[ARM] pxa: update defconfig for Verdex Pro
[linux-2.6/verdex.git] / arch / x86 / kernel / tsc.c
blobcd982f48e23e11c74acd08e8db823c3ef4fe5886
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 #include <linux/timex.h>
14 #include <asm/hpet.h>
15 #include <asm/timer.h>
16 #include <asm/vgtod.h>
17 #include <asm/time.h>
18 #include <asm/delay.h>
19 #include <asm/hypervisor.h>
20 #include <asm/nmi.h>
21 #include <asm/x86_init.h>
23 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
24 EXPORT_SYMBOL(cpu_khz);
26 unsigned int __read_mostly tsc_khz;
27 EXPORT_SYMBOL(tsc_khz);
30 * TSC can be unstable due to cpufreq or due to unsynced TSCs
32 static int __read_mostly tsc_unstable;
34 /* native_sched_clock() is called before tsc_init(), so
35 we must start with the TSC soft disabled to prevent
36 erroneous rdtsc usage on !cpu_has_tsc processors */
37 static int __read_mostly tsc_disabled = -1;
39 static int tsc_clocksource_reliable;
41 * Scheduler clock - returns current time in nanosec units.
43 u64 native_sched_clock(void)
45 u64 this_offset;
48 * Fall back to jiffies if there's no TSC available:
49 * ( But note that we still use it if the TSC is marked
50 * unstable. We do this because unlike Time Of Day,
51 * the scheduler clock tolerates small errors and it's
52 * very important for it to be as fast as the platform
53 * can achive it. )
55 if (unlikely(tsc_disabled)) {
56 /* No locking but a rare wrong value is not a big deal: */
57 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
60 /* read the Time Stamp Counter: */
61 rdtscll(this_offset);
63 /* return the value in ns */
64 return __cycles_2_ns(this_offset);
67 /* We need to define a real function for sched_clock, to override the
68 weak default version */
69 #ifdef CONFIG_PARAVIRT
70 unsigned long long sched_clock(void)
72 return paravirt_sched_clock();
74 #else
75 unsigned long long
76 sched_clock(void) __attribute__((alias("native_sched_clock")));
77 #endif
79 int check_tsc_unstable(void)
81 return tsc_unstable;
83 EXPORT_SYMBOL_GPL(check_tsc_unstable);
85 #ifdef CONFIG_X86_TSC
86 int __init notsc_setup(char *str)
88 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
89 "cannot disable TSC completely.\n");
90 tsc_disabled = 1;
91 return 1;
93 #else
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
96 * in cpu/common.c
98 int __init notsc_setup(char *str)
100 setup_clear_cpu_cap(X86_FEATURE_TSC);
101 return 1;
103 #endif
105 __setup("notsc", notsc_setup);
107 static int __init tsc_setup(char *str)
109 if (!strcmp(str, "reliable"))
110 tsc_clocksource_reliable = 1;
111 return 1;
114 __setup("tsc=", tsc_setup);
116 #define MAX_RETRIES 5
117 #define SMI_TRESHOLD 50000
120 * Read TSC and the reference counters. Take care of SMI disturbance
122 static u64 tsc_read_refs(u64 *p, int hpet)
124 u64 t1, t2;
125 int i;
127 for (i = 0; i < MAX_RETRIES; i++) {
128 t1 = get_cycles();
129 if (hpet)
130 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
131 else
132 *p = acpi_pm_read_early();
133 t2 = get_cycles();
134 if ((t2 - t1) < SMI_TRESHOLD)
135 return t2;
137 return ULLONG_MAX;
141 * Calculate the TSC frequency from HPET reference
143 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
145 u64 tmp;
147 if (hpet2 < hpet1)
148 hpet2 += 0x100000000ULL;
149 hpet2 -= hpet1;
150 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
151 do_div(tmp, 1000000);
152 do_div(deltatsc, tmp);
154 return (unsigned long) deltatsc;
158 * Calculate the TSC frequency from PMTimer reference
160 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
162 u64 tmp;
164 if (!pm1 && !pm2)
165 return ULONG_MAX;
167 if (pm2 < pm1)
168 pm2 += (u64)ACPI_PM_OVRRUN;
169 pm2 -= pm1;
170 tmp = pm2 * 1000000000LL;
171 do_div(tmp, PMTMR_TICKS_PER_SEC);
172 do_div(deltatsc, tmp);
174 return (unsigned long) deltatsc;
177 #define CAL_MS 10
178 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
179 #define CAL_PIT_LOOPS 1000
181 #define CAL2_MS 50
182 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
183 #define CAL2_PIT_LOOPS 5000
187 * Try to calibrate the TSC against the Programmable
188 * Interrupt Timer and return the frequency of the TSC
189 * in kHz.
