2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 struct pglist_data
*pgdat_list __read_mostly
;
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
56 int percpu_pagelist_fraction
;
58 static void __free_pages_ok(struct page
*page
, unsigned int order
);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages
);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
80 EXPORT_SYMBOL(zone_table
);
82 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes
= 1024;
85 unsigned long __initdata nr_kernel_pages
;
86 unsigned long __initdata nr_all_pages
;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
96 seq
= zone_span_seqbegin(zone
);
97 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
99 else if (pfn
< zone
->zone_start_pfn
)
101 } while (zone_span_seqretry(zone
, seq
));
106 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page
)))
112 if (zone
!= page_zone(page
))
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone
*zone
, struct page
*page
)
122 if (page_outside_zone_boundaries(zone
, page
))
124 if (!page_is_consistent(zone
, page
))
131 static inline int bad_range(struct zone
*zone
, struct page
*page
)
137 static void bad_page(struct page
*page
)
139 printk(KERN_EMERG
"Bad page state in process '%s'\n"
140 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG
"Backtrace:\n",
143 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page
->flags
, page
->mapping
,
145 page_mapcount(page
), page_count(page
));
147 page
->flags
&= ~(1 << PG_lru
|
156 set_page_count(page
, 0);
157 reset_page_mapcount(page
);
158 page
->mapping
= NULL
;
159 add_taint(TAINT_BAD_PAGE
);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
177 static void free_compound_page(struct page
*page
)
179 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
182 static void prep_compound_page(struct page
*page
, unsigned long order
)
185 int nr_pages
= 1 << order
;
187 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
188 page
[1].lru
.prev
= (void *)order
;
189 for (i
= 0; i
< nr_pages
; i
++) {
190 struct page
*p
= page
+ i
;
192 __SetPageCompound(p
);
193 set_page_private(p
, (unsigned long)page
);
197 static void destroy_compound_page(struct page
*page
, unsigned long order
)
200 int nr_pages
= 1 << order
;
202 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
205 for (i
= 0; i
< nr_pages
; i
++) {
206 struct page
*p
= page
+ i
;
208 if (unlikely(!PageCompound(p
) |
209 (page_private(p
) != (unsigned long)page
)))
211 __ClearPageCompound(p
);
215 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
219 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
224 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
225 for (i
= 0; i
< (1 << order
); i
++)
226 clear_highpage(page
+ i
);
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
234 static inline unsigned long page_order(struct page
*page
) {
235 return page_private(page
);
238 static inline void set_page_order(struct page
*page
, int order
) {
239 set_page_private(page
, order
);
240 __SetPagePrivate(page
);
243 static inline void rmv_page_order(struct page
*page
)
245 __ClearPagePrivate(page
);
246 set_page_private(page
, 0);
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
256 * For example, if the starting buddy (buddy2) is #8 its order
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
266 static inline struct page
*
267 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
269 unsigned long buddy_idx
= page_idx
^ (1 << order
);
271 return page
+ (buddy_idx
- page_idx
);
274 static inline unsigned long
275 __find_combined_index(unsigned long page_idx
, unsigned int order
)
277 return (page_idx
& ~(1 << order
));
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
283 * (a) the buddy is not in a hole &&
284 * (b) the buddy is free &&
285 * (c) the buddy is on the buddy system &&
286 * (d) a page and its buddy have the same order.
287 * for recording page's order, we use page_private(page) and PG_private.
290 static inline int page_is_buddy(struct page
*page
, int order
)
292 #ifdef CONFIG_HOLES_IN_ZONE
293 if (!pfn_valid(page_to_pfn(page
)))
297 if (PagePrivate(page
) &&
298 (page_order(page
) == order
) &&
299 page_count(page
) == 0)
305 * Freeing function for a buddy system allocator.
307 * The concept of a buddy system is to maintain direct-mapped table
308 * (containing bit values) for memory blocks of various "orders".
309 * The bottom level table contains the map for the smallest allocatable
310 * units of memory (here, pages), and each level above it describes
311 * pairs of units from the levels below, hence, "buddies".
312 * At a high level, all that happens here is marking the table entry
313 * at the bottom level available, and propagating the changes upward
314 * as necessary, plus some accounting needed to play nicely with other
315 * parts of the VM system.
316 * At each level, we keep a list of pages, which are heads of continuous
317 * free pages of length of (1 << order) and marked with PG_Private.Page's
318 * order is recorded in page_private(page) field.
319 * So when we are allocating or freeing one, we can derive the state of the
320 * other. That is, if we allocate a small block, and both were
321 * free, the remainder of the region must be split into blocks.
322 * If a block is freed, and its buddy is also free, then this
323 * triggers coalescing into a block of larger size.
328 static inline void __free_one_page(struct page
*page
,
329 struct zone
*zone
, unsigned int order
)
331 unsigned long page_idx
;
332 int order_size
= 1 << order
;
334 if (unlikely(PageCompound(page
)))
335 destroy_compound_page(page
, order
);
337 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
339 BUG_ON(page_idx
& (order_size
- 1));
340 BUG_ON(bad_range(zone
, page
));
342 zone
->free_pages
+= order_size
;
343 while (order
< MAX_ORDER
-1) {
344 unsigned long combined_idx
;
345 struct free_area
*area
;
348 buddy
= __page_find_buddy(page
, page_idx
, order
);
349 if (!page_is_buddy(buddy
, order
))
350 break; /* Move the buddy up one level. */
352 list_del(&buddy
->lru
);
353 area
= zone
->free_area
+ order
;
355 rmv_page_order(buddy
);
356 combined_idx
= __find_combined_index(page_idx
, order
);
357 page
= page
+ (combined_idx
- page_idx
);
358 page_idx
= combined_idx
;
361 set_page_order(page
, order
);
362 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
363 zone
->free_area
[order
].nr_free
++;
366 static inline int free_pages_check(struct page
*page
)
368 if (unlikely(page_mapcount(page
) |
369 (page
->mapping
!= NULL
) |
370 (page_count(page
) != 0) |
380 1 << PG_reserved
))))
383 __ClearPageDirty(page
);
385 * For now, we report if PG_reserved was found set, but do not
386 * clear it, and do not free the page. But we shall soon need
387 * to do more, for when the ZERO_PAGE count wraps negative.
389 return PageReserved(page
);
393 * Frees a list of pages.
394 * Assumes all pages on list are in same zone, and of same order.
395 * count is the number of pages to free.
397 * If the zone was previously in an "all pages pinned" state then look to
398 * see if this freeing clears that state.
400 * And clear the zone's pages_scanned counter, to hold off the "all pages are
401 * pinned" detection logic.
