[patch 5/7] vfs: mountinfo: allow using process root
[linux-2.6/verdex.git] / fs / namespace.c
blobdfdf51e81c1c298fca3cf66da8aef2193fb47e24
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include "pnode.h"
34 #include "internal.h"
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
46 static struct list_head *mount_hashtable __read_mostly;
47 static struct kmem_cache *mnt_cache __read_mostly;
48 static struct rw_semaphore namespace_sem;
50 /* /sys/fs */
51 struct kobject *fs_kobj;
52 EXPORT_SYMBOL_GPL(fs_kobj);
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount *mnt)
67 int res;
69 retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
77 return res;
80 static void mnt_free_id(struct vfsmount *mnt)
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
88 * Allocate a new peer group ID
90 * mnt_group_ida is protected by namespace_sem
92 static int mnt_alloc_group_id(struct vfsmount *mnt)
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
101 * Release a peer group ID
103 void mnt_release_group_id(struct vfsmount *mnt)
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
109 struct vfsmount *alloc_vfsmnt(const char *name)
111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
112 if (mnt) {
113 int err;
115 err = mnt_alloc_id(mnt);
116 if (err) {
117 kmem_cache_free(mnt_cache, mnt);
118 return NULL;
121 atomic_set(&mnt->mnt_count, 1);
122 INIT_LIST_HEAD(&mnt->mnt_hash);
123 INIT_LIST_HEAD(&mnt->mnt_child);
124 INIT_LIST_HEAD(&mnt->mnt_mounts);
125 INIT_LIST_HEAD(&mnt->mnt_list);
126 INIT_LIST_HEAD(&mnt->mnt_expire);
127 INIT_LIST_HEAD(&mnt->mnt_share);
128 INIT_LIST_HEAD(&mnt->mnt_slave_list);
129 INIT_LIST_HEAD(&mnt->mnt_slave);
130 atomic_set(&mnt->__mnt_writers, 0);
131 if (name) {
132 int size = strlen(name) + 1;
133 char *newname = kmalloc(size, GFP_KERNEL);
134 if (newname) {
135 memcpy(newname, name, size);
136 mnt->mnt_devname = newname;
140 return mnt;
144 * Most r/o checks on a fs are for operations that take
145 * discrete amounts of time, like a write() or unlink().
146 * We must keep track of when those operations start
147 * (for permission checks) and when they end, so that
148 * we can determine when writes are able to occur to
149 * a filesystem.
152 * __mnt_is_readonly: check whether a mount is read-only
153 * @mnt: the mount to check for its write status
155 * This shouldn't be used directly ouside of the VFS.
156 * It does not guarantee that the filesystem will stay
157 * r/w, just that it is right *now*. This can not and
158 * should not be used in place of IS_RDONLY(inode).
159 * mnt_want/drop_write() will _keep_ the filesystem
160 * r/w.
162 int __mnt_is_readonly(struct vfsmount *mnt)
164 if (mnt->mnt_flags & MNT_READONLY)
165 return 1;
166 if (mnt->mnt_sb->s_flags & MS_RDONLY)
167 return 1;
168 return 0;
170 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
172 struct mnt_writer {
174 * If holding multiple instances of this lock, they
175 * must be ordered by cpu number.
177 spinlock_t lock;
178 struct lock_class_key lock_class; /* compiles out with !lockdep */
179 unsigned long count;
180 struct vfsmount *mnt;
181 } ____cacheline_aligned_in_smp;
182 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
184 static int __init init_mnt_writers(void)
186 int cpu;
187 for_each_possible_cpu(cpu) {
188 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
189 spin_lock_init(&writer->lock);
190 lockdep_set_class(&writer->lock, &writer->lock_class);
191 writer->count = 0;
193 return 0;
195 fs_initcall(init_mnt_writers);
197 static void unlock_mnt_writers(void)
199 int cpu;
200 struct mnt_writer *cpu_writer;
202 for_each_possible_cpu(cpu) {
203 cpu_writer = &per_cpu(mnt_writers, cpu);
204 spin_unlock(&cpu_writer->lock);
208 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
210 if (!cpu_writer->mnt)
211 return;
213 * This is in case anyone ever leaves an invalid,
214 * old ->mnt and a count of 0.
216 if (!cpu_writer->count)
217 return;
218 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
219 cpu_writer->count = 0;
222 * must hold cpu_writer->lock
224 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
225 struct vfsmount *mnt)
227 if (cpu_writer->mnt == mnt)
228 return;
229 __clear_mnt_count(cpu_writer);
230 cpu_writer->mnt = mnt;
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
242 * mnt_want_write - get write access to a mount
243 * @mnt: the mount on which to take a write
245 * This tells the low-level filesystem that a write is
246 * about to be performed to it, and makes sure that
247 * writes are allowed before returning success. When
248 * the write operation is finished, mnt_drop_write()
249 * must be called. This is effectively a refcount.
251 int mnt_want_write(struct vfsmount *mnt)
253 int ret = 0;
254 struct mnt_writer *cpu_writer;
256 cpu_writer = &get_cpu_var(mnt_writers);
257 spin_lock(&cpu_writer->lock);
258 if (__mnt_is_readonly(mnt)) {
259 ret = -EROFS;
260 goto out;
262 use_cpu_writer_for_mount(cpu_writer, mnt);
263 cpu_writer->count++;
264 out:
265 spin_unlock(&cpu_writer->lock);
266 put_cpu_var(mnt_writers);
267 return ret;
269 EXPORT_SYMBOL_GPL(mnt_want_write);
271 static void lock_mnt_writers(void)
273 int cpu;
274 struct mnt_writer *cpu_writer;
276 for_each_possible_cpu(cpu) {
277 cpu_writer = &per_cpu(mnt_writers, cpu);
278 spin_lock(&cpu_writer->lock);
279 __clear_mnt_count(cpu_writer);
280 cpu_writer->mnt = NULL;
285 * These per-cpu write counts are not guaranteed to have
286 * matched increments and decrements on any given cpu.
287 * A file open()ed for write on one cpu and close()d on
288 * another cpu will imbalance this count. Make sure it
289 * does not get too far out of whack.
291 static void handle_write_count_underflow(struct vfsmount *mnt)
293 if (atomic_read(&mnt->__mnt_writers) >=
294 MNT_WRITER_UNDERFLOW_LIMIT)
295 return;
297 * It isn't necessary to hold all of the locks
298 * at the same time, but doing it this way makes
299 * us share a lot more code.
301 lock_mnt_writers();
303 * vfsmount_lock is for mnt_flags.
305 spin_lock(&vfsmount_lock);
307 * If coalescing the per-cpu writer counts did not
308 * get us back to a positive writer count, we have
309 * a bug.
