2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
41 struct page
*dst_page
, int dst_offset
,
42 struct page
*src_page
, int src_offset
, int size
,
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
46 struct page
*dst_page
, int dst_offset
,
47 struct page
*src_page
, int src_offset
, int size
,
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
61 for (x
= 0; x
< src_size
; x
++)
62 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
67 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
77 for (x
= 0; x
< dst_size
; x
++) {
79 tmp
[1] = src
[x
* 2 + 1];
80 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst
,
95 struct ecryptfs_crypt_stat
*crypt_stat
,
98 struct scatterlist sg
;
99 struct hash_desc desc
= {
100 .tfm
= crypt_stat
->hash_tfm
,
101 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
105 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
106 sg_init_one(&sg
, (u8
*)src
, len
);
108 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
110 if (IS_ERR(desc
.tfm
)) {
111 rc
= PTR_ERR(desc
.tfm
);
112 ecryptfs_printk(KERN_ERR
, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
117 crypt_stat
->hash_tfm
= desc
.tfm
;
119 rc
= crypto_hash_init(&desc
);
122 "%s: Error initializing crypto hash; rc = [%d]\n",
126 rc
= crypto_hash_update(&desc
, &sg
, len
);
129 "%s: Error updating crypto hash; rc = [%d]\n",
133 rc
= crypto_hash_final(&desc
, dst
);
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
141 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
147 char *chaining_modifier
)
149 int cipher_name_len
= strlen(cipher_name
);
150 int chaining_modifier_len
= strlen(chaining_modifier
);
151 int algified_name_len
;
154 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
155 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
156 if (!(*algified_name
)) {
160 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
161 chaining_modifier
, cipher_name
);
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
182 char dst
[MD5_DIGEST_SIZE
];
183 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
185 if (unlikely(ecryptfs_verbosity
> 0)) {
186 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
194 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
195 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
196 if (unlikely(ecryptfs_verbosity
> 0)) {
197 ecryptfs_printk(KERN_DEBUG
, "source:\n");
198 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
200 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
201 (crypt_stat
->iv_bytes
+ 16));
203 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
207 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
208 if (unlikely(ecryptfs_verbosity
> 0)) {
209 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
210 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
225 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
226 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
227 mutex_init(&crypt_stat
->keysig_list_mutex
);
228 mutex_init(&crypt_stat
->cs_mutex
);
229 mutex_init(&crypt_stat
->cs_tfm_mutex
);
230 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
231 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
242 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
245 crypto_free_blkcipher(crypt_stat
->tfm
);
246 if (crypt_stat
->hash_tfm
)
247 crypto_free_hash(crypt_stat
->hash_tfm
);
248 mutex_lock(&crypt_stat
->keysig_list_mutex
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
255 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
258 void ecryptfs_destroy_mount_crypt_stat(
259 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
261 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
263 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
265 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
266 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
267 &mount_crypt_stat
->global_auth_tok_list
,
268 mount_crypt_stat_list
) {
269 list_del(&auth_tok
->mount_crypt_stat_list
);
270 mount_crypt_stat
->num_global_auth_toks
--;
271 if (auth_tok
->global_auth_tok_key
272 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
273 key_put(auth_tok
->global_auth_tok_key
);
274 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
276 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
277 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
281 * virt_to_scatterlist
282 * @addr: Virtual address
283 * @size: Size of data; should be an even multiple of the block size
284 * @sg: Pointer to scatterlist array; set to NULL to obtain only
285 * the number of scatterlist structs required in array
286 * @sg_size: Max array size
288 * Fills in a scatterlist array with page references for a passed
291 * Returns the number of scatterlist structs in array used
293 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
299 int remainder_of_page
;
301 sg_init_table(sg
, sg_size
);
303 while (size
> 0 && i
< sg_size
) {
304 pg
= virt_to_page(addr
);
305 offset
= offset_in_page(addr
);
307 sg_set_page(&sg
[i
], pg
, 0, offset
);
308 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
309 if (size
>= remainder_of_page
) {
311 sg
[i
].length
= remainder_of_page
;
312 addr
+= remainder_of_page
;
313 size
-= remainder_of_page
;
328 * encrypt_scatterlist
329 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330 * @dest_sg: Destination of encrypted data
331 * @src_sg: Data to be encrypted
332 * @size: Length of data to be encrypted
333 * @iv: iv to use during encryption
335 * Returns the number of bytes encrypted; negative value on error
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
338 struct scatterlist
*dest_sg
,
339 struct scatterlist
*src_sg
, int size
,
342 struct blkcipher_desc desc
= {
343 .tfm
= crypt_stat
->tfm
,
345 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
349 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
350 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
351 if (unlikely(ecryptfs_verbosity
> 0)) {
352 ecryptfs_printk(KERN_DEBUG
, "Key size [%d]; key:\n",
353 crypt_stat
->key_size
);
354 ecryptfs_dump_hex(crypt_stat
->key
,
355 crypt_stat
->key_size
);
357 /* Consider doing this once, when the file is opened */
358 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
359 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
360 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
361 crypt_stat
->key_size
);
362 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
365 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
367 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
371 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
372 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
373 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
379 * ecryptfs_lower_offset_for_extent
381 * Convert an eCryptfs page index into a lower byte offset
383 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
384 struct ecryptfs_crypt_stat
*crypt_stat
)
386 (*offset
) = (crypt_stat
->num_header_bytes_at_front
387 + (crypt_stat
->extent_size
* extent_num
));
391 * ecryptfs_encrypt_extent
392 * @enc_extent_page: Allocated page into which to encrypt the data in
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @page: Page containing plaintext data extent to encrypt
397 * @extent_offset: Page extent offset for use in generating IV
399 * Encrypts one extent of data.