403 static void free_pages_bulk(struct zone
*zone
, int count
,
404 struct list_head
*list
, int order
)
406 spin_lock(&zone
->lock
);
407 zone
->all_unreclaimable
= 0;
408 zone
->pages_scanned
= 0;
412 BUG_ON(list_empty(list
));
413 page
= list_entry(list
->prev
, struct page
, lru
);
414 /* have to delete it as __free_one_page list manipulates */
415 list_del(&page
->lru
);
416 __free_one_page(page
, zone
, order
);
418 spin_unlock(&zone
->lock
);
421 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
424 list_add(&page
->lru
, &list
);
425 free_pages_bulk(zone
, 1, &list
, order
);
428 static void __free_pages_ok(struct page
*page
, unsigned int order
)
434 arch_free_page(page
, order
);
435 if (!PageHighMem(page
))
436 mutex_debug_check_no_locks_freed(page_address(page
),
439 for (i
= 0 ; i
< (1 << order
) ; ++i
)
440 reserved
+= free_pages_check(page
+ i
);
444 kernel_map_pages(page
, 1 << order
, 0);
445 local_irq_save(flags
);
446 __mod_page_state(pgfree
, 1 << order
);
447 free_one_page(page_zone(page
), page
, order
);
448 local_irq_restore(flags
);
452 * permit the bootmem allocator to evade page validation on high-order frees
454 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
457 __ClearPageReserved(page
);
458 set_page_count(page
, 0);
459 set_page_refcounted(page
);
465 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
466 struct page
*p
= &page
[loop
];
468 if (loop
+ 1 < BITS_PER_LONG
)
470 __ClearPageReserved(p
);
471 set_page_count(p
, 0);
474 set_page_refcounted(page
);
475 __free_pages(page
, order
);
481 * The order of subdivision here is critical for the IO subsystem.
482 * Please do not alter this order without good reasons and regression
483 * testing. Specifically, as large blocks of memory are subdivided,
484 * the order in which smaller blocks are delivered depends on the order
485 * they're subdivided in this function. This is the primary factor
486 * influencing the order in which pages are delivered to the IO
487 * subsystem according to empirical testing, and this is also justified
488 * by considering the behavior of a buddy system containing a single
489 * large block of memory acted on by a series of small allocations.
490 * This behavior is a critical factor in sglist merging's success.
494 static inline void expand(struct zone
*zone
, struct page
*page
,
495 int low
, int high
, struct free_area
*area
)
497 unsigned long size
= 1 << high
;
503 BUG_ON(bad_range(zone
, &page
[size
]));
504 list_add(&page
[size
].lru
, &area
->free_list
);
506 set_page_order(&page
[size
], high
);
511 * This page is about to be returned from the page allocator
513 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
515 if (unlikely(page_mapcount(page
) |
516 (page
->mapping
!= NULL
) |
517 (page_count(page
) != 0) |
528 1 << PG_reserved
))))
532 * For now, we report if PG_reserved was found set, but do not
533 * clear it, and do not allocate the page: as a safety net.
535 if (PageReserved(page
))
538 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
539 1 << PG_referenced
| 1 << PG_arch_1
|
540 1 << PG_checked
| 1 << PG_mappedtodisk
);
541 set_page_private(page
, 0);
542 set_page_refcounted(page
);
543 kernel_map_pages(page
, 1 << order
, 1);
545 if (gfp_flags
& __GFP_ZERO
)
546 prep_zero_page(page
, order
, gfp_flags
);
548 if (order
&& (gfp_flags
& __GFP_COMP
))
549 prep_compound_page(page
, order
);
555 * Do the hard work of removing an element from the buddy allocator.
556 * Call me with the zone->lock already held.
558 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
560 struct free_area
* area
;
561 unsigned int current_order
;
564 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
565 area
= zone
->free_area
+ current_order
;
566 if (list_empty(&area
->free_list
))
569 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
570 list_del(&page
->lru
);
571 rmv_page_order(page
);
573 zone
->free_pages
-= 1UL << order
;
574 expand(zone
, page
, order
, current_order
, area
);
582 * Obtain a specified number of elements from the buddy allocator, all under
583 * a single hold of the lock, for efficiency. Add them to the supplied list.
584 * Returns the number of new pages which were placed at *list.
586 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
587 unsigned long count
, struct list_head
*list
)
591 spin_lock(&zone
->lock
);
592 for (i
= 0; i
< count
; ++i
) {
593 struct page
*page
= __rmqueue(zone
, order
);
594 if (unlikely(page
== NULL
))
596 list_add_tail(&page
->lru
, list
);
598 spin_unlock(&zone
->lock
);
604 * Called from the slab reaper to drain pagesets on a particular node that
605 * belong to the currently executing processor.
606 * Note that this function must be called with the thread pinned to
607 * a single processor.
609 void drain_node_pages(int nodeid
)
614 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
615 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
616 struct per_cpu_pageset
*pset
;
618 pset
= zone_pcp(zone
, smp_processor_id());
619 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
620 struct per_cpu_pages
*pcp
;
624 local_irq_save(flags
);
625 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
627 local_irq_restore(flags
);
634 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
635 static void __drain_pages(unsigned int cpu
)
641 for_each_zone(zone
) {
642 struct per_cpu_pageset
*pset
;
644 pset
= zone_pcp(zone
, cpu
);
645 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
646 struct per_cpu_pages
*pcp
;
649 local_irq_save(flags
);
650 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
652 local_irq_restore(flags
);
656 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
660 void mark_free_pages(struct zone
*zone
)
662 unsigned long zone_pfn
, flags
;
664 struct list_head
*curr
;
666 if (!zone
->spanned_pages
)
669 spin_lock_irqsave(&zone
->lock
, flags
);
670 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
671 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
673 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
674 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
675 unsigned long start_pfn
, i
;
677 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
679 for (i
=0; i
< (1<<order
); i
++)
680 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
682 spin_unlock_irqrestore(&zone
->lock
, flags
);
686 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
688 void drain_local_pages(void)
692 local_irq_save(flags
);
693 __drain_pages(smp_processor_id());
694 local_irq_restore(flags
);
696 #endif /* CONFIG_PM */
698 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
701 pg_data_t
*pg
= z
->zone_pgdat
;
702 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
703 struct per_cpu_pageset
*p
;
705 p
= zone_pcp(z
, cpu
);
710 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
712 if (pg
== NODE_DATA(numa_node_id()))
720 * Free a 0-order page
722 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
724 struct zone
*zone
= page_zone(page
);
725 struct per_cpu_pages
*pcp
;
728 arch_free_page(page
, 0);
731 page
->mapping
= NULL
;
732 if (free_pages_check(page
))
735 kernel_map_pages(page
, 1, 0);
737 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
738 local_irq_save(flags
);
739 __inc_page_state(pgfree
);
740 list_add(&page
->lru
, &pcp
->list
);
742 if (pcp
->count
>= pcp
->high
) {
743 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
744 pcp
->count
-= pcp
->batch
;
746 local_irq_restore(flags
);
750 void fastcall
free_hot_page(struct page
*page
)
752 free_hot_cold_page(page
, 0);
755 void fastcall
free_cold_page(struct page
*page
)
757 free_hot_cold_page(page
, 1);
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
768 void split_page(struct page
*page
, unsigned int order
)
772 BUG_ON(PageCompound(page
));
773 BUG_ON(!page_count(page
));
774 for (i
= 1; i
< (1 << order
); i
++)
775 set_page_refcounted(page
+ i
);
779 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
780 * we cheat by calling it from here, in the order > 0 path. Saves a branch
783 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
784 struct zone
*zone
, int order
, gfp_t gfp_flags
)
788 int cold
= !!(gfp_flags
& __GFP_COLD
);
793 if (likely(order
== 0)) {
794 struct per_cpu_pages
*pcp
;
796 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
797 local_irq_save(flags
);
799 pcp
->count
+= rmqueue_bulk(zone
, 0,
800 pcp
->batch
, &pcp
->list
);
801 if (unlikely(!pcp
->count
))
804 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
805 list_del(&page
->lru
);
808 spin_lock_irqsave(&zone
->lock
, flags
);
809 page
= __rmqueue(zone
, order
);
810 spin_unlock(&zone
->lock
);
815 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
816 zone_statistics(zonelist
, zone
, cpu
);
817 local_irq_restore(flags
);
820 BUG_ON(bad_range(zone
, page
));
821 if (prep_new_page(page
, order
, gfp_flags
))
826 local_irq_restore(flags
);
831 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
832 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
833 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
834 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
835 #define ALLOC_HARDER 0x10 /* try to alloc harder */
836 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
837 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
840 * Return 1 if free pages are above 'mark'. This takes into account the order
843 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
844 int classzone_idx
, int alloc_flags
)
846 /* free_pages my go negative - that's OK */
847 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
850 if (alloc_flags
& ALLOC_HIGH
)
852 if (alloc_flags
& ALLOC_HARDER
)
855 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
857 for (o
= 0; o
< order
; o
++) {
858 /* At the next order, this order's pages become unavailable */
859 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
861 /* Require fewer higher order pages to be free */
864 if (free_pages
<= min
)
871 * get_page_from_freeliest goes through the zonelist trying to allocate
875 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
876 struct zonelist
*zonelist
, int alloc_flags
)
878 struct zone
**z
= zonelist
->zones
;
879 struct page
*page
= NULL
;
880 int classzone_idx
= zone_idx(*z
);
883 * Go through the zonelist once, looking for a zone with enough free.