311 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
312 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
313 printk(KERN_DEBUG "leak detected on mount(%p) writers "
314 "count: %d\n",
315 mnt, atomic_read(&mnt->__mnt_writers));
316 WARN_ON(1);
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
332 void mnt_drop_write(struct vfsmount *mnt)
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
348 spin_unlock(&cpu_writer->lock);
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
364 put_cpu_var(mnt_writers);
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
368 static int mnt_make_readonly(struct vfsmount *mnt)
370 int ret = 0;
372 lock_mnt_writers();
374 * With all the locks held, this value is stable
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
388 out:
389 unlock_mnt_writers();
390 return ret;
393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
407 EXPORT_SYMBOL(simple_set_mnt);
409 void free_vfsmnt(struct vfsmount *mnt)
411 kfree(mnt->mnt_devname);
412 mnt_free_id(mnt);
413 kmem_cache_free(mnt_cache, mnt);
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
425 struct vfsmount *p, *found = NULL;
427 for (;;) {
428 tmp = dir ? tmp->next : tmp->prev;
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 found = p;
435 break;
438 return found;
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
455 static inline int check_mnt(struct vfsmount *mnt)
457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
460 static void touch_mnt_namespace(struct mnt_namespace *ns)
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
484 old_path->dentry->d_mounted--;
487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
504 * the caller must hold vfsmount_lock
506 static void commit_tree(struct vfsmount *mnt)
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
511 struct mnt_namespace *n = parent->mnt_ns;
513 BUG_ON(parent == mnt);
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
517 m->mnt_ns = n;
518 list_splice(&head, n->list.prev);
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 touch_mnt_namespace(n);
526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
539 return list_entry(next, struct vfsmount, mnt_child);
542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
549 return p;
552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
558 if (mnt) {
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
581 } else if (!(flag & CL_PRIVATE)) {
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
593 if (flag & CL_EXPIRE) {
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
598 return mnt;
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
605 static inline void __mntput(struct vfsmount *mnt)
607 int cpu;
608 struct super_block *sb = mnt->mnt_sb;
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
637 dput(mnt->mnt_root);
638 free_vfsmnt(mnt);
639 deactivate_super(sb);
642 void mntput_no_expire(struct vfsmount *mnt)
644 repeat:
645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 if (likely(!mnt->mnt_pinned)) {
647 spin_unlock(&vfsmount_lock);
648 __mntput(mnt);
649 return;
651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 mnt->mnt_pinned = 0;
653 spin_unlock(&vfsmount_lock);
654 acct_auto_close_mnt(mnt);
655 security_sb_umount_close(mnt);
656 goto repeat;
660 EXPORT_SYMBOL(mntput_no_expire);
662 void mnt_pin(struct vfsmount *mnt)
664 spin_lock(&vfsmount_lock);
665 mnt->mnt_pinned++;
666 spin_unlock(&vfsmount_lock);
669 EXPORT_SYMBOL(mnt_pin);
671 void mnt_unpin(struct vfsmount *mnt)
673 spin_lock(&vfsmount_lock);
674 if (mnt->mnt_pinned) {
675 atomic_inc(&mnt->mnt_count);
676 mnt->mnt_pinned--;
678 spin_unlock(&vfsmount_lock);
681 EXPORT_SYMBOL(mnt_unpin);
683 static inline void mangle(struct seq_file *m, const char *s)
685 seq_escape(m, s, " \t\n\\");
689 * Simple .show_options callback for filesystems which don't want to
690 * implement more complex mount option showing.
692 * See also save_mount_options().
694 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
696 const char *options = mnt->mnt_sb->s_options;
698 if (options != NULL && options[0]) {
699 seq_putc(m, ',');
700 mangle(m, options);
703 return 0;
705 EXPORT_SYMBOL(generic_show_options);
708 * If filesystem uses generic_show_options(), this function should be
709 * called from the fill_super() callback.
711 * The .remount_fs callback usually needs to be handled in a special
712 * way, to make sure, that previous options are not overwritten if the
713 * remount fails.
715 * Also note, that if the filesystem's .remount_fs function doesn't
716 * reset all options to their default value, but changes only newly
717 * given options, then the displayed options will not reflect reality
718 * any more.
720 void save_mount_options(struct super_block *sb, char *options)
722 kfree(sb->s_options);
723 sb->s_options = kstrdup(options, GFP_KERNEL);
725 EXPORT_SYMBOL(save_mount_options);
727 #ifdef CONFIG_PROC_FS
728 /* iterator */
729 static void *m_start(struct seq_file *m, loff_t *pos)
731 struct proc_mounts *p = m->private;
733 down_read(&namespace_sem);
734 return seq_list_start(&p->ns->list, *pos);
737 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
739 struct proc_mounts *p = m->private;
741 return seq_list_next(v, &p->ns->list, pos);
744 static void m_stop(struct seq_file *m, void *v)
746 up_read(&namespace_sem);
749 static int show_vfsmnt(struct seq_file *m, void *v)
751 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
752 int err = 0;
753 static struct proc_fs_info {
754 int flag;
755 char *str;
756 } fs_info[] = {
757 { MS_SYNCHRONOUS, ",sync" },
758 { MS_DIRSYNC, ",dirsync" },
759 { MS_MANDLOCK, ",mand" },
760 { 0, NULL }
762 static struct proc_fs_info mnt_info[] = {
763 { MNT_NOSUID, ",nosuid" },
764 { MNT_NODEV, ",nodev" },
765 { MNT_NOEXEC, ",noexec" },
766 { MNT_NOATIME, ",noatime" },
767 { MNT_NODIRATIME, ",nodiratime" },
768 { MNT_RELATIME, ",relatime" },
769 { 0, NULL }
771 struct proc_fs_info *fs_infop;
772 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
774 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
775 seq_putc(m, ' ');
776 seq_path(m, &mnt_path, " \t\n\\");
777 seq_putc(m, ' ');
778 mangle(m, mnt->mnt_sb->s_type->name);
779 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
780 seq_putc(m, '.');
781 mangle(m, mnt->mnt_sb->s_subtype);
783 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
784 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
785 if (mnt->mnt_sb->s_flags & fs_infop->flag)
786 seq_puts(m, fs_infop->str);
788 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
789 if (mnt->mnt_flags & fs_infop->flag)
790 seq_puts(m, fs_infop->str);
792 if (mnt->mnt_sb->s_op->show_options)
793 err = mnt->mnt_sb->s_op->show_options(m, mnt);
794 seq_puts(m, " 0 0\n");
795 return err;
798 const struct seq_operations mounts_op = {
799 .start = m_start,
800 .next = m_next,
801 .stop = m_stop,
802 .show = show_vfsmnt
805 static int show_vfsstat(struct seq_file *m, void *v)
807 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
808 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
809 int err = 0;
811 /* device */
812 if (mnt->mnt_devname) {
813 seq_puts(m, "device ");
814 mangle(m, mnt->mnt_devname);
815 } else
816 seq_puts(m, "no device");
818 /* mount point */
819 seq_puts(m, " mounted on ");
820 seq_path(m, &mnt_path, " \t\n\\");
821 seq_putc(m, ' ');
823 /* file system type */
824 seq_puts(m, "with fstype ");
825 mangle(m, mnt->mnt_sb->s_type->name);
827 /* optional statistics */
828 if (mnt->mnt_sb->s_op->show_stats) {
829 seq_putc(m, ' ');
830 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
833 seq_putc(m, '\n');
834 return err;
837 const struct seq_operations mountstats_op = {
838 .start = m_start,
839 .next = m_next,
840 .stop = m_stop,
841 .show = show_vfsstat,
843 #endif /* CONFIG_PROC_FS */
846 * may_umount_tree - check if a mount tree is busy
847 * @mnt: root of mount tree
849 * This is called to check if a tree of mounts has any
850 * open files, pwds, chroots or sub mounts that are
851 * busy.
