gianfar: Fix compile regression caused by bea3348e
[linux-2.6/verdex.git] / drivers / net / gianfar.c
blob2b758fa334d39a048d27a5f5cd0ca12e5b116abd
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
56 * skb.
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *pdev);
128 static int gfar_remove(struct platform_device *pdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
134 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct *napi, int budget);
137 #endif
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device *dev);
140 #endif
141 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
150 extern const struct ethtool_ops gfar_ethtool_ops;
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
159 return (priv->vlan_enable || priv->rx_csum_enable);
162 /* Set up the ethernet device structure, private data,
163 * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
166 u32 tempval;
167 struct net_device *dev = NULL;
168 struct gfar_private *priv = NULL;
169 struct gianfar_platform_data *einfo;
170 struct resource *r;
171 int idx;
172 int err = 0;
173 DECLARE_MAC_BUF(mac);
175 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
177 if (NULL == einfo) {
178 printk(KERN_ERR "gfar %d: Missing additional data!\n",
179 pdev->id);
181 return -ENODEV;
184 /* Create an ethernet device instance */
185 dev = alloc_etherdev(sizeof (*priv));
187 if (NULL == dev)
188 return -ENOMEM;
190 priv = netdev_priv(dev);
191 priv->dev = dev;
193 /* Set the info in the priv to the current info */
194 priv->einfo = einfo;
196 /* fill out IRQ fields */
197 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200 priv->interruptError = platform_get_irq_byname(pdev, "error");
201 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
202 goto regs_fail;
203 } else {
204 priv->interruptTransmit = platform_get_irq(pdev, 0);
205 if (priv->interruptTransmit < 0)
206 goto regs_fail;
209 /* get a pointer to the register memory */
210 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
211 priv->regs = ioremap(r->start, sizeof (struct gfar));
213 if (NULL == priv->regs) {
214 err = -ENOMEM;
215 goto regs_fail;
218 spin_lock_init(&priv->txlock);
219 spin_lock_init(&priv->rxlock);
221 platform_set_drvdata(pdev, dev);
223 /* Stop the DMA engine now, in case it was running before */
224 /* (The firmware could have used it, and left it running). */
225 /* To do this, we write Graceful Receive Stop and Graceful */
226 /* Transmit Stop, and then wait until the corresponding bits */
227 /* in IEVENT indicate the stops have completed. */
228 tempval = gfar_read(&priv->regs->dmactrl);
229 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
230 gfar_write(&priv->regs->dmactrl, tempval);
232 tempval = gfar_read(&priv->regs->dmactrl);
233 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
234 gfar_write(&priv->regs->dmactrl, tempval);
236 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
237 cpu_relax();
239 /* Reset MAC layer */
240 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
242 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
243 gfar_write(&priv->regs->maccfg1, tempval);
245 /* Initialize MACCFG2. */
246 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
248 /* Initialize ECNTRL */
249 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
251 /* Copy the station address into the dev structure, */
252 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
254 /* Set the dev->base_addr to the gfar reg region */
255 dev->base_addr = (unsigned long) (priv->regs);
257 SET_NETDEV_DEV(dev, &pdev->dev);
259 /* Fill in the dev structure */
260 dev->open = gfar_enet_open;
261 dev->hard_start_xmit = gfar_start_xmit;
262 dev->tx_timeout = gfar_timeout;
263 dev->watchdog_timeo = TX_TIMEOUT;
264 #ifdef CONFIG_GFAR_NAPI
265 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
266 #endif
267 #ifdef CONFIG_NET_POLL_CONTROLLER
268 dev->poll_controller = gfar_netpoll;
269 #endif
270 dev->stop = gfar_close;
271 dev->change_mtu = gfar_change_mtu;
272 dev->mtu = 1500;
273 dev->set_multicast_list = gfar_set_multi;
275 dev->ethtool_ops = &gfar_ethtool_ops;
277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
278 priv->rx_csum_enable = 1;
279 dev->features |= NETIF_F_IP_CSUM;
280 } else
281 priv->rx_csum_enable = 0;
283 priv->vlgrp = NULL;
285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
286 dev->vlan_rx_register = gfar_vlan_rx_register;
288 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
290 priv->vlan_enable = 1;
293 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
294 priv->extended_hash = 1;
295 priv->hash_width = 9;
297 priv->hash_regs[0] = &priv->regs->igaddr0;
298 priv->hash_regs[1] = &priv->regs->igaddr1;
299 priv->hash_regs[2] = &priv->regs->igaddr2;
300 priv->hash_regs[3] = &priv->regs->igaddr3;
301 priv->hash_regs[4] = &priv->regs->igaddr4;
302 priv->hash_regs[5] = &priv->regs->igaddr5;
303 priv->hash_regs[6] = &priv->regs->igaddr6;
304 priv->hash_regs[7] = &priv->regs->igaddr7;
305 priv->hash_regs[8] = &priv->regs->gaddr0;
306 priv->hash_regs[9] = &priv->regs->gaddr1;
307 priv->hash_regs[10] = &priv->regs->gaddr2;
308 priv->hash_regs[11] = &priv->regs->gaddr3;
309 priv->hash_regs[12] = &priv->regs->gaddr4;
310 priv->hash_regs[13] = &priv->regs->gaddr5;
311 priv->hash_regs[14] = &priv->regs->gaddr6;
312 priv->hash_regs[15] = &priv->regs->gaddr7;
314 } else {
315 priv->extended_hash = 0;
316 priv->hash_width = 8;
318 priv->hash_regs[0] = &priv->regs->gaddr0;
319 priv->hash_regs[1] = &priv->regs->gaddr1;
320 priv->hash_regs[2] = &priv->regs->gaddr2;
321 priv->hash_regs[3] = &priv->regs->gaddr3;
322 priv->hash_regs[4] = &priv->regs->gaddr4;
323 priv->hash_regs[5] = &priv->regs->gaddr5;
324 priv->hash_regs[6] = &priv->regs->gaddr6;
325 priv->hash_regs[7] = &priv->regs->gaddr7;
328 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
329 priv->padding = DEFAULT_PADDING;
330 else
331 priv->padding = 0;
333 if (dev->features & NETIF_F_IP_CSUM)
334 dev->hard_header_len += GMAC_FCB_LEN;
336 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
337 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
338 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
340 priv->txcoalescing = DEFAULT_TX_COALESCE;
341 priv->txcount = DEFAULT_TXCOUNT;
342 priv->txtime = DEFAULT_TXTIME;
343 priv->rxcoalescing = DEFAULT_RX_COALESCE;
344 priv->rxcount = DEFAULT_RXCOUNT;
345 priv->rxtime = DEFAULT_RXTIME;
347 /* Enable most messages by default */
348 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
350 err = register_netdev(dev);
352 if (err) {
353 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
354 dev->name);
355 goto register_fail;
358 /* Create all the sysfs files */
359 gfar_init_sysfs(dev);
361 /* Print out the device info */
362 printk(KERN_INFO DEVICE_NAME "%s\n",
363 dev->name, print_mac(mac, dev->dev_addr));
365 /* Even more device info helps when determining which kernel */
366 /* provided which set of benchmarks. */
367 #ifdef CONFIG_GFAR_NAPI
368 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
369 #else
370 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
371 #endif
372 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
373 dev->name, priv->rx_ring_size, priv->tx_ring_size);
375 return 0;
377 register_fail:
378 iounmap(priv->regs);
379 regs_fail:
380 free_netdev(dev);
381 return err;
384 static int gfar_remove(struct platform_device *pdev)
386 struct net_device *dev = platform_get_drvdata(pdev);
387 struct gfar_private *priv = netdev_priv(dev);
389 platform_set_drvdata(pdev, NULL);
391 iounmap(priv->regs);
392 free_netdev(dev);
394 return 0;
398 /* Reads the controller's registers to determine what interface
399 * connects it to the PHY.
