tracing: Fix trace_buf_size boot option
[linux-2.6/verdex.git] / fs / nilfs2 / super.c
blobab785f85aa501abb40691a61b24395e0419c62f8
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66 MODULE_LICENSE("GPL");
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
71 /**
72 * nilfs_error() - report failure condition on a filesystem
74 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75 * reporting an error message. It should be called when NILFS detects
76 * incoherences or defects of meta data on disk. As for sustainable
77 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78 * function should be used instead.
80 * The segment constructor must not call this function because it can
81 * kill itself.
83 void nilfs_error(struct super_block *sb, const char *function,
84 const char *fmt, ...)
86 struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 va_list args;
89 va_start(args, fmt);
90 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 vprintk(fmt, args);
92 printk("\n");
93 va_end(args);
95 if (!(sb->s_flags & MS_RDONLY)) {
96 struct the_nilfs *nilfs = sbi->s_nilfs;
98 if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 nilfs_detach_segment_constructor(sbi);
101 down_write(&nilfs->ns_sem);
102 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 nilfs->ns_sbp[0]->s_state |=
105 cpu_to_le16(NILFS_ERROR_FS);
106 nilfs_commit_super(sbi, 1);
108 up_write(&nilfs->ns_sem);
110 if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 printk(KERN_CRIT "Remounting filesystem read-only\n");
112 sb->s_flags |= MS_RDONLY;
116 if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 panic("NILFS (device %s): panic forced after error\n",
118 sb->s_id);
121 void nilfs_warning(struct super_block *sb, const char *function,
122 const char *fmt, ...)
124 va_list args;
126 va_start(args, fmt);
127 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 sb->s_id, function);
129 vprintk(fmt, args);
130 printk("\n");
131 va_end(args);
134 static struct kmem_cache *nilfs_inode_cachep;
136 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
138 struct nilfs_inode_info *ii;
140 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 if (!ii)
142 return NULL;
143 ii->i_bh = NULL;
144 ii->i_state = 0;
145 ii->vfs_inode.i_version = 1;
146 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
147 return &ii->vfs_inode;
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
155 void nilfs_destroy_inode(struct inode *inode)
157 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
160 static void init_once(void *obj)
162 struct nilfs_inode_info *ii = obj;
164 INIT_LIST_HEAD(&ii->i_dirty);
165 #ifdef CONFIG_NILFS_XATTR
166 init_rwsem(&ii->xattr_sem);
167 #endif
168 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
169 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
170 inode_init_once(&ii->vfs_inode);
173 static int nilfs_init_inode_cache(void)
175 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
176 sizeof(struct nilfs_inode_info),
177 0, SLAB_RECLAIM_ACCOUNT,
178 init_once);
180 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
183 static inline void nilfs_destroy_inode_cache(void)
185 kmem_cache_destroy(nilfs_inode_cachep);
188 static void nilfs_clear_inode(struct inode *inode)
190 struct nilfs_inode_info *ii = NILFS_I(inode);
192 #ifdef CONFIG_NILFS_POSIX_ACL
193 if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
194 posix_acl_release(ii->i_acl);
195 ii->i_acl = NILFS_ACL_NOT_CACHED;
197 if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
198 posix_acl_release(ii->i_default_acl);
199 ii->i_default_acl = NILFS_ACL_NOT_CACHED;
201 #endif
203 * Free resources allocated in nilfs_read_inode(), here.
205 BUG_ON(!list_empty(&ii->i_dirty));
206 brelse(ii->i_bh);
207 ii->i_bh = NULL;
209 if (test_bit(NILFS_I_BMAP, &ii->i_state))
210 nilfs_bmap_clear(ii->i_bmap);
212 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
215 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
217 struct the_nilfs *nilfs = sbi->s_nilfs;
218 int err;
219 int barrier_done = 0;
221 if (nilfs_test_opt(sbi, BARRIER)) {
222 set_buffer_ordered(nilfs->ns_sbh[0]);
223 barrier_done = 1;
225 retry:
226 set_buffer_dirty(nilfs->ns_sbh[0]);
227 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
228 if (err == -EOPNOTSUPP && barrier_done) {
229 nilfs_warning(sbi->s_super, __func__,
230 "barrier-based sync failed. "
231 "disabling barriers\n");
232 nilfs_clear_opt(sbi, BARRIER);
233 barrier_done = 0;
234 clear_buffer_ordered(nilfs->ns_sbh[0]);
235 goto retry;
237 if (unlikely(err)) {
238 printk(KERN_ERR
239 "NILFS: unable to write superblock (err=%d)\n", err);
240 if (err == -EIO && nilfs->ns_sbh[1]) {
241 nilfs_fall_back_super_block(nilfs);
242 goto retry;
244 } else {
245 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
248 * The latest segment becomes trailable from the position
249 * written in superblock.