401 * Return zero on success; non-zero otherwise
403 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
404 struct ecryptfs_crypt_stat
*crypt_stat
,
406 unsigned long extent_offset
)
409 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
412 extent_base
= (((loff_t
)page
->index
)
413 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
414 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
415 (extent_base
+ extent_offset
));
417 ecryptfs_printk(KERN_ERR
, "Error attempting to "
418 "derive IV for extent [0x%.16x]; "
419 "rc = [%d]\n", (extent_base
+ extent_offset
),
423 if (unlikely(ecryptfs_verbosity
> 0)) {
424 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
426 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
427 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
429 ecryptfs_dump_hex((char *)
431 + (extent_offset
* crypt_stat
->extent_size
)),
434 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
436 * crypt_stat
->extent_size
),
437 crypt_stat
->extent_size
, extent_iv
);
439 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
440 "page->index = [%ld], extent_offset = [%ld]; "
441 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
446 if (unlikely(ecryptfs_verbosity
> 0)) {
447 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16x]; "
448 "rc = [%d]\n", (extent_base
+ extent_offset
),
450 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
459 * ecryptfs_encrypt_page
460 * @page: Page mapped from the eCryptfs inode for the file; contains
461 * decrypted content that needs to be encrypted (to a temporary
462 * page; not in place) and written out to the lower file
464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465 * that eCryptfs pages may straddle the lower pages -- for instance,
466 * if the file was created on a machine with an 8K page size
467 * (resulting in an 8K header), and then the file is copied onto a
468 * host with a 32K page size, then when reading page 0 of the eCryptfs
469 * file, 24K of page 0 of the lower file will be read and decrypted,
470 * and then 8K of page 1 of the lower file will be read and decrypted.
472 * Returns zero on success; negative on error
474 int ecryptfs_encrypt_page(struct page
*page
)
476 struct inode
*ecryptfs_inode
;
477 struct ecryptfs_crypt_stat
*crypt_stat
;
478 char *enc_extent_virt
;
479 struct page
*enc_extent_page
= NULL
;
480 loff_t extent_offset
;
483 ecryptfs_inode
= page
->mapping
->host
;
485 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
486 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
487 rc
= ecryptfs_write_lower_page_segment(ecryptfs_inode
, page
,
490 printk(KERN_ERR
"%s: Error attempting to copy "
491 "page at index [%ld]\n", __func__
,
495 enc_extent_page
= alloc_page(GFP_USER
);
496 if (!enc_extent_page
) {
498 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
499 "encrypted extent\n");
502 enc_extent_virt
= kmap(enc_extent_page
);
503 for (extent_offset
= 0;
504 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
508 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
511 printk(KERN_ERR
"%s: Error encrypting extent; "
512 "rc = [%d]\n", __func__
, rc
);
515 ecryptfs_lower_offset_for_extent(
516 &offset
, ((((loff_t
)page
->index
)
518 / crypt_stat
->extent_size
))
519 + extent_offset
), crypt_stat
);
520 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
521 offset
, crypt_stat
->extent_size
);
523 ecryptfs_printk(KERN_ERR
, "Error attempting "
524 "to write lower page; rc = [%d]"
530 if (enc_extent_page
) {
531 kunmap(enc_extent_page
);
532 __free_page(enc_extent_page
);
537 static int ecryptfs_decrypt_extent(struct page
*page
,
538 struct ecryptfs_crypt_stat
*crypt_stat
,
539 struct page
*enc_extent_page
,
540 unsigned long extent_offset
)
543 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
546 extent_base
= (((loff_t
)page
->index
)
547 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
548 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
549 (extent_base
+ extent_offset
));
551 ecryptfs_printk(KERN_ERR
, "Error attempting to "
552 "derive IV for extent [0x%.16x]; "
553 "rc = [%d]\n", (extent_base
+ extent_offset
),
557 if (unlikely(ecryptfs_verbosity
> 0)) {
558 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
560 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
561 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
563 ecryptfs_dump_hex((char *)
564 (page_address(enc_extent_page
)
565 + (extent_offset
* crypt_stat
->extent_size
)),
568 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
570 * crypt_stat
->extent_size
),
572 crypt_stat
->extent_size
, extent_iv
);
574 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
575 "page->index = [%ld], extent_offset = [%ld]; "
576 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
581 if (unlikely(ecryptfs_verbosity
> 0)) {
582 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16x]; "
583 "rc = [%d]\n", (extent_base
+ extent_offset
),
585 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
587 ecryptfs_dump_hex((char *)(page_address(page
)
589 * crypt_stat
->extent_size
)), 8);
596 * ecryptfs_decrypt_page
597 * @page: Page mapped from the eCryptfs inode for the file; data read
598 * and decrypted from the lower file will be written into this
601 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
602 * that eCryptfs pages may straddle the lower pages -- for instance,
603 * if the file was created on a machine with an 8K page size
604 * (resulting in an 8K header), and then the file is copied onto a
605 * host with a 32K page size, then when reading page 0 of the eCryptfs
606 * file, 24K of page 0 of the lower file will be read and decrypted,
607 * and then 8K of page 1 of the lower file will be read and decrypted.