401 static phy_interface_t gfar_get_interface(struct net_device *dev)
403 struct gfar_private *priv = netdev_priv(dev);
404 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
406 if (ecntrl & ECNTRL_SGMII_MODE)
407 return PHY_INTERFACE_MODE_SGMII;
409 if (ecntrl & ECNTRL_TBI_MODE) {
410 if (ecntrl & ECNTRL_REDUCED_MODE)
411 return PHY_INTERFACE_MODE_RTBI;
412 else
413 return PHY_INTERFACE_MODE_TBI;
416 if (ecntrl & ECNTRL_REDUCED_MODE) {
417 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
418 return PHY_INTERFACE_MODE_RMII;
419 else {
420 phy_interface_t interface = priv->einfo->interface;
423 * This isn't autodetected right now, so it must
424 * be set by the device tree or platform code.
426 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
427 return PHY_INTERFACE_MODE_RGMII_ID;
429 return PHY_INTERFACE_MODE_RGMII;
433 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
434 return PHY_INTERFACE_MODE_GMII;
436 return PHY_INTERFACE_MODE_MII;
440 /* Initializes driver's PHY state, and attaches to the PHY.
441 * Returns 0 on success.
443 static int init_phy(struct net_device *dev)
445 struct gfar_private *priv = netdev_priv(dev);
446 uint gigabit_support =
447 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
448 SUPPORTED_1000baseT_Full : 0;
449 struct phy_device *phydev;
450 char phy_id[BUS_ID_SIZE];
451 phy_interface_t interface;
453 priv->oldlink = 0;
454 priv->oldspeed = 0;
455 priv->oldduplex = -1;
457 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
459 interface = gfar_get_interface(dev);
461 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
463 if (interface == PHY_INTERFACE_MODE_SGMII)
464 gfar_configure_serdes(dev);
466 if (IS_ERR(phydev)) {
467 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
468 return PTR_ERR(phydev);
471 /* Remove any features not supported by the controller */
472 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
473 phydev->advertising = phydev->supported;
475 priv->phydev = phydev;
477 return 0;
480 static void gfar_configure_serdes(struct net_device *dev)
482 struct gfar_private *priv = netdev_priv(dev);
483 struct gfar_mii __iomem *regs =
484 (void __iomem *)&priv->regs->gfar_mii_regs;
486 /* Initialise TBI i/f to communicate with serdes (lynx phy) */
488 /* Single clk mode, mii mode off(for aerdes communication) */
489 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
491 /* Supported pause and full-duplex, no half-duplex */
492 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
493 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
494 ADVERTISE_1000XPSE_ASYM);
496 /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
497 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
498 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
501 static void init_registers(struct net_device *dev)
503 struct gfar_private *priv = netdev_priv(dev);
505 /* Clear IEVENT */
506 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
508 /* Initialize IMASK */
509 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
511 /* Init hash registers to zero */
512 gfar_write(&priv->regs->igaddr0, 0);
513 gfar_write(&priv->regs->igaddr1, 0);
514 gfar_write(&priv->regs->igaddr2, 0);
515 gfar_write(&priv->regs->igaddr3, 0);
516 gfar_write(&priv->regs->igaddr4, 0);
517 gfar_write(&priv->regs->igaddr5, 0);
518 gfar_write(&priv->regs->igaddr6, 0);
519 gfar_write(&priv->regs->igaddr7, 0);
521 gfar_write(&priv->regs->gaddr0, 0);
522 gfar_write(&priv->regs->gaddr1, 0);
523 gfar_write(&priv->regs->gaddr2, 0);
524 gfar_write(&priv->regs->gaddr3, 0);
525 gfar_write(&priv->regs->gaddr4, 0);
526 gfar_write(&priv->regs->gaddr5, 0);
527 gfar_write(&priv->regs->gaddr6, 0);
528 gfar_write(&priv->regs->gaddr7, 0);
530 /* Zero out the rmon mib registers if it has them */
531 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
532 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
534 /* Mask off the CAM interrupts */
535 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
536 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
539 /* Initialize the max receive buffer length */
540 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
542 /* Initialize the Minimum Frame Length Register */
543 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
545 /* Assign the TBI an address which won't conflict with the PHYs */
546 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
550 /* Halt the receive and transmit queues */
551 void gfar_halt(struct net_device *dev)
553 struct gfar_private *priv = netdev_priv(dev);
554 struct gfar __iomem *regs = priv->regs;
555 u32 tempval;
557 /* Mask all interrupts */
558 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
560 /* Clear all interrupts */
561 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
563 /* Stop the DMA, and wait for it to stop */
564 tempval = gfar_read(&priv->regs->dmactrl);
565 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
566 != (DMACTRL_GRS | DMACTRL_GTS)) {
567 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
568 gfar_write(&priv->regs->dmactrl, tempval);
570 while (!(gfar_read(&priv->regs->ievent) &
571 (IEVENT_GRSC | IEVENT_GTSC)))
572 cpu_relax();
575 /* Disable Rx and Tx */
576 tempval = gfar_read(&regs->maccfg1);
577 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
578 gfar_write(&regs->maccfg1, tempval);
581 void stop_gfar(struct net_device *dev)
583 struct gfar_private *priv = netdev_priv(dev);
584 struct gfar __iomem *regs = priv->regs;
585 unsigned long flags;
587 phy_stop(priv->phydev);
589 /* Lock it down */
590 spin_lock_irqsave(&priv->txlock, flags);
591 spin_lock(&priv->rxlock);
593 gfar_halt(dev);
595 spin_unlock(&priv->rxlock);
596 spin_unlock_irqrestore(&priv->txlock, flags);
598 /* Free the IRQs */
599 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
600 free_irq(priv->interruptError, dev);
601 free_irq(priv->interruptTransmit, dev);
602 free_irq(priv->interruptReceive, dev);
603 } else {
604 free_irq(priv->interruptTransmit, dev);
607 free_skb_resources(priv);
609 dma_free_coherent(NULL,
610 sizeof(struct txbd8)*priv->tx_ring_size
611 + sizeof(struct rxbd8)*priv->rx_ring_size,
612 priv->tx_bd_base,
613 gfar_read(&regs->tbase0));
616 /* If there are any tx skbs or rx skbs still around, free them.