251 clear_nilfs_discontinued(nilfs);
253 /* update GC protection for recent segments */
254 if (nilfs->ns_sbh[1]) {
255 sbp = NULL;
256 if (dupsb) {
257 set_buffer_dirty(nilfs->ns_sbh[1]);
258 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
259 sbp = nilfs->ns_sbp[1];
262 if (sbp) {
263 spin_lock(&nilfs->ns_last_segment_lock);
264 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
265 spin_unlock(&nilfs->ns_last_segment_lock);
269 return err;
272 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
274 struct the_nilfs *nilfs = sbi->s_nilfs;
275 struct nilfs_super_block **sbp = nilfs->ns_sbp;
276 sector_t nfreeblocks;
277 time_t t;
278 int err;
280 /* nilfs->sem must be locked by the caller. */
281 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
282 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
283 nilfs_swap_super_block(nilfs);
284 else {
285 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
286 sbi->s_super->s_id);
287 return -EIO;
290 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
291 if (unlikely(err)) {
292 printk(KERN_ERR "NILFS: failed to count free blocks\n");
293 return err;
295 spin_lock(&nilfs->ns_last_segment_lock);
296 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
297 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
298 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
299 spin_unlock(&nilfs->ns_last_segment_lock);
301 t = get_seconds();
302 nilfs->ns_sbwtime[0] = t;
303 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
304 sbp[0]->s_wtime = cpu_to_le64(t);
305 sbp[0]->s_sum = 0;
306 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
307 (unsigned char *)sbp[0],
308 nilfs->ns_sbsize));
309 if (dupsb && sbp[1]) {
310 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
311 nilfs->ns_sbwtime[1] = t;
313 sbi->s_super->s_dirt = 0;
314 return nilfs_sync_super(sbi, dupsb);
317 static void nilfs_put_super(struct super_block *sb)
319 struct nilfs_sb_info *sbi = NILFS_SB(sb);
320 struct the_nilfs *nilfs = sbi->s_nilfs;
322 lock_kernel();
324 if (sb->s_dirt)
325 nilfs_write_super(sb);
327 nilfs_detach_segment_constructor(sbi);
329 if (!(sb->s_flags & MS_RDONLY)) {
330 down_write(&nilfs->ns_sem);
331 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
332 nilfs_commit_super(sbi, 1);
333 up_write(&nilfs->ns_sem);
335 down_write(&nilfs->ns_super_sem);
336 if (nilfs->ns_current == sbi)
337 nilfs->ns_current = NULL;
338 up_write(&nilfs->ns_super_sem);
340 nilfs_detach_checkpoint(sbi);
341 put_nilfs(sbi->s_nilfs);
342 sbi->s_super = NULL;
343 sb->s_fs_info = NULL;
344 nilfs_put_sbinfo(sbi);
346 unlock_kernel();
350 * nilfs_write_super - write super block(s) of NILFS
351 * @sb: super_block
353 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
354 * clears s_dirt. This function is called in the section protected by
355 * lock_super().
357 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
358 * of the struct the_nilfs. Lock order must be as follows:
360 * 1. lock_super()
361 * 2. down_write(&nilfs->ns_sem)
363 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
364 * of the super block (nilfs->ns_sbp[]).
366 * In most cases, VFS functions call lock_super() before calling these
367 * methods. So we must be careful not to bring on deadlocks when using
368 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
370 * Note that order of lock_kernel() and lock_super() depends on contexts
371 * of VFS. We should also note that lock_kernel() can be used in its
372 * protective section and only the outermost one has an effect.