853 int may_umount_tree(struct vfsmount *mnt)
855 int actual_refs = 0;
856 int minimum_refs = 0;
857 struct vfsmount *p;
859 spin_lock(&vfsmount_lock);
860 for (p = mnt; p; p = next_mnt(p, mnt)) {
861 actual_refs += atomic_read(&p->mnt_count);
862 minimum_refs += 2;
864 spin_unlock(&vfsmount_lock);
866 if (actual_refs > minimum_refs)
867 return 0;
869 return 1;
872 EXPORT_SYMBOL(may_umount_tree);
875 * may_umount - check if a mount point is busy
876 * @mnt: root of mount
878 * This is called to check if a mount point has any
879 * open files, pwds, chroots or sub mounts. If the
880 * mount has sub mounts this will return busy
881 * regardless of whether the sub mounts are busy.
883 * Doesn't take quota and stuff into account. IOW, in some cases it will
884 * give false negatives. The main reason why it's here is that we need
885 * a non-destructive way to look for easily umountable filesystems.
887 int may_umount(struct vfsmount *mnt)
889 int ret = 1;
890 spin_lock(&vfsmount_lock);
891 if (propagate_mount_busy(mnt, 2))
892 ret = 0;
893 spin_unlock(&vfsmount_lock);
894 return ret;
897 EXPORT_SYMBOL(may_umount);
899 void release_mounts(struct list_head *head)
901 struct vfsmount *mnt;
902 while (!list_empty(head)) {
903 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
904 list_del_init(&mnt->mnt_hash);
905 if (mnt->mnt_parent != mnt) {
906 struct dentry *dentry;
907 struct vfsmount *m;
908 spin_lock(&vfsmount_lock);
909 dentry = mnt->mnt_mountpoint;
910 m = mnt->mnt_parent;
911 mnt->mnt_mountpoint = mnt->mnt_root;
912 mnt->mnt_parent = mnt;
913 m->mnt_ghosts--;
914 spin_unlock(&vfsmount_lock);
915 dput(dentry);
916 mntput(m);
918 mntput(mnt);
922 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
924 struct vfsmount *p;
926 for (p = mnt; p; p = next_mnt(p, mnt))
927 list_move(&p->mnt_hash, kill);
929 if (propagate)
930 propagate_umount(kill);
932 list_for_each_entry(p, kill, mnt_hash) {
933 list_del_init(&p->mnt_expire);
934 list_del_init(&p->mnt_list);
935 __touch_mnt_namespace(p->mnt_ns);
936 p->mnt_ns = NULL;
937 list_del_init(&p->mnt_child);
938 if (p->mnt_parent != p) {
939 p->mnt_parent->mnt_ghosts++;
940 p->mnt_mountpoint->d_mounted--;
942 change_mnt_propagation(p, MS_PRIVATE);
946 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
948 static int do_umount(struct vfsmount *mnt, int flags)
950 struct super_block *sb = mnt->mnt_sb;
951 int retval;
952 LIST_HEAD(umount_list);
954 retval = security_sb_umount(mnt, flags);
955 if (retval)
956 return retval;
959 * Allow userspace to request a mountpoint be expired rather than
960 * unmounting unconditionally. Unmount only happens if:
961 * (1) the mark is already set (the mark is cleared by mntput())
962 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
964 if (flags & MNT_EXPIRE) {
965 if (mnt == current->fs->root.mnt ||
966 flags & (MNT_FORCE | MNT_DETACH))
967 return -EINVAL;
969 if (atomic_read(&mnt->mnt_count) != 2)
970 return -EBUSY;
972 if (!xchg(&mnt->mnt_expiry_mark, 1))
973 return -EAGAIN;
977 * If we may have to abort operations to get out of this
978 * mount, and they will themselves hold resources we must
979 * allow the fs to do things. In the Unix tradition of
980 * 'Gee thats tricky lets do it in userspace' the umount_begin
981 * might fail to complete on the first run through as other tasks
982 * must return, and the like. Thats for the mount program to worry
983 * about for the moment.
986 lock_kernel();
987 if (sb->s_op->umount_begin)
988 sb->s_op->umount_begin(mnt, flags);
989 unlock_kernel();
992 * No sense to grab the lock for this test, but test itself looks
993 * somewhat bogus. Suggestions for better replacement?
994 * Ho-hum... In principle, we might treat that as umount + switch
995 * to rootfs. GC would eventually take care of the old vfsmount.
996 * Actually it makes sense, especially if rootfs would contain a
997 * /reboot - static binary that would close all descriptors and
998 * call reboot(9). Then init(8) could umount root and exec /reboot.
1000 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1002 * Special case for "unmounting" root ...
1003 * we just try to remount it readonly.
1005 down_write(&sb->s_umount);
1006 if (!(sb->s_flags & MS_RDONLY)) {
1007 lock_kernel();
1008 DQUOT_OFF(sb);
1009 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1010 unlock_kernel();
1012 up_write(&sb->s_umount);
1013 return retval;
1016 down_write(&namespace_sem);
1017 spin_lock(&vfsmount_lock);
1018 event++;
1020 if (!(flags & MNT_DETACH))
1021 shrink_submounts(mnt, &umount_list);
1023 retval = -EBUSY;
1024 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1025 if (!list_empty(&mnt->mnt_list))
1026 umount_tree(mnt, 1, &umount_list);
1027 retval = 0;
1029 spin_unlock(&vfsmount_lock);
1030 if (retval)
1031 security_sb_umount_busy(mnt);
1032 up_write(&namespace_sem);
1033 release_mounts(&umount_list);
1034 return retval;
1038 * Now umount can handle mount points as well as block devices.
1039 * This is important for filesystems which use unnamed block devices.