191 * Return ULONG_MAX on failure to calibrate.
193 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
195 u64 tsc, t1, t2, delta;
196 unsigned long tscmin, tscmax;
197 int pitcnt;
199 /* Set the Gate high, disable speaker */
200 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
203 * Setup CTC channel 2* for mode 0, (interrupt on terminal
204 * count mode), binary count. Set the latch register to 50ms
205 * (LSB then MSB) to begin countdown.
207 outb(0xb0, 0x43);
208 outb(latch & 0xff, 0x42);
209 outb(latch >> 8, 0x42);
211 tsc = t1 = t2 = get_cycles();
213 pitcnt = 0;
214 tscmax = 0;
215 tscmin = ULONG_MAX;
216 while ((inb(0x61) & 0x20) == 0) {
217 t2 = get_cycles();
218 delta = t2 - tsc;
219 tsc = t2;
220 if ((unsigned long) delta < tscmin)
221 tscmin = (unsigned int) delta;
222 if ((unsigned long) delta > tscmax)
223 tscmax = (unsigned int) delta;
224 pitcnt++;
228 * Sanity checks:
230 * If we were not able to read the PIT more than loopmin
231 * times, then we have been hit by a massive SMI
233 * If the maximum is 10 times larger than the minimum,
234 * then we got hit by an SMI as well.
236 if (pitcnt < loopmin || tscmax > 10 * tscmin)
237 return ULONG_MAX;
239 /* Calculate the PIT value */
240 delta = t2 - t1;
241 do_div(delta, ms);
242 return delta;
246 * This reads the current MSB of the PIT counter, and
247 * checks if we are running on sufficiently fast and
248 * non-virtualized hardware.
250 * Our expectations are:
252 * - the PIT is running at roughly 1.19MHz
254 * - each IO is going to take about 1us on real hardware,
255 * but we allow it to be much faster (by a factor of 10) or
256 * _slightly_ slower (ie we allow up to a 2us read+counter
257 * update - anything else implies a unacceptably slow CPU
258 * or PIT for the fast calibration to work.
260 * - with 256 PIT ticks to read the value, we have 214us to
261 * see the same MSB (and overhead like doing a single TSC
262 * read per MSB value etc).
264 * - We're doing 2 reads per loop (LSB, MSB), and we expect
265 * them each to take about a microsecond on real hardware.
266 * So we expect a count value of around 100. But we'll be
267 * generous, and accept anything over 50.
269 * - if the PIT is stuck, and we see *many* more reads, we
270 * return early (and the next caller of pit_expect_msb()
271 * then consider it a failure when they don't see the
272 * next expected value).
274 * These expectations mean that we know that we have seen the
275 * transition from one expected value to another with a fairly
276 * high accuracy, and we didn't miss any events. We can thus
277 * use the TSC value at the transitions to calculate a pretty
278 * good value for the TSC frequencty.
280 static inline int pit_verify_msb(unsigned char val)
282 /* Ignore LSB */
283 inb(0x42);
284 return inb(0x42) == val;
287 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
289 int count;
290 u64 tsc = 0;
292 for (count = 0; count < 50000; count++) {
293 if (!pit_verify_msb(val))
294 break;
295 tsc = get_cycles();
297 *deltap = get_cycles() - tsc;
298 *tscp = tsc;
301 * We require _some_ success, but the quality control
302 * will be based on the error terms on the TSC values.
304 return count > 5;
308 * How many MSB values do we want to see? We aim for
309 * a maximum error rate of 500ppm (in practice the
310 * real error is much smaller), but refuse to spend
311 * more than 25ms on it.
313 #define MAX_QUICK_PIT_MS 25
314 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
316 static unsigned long quick_pit_calibrate(void)
318 int i;
319 u64 tsc, delta;
320 unsigned long d1, d2;
322 /* Set the Gate high, disable speaker */
323 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
326 * Counter 2, mode 0 (one-shot), binary count
328 * NOTE! Mode 2 decrements by two (and then the
329 * output is flipped each time, giving the same
330 * final output frequency as a decrement-by-one),
331 * so mode 0 is much better when looking at the
332 * individual counts.