609 * Returns zero on success; negative on error
611 int ecryptfs_decrypt_page(struct page
*page
)
613 struct inode
*ecryptfs_inode
;
614 struct ecryptfs_crypt_stat
*crypt_stat
;
615 char *enc_extent_virt
;
616 struct page
*enc_extent_page
= NULL
;
617 unsigned long extent_offset
;
620 ecryptfs_inode
= page
->mapping
->host
;
622 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
623 if (!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
624 rc
= ecryptfs_read_lower_page_segment(page
, page
->index
, 0,
628 printk(KERN_ERR
"%s: Error attempting to copy "
629 "page at index [%ld]\n", __func__
,
633 enc_extent_page
= alloc_page(GFP_USER
);
634 if (!enc_extent_page
) {
636 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
637 "encrypted extent\n");
640 enc_extent_virt
= kmap(enc_extent_page
);
641 for (extent_offset
= 0;
642 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
646 ecryptfs_lower_offset_for_extent(
647 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
648 / crypt_stat
->extent_size
))
649 + extent_offset
), crypt_stat
);
650 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
651 crypt_stat
->extent_size
,
654 ecryptfs_printk(KERN_ERR
, "Error attempting "
655 "to read lower page; rc = [%d]"
659 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
662 printk(KERN_ERR
"%s: Error encrypting extent; "
663 "rc = [%d]\n", __func__
, rc
);
668 if (enc_extent_page
) {
669 kunmap(enc_extent_page
);
670 __free_page(enc_extent_page
);
676 * decrypt_scatterlist
677 * @crypt_stat: Cryptographic context
678 * @dest_sg: The destination scatterlist to decrypt into
679 * @src_sg: The source scatterlist to decrypt from
680 * @size: The number of bytes to decrypt
681 * @iv: The initialization vector to use for the decryption
683 * Returns the number of bytes decrypted; negative value on error
685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
686 struct scatterlist
*dest_sg
,
687 struct scatterlist
*src_sg
, int size
,
690 struct blkcipher_desc desc
= {
691 .tfm
= crypt_stat
->tfm
,
693 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
697 /* Consider doing this once, when the file is opened */
698 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
699 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
700 crypt_stat
->key_size
);
702 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
704 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
708 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
709 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
710 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
712 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
722 * ecryptfs_encrypt_page_offset
723 * @crypt_stat: The cryptographic context
724 * @dst_page: The page to encrypt into
725 * @dst_offset: The offset in the page to encrypt into
726 * @src_page: The page to encrypt from
727 * @src_offset: The offset in the page to encrypt from
728 * @size: The number of bytes to encrypt
729 * @iv: The initialization vector to use for the encryption
731 * Returns the number of bytes encrypted
734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
735 struct page
*dst_page
, int dst_offset
,
736 struct page
*src_page
, int src_offset
, int size
,
739 struct scatterlist src_sg
, dst_sg
;
741 sg_init_table(&src_sg
, 1);
742 sg_init_table(&dst_sg
, 1);
744 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
745 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
746 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
750 * ecryptfs_decrypt_page_offset
751 * @crypt_stat: The cryptographic context
752 * @dst_page: The page to decrypt into
753 * @dst_offset: The offset in the page to decrypt into
754 * @src_page: The page to decrypt from
755 * @src_offset: The offset in the page to decrypt from
756 * @size: The number of bytes to decrypt
757 * @iv: The initialization vector to use for the decryption
759 * Returns the number of bytes decrypted
762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
763 struct page
*dst_page
, int dst_offset
,
764 struct page
*src_page
, int src_offset
, int size
,
767 struct scatterlist src_sg
, dst_sg
;
769 sg_init_table(&src_sg
, 1);
770 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
772 sg_init_table(&dst_sg
, 1);
773 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
775 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
781 * ecryptfs_init_crypt_ctx
782 * @crypt_stat: Uninitilized crypt stats structure
784 * Initialize the crypto context.
786 * TODO: Performance: Keep a cache of initialized cipher contexts;
787 * only init if needed
789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
794 if (!crypt_stat
->cipher
) {
795 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
798 ecryptfs_printk(KERN_DEBUG
,
799 "Initializing cipher [%s]; strlen = [%d]; "
800 "key_size_bits = [%d]\n",
801 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
802 crypt_stat
->key_size
<< 3);
803 if (crypt_stat
->tfm
) {
807 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
808 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
809 crypt_stat
->cipher
, "cbc");
812 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
814 kfree(full_alg_name
);
815 if (IS_ERR(crypt_stat
->tfm
)) {
816 rc
= PTR_ERR(crypt_stat
->tfm
);
817 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
818 "Error initializing cipher [%s]\n",
822 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
825 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
834 crypt_stat
->extent_mask
= 0xFFFFFFFF;
835 crypt_stat
->extent_shift
= 0;
836 if (crypt_stat
->extent_size
== 0)
838 extent_size_tmp
= crypt_stat
->extent_size
;
839 while ((extent_size_tmp
& 0x01) == 0) {
840 extent_size_tmp
>>= 1;
841 crypt_stat
->extent_mask
<<= 1;
842 crypt_stat
->extent_shift
++;
846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
848 /* Default values; may be overwritten as we are parsing the
850 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
851 set_extent_mask_and_shift(crypt_stat
);
852 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
853 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
854 crypt_stat
->num_header_bytes_at_front
= 0;
856 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
857 crypt_stat
->num_header_bytes_at_front
=
858 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
860 crypt_stat
->num_header_bytes_at_front
= PAGE_CACHE_SIZE
;
865 * ecryptfs_compute_root_iv
868 * On error, sets the root IV to all 0's.
870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
873 char dst
[MD5_DIGEST_SIZE
];
875 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
876 BUG_ON(crypt_stat
->iv_bytes
<= 0);
877 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
879 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
880 "cannot generate root IV\n");
883 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
884 crypt_stat
->key_size
);
886 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
887 "MD5 while generating root IV\n");
890 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
893 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
894 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
901 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
902 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
903 ecryptfs_compute_root_iv(crypt_stat
);
904 if (unlikely(ecryptfs_verbosity
> 0)) {
905 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
906 ecryptfs_dump_hex(crypt_stat
->key
,
907 crypt_stat
->key_size
);
912 * ecryptfs_copy_mount_wide_flags_to_inode_flags
913 * @crypt_stat: The inode's cryptographic context
914 * @mount_crypt_stat: The mount point's cryptographic context
916 * This function propagates the mount-wide flags to individual inode
919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
920 struct ecryptfs_crypt_stat
*crypt_stat
,
921 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
923 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
924 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
925 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
926 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
927 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
928 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
929 if (mount_crypt_stat
->flags
930 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
931 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
932 else if (mount_crypt_stat
->flags
933 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
934 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
938 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
939 struct ecryptfs_crypt_stat
*crypt_stat
,
940 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
942 struct ecryptfs_global_auth_tok
*global_auth_tok
;
945 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
946 list_for_each_entry(global_auth_tok
,
947 &mount_crypt_stat
->global_auth_tok_list
,
948 mount_crypt_stat_list
) {
949 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
951 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
953 &mount_crypt_stat
->global_auth_tok_list_mutex
);
957 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
963 * ecryptfs_set_default_crypt_stat_vals
964 * @crypt_stat: The inode's cryptographic context
965 * @mount_crypt_stat: The mount point's cryptographic context
967 * Default values in the event that policy does not override them.