1041 * We now support a flag for forced unmount like the other 'big iron'
1042 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1045 asmlinkage long sys_umount(char __user * name, int flags)
1047 struct nameidata nd;
1048 int retval;
1050 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1051 if (retval)
1052 goto out;
1053 retval = -EINVAL;
1054 if (nd.path.dentry != nd.path.mnt->mnt_root)
1055 goto dput_and_out;
1056 if (!check_mnt(nd.path.mnt))
1057 goto dput_and_out;
1059 retval = -EPERM;
1060 if (!capable(CAP_SYS_ADMIN))
1061 goto dput_and_out;
1063 retval = do_umount(nd.path.mnt, flags);
1064 dput_and_out:
1065 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1066 dput(nd.path.dentry);
1067 mntput_no_expire(nd.path.mnt);
1068 out:
1069 return retval;
1072 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1075 * The 2.0 compatible umount. No flags.
1077 asmlinkage long sys_oldumount(char __user * name)
1079 return sys_umount(name, 0);
1082 #endif
1084 static int mount_is_safe(struct nameidata *nd)
1086 if (capable(CAP_SYS_ADMIN))
1087 return 0;
1088 return -EPERM;
1089 #ifdef notyet
1090 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1091 return -EPERM;
1092 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1093 if (current->uid != nd->path.dentry->d_inode->i_uid)
1094 return -EPERM;
1096 if (vfs_permission(nd, MAY_WRITE))
1097 return -EPERM;
1098 return 0;
1099 #endif
1102 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1104 while (1) {
1105 if (d == dentry)
1106 return 1;
1107 if (d == NULL || d == d->d_parent)
1108 return 0;
1109 d = d->d_parent;
1113 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1114 int flag)
1116 struct vfsmount *res, *p, *q, *r, *s;
1117 struct path path;
1119 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1120 return NULL;
1122 res = q = clone_mnt(mnt, dentry, flag);
1123 if (!q)
1124 goto Enomem;
1125 q->mnt_mountpoint = mnt->mnt_mountpoint;
1127 p = mnt;
1128 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1129 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1130 continue;
1132 for (s = r; s; s = next_mnt(s, r)) {
1133 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1134 s = skip_mnt_tree(s);
1135 continue;
1137 while (p != s->mnt_parent) {
1138 p = p->mnt_parent;
1139 q = q->mnt_parent;
1141 p = s;
1142 path.mnt = q;
1143 path.dentry = p->mnt_mountpoint;
1144 q = clone_mnt(p, p->mnt_root, flag);
1145 if (!q)
1146 goto Enomem;
1147 spin_lock(&vfsmount_lock);
1148 list_add_tail(&q->mnt_list, &res->mnt_list);
1149 attach_mnt(q, &path);
1150 spin_unlock(&vfsmount_lock);
1153 return res;
1154 Enomem:
1155 if (res) {
1156 LIST_HEAD(umount_list);
1157 spin_lock(&vfsmount_lock);
1158 umount_tree(res, 0, &umount_list);
1159 spin_unlock(&vfsmount_lock);
1160 release_mounts(&umount_list);
1162 return NULL;
1165 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1167 struct vfsmount *tree;
1168 down_write(&namespace_sem);
1169 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1170 up_write(&namespace_sem);
1171 return tree;
1174 void drop_collected_mounts(struct vfsmount *mnt)
1176 LIST_HEAD(umount_list);
1177 down_write(&namespace_sem);
1178 spin_lock(&vfsmount_lock);
1179 umount_tree(mnt, 0, &umount_list);
1180 spin_unlock(&vfsmount_lock);
1181 up_write(&namespace_sem);
1182 release_mounts(&umount_list);
1185 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1187 struct vfsmount *p;
1189 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1190 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1191 mnt_release_group_id(p);
1195 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1197 struct vfsmount *p;
1199 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1200 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1201 int err = mnt_alloc_group_id(p);
1202 if (err) {
1203 cleanup_group_ids(mnt, p);
1204 return err;
1209 return 0;
1213 * @source_mnt : mount tree to be attached
1214 * @nd : place the mount tree @source_mnt is attached
1215 * @parent_nd : if non-null, detach the source_mnt from its parent and
1216 * store the parent mount and mountpoint dentry.
1217 * (done when source_mnt is moved)
1219 * NOTE: in the table below explains the semantics when a source mount
1220 * of a given type is attached to a destination mount of a given type.
1221 * ---------------------------------------------------------------------------
1222 * | BIND MOUNT OPERATION |
1223 * |**************************************************************************
1224 * | source-->| shared | private | slave | unbindable |
1225 * | dest | | | | |
1226 * | | | | | | |
1227 * | v | | | | |
1228 * |**************************************************************************
1229 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1230 * | | | | | |
1231 * |non-shared| shared (+) | private | slave (*) | invalid |
1232 * ***************************************************************************
1233 * A bind operation clones the source mount and mounts the clone on the
1234 * destination mount.
1236 * (++) the cloned mount is propagated to all the mounts in the propagation
1237 * tree of the destination mount and the cloned mount is added to
1238 * the peer group of the source mount.
1239 * (+) the cloned mount is created under the destination mount and is marked
1240 * as shared. The cloned mount is added to the peer group of the source
1241 * mount.
1242 * (+++) the mount is propagated to all the mounts in the propagation tree
1243 * of the destination mount and the cloned mount is made slave
1244 * of the same master as that of the source mount. The cloned mount
1245 * is marked as 'shared and slave'.
1246 * (*) the cloned mount is made a slave of the same master as that of the
1247 * source mount.
1249 * ---------------------------------------------------------------------------
1250 * | MOVE MOUNT OPERATION |
1251 * |**************************************************************************
1252 * | source-->| shared | private | slave | unbindable |
1253 * | dest | | | | |
1254 * | | | | | | |
1255 * | v | | | | |
1256 * |**************************************************************************
1257 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1258 * | | | | | |
1259 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1260 * ***************************************************************************
1262 * (+) the mount is moved to the destination. And is then propagated to
1263 * all the mounts in the propagation tree of the destination mount.
1264 * (+*) the mount is moved to the destination.
1265 * (+++) the mount is moved to the destination and is then propagated to
1266 * all the mounts belonging to the destination mount's propagation tree.
1267 * the mount is marked as 'shared and slave'.
1268 * (*) the mount continues to be a slave at the new location.
1270 * if the source mount is a tree, the operations explained above is
1271 * applied to each mount in the tree.
1272 * Must be called without spinlocks held, since this function can sleep
1273 * in allocations.