374 static void nilfs_write_super(struct super_block *sb)
376 struct nilfs_sb_info *sbi = NILFS_SB(sb);
377 struct the_nilfs *nilfs = sbi->s_nilfs;
379 down_write(&nilfs->ns_sem);
380 if (!(sb->s_flags & MS_RDONLY)) {
381 struct nilfs_super_block **sbp = nilfs->ns_sbp;
382 u64 t = get_seconds();
383 int dupsb;
385 if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
386 t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
387 up_write(&nilfs->ns_sem);
388 return;
390 dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
391 nilfs_commit_super(sbi, dupsb);
393 sb->s_dirt = 0;
394 up_write(&nilfs->ns_sem);
397 static int nilfs_sync_fs(struct super_block *sb, int wait)
399 int err = 0;
401 nilfs_write_super(sb);
403 /* This function is called when super block should be written back */
404 if (wait)
405 err = nilfs_construct_segment(sb);
406 return err;
409 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
411 struct the_nilfs *nilfs = sbi->s_nilfs;
412 struct nilfs_checkpoint *raw_cp;
413 struct buffer_head *bh_cp;
414 int err;
416 down_write(&nilfs->ns_super_sem);
417 list_add(&sbi->s_list, &nilfs->ns_supers);
418 up_write(&nilfs->ns_super_sem);
420 sbi->s_ifile = nilfs_mdt_new(
421 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
422 if (!sbi->s_ifile)
423 return -ENOMEM;
425 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
426 if (unlikely(err))
427 goto failed;
429 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
430 &bh_cp);
431 if (unlikely(err)) {
432 if (err == -ENOENT || err == -EINVAL) {
433 printk(KERN_ERR
434 "NILFS: Invalid checkpoint "
435 "(checkpoint number=%llu)\n",
436 (unsigned long long)cno);
437 err = -EINVAL;
439 goto failed;
441 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
442 if (unlikely(err))
443 goto failed_bh;
444 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
445 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
447 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
448 return 0;
450 failed_bh:
451 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
452 failed:
453 nilfs_mdt_destroy(sbi->s_ifile);
454 sbi->s_ifile = NULL;
456 down_write(&nilfs->ns_super_sem);
457 list_del_init(&sbi->s_list);
458 up_write(&nilfs->ns_super_sem);
460 return err;
463 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
465 struct the_nilfs *nilfs = sbi->s_nilfs;
467 nilfs_mdt_clear(sbi->s_ifile);
468 nilfs_mdt_destroy(sbi->s_ifile);
469 sbi->s_ifile = NULL;
470 down_write(&nilfs->ns_super_sem);
471 list_del_init(&sbi->s_list);
472 up_write(&nilfs->ns_super_sem);
475 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
477 struct the_nilfs *nilfs = sbi->s_nilfs;
478 int err = 0;
480 down_write(&nilfs->ns_sem);
481 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
482 nilfs->ns_mount_state |= NILFS_VALID_FS;
483 err = nilfs_commit_super(sbi, 1);
484 if (likely(!err))
485 printk(KERN_INFO "NILFS: recovery complete.\n");
487 up_write(&nilfs->ns_sem);
488 return err;
491 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
493 struct super_block *sb = dentry->d_sb;
494 struct nilfs_sb_info *sbi = NILFS_SB(sb);
495 struct the_nilfs *nilfs = sbi->s_nilfs;
496 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
497 unsigned long long blocks;
498 unsigned long overhead;
499 unsigned long nrsvblocks;
500 sector_t nfreeblocks;
501 int err;
504 * Compute all of the segment blocks
506 * The blocks before first segment and after last segment
507 * are excluded.
509 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
510 - nilfs->ns_first_data_block;
511 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
514 * Compute the overhead
516 * When distributing meta data blocks outside semgent structure,
517 * We must count them as the overhead.