969 static void ecryptfs_set_default_crypt_stat_vals(
970 struct ecryptfs_crypt_stat
*crypt_stat
,
971 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
973 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
975 ecryptfs_set_default_sizes(crypt_stat
);
976 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
977 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
978 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
979 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
980 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
984 * ecryptfs_new_file_context
985 * @ecryptfs_dentry: The eCryptfs dentry
987 * If the crypto context for the file has not yet been established,
988 * this is where we do that. Establishing a new crypto context
989 * involves the following decisions:
990 * - What cipher to use?
991 * - What set of authentication tokens to use?
992 * Here we just worry about getting enough information into the
993 * authentication tokens so that we know that they are available.
994 * We associate the available authentication tokens with the new file
995 * via the set of signatures in the crypt_stat struct. Later, when
996 * the headers are actually written out, we may again defer to
997 * userspace to perform the encryption of the session key; for the
998 * foreseeable future, this will be the case with public key packets.
1000 * Returns zero on success; non-zero otherwise
1002 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
1004 struct ecryptfs_crypt_stat
*crypt_stat
=
1005 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1006 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1007 &ecryptfs_superblock_to_private(
1008 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1009 int cipher_name_len
;
1012 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
1013 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
1014 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1016 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1019 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1020 "to the inode key sigs; rc = [%d]\n", rc
);
1024 strlen(mount_crypt_stat
->global_default_cipher_name
);
1025 memcpy(crypt_stat
->cipher
,
1026 mount_crypt_stat
->global_default_cipher_name
,
1028 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1029 crypt_stat
->key_size
=
1030 mount_crypt_stat
->global_default_cipher_key_size
;
1031 ecryptfs_generate_new_key(crypt_stat
);
1032 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1034 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1035 "context for cipher [%s]: rc = [%d]\n",
1036 crypt_stat
->cipher
, rc
);
1042 * contains_ecryptfs_marker - check for the ecryptfs marker
1043 * @data: The data block in which to check
1045 * Returns one if marker found; zero if not found
1047 static int contains_ecryptfs_marker(char *data
)
1051 m_1
= get_unaligned_be32(data
);
1052 m_2
= get_unaligned_be32(data
+ 4);
1053 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1055 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1056 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1057 MAGIC_ECRYPTFS_MARKER
);
1058 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1059 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1063 struct ecryptfs_flag_map_elem
{
1068 /* Add support for additional flags by adding elements here. */
1069 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1070 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1071 {0x00000002, ECRYPTFS_ENCRYPTED
},
1072 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1073 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1077 * ecryptfs_process_flags
1078 * @crypt_stat: The cryptographic context
1079 * @page_virt: Source data to be parsed
1080 * @bytes_read: Updated with the number of bytes read
1082 * Returns zero on success; non-zero if the flag set is invalid
1084 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1085 char *page_virt
, int *bytes_read
)
1091 flags
= get_unaligned_be32(page_virt
);
1092 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1093 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1094 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1095 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1097 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1098 /* Version is in top 8 bits of the 32-bit flag vector */
1099 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1105 * write_ecryptfs_marker
1106 * @page_virt: The pointer to in a page to begin writing the marker
1107 * @written: Number of bytes written
1109 * Marker = 0x3c81b7f5
1111 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1115 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1116 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1117 put_unaligned_be32(m_1
, page_virt
);
1118 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1119 put_unaligned_be32(m_2
, page_virt
);
1120 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1124 write_ecryptfs_flags(char *page_virt
, struct ecryptfs_crypt_stat
*crypt_stat
,
1130 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1131 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1132 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1133 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1134 /* Version is in top 8 bits of the 32-bit flag vector */
1135 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1136 put_unaligned_be32(flags
, page_virt
);
1140 struct ecryptfs_cipher_code_str_map_elem
{
1141 char cipher_str
[16];
1145 /* Add support for additional ciphers by adding elements here. The
1146 * cipher_code is whatever OpenPGP applicatoins use to identify the
1147 * ciphers. List in order of probability. */
1148 static struct ecryptfs_cipher_code_str_map_elem
1149 ecryptfs_cipher_code_str_map
[] = {
1150 {"aes",RFC2440_CIPHER_AES_128
},
1151 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1152 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1153 {"cast5", RFC2440_CIPHER_CAST_5
},
1154 {"twofish", RFC2440_CIPHER_TWOFISH
},
1155 {"cast6", RFC2440_CIPHER_CAST_6
},
1156 {"aes", RFC2440_CIPHER_AES_192
},
1157 {"aes", RFC2440_CIPHER_AES_256
}
1161 * ecryptfs_code_for_cipher_string
1162 * @cipher_name: The string alias for the cipher
1163 * @key_bytes: Length of key in bytes; used for AES code selection
1165 * Returns zero on no match, or the cipher code on match
1167 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1171 struct ecryptfs_cipher_code_str_map_elem
*map
=
1172 ecryptfs_cipher_code_str_map
;
1174 if (strcmp(cipher_name
, "aes") == 0) {
1175 switch (key_bytes
) {
1177 code
= RFC2440_CIPHER_AES_128
;
1180 code
= RFC2440_CIPHER_AES_192
;
1183 code
= RFC2440_CIPHER_AES_256
;
1186 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1187 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1188 code