1275 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1276 struct path *path, struct path *parent_path)
1278 LIST_HEAD(tree_list);
1279 struct vfsmount *dest_mnt = path->mnt;
1280 struct dentry *dest_dentry = path->dentry;
1281 struct vfsmount *child, *p;
1282 int err;
1284 if (IS_MNT_SHARED(dest_mnt)) {
1285 err = invent_group_ids(source_mnt, true);
1286 if (err)
1287 goto out;
1289 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1290 if (err)
1291 goto out_cleanup_ids;
1293 if (IS_MNT_SHARED(dest_mnt)) {
1294 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1295 set_mnt_shared(p);
1298 spin_lock(&vfsmount_lock);
1299 if (parent_path) {
1300 detach_mnt(source_mnt, parent_path);
1301 attach_mnt(source_mnt, path);
1302 touch_mnt_namespace(current->nsproxy->mnt_ns);
1303 } else {
1304 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1305 commit_tree(source_mnt);
1308 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1309 list_del_init(&child->mnt_hash);
1310 commit_tree(child);
1312 spin_unlock(&vfsmount_lock);
1313 return 0;
1315 out_cleanup_ids:
1316 if (IS_MNT_SHARED(dest_mnt))
1317 cleanup_group_ids(source_mnt, NULL);
1318 out:
1319 return err;
1322 static int graft_tree(struct vfsmount *mnt, struct path *path)
1324 int err;
1325 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1326 return -EINVAL;
1328 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1329 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1330 return -ENOTDIR;
1332 err = -ENOENT;
1333 mutex_lock(&path->dentry->d_inode->i_mutex);
1334 if (IS_DEADDIR(path->dentry->d_inode))
1335 goto out_unlock;
1337 err = security_sb_check_sb(mnt, path);
1338 if (err)
1339 goto out_unlock;
1341 err = -ENOENT;
1342 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1343 err = attach_recursive_mnt(mnt, path, NULL);
1344 out_unlock:
1345 mutex_unlock(&path->dentry->d_inode->i_mutex);
1346 if (!err)
1347 security_sb_post_addmount(mnt, path);
1348 return err;
1352 * recursively change the type of the mountpoint.
1353 * noinline this do_mount helper to save do_mount stack space.
1355 static noinline int do_change_type(struct nameidata *nd, int flag)
1357 struct vfsmount *m, *mnt = nd->path.mnt;
1358 int recurse = flag & MS_REC;
1359 int type = flag & ~MS_REC;
1360 int err = 0;
1362 if (!capable(CAP_SYS_ADMIN))
1363 return -EPERM;
1365 if (nd->path.dentry != nd->path.mnt->mnt_root)
1366 return -EINVAL;
1368 down_write(&namespace_sem);
1369 if (type == MS_SHARED) {
1370 err = invent_group_ids(mnt, recurse);
1371 if (err)
1372 goto out_unlock;
1375 spin_lock(&vfsmount_lock);
1376 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1377 change_mnt_propagation(m, type);
1378 spin_unlock(&vfsmount_lock);
1380 out_unlock:
1381 up_write(&namespace_sem);
1382 return err;
1386 * do loopback mount.
1387 * noinline this do_mount helper to save do_mount stack space.
1389 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1390 int recurse)
1392 struct nameidata old_nd;
1393 struct vfsmount *mnt = NULL;
1394 int err = mount_is_safe(nd);
1395 if (err)
1396 return err;
1397 if (!old_name || !*old_name)
1398 return -EINVAL;
1399 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1400 if (err)
1401 return err;
1403 down_write(&namespace_sem);
1404 err = -EINVAL;
1405 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1406 goto out;
1408 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1409 goto out;
1411 err = -ENOMEM;
1412 if (recurse)
1413 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1414 else
1415 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1417 if (!mnt)
1418 goto out;
1420 err = graft_tree(mnt, &nd->path);
1421 if (err) {
1422 LIST_HEAD(umount_list);
1423 spin_lock(&vfsmount_lock);
1424 umount_tree(mnt, 0, &umount_list);
1425 spin_unlock(&vfsmount_lock);
1426 release_mounts(&umount_list);
1429 out:
1430 up_write(&namespace_sem);
1431 path_put(&old_nd.path);
1432 return err;
1435 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1437 int error = 0;
1438 int readonly_request = 0;
1440 if (ms_flags & MS_RDONLY)
1441 readonly_request = 1;
1442 if (readonly_request == __mnt_is_readonly(mnt))
1443 return 0;
1445 if (readonly_request)
1446 error = mnt_make_readonly(mnt);
1447 else
1448 __mnt_unmake_readonly(mnt);
1449 return error;
1453 * change filesystem flags. dir should be a physical root of filesystem.
1454 * If you've mounted a non-root directory somewhere and want to do remount
1455 * on it - tough luck.
1456 * noinline this do_mount helper to save do_mount stack space.
1458 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1459 void *data)
1461 int err;
1462 struct super_block *sb = nd->path.mnt->mnt_sb;
1464 if (!capable(CAP_SYS_ADMIN))
1465 return -EPERM;
1467 if (!check_mnt(nd->path.mnt))
1468 return -EINVAL;
1470 if (nd->path.dentry != nd->path.mnt->mnt_root)
1471 return -EINVAL;
1473 down_write(&sb->s_umount);
1474 if (flags & MS_BIND)
1475 err = change_mount_flags(nd->path.mnt, flags);
1476 else
1477 err = do_remount_sb(sb, flags, data, 0);
1478 if (!err)
1479 nd->path.mnt->mnt_flags = mnt_flags;
1480 up_write(&sb->s_umount);
1481 if (!err)
1482 security_sb_post_remount(nd->path.mnt, flags, data);
1483 return err;
1486 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1488 struct vfsmount *p;
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 if (IS_MNT_UNBINDABLE(p))
1491 return 1;
1493 return 0;
1497 * noinline this do_mount helper to save do_mount stack space.
1499 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1501 struct nameidata old_nd;
1502 struct path parent_path;
1503 struct vfsmount *p;
1504 int err = 0;
1505 if (!capable(CAP_SYS_ADMIN))
1506 return -EPERM;
1507 if (!old_name || !*old_name)
1508 return -EINVAL;
1509 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1510 if (err)
1511 return err;
1513 down_write(&namespace_sem);
1514 while (d_mountpoint(nd->path.dentry) &&
1515 follow_down(&nd->path.mnt, &nd->path.dentry))
1517 err = -EINVAL;
1518 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1519 goto out;
1521 err = -ENOENT;
1522 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1523 if (IS_DEADDIR(nd->path.dentry->d_inode))
1524 goto out1;
1526 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1527 goto out1;
1529 err = -EINVAL;
1530 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1531 goto out1;
1533 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1534 goto out1;
1536 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1537 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1538 goto out1;
1540 * Don't move a mount residing in a shared parent.
1542 if (old_nd.path.mnt->mnt_parent &&
1543 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1544 goto out1;
1546 * Don't move a mount tree containing unbindable mounts to a destination
1547 * mount which is shared.