519 overhead = 0;
521 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
522 if (unlikely(err))
523 return err;
525 buf->f_type = NILFS_SUPER_MAGIC;
526 buf->f_bsize = sb->s_blocksize;
527 buf->f_blocks = blocks - overhead;
528 buf->f_bfree = nfreeblocks;
529 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
530 (buf->f_bfree - nrsvblocks) : 0;
531 buf->f_files = atomic_read(&sbi->s_inodes_count);
532 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
533 buf->f_namelen = NILFS_NAME_LEN;
534 buf->f_fsid.val[0] = (u32)id;
535 buf->f_fsid.val[1] = (u32)(id >> 32);
537 return 0;
540 static struct super_operations nilfs_sops = {
541 .alloc_inode = nilfs_alloc_inode,
542 .destroy_inode = nilfs_destroy_inode,
543 .dirty_inode = nilfs_dirty_inode,
544 /* .write_inode = nilfs_write_inode, */
545 /* .put_inode = nilfs_put_inode, */
546 /* .drop_inode = nilfs_drop_inode, */
547 .delete_inode = nilfs_delete_inode,
548 .put_super = nilfs_put_super,
549 .write_super = nilfs_write_super,
550 .sync_fs = nilfs_sync_fs,
551 /* .write_super_lockfs */
552 /* .unlockfs */
553 .statfs = nilfs_statfs,
554 .remount_fs = nilfs_remount,
555 .clear_inode = nilfs_clear_inode,
556 /* .umount_begin */
557 /* .show_options */
560 static struct inode *
561 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
563 struct inode *inode;
565 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
566 ino != NILFS_SKETCH_INO)
567 return ERR_PTR(-ESTALE);
569 inode = nilfs_iget(sb, ino);
570 if (IS_ERR(inode))
571 return ERR_CAST(inode);
572 if (generation && inode->i_generation != generation) {
573 iput(inode);
574 return ERR_PTR(-ESTALE);
577 return inode;
580 static struct dentry *
581 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
582 int fh_type)
584 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
585 nilfs_nfs_get_inode);
588 static struct dentry *
589 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
590 int fh_type)
592 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
593 nilfs_nfs_get_inode);
596 static struct export_operations nilfs_export_ops = {
597 .fh_to_dentry = nilfs_fh_to_dentry,
598 .fh_to_parent = nilfs_fh_to_parent,
599 .get_parent = nilfs_get_parent,
602 enum {
603 Opt_err_cont, Opt_err_panic, Opt_err_ro,
604 Opt_barrier, Opt_snapshot, Opt_order,
605 Opt_err,
608 static match_table_t tokens = {
609 {Opt_err_cont, "errors=continue"},
610 {Opt_err_panic, "errors=panic"},
611 {Opt_err_ro, "errors=remount-ro"},
612 {Opt_barrier, "barrier=%s"},
613 {Opt_snapshot, "cp=%u"},
614 {Opt_order, "order=%s"},
615 {Opt_err, NULL}
618 static int match_bool(substring_t *s, int *result)
620 int len = s->to - s->from;
622 if (strncmp(s->from, "on", len) == 0)
623 *result = 1;
624 else if (strncmp(s->from, "off", len) == 0)
625 *result = 0;
626 else
627 return 1;
628 return 0;
631 static int parse_options(char *options, struct super_block *sb)
633 struct nilfs_sb_info *sbi = NILFS_SB(sb);
634 char *p;
635 substring_t args[MAX_OPT_ARGS];
636 int option;
638 if (!options)
639 return 1;
641 while ((p = strsep(&options, ",")) != NULL) {
642 int token;
643 if (!*p)
644 continue;
646 token = match_token(p, tokens, args);
647 switch (token) {
648 case Opt_barrier:
649 if (match_bool(&args[0], &option))
650 return 0;
651 if (option)
652 nilfs_set_opt(sbi, BARRIER);
653 else
654 nilfs_clear_opt(sbi, BARRIER);
655 break;
656 case Opt_order:
657 if (strcmp(args[0].from, "relaxed") == 0)
658 /* Ordered data semantics */
659 nilfs_clear_opt(sbi, STRICT_ORDER);
660 else if (strcmp(args[0].from, "strict") == 0)
661 /* Strict in-order semantics */
662 nilfs_set_opt(sbi, STRICT_ORDER);
663 else
664 return 0;
665 break;
666 case Opt_err_panic:
667 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
668 break;
669 case Opt_err_ro:
670 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
671 break;
672 case Opt_err_cont:
673 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
674 break;
675 case Opt_snapshot:
676 if (match_int(&args[0], &option) || option <= 0)
677 return 0;
678 if (!(sb->s_flags & MS_RDONLY))
679 return 0;
680 sbi->s_snapshot_cno = option;
681 nilfs_set_opt(sbi, SNAPSHOT);
682 break;
683 default:
684 printk(KERN_ERR
685 "NILFS: Unrecognized mount option \"%s\"\n", p);
686 return 0;
689 return 1;
692 static inline void
693 nilfs_set_default_options(struct nilfs_sb_info *sbi,
694 struct nilfs_super_block *sbp)
696 sbi->s_mount_opt =
697 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
700 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
702 struct the_nilfs *nilfs = sbi->s_nilfs;
703 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
704 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
705 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
707 /* nilfs->sem must be locked by the caller. */
708 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
709 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
710 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
711 printk(KERN_WARNING
712 "NILFS warning: mounting fs with errors\n");
713 #if 0
714 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
715 printk(KERN_WARNING
716 "NILFS warning: maximal mount count reached\n");
717 #endif
719 if (!max_mnt_count)
720 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
722 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
723 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
724 sbp->s_mtime = cpu_to_le64(get_seconds());
725 return nilfs_commit_super(sbi, 1);
728 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
729 u64 pos, int blocksize,
730 struct buffer_head **pbh)
732 unsigned long long sb_index = pos;
733 unsigned long offset;
735 offset = do_div(sb_index, blocksize);
736 *pbh = sb_bread(sb, sb_index);
737 if (!*pbh)
738 return NULL;
739 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
742 int nilfs_store_magic_and_option(struct super_block *sb,
743 struct nilfs_super_block *sbp,
744 char *data)
746 struct nilfs_sb_info *sbi = NILFS_SB(sb);
748 sb->s_magic = le16_to_cpu(sbp->s_magic);
750 /* FS independent flags */
751 #ifdef NILFS_ATIME_DISABLE
752 sb->s_flags |= MS_NOATIME;
753 #endif
755 nilfs_set_default_options(sbi, sbp);
757 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
758 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
759 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
760 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
762 return !parse_options(data, sb) ? -EINVAL : 0 ;
766 * nilfs_fill_super() - initialize a super block instance
767 * @sb: super_block
768 * @data: mount options
769 * @silent: silent mode flag
770 * @nilfs: the_nilfs struct
772 * This function is called exclusively by nilfs->ns_mount_mutex.
773 * So, the recovery process is protected from other simultaneous mounts.
775 static int
776 nilfs_fill_super(struct super_block *sb, void *data, int silent,
777 struct the_nilfs *nilfs)
779 struct nilfs_sb_info *sbi;
780 struct inode *root;
781 __u64 cno;
782 int err;
784 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
785 if (!sbi)
786 return -ENOMEM;
788 sb->s_fs_info = sbi;
790 get_nilfs(nilfs);
791 sbi->s_nilfs = nilfs;
792 sbi->s_super = sb;
793 atomic_set(&sbi->s_count, 1);
795 err = init_nilfs(nilfs, sbi, (char *)data);
796 if (err)
797 goto failed_sbi;
799 spin_lock_init(&sbi->s_inode_lock);
800 INIT_LIST_HEAD(&sbi->s_dirty_files);
801 INIT_LIST_HEAD(&sbi->s_list);
804 * Following initialization is overlapped because
805 * nilfs_sb_info structure has been cleared at the beginning.
806 * But we reserve them to keep our interest and make ready
807 * for the future change.