884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
887 if ((alloc_flags
& ALLOC_CPUSET
) &&
888 !cpuset_zone_allowed(*z
, gfp_mask
))
891 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
893 if (alloc_flags
& ALLOC_WMARK_MIN
)
894 mark
= (*z
)->pages_min
;
895 else if (alloc_flags
& ALLOC_WMARK_LOW
)
896 mark
= (*z
)->pages_low
;
898 mark
= (*z
)->pages_high
;
899 if (!zone_watermark_ok(*z
, order
, mark
,
900 classzone_idx
, alloc_flags
))
901 if (!zone_reclaim_mode
||
902 !zone_reclaim(*z
, gfp_mask
, order
))
906 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
910 } while (*(++z
) != NULL
);
915 * This is the 'heart' of the zoned buddy allocator.
917 struct page
* fastcall
918 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
919 struct zonelist
*zonelist
)
921 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
924 struct reclaim_state reclaim_state
;
925 struct task_struct
*p
= current
;
928 int did_some_progress
;
930 might_sleep_if(wait
);
933 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
935 if (unlikely(*z
== NULL
)) {
936 /* Should this ever happen?? */
940 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
941 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
946 if (cpuset_zone_allowed(*z
, gfp_mask
))
947 wakeup_kswapd(*z
, order
);
951 * OK, we're below the kswapd watermark and have kicked background
952 * reclaim. Now things get more complex, so set up alloc_flags according
953 * to how we want to proceed.
955 * The caller may dip into page reserves a bit more if the caller
956 * cannot run direct reclaim, or if the caller has realtime scheduling
957 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
958 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
960 alloc_flags
= ALLOC_WMARK_MIN
;
961 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
962 alloc_flags
|= ALLOC_HARDER
;
963 if (gfp_mask
& __GFP_HIGH
)
964 alloc_flags
|= ALLOC_HIGH
;
965 alloc_flags
|= ALLOC_CPUSET
;
968 * Go through the zonelist again. Let __GFP_HIGH and allocations
969 * coming from realtime tasks go deeper into reserves.
971 * This is the last chance, in general, before the goto nopage.
972 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
973 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
975 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
979 /* This allocation should allow future memory freeing. */
981 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
982 && !in_interrupt()) {
983 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
985 /* go through the zonelist yet again, ignoring mins */
986 page
= get_page_from_freelist(gfp_mask
, order
,
987 zonelist
, ALLOC_NO_WATERMARKS
);
990 if (gfp_mask
& __GFP_NOFAIL
) {
991 blk_congestion_wait(WRITE
, HZ
/50);
998 /* Atomic allocations - we can't balance anything */
1005 /* We now go into synchronous reclaim */
1006 cpuset_memory_pressure_bump();
1007 p
->flags
|= PF_MEMALLOC
;
1008 reclaim_state
.reclaimed_slab
= 0;
1009 p
->reclaim_state
= &reclaim_state
;
1011 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1013 p
->reclaim_state
= NULL
;
1014 p
->flags
&= ~PF_MEMALLOC
;
1018 if (likely(did_some_progress
)) {
1019 page
= get_page_from_freelist(gfp_mask
, order
,
1020 zonelist
, alloc_flags
);
1023 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1025 * Go through the zonelist yet one more time, keep
1026 * very high watermark here, this is only to catch
1027 * a parallel oom killing, we must fail if we're still
1028 * under heavy pressure.
1030 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1031 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1035 out_of_memory(zonelist
, gfp_mask
, order
);
1040 * Don't let big-order allocations loop unless the caller explicitly
1041 * requests that. Wait for some write requests to complete then retry.
1043 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1044 * <= 3, but that may not be true in other implementations.
1047 if (!(gfp_mask
& __GFP_NORETRY
)) {
1048 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1050 if (gfp_mask
& __GFP_NOFAIL
)
1054 blk_congestion_wait(WRITE
, HZ
/50);
1059 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1060 printk(KERN_WARNING
"%s: page allocation failure."
1061 " order:%d, mode:0x%x\n",
1062 p
->comm
, order
, gfp_mask
);
1070 EXPORT_SYMBOL(__alloc_pages
);
1073 * Common helper functions.