1549 if (IS_MNT_SHARED(nd->path.mnt) &&
1550 tree_contains_unbindable(old_nd.path.mnt))
1551 goto out1;
1552 err = -ELOOP;
1553 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1554 if (p == old_nd.path.mnt)
1555 goto out1;
1557 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1558 if (err)
1559 goto out1;
1561 /* if the mount is moved, it should no longer be expire
1562 * automatically */
1563 list_del_init(&old_nd.path.mnt->mnt_expire);
1564 out1:
1565 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1566 out:
1567 up_write(&namespace_sem);
1568 if (!err)
1569 path_put(&parent_path);
1570 path_put(&old_nd.path);
1571 return err;
1575 * create a new mount for userspace and request it to be added into the
1576 * namespace's tree
1577 * noinline this do_mount helper to save do_mount stack space.
1579 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1580 int mnt_flags, char *name, void *data)
1582 struct vfsmount *mnt;
1584 if (!type || !memchr(type, 0, PAGE_SIZE))
1585 return -EINVAL;
1587 /* we need capabilities... */
1588 if (!capable(CAP_SYS_ADMIN))
1589 return -EPERM;
1591 mnt = do_kern_mount(type, flags, name, data);
1592 if (IS_ERR(mnt))
1593 return PTR_ERR(mnt);
1595 return do_add_mount(mnt, nd, mnt_flags, NULL);
1599 * add a mount into a namespace's mount tree
1600 * - provide the option of adding the new mount to an expiration list
1602 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1603 int mnt_flags, struct list_head *fslist)
1605 int err;
1607 down_write(&namespace_sem);
1608 /* Something was mounted here while we slept */
1609 while (d_mountpoint(nd->path.dentry) &&
1610 follow_down(&nd->path.mnt, &nd->path.dentry))
1612 err = -EINVAL;
1613 if (!check_mnt(nd->path.mnt))
1614 goto unlock;
1616 /* Refuse the same filesystem on the same mount point */
1617 err = -EBUSY;
1618 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1619 nd->path.mnt->mnt_root == nd->path.dentry)
1620 goto unlock;
1622 err = -EINVAL;
1623 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1624 goto unlock;
1626 newmnt->mnt_flags = mnt_flags;
1627 if ((err = graft_tree(newmnt, &nd->path)))
1628 goto unlock;
1630 if (fslist) /* add to the specified expiration list */
1631 list_add_tail(&newmnt->mnt_expire, fslist);
1633 up_write(&namespace_sem);
1634 return 0;
1636 unlock:
1637 up_write(&namespace_sem);
1638 mntput(newmnt);
1639 return err;
1642 EXPORT_SYMBOL_GPL(do_add_mount);
1645 * process a list of expirable mountpoints with the intent of discarding any
1646 * mountpoints that aren't in use and haven't been touched since last we came
1647 * here
1649 void mark_mounts_for_expiry(struct list_head *mounts)
1651 struct vfsmount *mnt, *next;
1652 LIST_HEAD(graveyard);
1653 LIST_HEAD(umounts);
1655 if (list_empty(mounts))
1656 return;
1658 down_write(&namespace_sem);
1659 spin_lock(&vfsmount_lock);
1661 /* extract from the expiration list every vfsmount that matches the
1662 * following criteria:
1663 * - only referenced by its parent vfsmount
1664 * - still marked for expiry (marked on the last call here; marks are
1665 * cleared by mntput())
1667 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1668 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1669 propagate_mount_busy(mnt, 1))
1670 continue;
1671 list_move(&mnt->mnt_expire, &graveyard);
1673 while (!list_empty(&graveyard)) {
1674 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1675 touch_mnt_namespace(mnt->mnt_ns);
1676 umount_tree(mnt, 1, &umounts);
1678 spin_unlock(&vfsmount_lock);
1679 up_write(&namespace_sem);
1681 release_mounts(&umounts);
1684 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1687 * Ripoff of 'select_parent()'
1689 * search the list of submounts for a given mountpoint, and move any
1690 * shrinkable submounts to the 'graveyard' list.
1692 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1694 struct vfsmount *this_parent = parent;
1695 struct list_head *next;
1696 int found = 0;
1698 repeat:
1699 next = this_parent->mnt_mounts.next;
1700 resume:
1701 while (next != &this_parent->mnt_mounts) {
1702 struct list_head *tmp = next;
1703 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1705 next = tmp->next;
1706 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1707 continue;
1709 * Descend a level if the d_mounts list is non-empty.
1711 if (!list_empty(&mnt->mnt_mounts)) {
1712 this_parent = mnt;
1713 goto repeat;
1716 if (!propagate_mount_busy(mnt, 1)) {
1717 list_move_tail(&mnt->mnt_expire, graveyard);
1718 found++;
1722 * All done at this level ... ascend and resume the search
1724 if (this_parent != parent) {
1725 next = this_parent->mnt_child.next;
1726 this_parent = this_parent->mnt_parent;
1727 goto resume;
1729 return found;
1733 * process a list of expirable mountpoints with the intent of discarding any
1734 * submounts of a specific parent mountpoint
1736 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1738 LIST_HEAD(graveyard);
1739 struct vfsmount *m;
1741 /* extract submounts of 'mountpoint' from the expiration list */
1742 while (select_submounts(mnt, &graveyard)) {
1743 while (!list_empty(&graveyard)) {
1744 m = list_first_entry(&graveyard, struct vfsmount,
1745 mnt_expire);
1746 touch_mnt_namespace(mnt->mnt_ns);
1747 umount_tree(mnt, 1, umounts);
1753 * Some copy_from_user() implementations do not return the exact number of
1754 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1755 * Note that this function differs from copy_from_user() in that it will oops
1756 * on bad values of `to', rather than returning a short copy.
1758 static long exact_copy_from_user(void *to, const void __user * from,
1759 unsigned long n)
1761 char *t = to;
1762 const char __user *f = from;
1763 char c;
1765 if (!access_ok(VERIFY_READ, from, n))
1766 return n;
1768 while (n) {
1769 if (__get_user(c, f)) {
1770 memset(t, 0, n);
1771 break;
1773 *t++ = c;
1774 f++;
1775 n--;
1777 return n;
1780 int copy_mount_options(const void __user * data, unsigned long *where)
1782 int i;
1783 unsigned long page;
1784 unsigned long size;
1786 *where = 0;
1787 if (!data)
1788 return 0;
1790 if (!(page = __get_free_page(GFP_KERNEL)))
1791 return -ENOMEM;
1793 /* We only care that *some* data at the address the user
1794 * gave us is valid. Just in case, we'll zero
1795 * the remainder of the page.
1797 /* copy_from_user cannot cross TASK_SIZE ! */
1798 size = TASK_SIZE - (unsigned long)data;
1799 if (size > PAGE_SIZE)
1800 size = PAGE_SIZE;
1802 i = size - exact_copy_from_user((void *)page, data, size);
1803 if (!i) {
1804 free_page(page);
1805 return -EFAULT;
1807 if (i != PAGE_SIZE)
1808 memset((char *)page + i, 0, PAGE_SIZE - i);
1809 *where = page;
1810 return 0;
1814 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1815 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1817 * data is a (void *) that can point to any structure up to
1818 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1819 * information (or be NULL).