334 outb(0xb0, 0x43);
336 /* Start at 0xffff */
337 outb(0xff, 0x42);
338 outb(0xff, 0x42);
341 * The PIT starts counting at the next edge, so we
342 * need to delay for a microsecond. The easiest way
343 * to do that is to just read back the 16-bit counter
344 * once from the PIT.
346 pit_verify_msb(0);
348 if (pit_expect_msb(0xff, &tsc, &d1)) {
349 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
350 if (!pit_expect_msb(0xff-i, &delta, &d2))
351 break;
354 * Iterate until the error is less than 500 ppm
356 delta -= tsc;
357 if (d1+d2 >= delta >> 11)
358 continue;
361 * Check the PIT one more time to verify that
362 * all TSC reads were stable wrt the PIT.
364 * This also guarantees serialization of the
365 * last cycle read ('d2') in pit_expect_msb.
367 if (!pit_verify_msb(0xfe - i))
368 break;
369 goto success;
372 printk("Fast TSC calibration failed\n");
373 return 0;
375 success:
377 * Ok, if we get here, then we've seen the
378 * MSB of the PIT decrement 'i' times, and the
379 * error has shrunk to less than 500 ppm.
381 * As a result, we can depend on there not being
382 * any odd delays anywhere, and the TSC reads are
383 * reliable (within the error). We also adjust the
384 * delta to the middle of the error bars, just
385 * because it looks nicer.
387 * kHz = ticks / time-in-seconds / 1000;
388 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
389 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
391 delta += (long)(d2 - d1)/2;
392 delta *= PIT_TICK_RATE;
393 do_div(delta, i*256*1000);
394 printk("Fast TSC calibration using PIT\n");
395 return delta;
399 * native_calibrate_tsc - calibrate the tsc on boot
401 unsigned long native_calibrate_tsc(void)
403 u64 tsc1, tsc2, delta, ref1, ref2;
404 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
405 unsigned long flags, latch, ms, fast_calibrate;
406 int hpet = is_hpet_enabled(), i, loopmin;
408 local_irq_save(flags);
409 fast_calibrate = quick_pit_calibrate();
410 local_irq_restore(flags);
411 if (fast_calibrate)
412 return fast_calibrate;
415 * Run 5 calibration loops to get the lowest frequency value
416 * (the best estimate). We use two different calibration modes
417 * here:
419 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
420 * load a timeout of 50ms. We read the time right after we
421 * started the timer and wait until the PIT count down reaches
422 * zero. In each wait loop iteration we read the TSC and check
423 * the delta to the previous read. We keep track of the min
424 * and max values of that delta. The delta is mostly defined
425 * by the IO time of the PIT access, so we can detect when a
426 * SMI/SMM disturbance happend between the two reads. If the
427 * maximum time is significantly larger than the minimum time,
428 * then we discard the result and have another try.
430 * 2) Reference counter. If available we use the HPET or the
431 * PMTIMER as a reference to check the sanity of that value.
432 * We use separate TSC readouts and check inside of the
433 * reference read for a SMI/SMM disturbance. We dicard
434 * disturbed values here as well. We do that around the PIT
435 * calibration delay loop as we have to wait for a certain
436 * amount of time anyway.
439 /* Preset PIT loop values */
440 latch = CAL_LATCH;
441 ms = CAL_MS;
442 loopmin = CAL_PIT_LOOPS;
444 for (i = 0; i < 3; i++) {
445 unsigned long tsc_pit_khz;
448 * Read the start value and the reference count of
449 * hpet/pmtimer when available. Then do the PIT
450 * calibration, which will take at least 50ms, and
451 * read the end value.
453 local_irq_save(flags);
454 tsc1 = tsc_read_refs(&ref1, hpet);
455 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
456 tsc2 = tsc_read_refs(&ref2, hpet);
457 local_irq_restore(flags);
459 /* Pick the lowest PIT TSC calibration so far */
460 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
462 /* hpet or pmtimer available ? */
463 if (!hpet && !ref1 && !ref2)
464 continue;
466 /* Check, whether the sampling was disturbed by an SMI */
467 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
468 continue;
470 tsc2 = (tsc2 - tsc1) * 1000000LL;
471 if (hpet)
472 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
473 else
474 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
476 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
478 /* Check the reference deviation */
479 delta = ((u64) tsc_pit_min) * 100;
480 do_div(delta, tsc_ref_min);
483 * If both calibration results are inside a 10% window
484 * then we can be sure, that the calibration
485 * succeeded. We break out of the loop right away. We
486 * use the reference value, as it is more precise.