1075 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1078 page
= alloc_pages(gfp_mask
, order
);
1081 return (unsigned long) page_address(page
);
1084 EXPORT_SYMBOL(__get_free_pages
);
1086 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1091 * get_zeroed_page() returns a 32-bit address, which cannot represent
1094 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1096 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1098 return (unsigned long) page_address(page
);
1102 EXPORT_SYMBOL(get_zeroed_page
);
1104 void __pagevec_free(struct pagevec
*pvec
)
1106 int i
= pagevec_count(pvec
);
1109 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1112 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1114 if (put_page_testzero(page
)) {
1116 free_hot_page(page
);
1118 __free_pages_ok(page
, order
);
1122 EXPORT_SYMBOL(__free_pages
);
1124 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1127 BUG_ON(!virt_addr_valid((void *)addr
));
1128 __free_pages(virt_to_page((void *)addr
), order
);
1132 EXPORT_SYMBOL(free_pages
);
1135 * Total amount of free (allocatable) RAM:
1137 unsigned int nr_free_pages(void)
1139 unsigned int sum
= 0;
1143 sum
+= zone
->free_pages
;
1148 EXPORT_SYMBOL(nr_free_pages
);
1151 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1153 unsigned int i
, sum
= 0;
1155 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1156 sum
+= pgdat
->node_zones
[i
].free_pages
;
1162 static unsigned int nr_free_zone_pages(int offset
)
1164 /* Just pick one node, since fallback list is circular */
1165 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1166 unsigned int sum
= 0;
1168 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1169 struct zone
**zonep
= zonelist
->zones
;
1172 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1173 unsigned long size
= zone
->present_pages
;
1174 unsigned long high
= zone
->pages_high
;
1183 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1185 unsigned int nr_free_buffer_pages(void)
1187 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1191 * Amount of free RAM allocatable within all zones
1193 unsigned int nr_free_pagecache_pages(void)
1195 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1198 #ifdef CONFIG_HIGHMEM
1199 unsigned int nr_free_highpages (void)
1202 unsigned int pages
= 0;
1204 for_each_pgdat(pgdat
)
1205 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1212 static void show_node(struct zone
*zone
)
1214 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1217 #define show_node(zone) do { } while (0)
1221 * Accumulate the page_state information across all CPUs.
1222 * The result is unavoidably approximate - it can change
1223 * during and after execution of this function.
1225 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1227 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1228 EXPORT_SYMBOL(nr_pagecache
);
1230 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1233 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1237 memset(ret
, 0, nr
* sizeof(unsigned long));
1238 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1240 for_each_cpu_mask(cpu
, *cpumask
) {
1246 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1248 next_cpu
= next_cpu(cpu
, *cpumask
);
1249 if (likely(next_cpu
< NR_CPUS
))
1250 prefetch(&per_cpu(page_states
, next_cpu
));
1252 out
= (unsigned long *)ret
;
1253 for (off
= 0; off
< nr
; off
++)
1258 void get_page_state_node(struct page_state
*ret
, int node
)
1261 cpumask_t mask
= node_to_cpumask(node
);
1263 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1264 nr
/= sizeof(unsigned long);
1266 __get_page_state(ret
, nr
+1, &mask
);
1269 void get_page_state(struct page_state
*ret
)
1272 cpumask_t mask
= CPU_MASK_ALL
;
1274 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1275 nr
/= sizeof(unsigned long);
1277 __get_page_state(ret
, nr
+ 1, &mask
);
1280 void get_full_page_state(struct page_state
*ret
)
1282 cpumask_t mask
= CPU_MASK_ALL
;
1284 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1287 unsigned long read_page_state_offset(unsigned long offset
)
1289 unsigned long ret
= 0;
1292 for_each_online_cpu(cpu
) {
1295 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1296 ret
+= *((unsigned long *)in
);
1301 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1305 ptr
= &__get_cpu_var(page_states
);
1306 *(unsigned long *)(ptr
+ offset
) += delta
;
1308 EXPORT_SYMBOL(__mod_page_state_offset
);
1310 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1312 unsigned long flags
;
1315 local_irq_save(flags
);
1316 ptr
= &__get_cpu_var(page_states
);
1317 *(unsigned long *)(ptr
+ offset
) += delta
;
1318 local_irq_restore(flags
);
1320 EXPORT_SYMBOL(mod_page_state_offset
);
1322 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1323 unsigned long *free
, struct pglist_data
*pgdat
)
1325 struct zone
*zones
= pgdat
->node_zones
;
1331 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1332 *active
+= zones
[i
].nr_active
;
1333 *inactive
+= zones
[i
].nr_inactive
;
1334 *free
+= zones
[i
].free_pages
;
1338 void get_zone_counts(unsigned long *active
,
1339 unsigned long *inactive
, unsigned long *free
)
1341 struct pglist_data
*pgdat
;
1346 for_each_pgdat(pgdat
) {
1347 unsigned long l
, m
, n
;
1348 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1355 void si_meminfo(struct sysinfo
*val
)
1357 val
->totalram
= totalram_pages
;
1359 val
->freeram
= nr_free_pages();
1360 val
->bufferram
= nr_blockdev_pages();
1361 #ifdef CONFIG_HIGHMEM
1362 val
->totalhigh
= totalhigh_pages
;
1363 val
->freehigh
= nr_free_highpages();
1368 val
->mem_unit
= PAGE_SIZE
;
1371 EXPORT_SYMBOL(si_meminfo
);
1374 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1376 pg_data_t
*pgdat
= NODE_DATA(nid
);
1378 val
->totalram
= pgdat
->node_present_pages
;
1379 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1380 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1381 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1382 val
->mem_unit
= PAGE_SIZE
;
1386 #define K(x) ((x) << (PAGE_SHIFT-10))
1389 * Show free area list (used inside shift_scroll-lock stuff)
1390 * We also calculate the percentage fragmentation. We do this by counting the
1391 * memory on each free list with the exception of the first item on the list.
1393 void show_free_areas(void)
1395 struct page_state ps
;
1396 int cpu
, temperature
;
1397 unsigned long active
;
1398 unsigned long inactive
;
1402 for_each_zone(zone
) {
1404 printk("%s per-cpu:", zone
->name
);
1406 if (!populated_zone(zone
)) {
1412 for_each_online_cpu(cpu
) {
1413 struct per_cpu_pageset
*pageset
;
1415 pageset
= zone_pcp(zone
, cpu
);
1417 for (temperature
= 0; temperature
< 2; temperature
++)
1418 printk("cpu %d %s: high %d, batch %d used:%d\n",
1420 temperature
? "cold" : "hot",
1421 pageset
->pcp
[temperature
].high
,
1422 pageset
->pcp
[temperature
].batch
,
1423 pageset
->pcp
[temperature
].count
);
1427 get_page_state(&ps
);
1428 get_zone_counts(&active
, &inactive
, &free
);
1430 printk("Free pages: %11ukB (%ukB HighMem)\n",
1432 K(nr_free_highpages()));
1434 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1435 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1444 ps
.nr_page_table_pages
);
1446 for_each_zone(zone
) {
1458 " pages_scanned:%lu"
1459 " all_unreclaimable? %s"
1462 K(zone
->free_pages
),
1465 K(zone
->pages_high
),
1467 K(zone
->nr_inactive
),
1468 K(zone
->present_pages
),
1469 zone
->pages_scanned
,
1470 (zone
->all_unreclaimable
? "yes" : "no")
1472 printk("lowmem_reserve[]:");
1473 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1474 printk(" %lu", zone
->lowmem_reserve
[i
]);
1478 for_each_zone(zone
) {
1479 unsigned long nr
, flags
, order
, total
= 0;
1482 printk("%s: ", zone
->name
);
1483 if (!populated_zone(zone
)) {
1488 spin_lock_irqsave(&zone
->lock
, flags
);
1489 for (order
= 0; order
< MAX_ORDER
; order
++) {
1490 nr
= zone
->free_area
[order
].nr_free
;
1491 total
+= nr
<< order
;
1492 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1494 spin_unlock_irqrestore(&zone
->lock
, flags
);
1495 printk("= %lukB\n", K(total
));
1498 show_swap_cache_info();
1502 * Builds allocation fallback zone lists.