= map
[i
].cipher_code
;
1196 * ecryptfs_cipher_code_to_string
1197 * @str: Destination to write out the cipher name
1198 * @cipher_code: The code to convert to cipher name string
1200 * Returns zero on success
1202 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1208 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1209 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1210 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1211 if (str
[0] == '\0') {
1212 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1213 "[%d]\n", cipher_code
);
1219 int ecryptfs_read_and_validate_header_region(char *data
,
1220 struct inode
*ecryptfs_inode
)
1222 struct ecryptfs_crypt_stat
*crypt_stat
=
1223 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
1226 if (crypt_stat
->extent_size
== 0)
1227 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
1228 rc
= ecryptfs_read_lower(data
, 0, crypt_stat
->extent_size
,
1231 printk(KERN_ERR
"%s: Error reading header region; rc = [%d]\n",
1235 if (!contains_ecryptfs_marker(data
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1243 ecryptfs_write_header_metadata(char *virt
,
1244 struct ecryptfs_crypt_stat
*crypt_stat
,
1247 u32 header_extent_size
;
1248 u16 num_header_extents_at_front
;
1250 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1251 num_header_extents_at_front
=
1252 (u16
)(crypt_stat
->num_header_bytes_at_front
1253 / crypt_stat
->extent_size
);
1254 put_unaligned_be32(header_extent_size
, virt
);
1256 put_unaligned_be16(num_header_extents_at_front
, virt
);
1260 struct kmem_cache
*ecryptfs_header_cache_1
;
1261 struct kmem_cache
*ecryptfs_header_cache_2
;
1264 * ecryptfs_write_headers_virt
1265 * @page_virt: The virtual address to write the headers to
1266 * @max: The size of memory allocated at page_virt
1267 * @size: Set to the number of bytes written by this function
1268 * @crypt_stat: The cryptographic context
1269 * @ecryptfs_dentry: The eCryptfs dentry
1274 * Octets 0-7: Unencrypted file size (big-endian)
1275 * Octets 8-15: eCryptfs special marker
1276 * Octets 16-19: Flags
1277 * Octet 16: File format version number (between 0 and 255)
1278 * Octets 17-18: Reserved
1279 * Octet 19: Bit 1 (lsb): Reserved
1281 * Bits 3-8: Reserved
1282 * Octets 20-23: Header extent size (big-endian)
1283 * Octets 24-25: Number of header extents at front of file
1285 * Octet 26: Begin RFC 2440 authentication token packet set
1287 * Lower data (CBC encrypted)
1289 * Lower data (CBC encrypted)
1292 * Returns zero on success
1294 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1296 struct ecryptfs_crypt_stat
*crypt_stat
,
1297 struct dentry
*ecryptfs_dentry
)
1303 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1304 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1306 write_ecryptfs_flags((page_virt
+ offset
), crypt_stat
, &written
);
1308 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1311 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1312 ecryptfs_dentry
, &written
,
1315 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1316 "set; rc = [%d]\n", rc
);
1325 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat
*crypt_stat
,
1326 struct dentry
*ecryptfs_dentry
,
1331 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1332 0, crypt_stat
->num_header_bytes_at_front
);
1334 printk(KERN_ERR
"%s: Error attempting to write header "
1335 "information to lower file; rc = [%d]\n", __func__
,
1341 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1342 struct ecryptfs_crypt_stat
*crypt_stat
,
1343 char *page_virt
, size_t size
)
1347 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1353 * ecryptfs_write_metadata
1354 * @ecryptfs_dentry: The eCryptfs dentry
1356 * Write the file headers out. This will likely involve a userspace
1357 * callout, in which the session key is encrypted with one or more
1358 * public keys and/or the passphrase necessary to do the encryption is
1359 * retrieved via a prompt. Exactly what happens at this point should
1360 * be policy-dependent.
1362 * Returns zero on success; non-zero on error
1364 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1366 struct ecryptfs_crypt_stat
*crypt_stat
=
1367 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1372 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1373 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1374 printk(KERN_ERR
"Key is invalid; bailing out\n");
1379 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1384 /* Released in this function */
1385 virt
= (char *)get_zeroed_page(GFP_KERNEL
);
1387 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1391 rc
= ecryptfs_write_headers_virt(virt
, PAGE_CACHE_SIZE
, &size
,
1392 crypt_stat
, ecryptfs_dentry
);
1394 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1398 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1399 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
,
1400 crypt_stat
, virt
, size
);
1402 rc
= ecryptfs_write_metadata_to_contents(crypt_stat
,
1403 ecryptfs_dentry
, virt
);
1405 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1406 "rc = [%d]\n", __func__
, rc
);
1410 free_page((unsigned long)virt
);
1415 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1416 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1417 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1418 char *virt
, int *bytes_read
,
1419 int validate_header_size
)
1422 u32 header_extent_size
;
1423 u16 num_header_extents_at_front
;
1425 header_extent_size
= get_unaligned_be32(virt
);
1426 virt
+= sizeof(__be32
);
1427 num_header_extents_at_front
= get_unaligned_be16(virt
);
1428 crypt_stat
->num_header_bytes_at_front
=
1429 (((size_t)num_header_extents_at_front
1430 * (size_t)header_extent_size
));
1431 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1432 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1433 && (crypt_stat
->num_header_bytes_at_front
1434 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1436 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1437 crypt_stat
->num_header_bytes_at_front
);
1443 * set_default_header_data
1444 * @crypt_stat: The cryptographic context
1446 * For version 0 file format; this function is only for backwards
1447 * compatibility for files created with the prior versions of
1450 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1452 crypt_stat
->num_header_bytes_at_front
=
1453 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1457 * ecryptfs_read_headers_virt
1458 * @page_virt: The virtual address into which to read the headers
1459 * @crypt_stat: The cryptographic context
1460 * @ecryptfs_dentry: The eCryptfs dentry
1461 * @validate_header_size: Whether to validate the header size while reading
1463 * Read/parse the header data. The header format is detailed in the
1464 * comment block for the ecryptfs_write_headers_virt() function.