809 get_random_bytes(&sbi->s_next_generation,
810 sizeof(sbi->s_next_generation));
811 spin_lock_init(&sbi->s_next_gen_lock);
813 sb->s_op = &nilfs_sops;
814 sb->s_export_op = &nilfs_export_ops;
815 sb->s_root = NULL;
816 sb->s_time_gran = 1;
818 if (!nilfs_loaded(nilfs)) {
819 err = load_nilfs(nilfs, sbi);
820 if (err)
821 goto failed_sbi;
823 cno = nilfs_last_cno(nilfs);
825 if (sb->s_flags & MS_RDONLY) {
826 if (nilfs_test_opt(sbi, SNAPSHOT)) {
827 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
828 sbi->s_snapshot_cno);
829 if (err < 0)
830 goto failed_sbi;
831 if (!err) {
832 printk(KERN_ERR
833 "NILFS: The specified checkpoint is "
834 "not a snapshot "
835 "(checkpoint number=%llu).\n",
836 (unsigned long long)sbi->s_snapshot_cno);
837 err = -EINVAL;
838 goto failed_sbi;
840 cno = sbi->s_snapshot_cno;
841 } else
842 /* Read-only mount */
843 sbi->s_snapshot_cno = cno;
846 err = nilfs_attach_checkpoint(sbi, cno);
847 if (err) {
848 printk(KERN_ERR "NILFS: error loading a checkpoint"
849 " (checkpoint number=%llu).\n", (unsigned long long)cno);
850 goto failed_sbi;
853 if (!(sb->s_flags & MS_RDONLY)) {
854 err = nilfs_attach_segment_constructor(sbi);
855 if (err)
856 goto failed_checkpoint;
859 root = nilfs_iget(sb, NILFS_ROOT_INO);
860 if (IS_ERR(root)) {
861 printk(KERN_ERR "NILFS: get root inode failed\n");
862 err = PTR_ERR(root);
863 goto failed_segctor;
865 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
866 iput(root);
867 printk(KERN_ERR "NILFS: corrupt root inode.\n");
868 err = -EINVAL;
869 goto failed_segctor;
871 sb->s_root = d_alloc_root(root);
872 if (!sb->s_root) {
873 iput(root);
874 printk(KERN_ERR "NILFS: get root dentry failed\n");
875 err = -ENOMEM;
876 goto failed_segctor;
879 if (!(sb->s_flags & MS_RDONLY)) {
880 down_write(&nilfs->ns_sem);
881 nilfs_setup_super(sbi);
882 up_write(&nilfs->ns_sem);
885 err = nilfs_mark_recovery_complete(sbi);
886 if (unlikely(err)) {
887 printk(KERN_ERR "NILFS: recovery failed.\n");
888 goto failed_root;
891 down_write(&nilfs->ns_super_sem);
892 if (!nilfs_test_opt(sbi, SNAPSHOT))
893 nilfs->ns_current = sbi;
894 up_write(&nilfs->ns_super_sem);
896 return 0;
898 failed_root:
899 dput(sb->s_root);
900 sb->s_root = NULL;
902 failed_segctor:
903 nilfs_detach_segment_constructor(sbi);
905 failed_checkpoint:
906 nilfs_detach_checkpoint(sbi);
908 failed_sbi:
909 put_nilfs(nilfs);
910 sb->s_fs_info = NULL;
911 nilfs_put_sbinfo(sbi);
912 return err;
915 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
917 struct nilfs_sb_info *sbi = NILFS_SB(sb);
918 struct nilfs_super_block *sbp;
919 struct the_nilfs *nilfs = sbi->s_nilfs;
920 unsigned long old_sb_flags;
921 struct nilfs_mount_options old_opts;
922 int err;
924 lock_kernel();
926 down_write(&nilfs->ns_super_sem);
927 old_sb_flags = sb->s_flags;
928 old_opts.mount_opt = sbi->s_mount_opt;
929 old_opts.snapshot_cno = sbi->s_snapshot_cno;
931 if (!parse_options(data, sb)) {
932 err = -EINVAL;
933 goto restore_opts;
935 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
937 if ((*flags & MS_RDONLY) &&
938 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
939 printk(KERN_WARNING "NILFS (device %s): couldn't "
940 "remount to a different snapshot. \n",
941 sb->s_id);
942 err = -EINVAL;
943 goto restore_opts;
946 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
947 goto out;
948 if (*flags & MS_RDONLY) {
949 /* Shutting down the segment constructor */
950 nilfs_detach_segment_constructor(sbi);
951 sb->s_flags |= MS_RDONLY;
953 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
954 /* nilfs_set_opt(sbi, SNAPSHOT); */
957 * Remounting a valid RW partition RDONLY, so set
958 * the RDONLY flag and then mark the partition as valid again.