1504 * Add all populated zones of a node to the zonelist.
1506 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1507 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1511 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1514 zone
= pgdat
->node_zones
+ zone_type
;
1515 if (populated_zone(zone
)) {
1516 #ifndef CONFIG_HIGHMEM
1517 BUG_ON(zone_type
> ZONE_NORMAL
);
1519 zonelist
->zones
[nr_zones
++] = zone
;
1520 check_highest_zone(zone_type
);
1524 } while (zone_type
>= 0);
1528 static inline int highest_zone(int zone_bits
)
1530 int res
= ZONE_NORMAL
;
1531 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1533 if (zone_bits
& (__force
int)__GFP_DMA32
)
1535 if (zone_bits
& (__force
int)__GFP_DMA
)
1541 #define MAX_NODE_LOAD (num_online_nodes())
1542 static int __initdata node_load
[MAX_NUMNODES
];
1544 * find_next_best_node - find the next node that should appear in a given node's fallback list
1545 * @node: node whose fallback list we're appending
1546 * @used_node_mask: nodemask_t of already used nodes
1548 * We use a number of factors to determine which is the next node that should
1549 * appear on a given node's fallback list. The node should not have appeared
1550 * already in @node's fallback list, and it should be the next closest node
1551 * according to the distance array (which contains arbitrary distance values
1552 * from each node to each node in the system), and should also prefer nodes
1553 * with no CPUs, since presumably they'll have very little allocation pressure
1554 * on them otherwise.
1555 * It returns -1 if no node is found.
1557 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1560 int min_val
= INT_MAX
;
1563 /* Use the local node if we haven't already */
1564 if (!node_isset(node
, *used_node_mask
)) {
1565 node_set(node
, *used_node_mask
);
1569 for_each_online_node(n
) {
1572 /* Don't want a node to appear more than once */
1573 if (node_isset(n
, *used_node_mask
))
1576 /* Use the distance array to find the distance */
1577 val
= node_distance(node
, n
);
1579 /* Penalize nodes under us ("prefer the next node") */
1582 /* Give preference to headless and unused nodes */
1583 tmp
= node_to_cpumask(n
);
1584 if (!cpus_empty(tmp
))
1585 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1587 /* Slight preference for less loaded node */
1588 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1589 val
+= node_load
[n
];
1591 if (val
< min_val
) {
1598 node_set(best_node
, *used_node_mask
);
1603 static void __init
build_zonelists(pg_data_t
*pgdat
)
1605 int i
, j
, k
, node
, local_node
;
1606 int prev_node
, load
;
1607 struct zonelist
*zonelist
;
1608 nodemask_t used_mask
;
1610 /* initialize zonelists */
1611 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1612 zonelist
= pgdat
->node_zonelists
+ i
;
1613 zonelist
->zones
[0] = NULL
;
1616 /* NUMA-aware ordering of nodes */
1617 local_node
= pgdat
->node_id
;
1618 load
= num_online_nodes();
1619 prev_node
= local_node
;
1620 nodes_clear(used_mask
);
1621 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1622 int distance
= node_distance(local_node
, node
);
1625 * If another node is sufficiently far away then it is better
1626 * to reclaim pages in a zone before going off node.
1628 if (distance
> RECLAIM_DISTANCE
)
1629 zone_reclaim_mode
= 1;
1632 * We don't want to pressure a particular node.
1633 * So adding penalty to the first node in same
1634 * distance group to make it round-robin.
1637 if (distance
!= node_distance(local_node
, prev_node
))
1638 node_load
[node
] += load
;
1641 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1642 zonelist
= pgdat
->node_zonelists
+ i
;
1643 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1645 k
= highest_zone(i
);
1647 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1648 zonelist
->zones
[j
] = NULL
;
1653 #else /* CONFIG_NUMA */
1655 static void __init
build_zonelists(pg_data_t
*pgdat
)
1657 int i
, j
, k
, node
, local_node
;
1659 local_node
= pgdat
->node_id
;
1660 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1661 struct zonelist
*zonelist
;
1663 zonelist
= pgdat
->node_zonelists
+ i
;
1666 k
= highest_zone(i
);
1667 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1669 * Now we build the zonelist so that it contains the zones
1670 * of all the other nodes.
1671 * We don't want to pressure a particular node, so when
1672 * building the zones for node N, we make sure that the
1673 * zones coming right after the local ones are those from
1674 * node N+1 (modulo N)
1676 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1677 if (!node_online(node
))
1679 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1681 for (node
= 0; node
< local_node
; node
++) {
1682 if (!node_online(node
))
1684 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1687 zonelist
->zones
[j
] = NULL
;
1691 #endif /* CONFIG_NUMA */
1693 void __init
build_all_zonelists(void)
1697 for_each_online_node(i
)
1698 build_zonelists(NODE_DATA(i
));
1699 printk("Built %i zonelists\n", num_online_nodes());
1700 cpuset_init_current_mems_allowed();
1704 * Helper functions to size the waitqueue hash table.
1705 * Essentially these want to choose hash table sizes sufficiently
1706 * large so that collisions trying to wait on pages are rare.
1707 * But in fact, the number of active page waitqueues on typical
1708 * systems is ridiculously low, less than 200. So this is even
1709 * conservative, even though it seems large.
1711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1712 * waitqueues, i.e. the size of the waitq table given the number of pages.
1714 #define PAGES_PER_WAITQUEUE 256
1716 static inline unsigned long wait_table_size(unsigned long pages
)
1718 unsigned long size
= 1;
1720 pages
/= PAGES_PER_WAITQUEUE
;
1722 while (size
< pages
)
1726 * Once we have dozens or even hundreds of threads sleeping
1727 * on IO we've got bigger problems than wait queue collision.
1728 * Limit the size of the wait table to a reasonable size.
1730 size
= min(size
, 4096UL);
1732 return max(size
, 4UL);
1736 * This is an integer logarithm so that shifts can be used later
1737 * to extract the more random high bits from the multiplicative
1738 * hash function before the remainder is taken.
1740 static inline unsigned long wait_table_bits(unsigned long size
)
1745 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1747 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1748 unsigned long *zones_size
, unsigned long *zholes_size
)
1750 unsigned long realtotalpages
, totalpages
= 0;
1753 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1754 totalpages
+= zones_size
[i
];
1755 pgdat
->node_spanned_pages
= totalpages
;
1757 realtotalpages
= totalpages
;
1759 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1760 realtotalpages
-= zholes_size
[i
];
1761 pgdat
->node_present_pages
= realtotalpages
;
1762 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1767 * Initially all pages are reserved - free ones are freed
1768 * up by free_all_bootmem() once the early boot process is
1769 * done. Non-atomic initialization, single-pass.