617 * Then free tx_skbuff and rx_skbuff */
618 static void free_skb_resources(struct gfar_private *priv)
620 struct rxbd8 *rxbdp;
621 struct txbd8 *txbdp;
622 int i;
624 /* Go through all the buffer descriptors and free their data buffers */
625 txbdp = priv->tx_bd_base;
627 for (i = 0; i < priv->tx_ring_size; i++) {
629 if (priv->tx_skbuff[i]) {
630 dma_unmap_single(NULL, txbdp->bufPtr,
631 txbdp->length,
632 DMA_TO_DEVICE);
633 dev_kfree_skb_any(priv->tx_skbuff[i]);
634 priv->tx_skbuff[i] = NULL;
638 kfree(priv->tx_skbuff);
640 rxbdp = priv->rx_bd_base;
642 /* rx_skbuff is not guaranteed to be allocated, so only
643 * free it and its contents if it is allocated */
644 if(priv->rx_skbuff != NULL) {
645 for (i = 0; i < priv->rx_ring_size; i++) {
646 if (priv->rx_skbuff[i]) {
647 dma_unmap_single(NULL, rxbdp->bufPtr,
648 priv->rx_buffer_size,
649 DMA_FROM_DEVICE);
651 dev_kfree_skb_any(priv->rx_skbuff[i]);
652 priv->rx_skbuff[i] = NULL;
655 rxbdp->status = 0;
656 rxbdp->length = 0;
657 rxbdp->bufPtr = 0;
659 rxbdp++;
662 kfree(priv->rx_skbuff);
666 void gfar_start(struct net_device *dev)
668 struct gfar_private *priv = netdev_priv(dev);
669 struct gfar __iomem *regs = priv->regs;
670 u32 tempval;
672 /* Enable Rx and Tx in MACCFG1 */
673 tempval = gfar_read(&regs->maccfg1);
674 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
675 gfar_write(&regs->maccfg1, tempval);
677 /* Initialize DMACTRL to have WWR and WOP */
678 tempval = gfar_read(&priv->regs->dmactrl);
679 tempval |= DMACTRL_INIT_SETTINGS;
680 gfar_write(&priv->regs->dmactrl, tempval);
682 /* Make sure we aren't stopped */
683 tempval = gfar_read(&priv->regs->dmactrl);
684 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
685 gfar_write(&priv->regs->dmactrl, tempval);
687 /* Clear THLT/RHLT, so that the DMA starts polling now */
688 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
689 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
691 /* Unmask the interrupts we look for */
692 gfar_write(&regs->imask, IMASK_DEFAULT);
695 /* Bring the controller up and running */
696 int startup_gfar(struct net_device *dev)
698 struct txbd8 *txbdp;
699 struct rxbd8 *rxbdp;
700 dma_addr_t addr;
701 unsigned long vaddr;
702 int i;
703 struct gfar_private *priv = netdev_priv(dev);
704 struct gfar __iomem *regs = priv->regs;
705 int err = 0;
706 u32 rctrl = 0;
707 u32 attrs = 0;
709 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
711 /* Allocate memory for the buffer descriptors */
712 vaddr = (unsigned long) dma_alloc_coherent(NULL,
713 sizeof (struct txbd8) * priv->tx_ring_size +
714 sizeof (struct rxbd8) * priv->rx_ring_size,
715 &addr, GFP_KERNEL);
717 if (vaddr == 0) {
718 if (netif_msg_ifup(priv))
719 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
720 dev->name);
721 return -ENOMEM;
724 priv->tx_bd_base = (struct txbd8 *) vaddr;
726 /* enet DMA only understands physical addresses */
727 gfar_write(&regs->tbase0, addr);
729 /* Start the rx descriptor ring where the tx ring leaves off */
730 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
731 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
732 priv->rx_bd_base = (struct rxbd8 *) vaddr;
733 gfar_write(&regs->rbase0, addr);
735 /* Setup the skbuff rings */
736 priv->tx_skbuff =
737 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
738 priv->tx_ring_size, GFP_KERNEL);
740 if (NULL == priv->tx_skbuff) {
741 if (netif_msg_ifup(priv))
742 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
743 dev->name);
744 err = -ENOMEM;
745 goto tx_skb_fail;
748 for (i = 0; i < priv->tx_ring_size; i++)
749 priv->tx_skbuff[i] = NULL;
751 priv->rx_skbuff =
752 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
753 priv->rx_ring_size, GFP_KERNEL);
755 if (NULL == priv->rx_skbuff) {
756 if (netif_msg_ifup(priv))
757 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
758 dev->name);
759 err = -ENOMEM;
760 goto rx_skb_fail;
763 for (i = 0; i < priv->rx_ring_size; i++)
764 priv->rx_skbuff[i] = NULL;
766 /* Initialize some variables in our dev structure */
767 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
768 priv->cur_rx = priv->rx_bd_base;
769 priv->skb_curtx = priv->skb_dirtytx = 0;
770 priv->skb_currx = 0;
772 /* Initialize Transmit Descriptor Ring */
773 txbdp = priv->tx_bd_base;
774 for (i = 0; i < priv->tx_ring_size; i++) {
775 txbdp->status = 0;
776 txbdp->length = 0;
777 txbdp->bufPtr = 0;
778 txbdp++;
781 /* Set the last descriptor in the ring to indicate wrap */
782 txbdp--;
783 txbdp->status |= TXBD_WRAP;
785 rxbdp = priv->rx_bd_base;
786 for (i = 0; i < priv->rx_ring_size; i++) {
787 struct sk_buff *skb = NULL;
789 rxbdp->status = 0;
791 skb = gfar_new_skb(dev, rxbdp);
793 priv->rx_skbuff[i] = skb;
795 rxbdp++;
798 /* Set the last descriptor in the ring to wrap */
799 rxbdp--;
800 rxbdp->status |= RXBD_WRAP;
802 /* If the device has multiple interrupts, register for
803 * them. Otherwise, only register for the one */
804 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
805 /* Install our interrupt handlers for Error,
806 * Transmit, and Receive */
807 if (request_irq(priv->interruptError, gfar_error,
808 0, "enet_error", dev) < 0) {
809 if (netif_msg_intr(priv))
810 printk(KERN_ERR "%s: Can't get IRQ %d\n",
811 dev->name, priv->interruptError);
813 err = -1;
814 goto err_irq_fail;
817 if (request_irq(priv->interruptTransmit, gfar_transmit,
818 0, "enet_tx", dev) < 0) {
819 if (netif_msg_intr(priv))
820 printk(KERN_ERR "%s: Can't get IRQ %d\n",
821 dev->name, priv->interruptTransmit);
823 err = -1;
825 goto tx_irq_fail;
828 if (request_irq(priv->interruptReceive, gfar_receive,
829 0, "enet_rx", dev) < 0) {
830 if (netif_msg_intr(priv))
831 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
832 dev->name, priv->interruptReceive);
834 err = -1;
835 goto rx_irq_fail;
837 } else {
838 if (request_irq(priv->interruptTransmit, gfar_interrupt,
839 0, "gfar_interrupt", dev) < 0) {
840 if (netif_msg_intr(priv))