1466 * Returns zero on success
1468 static int ecryptfs_read_headers_virt(char *page_virt
,
1469 struct ecryptfs_crypt_stat
*crypt_stat
,
1470 struct dentry
*ecryptfs_dentry
,
1471 int validate_header_size
)
1477 ecryptfs_set_default_sizes(crypt_stat
);
1478 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1479 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1480 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1481 rc
= contains_ecryptfs_marker(page_virt
+ offset
);
1486 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1487 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1490 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1493 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1494 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1495 "file version [%d] is supported by this "
1496 "version of eCryptfs\n",
1497 crypt_stat
->file_version
,
1498 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1502 offset
+= bytes_read
;
1503 if (crypt_stat
->file_version
>= 1) {
1504 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1505 &bytes_read
, validate_header_size
);
1507 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1508 "metadata; rc = [%d]\n", rc
);
1510 offset
+= bytes_read
;
1512 set_default_header_data(crypt_stat
);
1513 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1520 * ecryptfs_read_xattr_region
1521 * @page_virt: The vitual address into which to read the xattr data
1522 * @ecryptfs_inode: The eCryptfs inode
1524 * Attempts to read the crypto metadata from the extended attribute
1525 * region of the lower file.
1527 * Returns zero on success; non-zero on error
1529 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1531 struct dentry
*lower_dentry
=
1532 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1536 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1537 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1539 if (unlikely(ecryptfs_verbosity
> 0))
1540 printk(KERN_INFO
"Error attempting to read the [%s] "
1541 "xattr from the lower file; return value = "
1542 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1550 int ecryptfs_read_and_validate_xattr_region(char *page_virt
,
1551 struct dentry
*ecryptfs_dentry
)
1555 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_dentry
->d_inode
);
1558 if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES
)) {
1559 printk(KERN_WARNING
"Valid data found in [%s] xattr, but "
1560 "the marker is invalid\n", ECRYPTFS_XATTR_NAME
);
1568 * ecryptfs_read_metadata
1570 * Common entry point for reading file metadata. From here, we could
1571 * retrieve the header information from the header region of the file,
1572 * the xattr region of the file, or some other repostory that is
1573 * stored separately from the file itself. The current implementation
1574 * supports retrieving the metadata information from the file contents
1575 * and from the xattr region.
1577 * Returns zero if valid headers found and parsed; non-zero otherwise
1579 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1582 char *page_virt
= NULL
;
1583 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1584 struct ecryptfs_crypt_stat
*crypt_stat
=
1585 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1586 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1587 &ecryptfs_superblock_to_private(
1588 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1590 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1592 /* Read the first page from the underlying file */
1593 page_virt
= kmem_cache_alloc(ecryptfs_header_cache_1
, GFP_USER
);
1596 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1600 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1603 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1605 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1607 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1609 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1610 "file header region or xattr region\n");
1614 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1616 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1618 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1619 "file xattr region either\n");
1622 if (crypt_stat
->mount_crypt_stat
->flags
1623 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1624 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1626 printk(KERN_WARNING
"Attempt to access file with "
1627 "crypto metadata only in the extended attribute "
1628 "region, but eCryptfs was mounted without "
1629 "xattr support enabled. eCryptfs will not treat "
1630 "this like an encrypted file.\n");
1636 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1637 kmem_cache_free(ecryptfs_header_cache_1
, page_virt
);
1643 * ecryptfs_encrypt_filename - encrypt filename
1645 * CBC-encrypts the filename. We do not want to encrypt the same
1646 * filename with the same key and IV, which may happen with hard
1647 * links, so we prepend random bits to each filename.
1649 * Returns zero on success; non-zero otherwise
1652 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1653 struct ecryptfs_crypt_stat
*crypt_stat
,
1654 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1658 filename
->encrypted_filename
= NULL
;
1659 filename
->encrypted_filename_size
= 0;
1660 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1661 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1662 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1664 size_t remaining_bytes
;
1666 rc
= ecryptfs_write_tag_70_packet(
1668 &filename
->encrypted_filename_size
,
1669 mount_crypt_stat
, NULL
,
1670 filename
->filename_size
);
1672 printk(KERN_ERR
"%s: Error attempting to get packet "
1673 "size for tag 72; rc = [%d]\n", __func__
,
1675 filename
->encrypted_filename_size
= 0;
1678 filename
->encrypted_filename
=
1679 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1680 if (!filename
->encrypted_filename
) {
1681 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1682 "to kmalloc [%zd] bytes\n", __func__
,
1683 filename
->encrypted_filename_size
);
1687 remaining_bytes
= filename
->encrypted_filename_size
;
1688 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1693 filename
->filename_size
);
1695 printk(KERN_ERR
"%s: Error attempting to generate "
1696 "tag 70 packet; rc = [%d]\n", __func__
,
1698 kfree(filename
->encrypted_filename
);
1699 filename
->encrypted_filename
= NULL
;
1700 filename
->encrypted_filename_size
= 0;
1703 filename
->encrypted_filename_size
= packet_size
;
1705 printk(KERN_ERR
"%s: No support for requested filename "
1706 "encryption method in this release\n", __func__
);
1714 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1715 const char *name
, size_t name_size
)
1719 (*copied_name
) = kmalloc((name_size
+ 2), GFP_KERNEL
);
1720 if (!(*copied_name
)) {
1724 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1725 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1726 * in printing out the
1729 (*copied_name_size
) = (name_size
+ 1);
1735 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1736 * @key_tfm: Crypto context for key material, set by this function
1737 * @cipher_name: Name of the cipher
1738 * @key_size: Size of the key in bytes
1740 * Returns zero on success. Any crypto_tfm structs allocated here
1741 * should be released by other functions, such as on a superblock put
1742 * event, regardless of whether this function succeeds for fails.