1771 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1772 unsigned long start_pfn
)
1775 unsigned long end_pfn
= start_pfn
+ size
;
1778 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1779 if (!early_pfn_valid(pfn
))
1781 page
= pfn_to_page(pfn
);
1782 set_page_links(page
, zone
, nid
, pfn
);
1783 init_page_count(page
);
1784 reset_page_mapcount(page
);
1785 SetPageReserved(page
);
1786 INIT_LIST_HEAD(&page
->lru
);
1787 #ifdef WANT_PAGE_VIRTUAL
1788 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1789 if (!is_highmem_idx(zone
))
1790 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1795 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1799 for (order
= 0; order
< MAX_ORDER
; order
++) {
1800 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1801 zone
->free_area
[order
].nr_free
= 0;
1805 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1806 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1809 unsigned long snum
= pfn_to_section_nr(pfn
);
1810 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1813 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1815 for (; snum
<= end
; snum
++)
1816 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1819 #ifndef __HAVE_ARCH_MEMMAP_INIT
1820 #define memmap_init(size, nid, zone, start_pfn) \
1821 memmap_init_zone((size), (nid), (zone), (start_pfn))
1824 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1829 * The per-cpu-pages pools are set to around 1000th of the
1830 * size of the zone. But no more than 1/2 of a meg.
1832 * OK, so we don't know how big the cache is. So guess.
1834 batch
= zone
->present_pages
/ 1024;
1835 if (batch
* PAGE_SIZE
> 512 * 1024)
1836 batch
= (512 * 1024) / PAGE_SIZE
;
1837 batch
/= 4; /* We effectively *= 4 below */
1842 * Clamp the batch to a 2^n - 1 value. Having a power
1843 * of 2 value was found to be more likely to have
1844 * suboptimal cache aliasing properties in some cases.
1846 * For example if 2 tasks are alternately allocating
1847 * batches of pages, one task can end up with a lot
1848 * of pages of one half of the possible page colors
1849 * and the other with pages of the other colors.
1851 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1856 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1858 struct per_cpu_pages
*pcp
;
1860 memset(p
, 0, sizeof(*p
));
1862 pcp
= &p
->pcp
[0]; /* hot */
1864 pcp
->high
= 6 * batch
;
1865 pcp
->batch
= max(1UL, 1 * batch
);
1866 INIT_LIST_HEAD(&pcp
->list
);
1868 pcp
= &p
->pcp
[1]; /* cold*/
1870 pcp
->high
= 2 * batch
;
1871 pcp
->batch
= max(1UL, batch
/2);
1872 INIT_LIST_HEAD(&pcp
->list
);
1876 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1877 * to the value high for the pageset p.
1880 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1883 struct per_cpu_pages
*pcp
;
1885 pcp
= &p
->pcp
[0]; /* hot list */
1887 pcp
->batch
= max(1UL, high
/4);
1888 if ((high
/4) > (PAGE_SHIFT
* 8))
1889 pcp
->batch
= PAGE_SHIFT
* 8;
1895 * Boot pageset table. One per cpu which is going to be used for all
1896 * zones and all nodes. The parameters will be set in such a way
1897 * that an item put on a list will immediately be handed over to
1898 * the buddy list. This is safe since pageset manipulation is done
1899 * with interrupts disabled.
1901 * Some NUMA counter updates may also be caught by the boot pagesets.
1903 * The boot_pagesets must be kept even after bootup is complete for
1904 * unused processors and/or zones. They do play a role for bootstrapping
1905 * hotplugged processors.
1907 * zoneinfo_show() and maybe other functions do
1908 * not check if the processor is online before following the pageset pointer.
1909 * Other parts of the kernel may not check if the zone is available.
1911 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1914 * Dynamically allocate memory for the
1915 * per cpu pageset array in struct zone.
1917 static int __cpuinit
process_zones(int cpu
)
1919 struct zone
*zone
, *dzone
;
1921 for_each_zone(zone
) {
1923 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1924 GFP_KERNEL
, cpu_to_node(cpu
));
1925 if (!zone_pcp(zone
, cpu
))
1928 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1930 if (percpu_pagelist_fraction
)
1931 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1932 (zone
->present_pages
/ percpu_pagelist_fraction
));
1937 for_each_zone(dzone
) {
1940 kfree(zone_pcp(dzone
, cpu
));
1941 zone_pcp(dzone
, cpu
) = NULL
;
1946 static inline void free_zone_pagesets(int cpu
)
1950 for_each_zone(zone
) {
1951 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1953 zone_pcp(zone
, cpu
) = NULL
;
1958 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1959 unsigned long action
,
1962 int cpu
= (long)hcpu
;
1963 int ret
= NOTIFY_OK
;
1966 case CPU_UP_PREPARE
:
1967 if (process_zones(cpu
))
1970 case CPU_UP_CANCELED
:
1972 free_zone_pagesets(cpu
);
1980 static struct notifier_block pageset_notifier
=
1981 { &pageset_cpuup_callback
, NULL
, 0 };
1983 void __init
setup_per_cpu_pageset(void)
1987 /* Initialize per_cpu_pageset for cpu 0.