1821 * Pre-0.97 versions of mount() didn't have a flags word.
1822 * When the flags word was introduced its top half was required
1823 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1824 * Therefore, if this magic number is present, it carries no information
1825 * and must be discarded.
1827 long do_mount(char *dev_name, char *dir_name, char *type_page,
1828 unsigned long flags, void *data_page)
1830 struct nameidata nd;
1831 int retval = 0;
1832 int mnt_flags = 0;
1834 /* Discard magic */
1835 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1836 flags &= ~MS_MGC_MSK;
1838 /* Basic sanity checks */
1840 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1841 return -EINVAL;
1842 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1843 return -EINVAL;
1845 if (data_page)
1846 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1848 /* Separate the per-mountpoint flags */
1849 if (flags & MS_NOSUID)
1850 mnt_flags |= MNT_NOSUID;
1851 if (flags & MS_NODEV)
1852 mnt_flags |= MNT_NODEV;
1853 if (flags & MS_NOEXEC)
1854 mnt_flags |= MNT_NOEXEC;
1855 if (flags & MS_NOATIME)
1856 mnt_flags |= MNT_NOATIME;
1857 if (flags & MS_NODIRATIME)
1858 mnt_flags |= MNT_NODIRATIME;
1859 if (flags & MS_RELATIME)
1860 mnt_flags |= MNT_RELATIME;
1861 if (flags & MS_RDONLY)
1862 mnt_flags |= MNT_READONLY;
1864 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1865 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1867 /* ... and get the mountpoint */
1868 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1869 if (retval)
1870 return retval;
1872 retval = security_sb_mount(dev_name, &nd.path,
1873 type_page, flags, data_page);
1874 if (retval)
1875 goto dput_out;
1877 if (flags & MS_REMOUNT)
1878 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1879 data_page);
1880 else if (flags & MS_BIND)
1881 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1882 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1883 retval = do_change_type(&nd, flags);
1884 else if (flags & MS_MOVE)
1885 retval = do_move_mount(&nd, dev_name);
1886 else
1887 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1888 dev_name, data_page);
1889 dput_out:
1890 path_put(&nd.path);
1891 return retval;
1895 * Allocate a new namespace structure and populate it with contents
1896 * copied from the namespace of the passed in task structure.
1898 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1899 struct fs_struct *fs)
1901 struct mnt_namespace *new_ns;
1902 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1903 struct vfsmount *p, *q;
1905 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1906 if (!new_ns)
1907 return ERR_PTR(-ENOMEM);
1909 atomic_set(&new_ns->count, 1);
1910 INIT_LIST_HEAD(&new_ns->list);
1911 init_waitqueue_head(&new_ns->poll);
1912 new_ns->event = 0;
1914 down_write(&namespace_sem);
1915 /* First pass: copy the tree topology */
1916 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1917 CL_COPY_ALL | CL_EXPIRE);
1918 if (!new_ns->root) {
1919 up_write(&namespace_sem);
1920 kfree(new_ns);
1921 return ERR_PTR(-ENOMEM);;
1923 spin_lock(&vfsmount_lock);
1924 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1925 spin_unlock(&vfsmount_lock);
1928 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1929 * as belonging to new namespace. We have already acquired a private
1930 * fs_struct, so tsk->fs->lock is not needed.
1932 p = mnt_ns->root;
1933 q = new_ns->root;
1934 while (p) {
1935 q->mnt_ns = new_ns;
1936 if (fs) {
1937 if (p == fs->root.mnt) {
1938 rootmnt = p;
1939 fs->root.mnt = mntget(q);
1941 if (p == fs->pwd.mnt) {
1942 pwdmnt = p;
1943 fs->pwd.mnt = mntget(q);
1945 if (p == fs->altroot.mnt) {
1946 altrootmnt = p;
1947 fs->altroot.mnt = mntget(q);
1950 p = next_mnt(p, mnt_ns->root);
1951 q = next_mnt(q, new_ns->root);
1953 up_write(&namespace_sem);
1955 if (rootmnt)
1956 mntput(rootmnt);
1957 if (pwdmnt)
1958 mntput(pwdmnt);
1959 if (altrootmnt)
1960 mntput(altrootmnt);
1962 return new_ns;
1965 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1966 struct fs_struct *new_fs)
1968 struct mnt_namespace *new_ns;
1970 BUG_ON(!ns);
1971 get_mnt_ns(ns);
1973 if (!(flags & CLONE_NEWNS))
1974 return ns;
1976 new_ns = dup_mnt_ns(ns, new_fs);
1978 put_mnt_ns(ns);
1979 return new_ns;
1982 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1983 char __user * type, unsigned long flags,
1984 void __user * data)
1986 int retval;
1987 unsigned long data_page;
1988 unsigned long type_page;
1989 unsigned long dev_page;
1990 char *dir_page;
1992 retval = copy_mount_options(type, &type_page);
1993 if (retval < 0)
1994 return retval;
1996 dir_page = getname(dir_name);
1997 retval = PTR_ERR(dir_page);
1998 if (IS_ERR(dir_page))
1999 goto out1;
2001 retval = copy_mount_options(dev_name, &dev_page);
2002 if (retval < 0)
2003 goto out2;
2005 retval = copy_mount_options(data, &data_page);
2006 if (retval < 0)
2007 goto out3;
2009 lock_kernel();
2010 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2011 flags, (void *)data_page);
2012 unlock_kernel();
2013 free_page(data_page);
2015 out3:
2016 free_page(dev_page);
2017 out2:
2018 putname(dir_page);
2019 out1:
2020 free_page(type_page);
2021 return retval;
2025 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2026 * It can block. Requires the big lock held.
2028 void set_fs_root(struct fs_struct *fs, struct path *path)
2030 struct path old_root;
2032 write_lock(&fs->lock);
2033 old_root = fs->root;
2034 fs->root = *path;
2035 path_get(path);
2036 write_unlock(&fs->lock);
2037 if (old_root.dentry)
2038 path_put(&old_root);
2042 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2043 * It can block. Requires the big lock held.