1745 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1746 char *cipher_name
, size_t *key_size
)
1748 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1749 char *full_alg_name
;
1753 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1755 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1756 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1759 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1763 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1764 kfree(full_alg_name
);
1765 if (IS_ERR(*key_tfm
)) {
1766 rc
= PTR_ERR(*key_tfm
);
1767 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1768 "[%s]; rc = [%d]\n", cipher_name
, rc
);
1771 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1772 if (*key_size
== 0) {
1773 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1775 *key_size
= alg
->max_keysize
;
1777 get_random_bytes(dummy_key
, *key_size
);
1778 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1780 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1781 "cipher [%s]; rc = [%d]\n", *key_size
, cipher_name
, rc
);
1789 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1790 static struct list_head key_tfm_list
;
1791 struct mutex key_tfm_list_mutex
;
1793 int ecryptfs_init_crypto(void)
1795 mutex_init(&key_tfm_list_mutex
);
1796 INIT_LIST_HEAD(&key_tfm_list
);
1801 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1803 * Called only at module unload time
1805 int ecryptfs_destroy_crypto(void)
1807 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1809 mutex_lock(&key_tfm_list_mutex
);
1810 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1812 list_del(&key_tfm
->key_tfm_list
);
1813 if (key_tfm
->key_tfm
)
1814 crypto_free_blkcipher(key_tfm
->key_tfm
);
1815 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1817 mutex_unlock(&key_tfm_list_mutex
);
1822 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1825 struct ecryptfs_key_tfm
*tmp_tfm
;
1828 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1830 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1831 if (key_tfm
!= NULL
)
1832 (*key_tfm
) = tmp_tfm
;
1835 printk(KERN_ERR
"Error attempting to allocate from "
1836 "ecryptfs_key_tfm_cache\n");
1839 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1840 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1841 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1842 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1843 tmp_tfm
->key_size
= key_size
;
1844 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1845 tmp_tfm
->cipher_name
,
1846 &tmp_tfm
->key_size
);
1848 printk(KERN_ERR
"Error attempting to initialize key TFM "
1849 "cipher with name = [%s]; rc = [%d]\n",
1850 tmp_tfm
->cipher_name
, rc
);
1851 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1852 if (key_tfm
!= NULL
)
1856 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1862 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1863 * @cipher_name: the name of the cipher to search for
1864 * @key_tfm: set to corresponding tfm if found
1866 * Searches for cached key_tfm matching @cipher_name
1867 * Must be called with &key_tfm_list_mutex held
1868 * Returns 1 if found, with @key_tfm set
1869 * Returns 0 if not found, with @key_tfm set to NULL
1871 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1873 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1875 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1877 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1878 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1880 (*key_tfm
) = tmp_key_tfm
;
1890 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1892 * @tfm: set to cached tfm found, or new tfm created
1893 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1894 * @cipher_name: the name of the cipher to search for and/or add
1896 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1897 * Searches for cached item first, and creates new if not found.
1898 * Returns 0 on success, non-zero if adding new cipher failed
1900 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1901 struct mutex
**tfm_mutex
,
1904 struct ecryptfs_key_tfm
*key_tfm
;
1908 (*tfm_mutex
) = NULL
;
1910 mutex_lock(&key_tfm_list_mutex
);
1911 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1912 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1914 printk(KERN_ERR
"Error adding new key_tfm to list; "
1919 (*tfm
) = key_tfm
->key_tfm
;
1920 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1922 mutex_unlock(&key_tfm_list_mutex
);
1926 /* 64 characters forming a 6-bit target field */
1927 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1930 "klmnopqrstuvwxyz");
1932 /* We could either offset on every reverse map or just pad some 0x00's
1933 * at the front here */
1934 static const unsigned char filename_rev_map
[] = {
1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1941 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1942 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1943 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1944 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1945 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1946 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1947 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1948 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1949 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1954 * ecryptfs_encode_for_filename
1955 * @dst: Destination location for encoded filename
1956 * @dst_size: Size of the encoded filename in bytes
1957 * @src: Source location for the filename to encode
1958 * @src_size: Size of the source in bytes
1960 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1961 unsigned char *src
, size_t src_size
)
1964 size_t block_num
= 0;
1965 size_t dst_offset
= 0;
1966 unsigned char last_block
[3];
1968 if (src_size
== 0) {
1972 num_blocks
= (src_size
/ 3);
1973 if ((src_size
% 3) == 0) {
1974 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1977 last_block
[2] = 0x00;
1978 switch (src_size
% 3) {
1980 last_block
[0] = src
[src_size
- 1];
1981 last_block
[1] = 0x00;
1984 last_block
[0] = src
[src_size
- 2];
1985 last_block
[1] = src
[src_size
- 1];
1988 (*dst_size
) = (num_blocks
* 4);
1991 while (block_num
< num_blocks
) {
1992 unsigned char *src_block
;
1993 unsigned char dst_block
[4];
1995 if (block_num
== (num_blocks
- 1))
1996 src_block
= last_block
;
1998 src_block
= &src
[block_num
* 3];
1999 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
2000 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
2001 | ((src_block
[1] >> 4) & 0x0F));
2002 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2003 | ((src_block
[2] >> 6) & 0x03));
2004 dst_block
[3] = (src_block
[2] & 0x3F);
2005 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2006 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2007 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2008 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2016 * ecryptfs_decode_from_filename
2017 * @dst: If NULL, this function only sets @dst_size and returns. If
2018 * non-NULL, this function decodes the encoded octets in @src
2019 * into the memory that @dst points to.