841 printk(KERN_ERR "%s: Can't get IRQ %d\n",
842 dev->name, priv->interruptError);
844 err = -1;
845 goto err_irq_fail;
849 phy_start(priv->phydev);
851 /* Configure the coalescing support */
852 if (priv->txcoalescing)
853 gfar_write(&regs->txic,
854 mk_ic_value(priv->txcount, priv->txtime));
855 else
856 gfar_write(&regs->txic, 0);
858 if (priv->rxcoalescing)
859 gfar_write(&regs->rxic,
860 mk_ic_value(priv->rxcount, priv->rxtime));
861 else
862 gfar_write(&regs->rxic, 0);
864 if (priv->rx_csum_enable)
865 rctrl |= RCTRL_CHECKSUMMING;
867 if (priv->extended_hash) {
868 rctrl |= RCTRL_EXTHASH;
870 gfar_clear_exact_match(dev);
871 rctrl |= RCTRL_EMEN;
874 if (priv->vlan_enable)
875 rctrl |= RCTRL_VLAN;
877 if (priv->padding) {
878 rctrl &= ~RCTRL_PAL_MASK;
879 rctrl |= RCTRL_PADDING(priv->padding);
882 /* Init rctrl based on our settings */
883 gfar_write(&priv->regs->rctrl, rctrl);
885 if (dev->features & NETIF_F_IP_CSUM)
886 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
888 /* Set the extraction length and index */
889 attrs = ATTRELI_EL(priv->rx_stash_size) |
890 ATTRELI_EI(priv->rx_stash_index);
892 gfar_write(&priv->regs->attreli, attrs);
894 /* Start with defaults, and add stashing or locking
895 * depending on the approprate variables */
896 attrs = ATTR_INIT_SETTINGS;
898 if (priv->bd_stash_en)
899 attrs |= ATTR_BDSTASH;
901 if (priv->rx_stash_size != 0)
902 attrs |= ATTR_BUFSTASH;
904 gfar_write(&priv->regs->attr, attrs);
906 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
907 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
908 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
910 /* Start the controller */
911 gfar_start(dev);
913 return 0;
915 rx_irq_fail:
916 free_irq(priv->interruptTransmit, dev);
917 tx_irq_fail:
918 free_irq(priv->interruptError, dev);
919 err_irq_fail:
920 rx_skb_fail:
921 free_skb_resources(priv);
922 tx_skb_fail:
923 dma_free_coherent(NULL,
924 sizeof(struct txbd8)*priv->tx_ring_size
925 + sizeof(struct rxbd8)*priv->rx_ring_size,
926 priv->tx_bd_base,
927 gfar_read(&regs->tbase0));
929 return err;
932 /* Called when something needs to use the ethernet device */
933 /* Returns 0 for success. */
934 static int gfar_enet_open(struct net_device *dev)
936 struct gfar_private *priv = netdev_priv(dev);
937 int err;
939 napi_enable(&priv->napi);
941 /* Initialize a bunch of registers */
942 init_registers(dev);
944 gfar_set_mac_address(dev);
946 err = init_phy(dev);
948 if(err) {
949 napi_disable(&priv->napi);
950 return err;
953 err = startup_gfar(dev);
954 if (err)
955 napi_disable(&priv->napi);
957 netif_start_queue(dev);
959 return err;
962 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
964 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
966 memset(fcb, 0, GMAC_FCB_LEN);
968 return fcb;
971 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
973 u8 flags = 0;
975 /* If we're here, it's a IP packet with a TCP or UDP
976 * payload. We set it to checksum, using a pseudo-header
977 * we provide
979 flags = TXFCB_DEFAULT;
981 /* Tell the controller what the protocol is */
982 /* And provide the already calculated phcs */
983 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
984 flags |= TXFCB_UDP;
985 fcb->phcs = udp_hdr(skb)->check;
986 } else
987 fcb->phcs = tcp_hdr(skb)->check;
989 /* l3os is the distance between the start of the
990 * frame (skb->data) and the start of the IP hdr.
991 * l4os is the distance between the start of the
992 * l3 hdr and the l4 hdr */
993 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
994 fcb->l4os = skb_network_header_len(skb);
996 fcb->flags = flags;
999 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1001 fcb->flags |= TXFCB_VLN;
1002 fcb->vlctl = vlan_tx_tag_get(skb);
1005 /* This is called by the kernel when a frame is ready for transmission. */
1006 /* It is pointed to by the dev->hard_start_xmit function pointer */
1007 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1009 struct gfar_private *priv = netdev_priv(dev);
1010 struct txfcb *fcb = NULL;
1011 struct txbd8 *txbdp;
1012 u16 status;
1013 unsigned long flags;
1015 /* Update transmit stats */
1016 dev->stats.tx_bytes += skb->len;
1018 /* Lock priv now */
1019 spin_lock_irqsave(&priv->txlock, flags);
1021 /* Point at the first free tx descriptor */
1022 txbdp = priv->cur_tx;
1024 /* Clear all but the WRAP status flags */
1025 status = txbdp->status & TXBD_WRAP;
1027 /* Set up checksumming */
1028 if (likely((dev->features & NETIF_F_IP_CSUM)
1029 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1030 fcb = gfar_add_fcb(skb, txbdp);
1031 status |= TXBD_TOE;
1032 gfar_tx_checksum(skb, fcb);
1035 if (priv->vlan_enable &&
1036 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1037 if (unlikely(NULL == fcb)) {
1038 fcb = gfar_add_fcb(skb, txbdp);
1039 status |= TXBD_TOE;
1042 gfar_tx_vlan(skb, fcb);
1045 /* Set buffer length and pointer */
1046 txbdp->length = skb->len;
1047 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1048 skb->len, DMA_TO_DEVICE);
1050 /* Save the skb pointer so we can free it later */
1051 priv->tx_skbuff[priv->skb_curtx] = skb;
1053 /* Update the current skb pointer (wrapping if this was the last) */
1054 priv->skb_curtx =
1055 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1057 /* Flag the BD as interrupt-causing */
1058 status |= TXBD_INTERRUPT;
1060 /* Flag the BD as ready to go, last in frame, and */
1061 /* in need of CRC */
1062 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1064 dev->trans_start = jiffies;
1066 /* The powerpc-specific eieio() is used, as wmb() has too strong
1067 * semantics (it requires synchronization between cacheable and
1068 * uncacheable mappings, which eieio doesn't provide and which we
1069 * don't need), thus requiring a more expensive sync instruction. At
1070 * some point, the set of architecture-independent barrier functions
1071 * should be expanded to include weaker barriers.
1074 eieio();
1075 txbdp->status = status;
1077 /* If this was the last BD in the ring, the next one */
1078 /* is at the beginning of the ring */
1079 if (txbdp->status & TXBD_WRAP)
1080 txbdp = priv->tx_bd_base;
1081 else
1082 txbdp++;
1084 /* If the next BD still needs to be cleaned up, then the bds
1085 are full. We need to tell the kernel to stop sending us stuff. */
1086 if (txbdp == priv->dirty_tx) {
1087 netif_stop_queue(dev);
1089 dev->stats.tx_fifo_errors++;
1092 /* Update the current txbd to the next one */
1093 priv->cur_tx = txbdp;
1095 /* Tell the DMA to go go go */
1096 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1098 /* Unlock priv */
1099 spin_unlock_irqrestore(&priv->txlock, flags);
1101 return 0;
1104 /* Stops the kernel queue, and halts the controller */
1105 static int gfar_close(struct net_device *dev)
1107 struct gfar_private *priv = netdev_priv(dev);
1109 napi_disable(&priv->napi);
1111 stop_gfar(dev);
1113 /* Disconnect from the PHY */
1114 phy_disconnect(priv->phydev);
1115 priv->phydev = NULL;
1117 netif_stop_queue(dev);
1119 return 0;
1122 /* Changes the mac address if the controller is not running. */
1123 int gfar_set_mac_address(struct net_device *dev)
1125 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1127 return 0;
1131 /* Enables and disables VLAN insertion/extraction */
1132 static void gfar_vlan_rx_register(struct net_device *dev,
1133 struct vlan_group *grp)
1135 struct gfar_private *priv = netdev_priv(dev);
1136 unsigned long flags;
1137 u32 tempval;
1139 spin_lock_irqsave(&priv->rxlock, flags);
1141 priv->vlgrp = grp;
1143 if (grp) {
1144 /* Enable VLAN tag insertion */
1145 tempval = gfar_read(&priv->regs->tctrl);
1146 tempval |= TCTRL_VLINS;
1148 gfar_write(&priv->regs->tctrl, tempval);
1150 /* Enable VLAN tag extraction */
1151 tempval = gfar_read(&priv->regs->rctrl);
1152 tempval |= RCTRL_VLEX;
1153 gfar_write(&priv->regs->rctrl, tempval);
1154 } else {
1155 /* Disable VLAN tag insertion */
1156 tempval = gfar_read(&priv->regs->tctrl);
1157 tempval &= ~TCTRL_VLINS;
1158 gfar_write(&priv->regs->tctrl, tempval);
1160 /* Disable VLAN tag extraction */
1161 tempval = gfar_read(&priv->regs->rctrl);
1162 tempval &= ~RCTRL_VLEX;
1163 gfar_write(&priv->regs->rctrl, tempval);
1166 spin_unlock_irqrestore(&priv->rxlock, flags);
1169 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1171 int tempsize, tempval;
1172 struct gfar_private *priv = netdev_priv(dev);
1173 int oldsize = priv->rx_buffer_size;
1174 int frame_size = new_mtu + ETH_HLEN;
1176 if (priv->vlan_enable)
1177 frame_size += VLAN_ETH_HLEN;
1179 if (gfar_uses_fcb(priv))
1180 frame_size += GMAC_FCB_LEN;
1182 frame_size += priv->padding;
1184 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1185 if (netif_msg_drv(priv))
1186 printk(KERN_ERR "%s: Invalid MTU setting\n",
1187 dev->name);
1188 return -EINVAL;
1191 tempsize =
1192 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1193 INCREMENTAL_BUFFER_SIZE;
1195 /* Only stop and start the controller if it isn't already
1196 * stopped, and we changed something */
1197 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1198 stop_gfar(dev);
1200 priv->rx_buffer_size = tempsize;
1202 dev->mtu = new_mtu;
1204 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1205 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1207 /* If the mtu is larger than the max size for standard
1208 * ethernet frames (ie, a jumbo frame), then set maccfg2
1209 * to allow huge frames, and to check the length */
1210 tempval = gfar_read(&priv->regs->maccfg2);
1212 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1213 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1214 else
1215 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1217 gfar_write(&priv->regs->maccfg2, tempval);
1219 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1220 startup_gfar(dev);
1222 return 0;
1225 /* gfar_timeout gets called when a packet has not been
1226 * transmitted after a set amount of time.
1227 * For now, assume that clearing out all the structures, and
1228 * starting over will fix the problem. */
1229 static void gfar_timeout(struct net_device *dev)
1231 struct gfar_private *priv = netdev_priv(dev);
1233 dev->stats.tx_errors++;
1235 if (dev->flags & IFF_UP) {
1236 stop_gfar(dev);
1237 startup_gfar(dev);
1240 netif_schedule(dev);
1243 /* Interrupt Handler for Transmit complete */
1244 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1246 struct net_device *dev = (struct net_device *) dev_id;
1247 struct gfar_private *priv = netdev_priv(dev);
1248 struct txbd8 *bdp;
1250 /* Clear IEVENT */
1251 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1253 /* Lock priv */
1254 spin_lock(&priv->txlock);
1255 bdp = priv->dirty_tx;
1256 while ((bdp->status & TXBD_READY) == 0) {
1257 /* If dirty_tx and cur_tx are the same, then either the */
1258 /* ring is empty or full now (it could only be full in the beginning, */
1259 /* obviously). If it is empty, we are done. */
1260 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1261 break;
1263 dev->stats.tx_packets++;
1265 /* Deferred means some collisions occurred during transmit, */
1266 /* but we eventually sent the packet. */
1267 if (bdp->status & TXBD_DEF)
1268 dev->stats.collisions++;
1270 /* Free the sk buffer associated with this TxBD */
1271 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1272 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1273 priv->skb_dirtytx =
1274 (priv->skb_dirtytx +
1275 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1277 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1278 if (bdp->status & TXBD_WRAP)
1279 bdp = priv->tx_bd_base;
1280 else
1281 bdp++;
1283 /* Move dirty_tx to be the next bd */
1284 priv->dirty_tx = bdp;
1286 /* We freed a buffer, so now we can restart transmission */
1287 if (netif_queue_stopped(dev))
1288 netif_wake_queue(dev);
1289 } /* while ((bdp->status & TXBD_READY) == 0) */
1291 /* If we are coalescing the interrupts, reset the timer */
1292 /* Otherwise, clear it */
1293 if (priv->txcoalescing)
1294 gfar_write(&priv->regs->txic,
1295 mk_ic_value(priv->txcount, priv->txtime));
1296 else
1297 gfar_write(&priv->regs->txic, 0);
1299 spin_unlock(&priv->txlock);
1301 return IRQ_HANDLED;
1304 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1306 unsigned int alignamount;
1307 struct gfar_private *priv = netdev_priv(dev);
1308 struct sk_buff *skb = NULL;
1309 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1311 /* We have to allocate the skb, so keep trying till we succeed */
1312 while ((!skb) && timeout--)
1313 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1315 if (NULL == skb)
1316 return NULL;
1318 alignamount = RXBUF_ALIGNMENT -
1319 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1321 /* We need the data buffer to be aligned properly. We will reserve
1322 * as many bytes as needed to align the data properly
1324 skb_reserve(skb, alignamount);
1326 bdp->bufPtr = dma_map_single(NULL, skb->data,
1327 priv->rx_buffer_size, DMA_FROM_DEVICE);
1329 bdp->length = 0;
1331 /* Mark the buffer empty */
1332 eieio();
1333 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1335 return skb;
1338 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1340 struct net_device_stats *stats = &dev->stats;
1341 struct gfar_extra_stats *estats = &priv->extra_stats;
1343 /* If the packet was truncated, none of the other errors
1344 * matter */
1345 if (status & RXBD_TRUNCATED) {
1346 stats->rx_length_errors++;
1348 estats->rx_trunc++;
1350 return;
1352 /* Count the errors, if there were any */
1353 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1354 stats->rx_length_errors++;
1356 if (status & RXBD_LARGE)
1357 estats->rx_large++;
1358 else
1359 estats->rx_short++;
1361 if (status & RXBD_NONOCTET) {
1362 stats->rx_frame_errors++;
1363 estats->rx_nonoctet++;
1365 if (status & RXBD_CRCERR) {
1366 estats->rx_crcerr++;
1367 stats->rx_crc_errors++;
1369 if (status & RXBD_OVERRUN) {
1370 estats->rx_overrun++;
1371 stats->rx_crc_errors++;
1375 irqreturn_t gfar_receive(int irq, void *dev_id)
1377 struct net_device *dev = (struct net_device *) dev_id;
1378 struct gfar_private *priv = netdev_priv(dev);
1379 #ifdef CONFIG_GFAR_NAPI
1380 u32 tempval;
1381 #else
1382 unsigned long flags;
1383 #endif
1385 /* Clear IEVENT, so rx interrupt isn't called again
1386 * because of this interrupt */
1387 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1389 /* support NAPI */
1390 #ifdef CONFIG_GFAR_NAPI
1391 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1392 tempval = gfar_read(&priv->regs->imask);
1393 tempval &= IMASK_RX_DISABLED;
1394 gfar_write(&priv->regs->imask, tempval);
1396 __netif_rx_schedule(dev, &priv->napi);
1397 } else {
1398 if (netif_msg_rx_err(priv))
1399 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1400 dev->name, gfar_read(&priv->regs->ievent),
1401 gfar_read(&priv->regs->imask));
1403 #else
1405 spin_lock_irqsave(&priv->rxlock, flags);
1406 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1408 /* If we are coalescing interrupts, update the timer */
1409 /* Otherwise, clear it */
1410 if (priv->rxcoalescing)
1411 gfar_write(&priv->regs->rxic,
1412 mk_ic_value(priv->rxcount, priv->rxtime));
1413 else
1414 gfar_write(&priv->regs->rxic, 0);
1416 spin_unlock_irqrestore(&priv->rxlock, flags);
1417 #endif
1419 return IRQ_HANDLED;
1422 static inline int gfar_rx_vlan(struct sk_buff *skb,
1423 struct vlan_group *vlgrp, unsigned short vlctl)
1425 #ifdef CONFIG_GFAR_NAPI
1426 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1427 #else
1428 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1429 #endif
1432 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1434 /* If valid headers were found, and valid sums
1435 * were verified, then we tell the kernel that no
1436 * checksumming is necessary. Otherwise, it is */
1437 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1438 skb->ip_summed = CHECKSUM_UNNECESSARY;
1439 else
1440 skb->ip_summed = CHECKSUM_NONE;
1444 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1446 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1448 /* Remove the FCB from the skb */
1449 skb_pull(skb, GMAC_FCB_LEN);
1451 return fcb;
1454 /* gfar_process_frame() -- handle one incoming packet if skb
1455 * isn't NULL. */
1456 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1457 int length)
1459 struct gfar_private *priv = netdev_priv(dev);
1460 struct rxfcb *fcb = NULL;
1462 if (NULL == skb) {
1463 if (netif_msg_rx_err(priv))
1464 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1465 dev->stats.rx_dropped++;
1466 priv->extra_stats.rx_skbmissing++;
1467 } else {
1468 int ret;
1470 /* Prep the skb for the packet */
1471 skb_put(skb, length);
1473 /* Grab the FCB if there is one */
1474 if (gfar_uses_fcb(priv))
1475 fcb = gfar_get_fcb(skb);
1477 /* Remove the padded bytes, if there are any */
1478 if (priv->padding)
1479 skb_pull(skb, priv->padding);
1481 if (priv->rx_csum_enable)
1482 gfar_rx_checksum(skb, fcb);
1484 /* Tell the skb what kind of packet this is */
1485 skb->protocol = eth_type_trans(skb, dev);
1487 /* Send the packet up the stack */
1488 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1489 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1490 else
1491 ret = RECEIVE(skb);
1493 if (NET_RX_DROP == ret)
1494 priv->extra_stats.kernel_dropped++;
1497 return 0;
1500 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1501 * until the budget/quota has been reached. Returns the number
1502 * of frames handled
1504 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1506 struct rxbd8 *bdp;
1507 struct sk_buff *skb;
1508 u16 pkt_len;
1509 int howmany = 0;
1510 struct gfar_private *priv = netdev_priv(dev);
1512 /* Get the first full descriptor */
1513 bdp = priv->cur_rx;
1515 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1516 rmb();
1517 skb = priv->rx_skbuff[priv->skb_currx];
1519 if (!(bdp->status &
1520 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1521 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1522 /* Increment the number of packets */
1523 dev->stats.rx_packets++;
1524 howmany++;
1526 /* Remove the FCS from the packet length */
1527 pkt_len = bdp->length - 4;
1529 gfar_process_frame(dev, skb, pkt_len);
1531 dev->stats.rx_bytes += pkt_len;
1532 } else {
1533 count_errors(bdp->status, priv);
1535 if (skb)
1536 dev_kfree_skb_any(skb);
1538 priv->rx_skbuff[priv->skb_currx] = NULL;
1541 dev->last_rx = jiffies;
1543 /* Clear the status flags for this buffer */
1544 bdp->status &= ~RXBD_STATS;
1546 /* Add another skb for the future */
1547 skb = gfar_new_skb(dev, bdp);
1548 priv->rx_skbuff[priv->skb_currx] = skb;
1550 /* Update to the next pointer */
1551 if (bdp->status & RXBD_WRAP)
1552 bdp = priv->rx_bd_base;
1553 else
1554 bdp++;
1556 /* update to point at the next skb */
1557 priv->skb_currx =
1558 (priv->skb_currx +
1559 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1563 /* Update the current rxbd pointer to be the next one */
1564 priv->cur_rx = bdp;
1566 return howmany;
1569 #ifdef CONFIG_GFAR_NAPI
1570 static int gfar_poll(struct napi_struct *napi, int budget)
1572 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1573 struct net_device *dev = priv->dev;
1574 int howmany;
1576 howmany = gfar_clean_rx_ring(dev, budget);
1578 if (howmany < budget) {
1579 netif_rx_complete(dev, napi);
1581 /* Clear the halt bit in RSTAT */
1582 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1584 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1586 /* If we are coalescing interrupts, update the timer */
1587 /* Otherwise, clear it */
1588 if (priv->rxcoalescing)
1589 gfar_write(&priv->regs->rxic,
1590 mk_ic_value(priv->rxcount, priv->rxtime));
1591 else
1592 gfar_write(&priv->regs->rxic, 0);
1595 return howmany;
1597 #endif
1599 #ifdef CONFIG_NET_POLL_CONTROLLER
1601 * Polling 'interrupt' - used by things like netconsole to send skbs
1602 * without having to re-enable interrupts. It's not called while
1603 * the interrupt routine is executing.
1605 static void gfar_netpoll(struct net_device *dev)
1607 struct gfar_private *priv = netdev_priv(dev);
1609 /* If the device has multiple interrupts, run tx/rx */
1610 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1611 disable_irq(priv->interruptTransmit);
1612 disable_irq(priv->interruptReceive);
1613 disable_irq(priv->interruptError);
1614 gfar_interrupt(priv->interruptTransmit, dev);
1615 enable_irq(priv->interruptError);
1616 enable_irq(priv->interruptReceive);
1617 enable_irq(priv->interruptTransmit);
1618 } else {
1619 disable_irq(priv->interruptTransmit);
1620 gfar_interrupt(priv->interruptTransmit, dev);
1621 enable_irq(priv->interruptTransmit);
1624 #endif
1626 /* The interrupt handler for devices with one interrupt */
1627 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1629 struct net_device *dev = dev_id;
1630 struct gfar_private *priv = netdev_priv(dev);
1632 /* Save ievent for future reference */
1633 u32 events = gfar_read(&priv->regs->ievent);
1635 /* Check for reception */
1636 if (events & IEVENT_RX_MASK)
1637 gfar_receive(irq, dev_id);
1639 /* Check for transmit completion */
1640 if (events & IEVENT_TX_MASK)
1641 gfar_transmit(irq, dev_id);
1643 /* Check for errors */
1644 if (events & IEVENT_ERR_MASK)
1645 gfar_error(irq, dev_id);
1647 return IRQ_HANDLED;
1650 /* Called every time the controller might need to be made
1651 * aware of new link state. The PHY code conveys this
1652 * information through variables in the phydev structure, and this
1653 * function converts those variables into the appropriate
1654 * register values, and can bring down the device if needed.
1656 static void adjust_link(struct net_device *dev)
1658 struct gfar_private *priv = netdev_priv(dev);
1659 struct gfar __iomem *regs = priv->regs;
1660 unsigned long flags;
1661 struct phy_device *phydev = priv->phydev;
1662 int new_state = 0;
1664 spin_lock_irqsave(&priv->txlock, flags);
1665 if (phydev->link) {
1666 u32 tempval = gfar_read(&regs->maccfg2);
1667 u32 ecntrl = gfar_read(&regs->ecntrl);
1669 /* Now we make sure that we can be in full duplex mode.
1670 * If not, we operate in half-duplex mode. */
1671 if (phydev->duplex != priv->oldduplex) {
1672 new_state = 1;
1673 if (!(phydev->duplex))
1674 tempval &= ~(MACCFG2_FULL_DUPLEX);
1675 else
1676 tempval |= MACCFG2_FULL_DUPLEX;
1678 priv->oldduplex = phydev->duplex;
1681 if (phydev->speed != priv->oldspeed) {
1682 new_state = 1;
1683 switch (phydev->speed) {
1684 case 1000:
1685 tempval =
1686 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1687 break;
1688 case 100:
1689 case 10:
1690 tempval =
1691 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1693 /* Reduced mode distinguishes
1694 * between 10 and 100 */
1695 if (phydev->speed == SPEED_100)
1696 ecntrl |= ECNTRL_R100;
1697 else
1698 ecntrl &= ~(ECNTRL_R100);
1699 break;
1700 default:
1701 if (netif_msg_link(priv))
1702 printk(KERN_WARNING
1703 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1704 dev->name, phydev->speed);
1705 break;
1708 priv->oldspeed = phydev->speed;
1711 gfar_write(&regs->maccfg2, tempval);
1712 gfar_write(&regs->ecntrl, ecntrl);
1714 if (!priv->oldlink) {
1715 new_state = 1;
1716 priv->oldlink = 1;
1717 netif_schedule(dev);
1719 } else if (priv->oldlink) {
1720 new_state = 1;
1721 priv->oldlink = 0;
1722 priv->oldspeed = 0;
1723 priv->oldduplex = -1;
1726 if (new_state && netif_msg_link(priv))
1727 phy_print_status(phydev);
1729 spin_unlock_irqrestore(&priv->txlock, flags);
1732 /* Update the hash table based on the current list of multicast
1733 * addresses we subscribe to. Also, change the promiscuity of
1734 * the device based on the flags (this function is called
1735 * whenever dev->flags is changed */
1736 static void gfar_set_multi(struct net_device *dev)
1738 struct dev_mc_list *mc_ptr;
1739 struct gfar_private *priv = netdev_priv(dev);
1740 struct gfar __iomem *regs = priv->regs;
1741 u32 tempval;
1743 if(dev->flags & IFF_PROMISC) {
1744 /* Set RCTRL to PROM */
1745 tempval = gfar_read(&regs->rctrl);
1746 tempval |= RCTRL_PROM;
1747 gfar_write(&regs->rctrl, tempval);
1748 } else {
1749 /* Set RCTRL to not PROM */
1750 tempval = gfar_read(&regs->rctrl);
1751 tempval &= ~(RCTRL_PROM);
1752 gfar_write(&regs->rctrl, tempval);
1755 if(dev->flags & IFF_ALLMULTI) {
1756 /* Set the hash to rx all multicast frames */
1757 gfar_write(&regs->igaddr0, 0xffffffff);
1758 gfar_write(&regs->igaddr1, 0xffffffff);
1759 gfar_write(&regs->igaddr2, 0xffffffff);
1760 gfar_write(&regs->igaddr3, 0xffffffff);
1761 gfar_write(&regs->igaddr4, 0xffffffff);
1762 gfar_write(&regs->igaddr5, 0xffffffff);
1763 gfar_write(&regs->igaddr6, 0xffffffff);
1764 gfar_write(&regs->igaddr7, 0xffffffff);
1765 gfar_write(&regs->gaddr0, 0xffffffff);
1766 gfar_write(&regs->gaddr1, 0xffffffff);
1767 gfar_write(&regs->gaddr2, 0xffffffff);
1768 gfar_write(&regs->gaddr3, 0xffffffff);
1769 gfar_write(&regs->gaddr4, 0xffffffff);
1770 gfar_write(&regs->gaddr5, 0xffffffff);
1771 gfar_write(&regs->gaddr6, 0xffffffff);
1772 gfar_write(&regs->gaddr7, 0xffffffff);
1773 } else {
1774 int em_num;
1775 int idx;
1777 /* zero out the hash */
1778 gfar_write(&regs->igaddr0, 0x0);
1779 gfar_write(&regs->igaddr1, 0x0);
1780 gfar_write(&regs->igaddr2, 0x0);
1781 gfar_write(&regs->igaddr3, 0x0);
1782 gfar_write(&regs->igaddr4, 0x0);
1783 gfar_write(&regs->igaddr5, 0x0);
1784 gfar_write(&regs->igaddr6, 0x0);
1785 gfar_write(&regs->igaddr7, 0x0);
1786 gfar_write(&regs->gaddr0, 0x0);
1787 gfar_write(&regs->gaddr1, 0x0);
1788 gfar_write(&regs->gaddr2, 0x0);
1789 gfar_write(&regs->gaddr3, 0x0);
1790 gfar_write(&regs->gaddr4, 0x0);
1791 gfar_write(&regs->gaddr5, 0x0);
1792 gfar_write(&regs->gaddr6, 0x0);
1793 gfar_write(&regs->gaddr7, 0x0);
1795 /* If we have extended hash tables, we need to
1796 * clear the exact match registers to prepare for
1797 * setting them */
1798 if (priv->extended_hash) {
1799 em_num = GFAR_EM_NUM + 1;
1800 gfar_clear_exact_match(dev);
1801 idx = 1;
1802 } else {
1803 idx = 0;
1804 em_num = 0;
1807 if(dev->mc_count == 0)
1808 return;
1810 /* Parse the list, and set the appropriate bits */
1811 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1812 if (idx < em_num) {
1813 gfar_set_mac_for_addr(dev, idx,
1814 mc_ptr->dmi_addr);
1815 idx++;
1816 } else
1817 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1821 return;
1825 /* Clears each of the exact match registers to zero, so they
1826 * don't interfere with normal reception */
1827 static void gfar_clear_exact_match(struct net_device *dev)
1829 int idx;
1830 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1832 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1833 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1836 /* Set the appropriate hash bit for the given addr */
1837 /* The algorithm works like so:
1838 * 1) Take the Destination Address (ie the multicast address), and
1839 * do a CRC on it (little endian), and reverse the bits of the
1840 * result.
1841 * 2) Use the 8 most significant bits as a hash into a 256-entry
1842 * table. The table is controlled through 8 32-bit registers:
1843 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1844 * gaddr7. This means that the 3 most significant bits in the
1845 * hash index which gaddr register to use, and the 5 other bits
1846 * indicate which bit (assuming an IBM numbering scheme, which
1847 * for PowerPC (tm) is usually the case) in the register holds
1848 * the entry. */
1849 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1851 u32 tempval;
1852 struct gfar_private *priv = netdev_priv(dev);
1853 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1854 int width = priv->hash_width;
1855 u8 whichbit = (result >> (32 - width)) & 0x1f;
1856 u8 whichreg = result >> (32 - width + 5);
1857 u32 value = (1 << (31-whichbit));
1859 tempval = gfar_read(priv->hash_regs[whichreg]);
1860 tempval |= value;
1861 gfar_write(priv->hash_regs[whichreg], tempval);
1863 return;
1867 /* There are multiple MAC Address register pairs on some controllers
1868 * This function sets the numth pair to a given address
1870 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1872 struct gfar_private *priv = netdev_priv(dev);
1873 int idx;
1874 char tmpbuf[MAC_ADDR_LEN];
1875 u32 tempval;
1876 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1878 macptr += num*2;
1880 /* Now copy it into the mac registers backwards, cuz */
1881 /* little endian is silly */
1882 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1883 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1885 gfar_write(macptr, *((u32 *) (tmpbuf)));
1887 tempval = *((u32 *) (tmpbuf + 4));
1889 gfar_write(macptr+1, tempval);
1892 /* GFAR error interrupt handler */
1893 static irqreturn_t gfar_error(int irq, void *dev_id)
1895 struct net_device *dev = dev_id;
1896 struct gfar_private *priv = netdev_priv(dev);
1898 /* Save ievent for future reference */
1899 u32 events = gfar_read(&priv->regs->ievent);
1901 /* Clear IEVENT */
1902 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1904 /* Hmm... */
1905 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1906 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1907 dev->name, events, gfar_read(&priv->regs->imask));
1909 /* Update the error counters */
1910 if (events & IEVENT_TXE) {
1911 dev->stats.tx_errors++;
1913 if (events & IEVENT_LC)
1914 dev->stats.tx_window_errors++;
1915 if (events & IEVENT_CRL)
1916 dev->stats.tx_aborted_errors++;
1917 if (events & IEVENT_XFUN) {
1918 if (netif_msg_tx_err(priv))
1919 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1920 "packet dropped.\n", dev->name);
1921 dev->stats.tx_dropped++;
1922 priv->extra_stats.tx_underrun++;
1924 /* Reactivate the Tx Queues */
1925 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1927 if (netif_msg_tx_err(priv))
1928 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1930 if (events & IEVENT_BSY) {
1931 dev->stats.rx_errors++;
1932 priv->extra_stats.rx_bsy++;
1934 gfar_receive(irq, dev_id);
1936 #ifndef CONFIG_GFAR_NAPI
1937 /* Clear the halt bit in RSTAT */
1938 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1939 #endif
1941 if (netif_msg_rx_err(priv))
1942 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1943 dev->name, gfar_read(&priv->regs->rstat));
1945 if (events & IEVENT_BABR) {
1946 dev->stats.rx_errors++;
1947 priv->extra_stats.rx_babr++;
1949 if (netif_msg_rx_err(priv))
1950 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1952 if (events & IEVENT_EBERR) {
1953 priv->extra_stats.eberr++;
1954 if (netif_msg_rx_err(priv))
1955 printk(KERN_DEBUG "%s: bus error\n", dev->name);
1957 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1958 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1960 if (events & IEVENT_BABT) {
1961 priv->extra_stats.tx_babt++;
1962 if (netif_msg_tx_err(priv))
1963 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1965 return IRQ_HANDLED;
1968 /* Structure for a device driver */
1969 static struct platform_driver gfar_driver = {
1970 .probe = gfar_probe,
1971 .remove = gfar_remove,
1972 .driver = {
1973 .name = "fsl-gianfar",
1977 static int __init gfar_init(void)
1979 int err = gfar_mdio_init();
1981 if (err)
1982 return err;
1984 err = platform_driver_register(&gfar_driver);
1986 if (err)
1987 gfar_mdio_exit();
1989 return err;
1992 static void __exit gfar_exit(void)
1994 platform_driver_unregister(&gfar_driver);
1995 gfar_mdio_exit();
1998 module_init(gfar_init);
1999 module_exit(gfar_exit);