488 if (delta >= 90 && delta <= 110) {
489 printk(KERN_INFO
490 "TSC: PIT calibration matches %s. %d loops\n",
491 hpet ? "HPET" : "PMTIMER", i + 1);
492 return tsc_ref_min;
496 * Check whether PIT failed more than once. This
497 * happens in virtualized environments. We need to
498 * give the virtual PC a slightly longer timeframe for
499 * the HPET/PMTIMER to make the result precise.
501 if (i == 1 && tsc_pit_min == ULONG_MAX) {
502 latch = CAL2_LATCH;
503 ms = CAL2_MS;
504 loopmin = CAL2_PIT_LOOPS;
509 * Now check the results.
511 if (tsc_pit_min == ULONG_MAX) {
512 /* PIT gave no useful value */
513 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
515 /* We don't have an alternative source, disable TSC */
516 if (!hpet && !ref1 && !ref2) {
517 printk("TSC: No reference (HPET/PMTIMER) available\n");
518 return 0;
521 /* The alternative source failed as well, disable TSC */
522 if (tsc_ref_min == ULONG_MAX) {
523 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
524 "failed.\n");
525 return 0;
528 /* Use the alternative source */
529 printk(KERN_INFO "TSC: using %s reference calibration\n",
530 hpet ? "HPET" : "PMTIMER");
532 return tsc_ref_min;
535 /* We don't have an alternative source, use the PIT calibration value */
536 if (!hpet && !ref1 && !ref2) {
537 printk(KERN_INFO "TSC: Using PIT calibration value\n");
538 return tsc_pit_min;
541 /* The alternative source failed, use the PIT calibration value */
542 if (tsc_ref_min == ULONG_MAX) {
543 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
544 "Using PIT calibration\n");
545 return tsc_pit_min;
549 * The calibration values differ too much. In doubt, we use
550 * the PIT value as we know that there are PMTIMERs around
551 * running at double speed. At least we let the user know:
553 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
554 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
555 printk(KERN_INFO "TSC: Using PIT calibration value\n");
556 return tsc_pit_min;
559 int recalibrate_cpu_khz(void)
561 #ifndef CONFIG_SMP
562 unsigned long cpu_khz_old = cpu_khz;
564 if (cpu_has_tsc) {
565 tsc_khz = x86_platform.calibrate_tsc();
566 cpu_khz = tsc_khz;
567 cpu_data(0).loops_per_jiffy =
568 cpufreq_scale(cpu_data(0).loops_per_jiffy,
569 cpu_khz_old, cpu_khz);
570 return 0;
571 } else
572 return -ENODEV;
573 #else
574 return -ENODEV;
575 #endif
578 EXPORT_SYMBOL(recalibrate_cpu_khz);
581 /* Accelerators for sched_clock()
582 * convert from cycles(64bits) => nanoseconds (64bits)
583 * basic equation:
584 * ns = cycles / (freq / ns_per_sec)
585 * ns = cycles * (ns_per_sec / freq)
586 * ns = cycles * (10^9 / (cpu_khz * 10^3))
587 * ns = cycles * (10^6 / cpu_khz)
589 * Then we use scaling math (suggested by george@mvista.com) to get:
590 * ns = cycles * (10^6 * SC / cpu_khz) / SC
591 * ns = cycles * cyc2ns_scale / SC
593 * And since SC is a constant power of two, we can convert the div
594 * into a shift.
596 * We can use khz divisor instead of mhz to keep a better precision, since
597 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
598 * (mathieu.desnoyers@polymtl.ca)
600 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
603 DEFINE_PER_CPU(unsigned long, cyc2ns);
604 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
606 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
608 unsigned long long tsc_now, ns_now, *offset;
609 unsigned long flags, *scale;
611 local_irq_save(flags);
612 sched_clock_idle_sleep_event();
614 scale = &per_cpu(cyc2ns, cpu);
615 offset = &per_cpu(cyc2ns_offset, cpu);
617 rdtscll(tsc_now);
618 ns_now = __cycles_2_ns(tsc_now);
620 if (cpu_khz) {
621 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
622 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
625 sched_clock_idle_wakeup_event(0);
626 local_irq_restore(flags);
629 #ifdef CONFIG_CPU_FREQ
631 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
632 * changes.