1988 * A cpuup callback will do this for every cpu
1989 * as it comes online
1991 err
= process_zones(smp_processor_id());
1993 register_cpu_notifier(&pageset_notifier
);
1999 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2002 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2005 * The per-page waitqueue mechanism uses hashed waitqueues
2008 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2009 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2010 zone
->wait_table
= (wait_queue_head_t
*)
2011 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2012 * sizeof(wait_queue_head_t
));
2014 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2015 init_waitqueue_head(zone
->wait_table
+ i
);
2018 static __meminit
void zone_pcp_init(struct zone
*zone
)
2021 unsigned long batch
= zone_batchsize(zone
);
2023 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2025 /* Early boot. Slab allocator not functional yet */
2026 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2027 setup_pageset(&boot_pageset
[cpu
],0);
2029 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2032 if (zone
->present_pages
)
2033 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2034 zone
->name
, zone
->present_pages
, batch
);
2037 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2038 unsigned long zone_start_pfn
, unsigned long size
)
2040 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2042 zone_wait_table_init(zone
, size
);
2043 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2045 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
2046 zone
->zone_start_pfn
= zone_start_pfn
;
2048 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2050 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2054 * Set up the zone data structures:
2055 * - mark all pages reserved
2056 * - mark all memory queues empty
2057 * - clear the memory bitmaps
2059 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2060 unsigned long *zones_size
, unsigned long *zholes_size
)
2063 int nid
= pgdat
->node_id
;
2064 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2066 pgdat_resize_init(pgdat
);
2067 pgdat
->nr_zones
= 0;
2068 init_waitqueue_head(&pgdat
->kswapd_wait
);
2069 pgdat
->kswapd_max_order
= 0;
2071 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2072 struct zone
*zone
= pgdat
->node_zones
+ j
;
2073 unsigned long size
, realsize
;
2075 realsize
= size
= zones_size
[j
];
2077 realsize
-= zholes_size
[j
];
2079 if (j
< ZONE_HIGHMEM
)
2080 nr_kernel_pages
+= realsize
;
2081 nr_all_pages
+= realsize
;
2083 zone
->spanned_pages
= size
;
2084 zone
->present_pages
= realsize
;
2085 zone
->name
= zone_names
[j
];
2086 spin_lock_init(&zone
->lock
);
2087 spin_lock_init(&zone
->lru_lock
);
2088 zone_seqlock_init(zone
);
2089 zone
->zone_pgdat
= pgdat
;
2090 zone
->free_pages
= 0;
2092 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2094 zone_pcp_init(zone
);
2095 INIT_LIST_HEAD(&zone
->active_list
);
2096 INIT_LIST_HEAD(&zone
->inactive_list
);
2097 zone
->nr_scan_active
= 0;
2098 zone
->nr_scan_inactive
= 0;
2099 zone
->nr_active
= 0;
2100 zone
->nr_inactive
= 0;
2101 atomic_set(&zone
->reclaim_in_progress
, 0);
2105 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2106 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2107 zone_start_pfn
+= size
;
2111 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2113 /* Skip empty nodes */
2114 if (!pgdat
->node_spanned_pages
)
2117 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2118 /* ia64 gets its own node_mem_map, before this, without bootmem */
2119 if (!pgdat
->node_mem_map
) {
2123 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2124 map
= alloc_remap(pgdat
->node_id
, size
);
2126 map
= alloc_bootmem_node(pgdat
, size
);
2127 pgdat
->node_mem_map
= map
;
2129 #ifdef CONFIG_FLATMEM
2131 * With no DISCONTIG, the global mem_map is just set as node 0's
2133 if (pgdat
== NODE_DATA(0))
2134 mem_map
= NODE_DATA(0)->node_mem_map
;
2136 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2139 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2140 unsigned long *zones_size
, unsigned long node_start_pfn
,
2141 unsigned long *zholes_size
)
2143 pgdat
->node_id
= nid
;
2144 pgdat
->node_start_pfn
= node_start_pfn
;
2145 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2147 alloc_node_mem_map(pgdat
);
2149 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2152 #ifndef CONFIG_NEED_MULTIPLE_NODES
2153 static bootmem_data_t contig_bootmem_data
;
2154 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2156 EXPORT_SYMBOL(contig_page_data
);
2159 void __init
free_area_init(unsigned long *zones_size
)
2161 free_area_init_node(0, NODE_DATA(0), zones_size
,
2162 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2165 #ifdef CONFIG_PROC_FS
2167 #include <linux/seq_file.h>
2169 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2174 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2180 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2182 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2185 return pgdat
->pgdat_next
;
2188 static void frag_stop(struct seq_file
*m
, void *arg
)
2193 * This walks the free areas for each zone.
2195 static int frag_show(struct seq_file
*m
, void *arg
)
2197 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2199 struct zone
*node_zones
= pgdat
->node_zones
;
2200 unsigned long flags
;
2203 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2204 if (!populated_zone(zone
))
2207 spin_lock_irqsave(&zone
->lock
, flags
);
2208 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2209 for (order
= 0; order
< MAX_ORDER
; ++order
)
2210 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2211 spin_unlock_irqrestore(&zone
->lock
, flags
);
2217 struct seq_operations fragmentation_op
= {
2218 .start
= frag_start
,
2225 * Output information about zones in @pgdat.
2227 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2229 pg_data_t
*pgdat
= arg
;
2231 struct zone
*node_zones
= pgdat
->node_zones
;
2232 unsigned long flags
;
2234 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2237 if (!populated_zone(zone
))
2240 spin_lock_irqsave(&zone
->lock
, flags
);
2241 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2249 "\n scanned %lu (a: %lu i: %lu)"
2258 zone
->pages_scanned
,
2259 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2260 zone
->spanned_pages
,
2261 zone
->present_pages
);
2263 "\n protection: (%lu",
2264 zone
->lowmem_reserve
[0]);
2265 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2266 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2270 for_each_online_cpu(i
) {
2271 struct per_cpu_pageset
*pageset
;
2274 pageset
= zone_pcp(zone
, i
);
2275 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2276 if (pageset
->pcp
[j
].count
)
2279 if (j
== ARRAY_SIZE(pageset
->pcp
))
2281 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2283 "\n cpu: %i pcp: %i"
2288 pageset
->pcp
[j
].count
,
2289 pageset
->pcp
[j
].high
,
2290 pageset
->pcp
[j
].batch
);
2296 "\n numa_foreign: %lu"
2297 "\n interleave_hit: %lu"
2298 "\n local_node: %lu"
2299 "\n other_node: %lu",
2302 pageset
->numa_foreign
,
2303 pageset
->interleave_hit
,
2304 pageset
->local_node
,
2305 pageset
->other_node
);
2309 "\n all_unreclaimable: %u"
2310 "\n prev_priority: %i"
2311 "\n temp_priority: %i"
2312 "\n start_pfn: %lu",
2313 zone
->all_unreclaimable
,
2314 zone
->prev_priority
,
2315 zone
->temp_priority
,
2316 zone
->zone_start_pfn
);
2317 spin_unlock_irqrestore(&zone
->lock
, flags
);
2323 struct seq_operations zoneinfo_op
= {
2324 .start
= frag_start
, /* iterate over all zones. The same as in
2328 .show
= zoneinfo_show
,
2331 static char *vmstat_text
[] = {
2335 "nr_page_table_pages",
2366 "pgscan_kswapd_high",
2367 "pgscan_kswapd_normal",
2368 "pgscan_kswapd_dma32",
2369 "pgscan_kswapd_dma",
2371 "pgscan_direct_high",
2372 "pgscan_direct_normal",
2373 "pgscan_direct_dma32",
2374 "pgscan_direct_dma",
2379 "kswapd_inodesteal",
2387 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2389 struct page_state
*ps
;
2391 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2394 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2397 return ERR_PTR(-ENOMEM
);
2398 get_full_page_state(ps
);
2399 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2401 return (unsigned long *)ps
+ *pos
;
2404 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2407 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2409 return (unsigned long *)m
->private + *pos
;
2412 static int vmstat_show(struct seq_file
*m
, void *arg
)
2414 unsigned long *l
= arg
;
2415 unsigned long off
= l
- (unsigned long *)m
->private;
2417 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2421 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2427 struct seq_operations vmstat_op
= {
2428 .start
= vmstat_start
,
2429 .next
= vmstat_next
,
2430 .stop
= vmstat_stop
,
2431 .show
= vmstat_show
,
2434 #endif /* CONFIG_PROC_FS */
2436 #ifdef CONFIG_HOTPLUG_CPU
2437 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2438 unsigned long action
, void *hcpu
)
2440 int cpu
= (unsigned long)hcpu
;
2442 unsigned long *src
, *dest
;
2444 if (action
== CPU_DEAD
) {
2447 /* Drain local pagecache count. */
2448 count
= &per_cpu(nr_pagecache_local
, cpu
);
2449 atomic_add(*count
, &nr_pagecache
);
2451 local_irq_disable();
2454 /* Add dead cpu's page_states to our own. */
2455 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2456 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2458 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2468 #endif /* CONFIG_HOTPLUG_CPU */
2470 void __init
page_alloc_init(void)
2472 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2476 * setup_per_zone_lowmem_reserve - called whenever
2477 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2478 * has a correct pages reserved value, so an adequate number of
2479 * pages are left in the zone after a successful __alloc_pages().