2020 * @dst_size: Set to the size of the decoded string.
2021 * @src: The encoded set of octets to decode.
2022 * @src_size: The size of the encoded set of octets to decode.
2025 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2026 const unsigned char *src
, size_t src_size
)
2028 u8 current_bit_offset
= 0;
2029 size_t src_byte_offset
= 0;
2030 size_t dst_byte_offset
= 0;
2033 /* Not exact; conservatively long. Every block of 4
2034 * encoded characters decodes into a block of 3
2035 * decoded characters. This segment of code provides
2036 * the caller with the maximum amount of allocated
2037 * space that @dst will need to point to in a
2038 * subsequent call. */
2039 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2042 while (src_byte_offset
< src_size
) {
2043 unsigned char src_byte
=
2044 filename_rev_map
[(int)src
[src_byte_offset
]];
2046 switch (current_bit_offset
) {
2048 dst
[dst_byte_offset
] = (src_byte
<< 2);
2049 current_bit_offset
= 6;
2052 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2053 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2055 current_bit_offset
= 4;
2058 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2059 dst
[dst_byte_offset
] = (src_byte
<< 6);
2060 current_bit_offset
= 2;
2063 dst
[dst_byte_offset
++] |= (src_byte
);
2064 dst
[dst_byte_offset
] = 0;
2065 current_bit_offset
= 0;
2070 (*dst_size
) = dst_byte_offset
;
2076 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2077 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2078 * @name: The plaintext name
2079 * @length: The length of the plaintext
2080 * @encoded_name: The encypted name
2082 * Encrypts and encodes a filename into something that constitutes a
2083 * valid filename for a filesystem, with printable characters.
2085 * We assume that we have a properly initialized crypto context,
2086 * pointed to by crypt_stat->tfm.
2088 * Returns zero on success; non-zero on otherwise
2090 int ecryptfs_encrypt_and_encode_filename(
2091 char **encoded_name
,
2092 size_t *encoded_name_size
,
2093 struct ecryptfs_crypt_stat
*crypt_stat
,
2094 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2095 const char *name
, size_t name_size
)
2097 size_t encoded_name_no_prefix_size
;
2100 (*encoded_name
) = NULL
;
2101 (*encoded_name_size
) = 0;
2102 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2103 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2104 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2105 struct ecryptfs_filename
*filename
;
2107 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2109 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2110 "to kzalloc [%zd] bytes\n", __func__
,
2115 filename
->filename
= (char *)name
;
2116 filename
->filename_size
= name_size
;
2117 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2120 printk(KERN_ERR
"%s: Error attempting to encrypt "
2121 "filename; rc = [%d]\n", __func__
, rc
);
2125 ecryptfs_encode_for_filename(
2126 NULL
, &encoded_name_no_prefix_size
,
2127 filename
->encrypted_filename
,
2128 filename
->encrypted_filename_size
);
2129 if ((crypt_stat
&& (crypt_stat
->flags
2130 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2131 || (mount_crypt_stat
2132 && (mount_crypt_stat
->flags
2133 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2134 (*encoded_name_size
) =
2135 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2136 + encoded_name_no_prefix_size
);
2138 (*encoded_name_size
) =
2139 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2140 + encoded_name_no_prefix_size
);
2141 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2142 if (!(*encoded_name
)) {
2143 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2144 "to kzalloc [%zd] bytes\n", __func__
,
2145 (*encoded_name_size
));
2147 kfree(filename
->encrypted_filename
);
2151 if ((crypt_stat
&& (crypt_stat
->flags
2152 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2153 || (mount_crypt_stat
2154 && (mount_crypt_stat
->flags
2155 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2156 memcpy((*encoded_name
),
2157 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2158 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2159 ecryptfs_encode_for_filename(
2161 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2162 &encoded_name_no_prefix_size
,
2163 filename
->encrypted_filename
,
2164 filename
->encrypted_filename_size
);
2165 (*encoded_name_size
) =
2166 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2167 + encoded_name_no_prefix_size
);
2168 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2169 (*encoded_name_size
)++;
2174 printk(KERN_ERR
"%s: Error attempting to encode "
2175 "encrypted filename; rc = [%d]\n", __func__
,
2177 kfree((*encoded_name
));
2178 (*encoded_name
) = NULL
;
2179 (*encoded_name_size
) = 0;
2181 kfree(filename
->encrypted_filename
);
2184 rc
= ecryptfs_copy_filename(encoded_name
,
2193 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2194 * @plaintext_name: The plaintext name
2195 * @plaintext_name_size: The plaintext name size
2196 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2197 * @name: The filename in cipher text
2198 * @name_size: The cipher text name size
2200 * Decrypts and decodes the filename.
2202 * Returns zero on error; non-zero otherwise
2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2205 size_t *plaintext_name_size
,
2206 struct dentry
*ecryptfs_dir_dentry
,
2207 const char *name
, size_t name_size
)
2210 size_t decoded_name_size
;
2214 if ((name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2215 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2216 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2217 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2218 &ecryptfs_superblock_to_private(
2219 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2220 const char *orig_name
= name
;
2221 size_t orig_name_size
= name_size
;
2223 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2224 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2225 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2227 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2228 if (!decoded_name
) {
2229 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2230 "to kmalloc [%zd] bytes\n", __func__
,
2235 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2237 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2238 plaintext_name_size
,
2244 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2245 "from filename; copying through filename "
2246 "as-is\n", __func__
);
2247 rc
= ecryptfs_copy_filename(plaintext_name
,
2248 plaintext_name_size
,
2249 orig_name
, orig_name_size
);
2253 rc
= ecryptfs_copy_filename(plaintext_name
,
2254 plaintext_name_size
,
2259 kfree(decoded_name
);