634 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
635 * not that important because current Opteron setups do not support
636 * scaling on SMP anyroads.
638 * Should fix up last_tsc too. Currently gettimeofday in the
639 * first tick after the change will be slightly wrong.
642 static unsigned int ref_freq;
643 static unsigned long loops_per_jiffy_ref;
644 static unsigned long tsc_khz_ref;
646 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
647 void *data)
649 struct cpufreq_freqs *freq = data;
650 unsigned long *lpj;
652 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
653 return 0;
655 lpj = &boot_cpu_data.loops_per_jiffy;
656 #ifdef CONFIG_SMP
657 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
658 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
659 #endif
661 if (!ref_freq) {
662 ref_freq = freq->old;
663 loops_per_jiffy_ref = *lpj;
664 tsc_khz_ref = tsc_khz;
666 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
667 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
668 (val == CPUFREQ_RESUMECHANGE)) {
669 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
671 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
672 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
673 mark_tsc_unstable("cpufreq changes");
676 set_cyc2ns_scale(tsc_khz, freq->cpu);
678 return 0;
681 static struct notifier_block time_cpufreq_notifier_block = {
682 .notifier_call = time_cpufreq_notifier
685 static int __init cpufreq_tsc(void)
687 if (!cpu_has_tsc)
688 return 0;
689 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
690 return 0;
691 cpufreq_register_notifier(&time_cpufreq_notifier_block,
692 CPUFREQ_TRANSITION_NOTIFIER);
693 return 0;
696 core_initcall(cpufreq_tsc);
698 #endif /* CONFIG_CPU_FREQ */
700 /* clocksource code */
702 static struct clocksource clocksource_tsc;
705 * We compare the TSC to the cycle_last value in the clocksource
706 * structure to avoid a nasty time-warp. This can be observed in a
707 * very small window right after one CPU updated cycle_last under
708 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
709 * is smaller than the cycle_last reference value due to a TSC which
710 * is slighty behind. This delta is nowhere else observable, but in
711 * that case it results in a forward time jump in the range of hours
712 * due to the unsigned delta calculation of the time keeping core
713 * code, which is necessary to support wrapping clocksources like pm
714 * timer.
716 static cycle_t read_tsc(struct clocksource *cs)
718 cycle_t ret = (cycle_t)get_cycles();
720 return ret >= clocksource_tsc.cycle_last ?
721 ret : clocksource_tsc.cycle_last;
724 #ifdef CONFIG_X86_64
725 static cycle_t __vsyscall_fn vread_tsc(void)
727 cycle_t ret;
730 * Surround the RDTSC by barriers, to make sure it's not
731 * speculated to outside the seqlock critical section and
732 * does not cause time warps:
734 rdtsc_barrier();
735 ret = (cycle_t)vget_cycles();
736 rdtsc_barrier();
738 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
739 ret : __vsyscall_gtod_data.clock.cycle_last;
741 #endif
743 static void resume_tsc(void)
745 clocksource_tsc.cycle_last = 0;
748 static struct clocksource clocksource_tsc = {
749 .name = "tsc",
750 .rating = 300,
751 .read = read_tsc,
752 .resume = resume_tsc,
753 .mask = CLOCKSOURCE_MASK(64),
754 .shift = 22,
755 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
756 CLOCK_SOURCE_MUST_VERIFY,
757 #ifdef CONFIG_X86_64
758 .vread = vread_tsc,
759 #endif
762 void mark_tsc_unstable(char *reason)
764 if (!tsc_unstable) {
765 tsc_unstable = 1;
766 printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
767 /* Change only the rating, when not registered */
768 if (clocksource_tsc.mult)
769 clocksource_mark_unstable(&clocksource_tsc);
770 else {
771 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
772 clocksource_tsc.rating = 0;
777 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
779 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
781 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
782 d->ident);
783 tsc_unstable = 1;
784 return 0;
787 /* List of systems that have known TSC problems */
788 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
790 .callback = dmi_mark_tsc_unstable,
791 .ident = "IBM Thinkpad 380XD",
792 .matches = {
793 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
794 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
800 static void __init check_system_tsc_reliable(void)
802 #ifdef CONFIG_MGEODE_LX
803 /* RTSC counts during suspend */
804 #define RTSC_SUSP 0x100
805 unsigned long res_low, res_high;
807 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
808 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
809 if (res_low & RTSC_SUSP)
810 tsc_clocksource_reliable = 1;
811 #endif
812 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
813 tsc_clocksource_reliable = 1;
817 * Make an educated guess if the TSC is trustworthy and synchronized
818 * over all CPUs.