960 down_write(&nilfs->ns_sem);
961 sbp = nilfs->ns_sbp[0];
962 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
963 (nilfs->ns_mount_state & NILFS_VALID_FS))
964 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
965 sbp->s_mtime = cpu_to_le64(get_seconds());
966 nilfs_commit_super(sbi, 1);
967 up_write(&nilfs->ns_sem);
968 } else {
970 * Mounting a RDONLY partition read-write, so reread and
971 * store the current valid flag. (It may have been changed
972 * by fsck since we originally mounted the partition.)
974 if (nilfs->ns_current && nilfs->ns_current != sbi) {
975 printk(KERN_WARNING "NILFS (device %s): couldn't "
976 "remount because an RW-mount exists.\n",
977 sb->s_id);
978 err = -EBUSY;
979 goto restore_opts;
981 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
982 printk(KERN_WARNING "NILFS (device %s): couldn't "
983 "remount because the current RO-mount is not "
984 "the latest one.\n",
985 sb->s_id);
986 err = -EINVAL;
987 goto restore_opts;
989 sb->s_flags &= ~MS_RDONLY;
990 nilfs_clear_opt(sbi, SNAPSHOT);
991 sbi->s_snapshot_cno = 0;
993 err = nilfs_attach_segment_constructor(sbi);
994 if (err)
995 goto restore_opts;
997 down_write(&nilfs->ns_sem);
998 nilfs_setup_super(sbi);
999 up_write(&nilfs->ns_sem);
1001 nilfs->ns_current = sbi;
1003 out:
1004 up_write(&nilfs->ns_super_sem);
1005 unlock_kernel();
1006 return 0;
1008 restore_opts:
1009 sb->s_flags = old_sb_flags;
1010 sbi->s_mount_opt = old_opts.mount_opt;
1011 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1012 up_write(&nilfs->ns_super_sem);
1013 unlock_kernel();
1014 return err;
1017 struct nilfs_super_data {
1018 struct block_device *bdev;
1019 struct nilfs_sb_info *sbi;
1020 __u64 cno;
1021 int flags;
1025 * nilfs_identify - pre-read mount options needed to identify mount instance
1026 * @data: mount options
1027 * @sd: nilfs_super_data
1029 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1031 char *p, *options = data;
1032 substring_t args[MAX_OPT_ARGS];
1033 int option, token;
1034 int ret = 0;
1036 do {
1037 p = strsep(&options, ",");
1038 if (p != NULL && *p) {
1039 token = match_token(p, tokens, args);
1040 if (token == Opt_snapshot) {
1041 if (!(sd->flags & MS_RDONLY))
1042 ret++;
1043 else {
1044 ret = match_int(&args[0], &option);
1045 if (!ret) {
1046 if (option > 0)
1047 sd->cno = option;
1048 else
1049 ret++;
1053 if (ret)
1054 printk(KERN_ERR
1055 "NILFS: invalid mount option: %s\n", p);
1057 if (!options)
1058 break;
1059 BUG_ON(options == data);
1060 *(options - 1) = ',';
1061 } while (!ret);
1062 return ret;
1065 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1067 struct nilfs_super_data *sd = data;
1069 s->s_bdev = sd->bdev;
1070 s->s_dev = s->s_bdev->bd_dev;
1071 return 0;
1074 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1076 struct nilfs_super_data *sd = data;
1078 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1081 static int
1082 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1083 const char *dev_name, void *data, struct vfsmount *mnt)
1085 struct nilfs_super_data sd;
1086 struct super_block *s;
1087 struct the_nilfs *nilfs;
1088 int err, need_to_close = 1;
1090 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1091 if (IS_ERR(sd.bdev))
1092 return PTR_ERR(sd.bdev);
1095 * To get mount instance using sget() vfs-routine, NILFS needs
1096 * much more information than normal filesystems to identify mount
1097 * instance. For snapshot mounts, not only a mount type (ro-mount
1098 * or rw-mount) but also a checkpoint number is required.
1100 sd.cno = 0;
1101 sd.flags = flags;
1102 if (nilfs_identify((char *)data, &sd)) {
1103 err = -EINVAL;
1104 goto failed;
1107 nilfs = find_or_create_nilfs(sd.bdev);
1108 if (!nilfs) {
1109 err = -ENOMEM;
1110 goto failed;
1113 mutex_lock(&nilfs->ns_mount_mutex);
1115 if (!sd.cno) {
1117 * Check if an exclusive mount exists or not.