2045 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2047 struct path old_pwd;
2049 write_lock(&fs->lock);
2050 old_pwd = fs->pwd;
2051 fs->pwd = *path;
2052 path_get(path);
2053 write_unlock(&fs->lock);
2055 if (old_pwd.dentry)
2056 path_put(&old_pwd);
2059 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2061 struct task_struct *g, *p;
2062 struct fs_struct *fs;
2064 read_lock(&tasklist_lock);
2065 do_each_thread(g, p) {
2066 task_lock(p);
2067 fs = p->fs;
2068 if (fs) {
2069 atomic_inc(&fs->count);
2070 task_unlock(p);
2071 if (fs->root.dentry == old_root->dentry
2072 && fs->root.mnt == old_root->mnt)
2073 set_fs_root(fs, new_root);
2074 if (fs->pwd.dentry == old_root->dentry
2075 && fs->pwd.mnt == old_root->mnt)
2076 set_fs_pwd(fs, new_root);
2077 put_fs_struct(fs);
2078 } else
2079 task_unlock(p);
2080 } while_each_thread(g, p);
2081 read_unlock(&tasklist_lock);
2085 * pivot_root Semantics:
2086 * Moves the root file system of the current process to the directory put_old,
2087 * makes new_root as the new root file system of the current process, and sets
2088 * root/cwd of all processes which had them on the current root to new_root.
2090 * Restrictions:
2091 * The new_root and put_old must be directories, and must not be on the
2092 * same file system as the current process root. The put_old must be
2093 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2094 * pointed to by put_old must yield the same directory as new_root. No other
2095 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2097 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2098 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2099 * in this situation.
2101 * Notes:
2102 * - we don't move root/cwd if they are not at the root (reason: if something
2103 * cared enough to change them, it's probably wrong to force them elsewhere)
2104 * - it's okay to pick a root that isn't the root of a file system, e.g.
2105 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2106 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2107 * first.
2109 asmlinkage long sys_pivot_root(const char __user * new_root,
2110 const char __user * put_old)
2112 struct vfsmount *tmp;
2113 struct nameidata new_nd, old_nd;
2114 struct path parent_path, root_parent, root;
2115 int error;
2117 if (!capable(CAP_SYS_ADMIN))
2118 return -EPERM;
2120 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2121 &new_nd);
2122 if (error)
2123 goto out0;
2124 error = -EINVAL;
2125 if (!check_mnt(new_nd.path.mnt))
2126 goto out1;
2128 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2129 if (error)
2130 goto out1;
2132 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2133 if (error) {
2134 path_put(&old_nd.path);
2135 goto out1;
2138 read_lock(&current->fs->lock);
2139 root = current->fs->root;
2140 path_get(&current->fs->root);
2141 read_unlock(&current->fs->lock);
2142 down_write(&namespace_sem);
2143 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2144 error = -EINVAL;
2145 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2146 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2147 IS_MNT_SHARED(root.mnt->mnt_parent))
2148 goto out2;
2149 if (!check_mnt(root.mnt))
2150 goto out2;
2151 error = -ENOENT;
2152 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2153 goto out2;
2154 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2155 goto out2;
2156 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2157 goto out2;
2158 error = -EBUSY;
2159 if (new_nd.path.mnt == root.mnt ||
2160 old_nd.path.mnt == root.mnt)
2161 goto out2; /* loop, on the same file system */
2162 error = -EINVAL;
2163 if (root.mnt->mnt_root != root.dentry)
2164 goto out2; /* not a mountpoint */
2165 if (root.mnt->mnt_parent == root.mnt)
2166 goto out2; /* not attached */
2167 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2168 goto out2; /* not a mountpoint */
2169 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2170 goto out2; /* not attached */
2171 /* make sure we can reach put_old from new_root */
2172 tmp = old_nd.path.mnt;
2173 spin_lock(&vfsmount_lock);
2174 if (tmp != new_nd.path.mnt) {
2175 for (;;) {
2176 if (tmp->mnt_parent == tmp)
2177 goto out3; /* already mounted on put_old */
2178 if (tmp->mnt_parent == new_nd.path.mnt)
2179 break;
2180 tmp = tmp->mnt_parent;
2182 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2183 goto out3;
2184 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2185 goto out3;
2186 detach_mnt(new_nd.path.mnt, &parent_path);
2187 detach_mnt(root.mnt, &root_parent);
2188 /* mount old root on put_old */
2189 attach_mnt(root.mnt, &old_nd.path);
2190 /* mount new_root on / */
2191 attach_mnt(new_nd.path.mnt, &root_parent);
2192 touch_mnt_namespace(current->nsproxy->mnt_ns);
2193 spin_unlock(&vfsmount_lock);
2194 chroot_fs_refs(&root, &new_nd.path);
2195 security_sb_post_pivotroot(&root, &new_nd.path);
2196 error = 0;
2197 path_put(&root_parent);
2198 path_put(&parent_path);
2199 out2:
2200 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2201 up_write(&namespace_sem);
2202 path_put(&root);
2203 path_put(&old_nd.path);
2204 out1:
2205 path_put(&new_nd.path);
2206 out0:
2207 return error;
2208 out3:
2209 spin_unlock(&vfsmount_lock);
2210 goto out2;
2213 static void __init init_mount_tree(void)
2215 struct vfsmount *mnt;
2216 struct mnt_namespace *ns;
2217 struct path root;
2219 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2220 if (IS_ERR(mnt))
2221 panic("Can't create rootfs");
2222 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2223 if (!ns)
2224 panic("Can't allocate initial namespace");
2225 atomic_set(&ns->count, 1);
2226 INIT_LIST_HEAD(&ns->list);
2227 init_waitqueue_head(&ns->poll);
2228 ns->event = 0;
2229 list_add(&mnt->mnt_list, &ns->list);
2230 ns->root = mnt;
2231 mnt->mnt_ns = ns;
2233 init_task.nsproxy->mnt_ns = ns;
2234 get_mnt_ns(ns);
2236 root.mnt = ns->root;
2237 root.dentry = ns->root->mnt_root;
2239 set_fs_pwd(current->fs, &root);
2240 set_fs_root(current->fs, &root);
2243 void __init mnt_init(void)
2245 unsigned u;
2246 int err;
2248 init_rwsem(&namespace_sem);
2250 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2251 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2253 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2255 if (!mount_hashtable)
2256 panic("Failed to allocate mount hash table\n");
2258 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2260 for (u = 0; u < HASH_SIZE; u++)
2261 INIT_LIST_HEAD(&mount_hashtable[u]);
2263 err = sysfs_init();
2264 if (err)
2265 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2266 __FUNCTION__, err);
2267 fs_kobj = kobject_create_and_add("fs", NULL);
2268 if (!fs_kobj)
2269 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
2270 init_rootfs();
2271 init_mount_tree();
2274 void __put_mnt_ns(struct mnt_namespace *ns)
2276 struct vfsmount *root = ns->root;
2277 LIST_HEAD(umount_list);
2278 ns->root = NULL;
2279 spin_unlock(&vfsmount_lock);
2280 down_write(&namespace_sem);
2281 spin_lock(&vfsmount_lock);
2282 umount_tree(root, 0, &umount_list);
2283 spin_unlock(&vfsmount_lock);
2284 up_write(&namespace_sem);
2285 release_mounts(&umount_list);
2286 kfree(ns);