820 __cpuinit int unsynchronized_tsc(void)
822 if (!cpu_has_tsc || tsc_unstable)
823 return 1;
825 #ifdef CONFIG_SMP
826 if (apic_is_clustered_box())
827 return 1;
828 #endif
830 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
831 return 0;
833 * Intel systems are normally all synchronized.
834 * Exceptions must mark TSC as unstable:
836 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
837 /* assume multi socket systems are not synchronized: */
838 if (num_possible_cpus() > 1)
839 tsc_unstable = 1;
842 return tsc_unstable;
845 static void __init init_tsc_clocksource(void)
847 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
848 clocksource_tsc.shift);
849 if (tsc_clocksource_reliable)
850 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
851 /* lower the rating if we already know its unstable: */
852 if (check_tsc_unstable()) {
853 clocksource_tsc.rating = 0;
854 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
856 clocksource_register(&clocksource_tsc);
859 #ifdef CONFIG_X86_64
861 * calibrate_cpu is used on systems with fixed rate TSCs to determine
862 * processor frequency
864 #define TICK_COUNT 100000000
865 static unsigned long __init calibrate_cpu(void)
867 int tsc_start, tsc_now;
868 int i, no_ctr_free;
869 unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
870 unsigned long flags;
872 for (i = 0; i < 4; i++)
873 if (avail_to_resrv_perfctr_nmi_bit(i))
874 break;
875 no_ctr_free = (i == 4);
876 if (no_ctr_free) {
877 WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
878 "cpu_khz value may be incorrect.\n");
879 i = 3;
880 rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
881 wrmsrl(MSR_K7_EVNTSEL3, 0);
882 rdmsrl(MSR_K7_PERFCTR3, pmc3);
883 } else {
884 reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
885 reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
887 local_irq_save(flags);
888 /* start measuring cycles, incrementing from 0 */
889 wrmsrl(MSR_K7_PERFCTR0 + i, 0);
890 wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
891 rdtscl(tsc_start);
892 do {
893 rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
894 tsc_now = get_cycles();
895 } while ((tsc_now - tsc_start) < TICK_COUNT);
897 local_irq_restore(flags);
898 if (no_ctr_free) {
899 wrmsrl(MSR_K7_EVNTSEL3, 0);
900 wrmsrl(MSR_K7_PERFCTR3, pmc3);
901 wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
902 } else {
903 release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
904 release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
907 return pmc_now * tsc_khz / (tsc_now - tsc_start);
909 #else
910 static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
911 #endif
913 void __init tsc_init(void)
915 u64 lpj;
916 int cpu;
918 x86_init.timers.tsc_pre_init();
920 if (!cpu_has_tsc)
921 return;
923 tsc_khz = x86_platform.calibrate_tsc();
924 cpu_khz = tsc_khz;
926 if (!tsc_khz) {
927 mark_tsc_unstable("could not calculate TSC khz");
928 return;
931 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
932 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
933 cpu_khz = calibrate_cpu();
935 printk("Detected %lu.%03lu MHz processor.\n",
936 (unsigned long)cpu_khz / 1000,
937 (unsigned long)cpu_khz % 1000);
940 * Secondary CPUs do not run through tsc_init(), so set up
941 * all the scale factors for all CPUs, assuming the same
942 * speed as the bootup CPU. (cpufreq notifiers will fix this
943 * up if their speed diverges)
945 for_each_possible_cpu(cpu)
946 set_cyc2ns_scale(cpu_khz, cpu);
948 if (tsc_disabled > 0)
949 return;
951 /* now allow native_sched_clock() to use rdtsc */
952 tsc_disabled = 0;
954 lpj = ((u64)tsc_khz * 1000);
955 do_div(lpj, HZ);
956 lpj_fine = lpj;
958 use_tsc_delay();
959 /* Check and install the TSC clocksource */
960 dmi_check_system(bad_tsc_dmi_table);
962 if (unsynchronized_tsc())
963 mark_tsc_unstable("TSCs unsynchronized");
965 check_system_tsc_reliable();
966 init_tsc_clocksource();