp_cwnd_restart() on
5136 * first data packet.
5138 tp->lsndtime = tcp_time_stamp;
5140 tcp_mtup_init(sk);
5141 tcp_initialize_rcv_mss(sk);
5142 tcp_init_buffer_space(sk);
5143 tcp_fast_path_on(tp);
5144 } else {
5145 return 1;
5147 break;
5149 case TCP_FIN_WAIT1:
5150 if (tp->snd_una == tp->write_seq) {
5151 tcp_set_state(sk, TCP_FIN_WAIT2);
5152 sk->sk_shutdown |= SEND_SHUTDOWN;
5153 dst_confirm(sk->sk_dst_cache);
5155 if (!sock_flag(sk, SOCK_DEAD))
5156 /* Wake up lingering close() */
5157 sk->sk_state_change(sk);
5158 else {
5159 int tmo;
5161 if (tp->linger2 < 0 ||
5162 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5163 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5164 tcp_done(sk);
5165 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5166 return 1;
5169 tmo = tcp_fin_time(sk);
5170 if (tmo > TCP_TIMEWAIT_LEN) {
5171 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5172 } else if (th->fin || sock_owned_by_user(sk)) {
5173 /* Bad case. We could lose such FIN otherwise.
5174 * It is not a big problem, but it looks confusing
5175 * and not so rare event. We still can lose it now,
5176 * if it spins in bh_lock_sock(), but it is really
5177 * marginal case.
5179 inet_csk_reset_keepalive_timer(sk, tmo);
5180 } else {
5181 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5182 goto discard;
5186 break;
5188 case TCP_CLOSING:
5189 if (tp->snd_una == tp->write_seq) {
5190 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5191 goto discard;
5193 break;
5195 case TCP_LAST_ACK:
5196 if (tp->snd_una == tp->write_seq) {
5197 tcp_update_metrics(sk);
5198 tcp_done(sk);
5199 goto discard;
5201 break;
5203 } else
5204 goto discard;
5206 /* step 6: check the URG bit */
5207 tcp_urg(sk, skb, th);
5209 /* step 7: process the segment text */
5210 switch (sk->sk_state) {
5211 case TCP_CLOSE_WAIT:
5212 case TCP_CLOSING:
5213 case TCP_LAST_ACK:
5214 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5215 break;
5216 case TCP_FIN_WAIT1:
5217 case TCP_FIN_WAIT2:
5218 /* RFC 793 says to queue data in these states,
5219 * RFC 1122 says we MUST send a reset.
5220 * BSD 4.4 also does reset.
5222 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5223 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5224 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5225 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5226 tcp_reset(sk);
5227 return 1;
5230 /* Fall through */
5231 case TCP_ESTABLISHED:
5232 tcp_data_queue(sk, skb);
5233 queued = 1;
5234 break;
5237 /* tcp_data could move socket to TIME-WAIT */
5238 if (sk->sk_state != TCP_CLOSE) {
5239 tcp_data_snd_check(sk);
5240 tcp_ack_snd_check(sk);
5243 if (!queued) {
5244 discard:
5245 __kfree_skb(skb);
5247 return 0;
5250 EXPORT_SYMBOL(sysctl_tcp_ecn);
5251 EXPORT_SYMBOL(sysctl_tcp_reordering);
5252 EXPORT_SYMBOL(tcp_parse_options);
5253 EXPORT_SYMBOL(tcp_rcv_established);
5254 EXPORT_SYMBOL(tcp_rcv_state_process);
5255 EXPORT_SYMBOL(tcp_initialize_rcv_mss);