1118 * Snapshot mounts coexist with a current mount
1119 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1120 * ro-mount are mutually exclusive.
1122 down_read(&nilfs->ns_super_sem);
1123 if (nilfs->ns_current &&
1124 ((nilfs->ns_current->s_super->s_flags ^ flags)
1125 & MS_RDONLY)) {
1126 up_read(&nilfs->ns_super_sem);
1127 err = -EBUSY;
1128 goto failed_unlock;
1130 up_read(&nilfs->ns_super_sem);
1134 * Find existing nilfs_sb_info struct
1136 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1138 if (!sd.cno)
1139 /* trying to get the latest checkpoint. */
1140 sd.cno = nilfs_last_cno(nilfs);
1143 * Get super block instance holding the nilfs_sb_info struct.
1144 * A new instance is allocated if no existing mount is present or
1145 * existing instance has been unmounted.
1147 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1148 if (sd.sbi)
1149 nilfs_put_sbinfo(sd.sbi);
1151 if (IS_ERR(s)) {
1152 err = PTR_ERR(s);
1153 goto failed_unlock;
1156 if (!s->s_root) {
1157 char b[BDEVNAME_SIZE];
1159 /* New superblock instance created */
1160 s->s_flags = flags;
1161 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1162 sb_set_blocksize(s, block_size(sd.bdev));
1164 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1165 if (err)
1166 goto cancel_new;
1168 s->s_flags |= MS_ACTIVE;
1169 need_to_close = 0;
1172 mutex_unlock(&nilfs->ns_mount_mutex);
1173 put_nilfs(nilfs);
1174 if (need_to_close)
1175 close_bdev_exclusive(sd.bdev, flags);
1176 simple_set_mnt(mnt, s);
1177 return 0;
1179 failed_unlock:
1180 mutex_unlock(&nilfs->ns_mount_mutex);
1181 put_nilfs(nilfs);
1182 failed:
1183 close_bdev_exclusive(sd.bdev, flags);
1185 return err;
1187 cancel_new:
1188 /* Abandoning the newly allocated superblock */
1189 mutex_unlock(&nilfs->ns_mount_mutex);
1190 put_nilfs(nilfs);
1191 up_write(&s->s_umount);
1192 deactivate_super(s);
1194 * deactivate_super() invokes close_bdev_exclusive().
1195 * We must finish all post-cleaning before this call;
1196 * put_nilfs() needs the block device.
1198 return err;
1201 struct file_system_type nilfs_fs_type = {
1202 .owner = THIS_MODULE,
1203 .name = "nilfs2",
1204 .get_sb = nilfs_get_sb,
1205 .kill_sb = kill_block_super,
1206 .fs_flags = FS_REQUIRES_DEV,
1209 static int __init init_nilfs_fs(void)
1211 int err;
1213 err = nilfs_init_inode_cache();
1214 if (err)
1215 goto failed;
1217 err = nilfs_init_transaction_cache();
1218 if (err)
1219 goto failed_inode_cache;
1221 err = nilfs_init_segbuf_cache();
1222 if (err)
1223 goto failed_transaction_cache;
1225 err = nilfs_btree_path_cache_init();
1226 if (err)
1227 goto failed_segbuf_cache;
1229 err = register_filesystem(&nilfs_fs_type);
1230 if (err)
1231 goto failed_btree_path_cache;
1233 return 0;
1235 failed_btree_path_cache:
1236 nilfs_btree_path_cache_destroy();
1238 failed_segbuf_cache:
1239 nilfs_destroy_segbuf_cache();
1241 failed_transaction_cache:
1242 nilfs_destroy_transaction_cache();
1244 failed_inode_cache:
1245 nilfs_destroy_inode_cache();
1247 failed:
1248 return err;
1251 static void __exit exit_nilfs_fs(void)
1253 nilfs_destroy_segbuf_cache();
1254 nilfs_destroy_transaction_cache();
1255 nilfs_destroy_inode_cache();
1256 nilfs_btree_path_cache_destroy();
1257 unregister_filesystem(&nilfs_fs_type);
1260 module_init(init_nilfs_fs)
1261 module_exit(exit_nilfs_fs)