2481 static void setup_per_zone_lowmem_reserve(void)
2483 struct pglist_data
*pgdat
;
2486 for_each_pgdat(pgdat
) {
2487 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2488 struct zone
*zone
= pgdat
->node_zones
+ j
;
2489 unsigned long present_pages
= zone
->present_pages
;
2491 zone
->lowmem_reserve
[j
] = 0;
2493 for (idx
= j
-1; idx
>= 0; idx
--) {
2494 struct zone
*lower_zone
;
2496 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2497 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2499 lower_zone
= pgdat
->node_zones
+ idx
;
2500 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2501 sysctl_lowmem_reserve_ratio
[idx
];
2502 present_pages
+= lower_zone
->present_pages
;
2509 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2510 * that the pages_{min,low,high} values for each zone are set correctly
2511 * with respect to min_free_kbytes.
2513 void setup_per_zone_pages_min(void)
2515 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2516 unsigned long lowmem_pages
= 0;
2518 unsigned long flags
;
2520 /* Calculate total number of !ZONE_HIGHMEM pages */
2521 for_each_zone(zone
) {
2522 if (!is_highmem(zone
))
2523 lowmem_pages
+= zone
->present_pages
;
2526 for_each_zone(zone
) {
2528 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2529 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2530 if (is_highmem(zone
)) {
2532 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2533 * need highmem pages, so cap pages_min to a small
2536 * The (pages_high-pages_low) and (pages_low-pages_min)
2537 * deltas controls asynch page reclaim, and so should
2538 * not be capped for highmem.
2542 min_pages
= zone
->present_pages
/ 1024;
2543 if (min_pages
< SWAP_CLUSTER_MAX
)
2544 min_pages
= SWAP_CLUSTER_MAX
;
2545 if (min_pages
> 128)
2547 zone
->pages_min
= min_pages
;
2550 * If it's a lowmem zone, reserve a number of pages
2551 * proportionate to the zone's size.
2553 zone
->pages_min
= tmp
;
2556 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2557 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2558 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2563 * Initialise min_free_kbytes.
2565 * For small machines we want it small (128k min). For large machines
2566 * we want it large (64MB max). But it is not linear, because network
2567 * bandwidth does not increase linearly with machine size. We use
2569 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2570 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2586 static int __init
init_per_zone_pages_min(void)
2588 unsigned long lowmem_kbytes
;
2590 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2592 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2593 if (min_free_kbytes
< 128)
2594 min_free_kbytes
= 128;
2595 if (min_free_kbytes
> 65536)
2596 min_free_kbytes
= 65536;
2597 setup_per_zone_pages_min();
2598 setup_per_zone_lowmem_reserve();
2601 module_init(init_per_zone_pages_min
)
2604 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2605 * that we can call two helper functions whenever min_free_kbytes
2608 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2609 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2611 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2612 setup_per_zone_pages_min();
2617 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2618 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2619 * whenever sysctl_lowmem_reserve_ratio changes.
2621 * The reserve ratio obviously has absolutely no relation with the
2622 * pages_min watermarks. The lowmem reserve ratio can only make sense
2623 * if in function of the boot time zone sizes.
2625 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2626 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2628 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2629 setup_per_zone_lowmem_reserve();
2634 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2635 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2636 * can have before it gets flushed back to buddy allocator.
2639 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2640 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2646 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2647 if (!write
|| (ret
== -EINVAL
))
2649 for_each_zone(zone
) {
2650 for_each_online_cpu(cpu
) {
2652 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2653 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2659 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2662 static int __init
set_hashdist(char *str
)
2666 hashdist
= simple_strtoul(str
, &str
, 0);
2669 __setup("hashdist=", set_hashdist
);
2673 * allocate a large system hash table from bootmem
2674 * - it is assumed that the hash table must contain an exact power-of-2
2675 * quantity of entries
2676 * - limit is the number of hash buckets, not the total allocation size
2678 void *__init
alloc_large_system_hash(const char *tablename
,
2679 unsigned long bucketsize
,
2680 unsigned long numentries
,
2683 unsigned int *_hash_shift
,
2684 unsigned int *_hash_mask
,
2685 unsigned long limit
)
2687 unsigned long long max
= limit
;
2688 unsigned long log2qty
, size
;
2691 /* allow the kernel cmdline to have a say */
2693 /* round applicable memory size up to nearest megabyte */
2694 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2695 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2696 numentries
>>= 20 - PAGE_SHIFT
;
2697 numentries
<<= 20 - PAGE_SHIFT
;
2699 /* limit to 1 bucket per 2^scale bytes of low memory */
2700 if (scale
> PAGE_SHIFT
)
2701 numentries
>>= (scale
- PAGE_SHIFT
);
2703 numentries
<<= (PAGE_SHIFT
- scale
);
2705 numentries
= roundup_pow_of_two(numentries
);
2707 /* limit allocation size to 1/16 total memory by default */
2709 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2710 do_div(max
, bucketsize
);
2713 if (numentries
> max
)
2716 log2qty
= long_log2(numentries
);
2719 size
= bucketsize
<< log2qty
;
2720 if (flags
& HASH_EARLY
)
2721 table
= alloc_bootmem(size
);
2723 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2725 unsigned long order
;
2726 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2728 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2730 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2733 panic("Failed to allocate %s hash table\n", tablename
);
2735 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2738 long_log2(size
) - PAGE_SHIFT
,
2742 *_hash_shift
= log2qty
;
2744 *_hash_mask
= (1 << log2qty
) - 1;
2749 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2751 * pfn <-> page translation. out-of-line version.
2752 * (see asm-generic/memory_model.h)
2754 #if defined(CONFIG_FLATMEM)
2755 struct page
*pfn_to_page(unsigned long pfn
)
2757 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2759 unsigned long page_to_pfn(struct page
*page
)
2761 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2763 #elif defined(CONFIG_DISCONTIGMEM)
2764 struct page
*pfn_to_page(unsigned long pfn
)
2766 int nid
= arch_pfn_to_nid(pfn
);
2767 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2769 unsigned long page_to_pfn(struct page
*page
)
2771 struct zone
*zone
= page_zone(page
);
2772 return (page
- zone
->zone_mem_map
) + zone
->zone_start_pfn
;
2775 #elif defined(CONFIG_SPARSEMEM)
2776 struct page
*pfn_to_page(unsigned long pfn
)
2778 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2781 unsigned long page_to_pfn(struct page
*page
)
2783 long section_id
= page_to_section(page
);
2784 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2786 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2787 EXPORT_SYMBOL(pfn_to_page
);
2788 EXPORT_SYMBOL(page_to_pfn
);
2789 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */