[PATCH] I2C-MPC: Remove OCP device model support
[linux-2.6/verdex.git] / drivers / block / pktcdvd.c
blob7f3d78de265c389af02d763ba0ddb0ea339404b3
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-R, CD-RW, DVD-R, and
9 * DVD-RW devices (aka an exercise in block layer masturbation)
12 * TODO: (circa order of when I will fix it)
13 * - Only able to write on CD-RW media right now.
14 * - check host application code on media and set it in write page
15 * - interface for UDF <-> packet to negotiate a new location when a write
16 * fails.
17 * - handle OPC, especially for -RW media
19 * Theory of operation:
21 * We use a custom make_request_fn function that forwards reads directly to
22 * the underlying CD device. Write requests are either attached directly to
23 * a live packet_data object, or simply stored sequentially in a list for
24 * later processing by the kcdrwd kernel thread. This driver doesn't use
25 * any elevator functionally as defined by the elevator_s struct, but the
26 * underlying CD device uses a standard elevator.
28 * This strategy makes it possible to do very late merging of IO requests.
29 * A new bio sent to pkt_make_request can be merged with a live packet_data
30 * object even if the object is in the data gathering state.
32 *************************************************************************/
34 #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
36 #include <linux/pktcdvd.h>
37 #include <linux/config.h>
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/kernel.h>
41 #include <linux/kthread.h>
42 #include <linux/errno.h>
43 #include <linux/spinlock.h>
44 #include <linux/file.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/miscdevice.h>
48 #include <linux/suspend.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_ioctl.h>
52 #include <asm/uaccess.h>
54 #if PACKET_DEBUG
55 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
56 #else
57 #define DPRINTK(fmt, args...)
58 #endif
60 #if PACKET_DEBUG > 1
61 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
62 #else
63 #define VPRINTK(fmt, args...)
64 #endif
66 #define MAX_SPEED 0xffff
68 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
70 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
71 static struct proc_dir_entry *pkt_proc;
72 static int pkt_major;
73 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
74 static mempool_t *psd_pool;
77 static void pkt_bio_finished(struct pktcdvd_device *pd)
79 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
80 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
81 VPRINTK("pktcdvd: queue empty\n");
82 atomic_set(&pd->iosched.attention, 1);
83 wake_up(&pd->wqueue);
87 static void pkt_bio_destructor(struct bio *bio)
89 kfree(bio->bi_io_vec);
90 kfree(bio);
93 static struct bio *pkt_bio_alloc(int nr_iovecs)
95 struct bio_vec *bvl = NULL;
96 struct bio *bio;
98 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
99 if (!bio)
100 goto no_bio;
101 bio_init(bio);
103 bvl = kmalloc(nr_iovecs * sizeof(struct bio_vec), GFP_KERNEL);
104 if (!bvl)
105 goto no_bvl;
106 memset(bvl, 0, nr_iovecs * sizeof(struct bio_vec));
108 bio->bi_max_vecs = nr_iovecs;
109 bio->bi_io_vec = bvl;
110 bio->bi_destructor = pkt_bio_destructor;
112 return bio;
114 no_bvl:
115 kfree(bio);
116 no_bio:
117 return NULL;
121 * Allocate a packet_data struct
123 static struct packet_data *pkt_alloc_packet_data(void)
125 int i;
126 struct packet_data *pkt;
128 pkt = kmalloc(sizeof(struct packet_data), GFP_KERNEL);
129 if (!pkt)
130 goto no_pkt;
131 memset(pkt, 0, sizeof(struct packet_data));
133 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
134 if (!pkt->w_bio)
135 goto no_bio;
137 for (i = 0; i < PAGES_PER_PACKET; i++) {
138 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
139 if (!pkt->pages[i])
140 goto no_page;
143 spin_lock_init(&pkt->lock);
145 for (i = 0; i < PACKET_MAX_SIZE; i++) {
146 struct bio *bio = pkt_bio_alloc(1);
147 if (!bio)
148 goto no_rd_bio;
149 pkt->r_bios[i] = bio;
152 return pkt;
154 no_rd_bio:
155 for (i = 0; i < PACKET_MAX_SIZE; i++) {
156 struct bio *bio = pkt->r_bios[i];
157 if (bio)
158 bio_put(bio);
161 no_page:
162 for (i = 0; i < PAGES_PER_PACKET; i++)
163 if (pkt->pages[i])
164 __free_page(pkt->pages[i]);
165 bio_put(pkt->w_bio);
166 no_bio:
167 kfree(pkt);
168 no_pkt:
169 return NULL;
173 * Free a packet_data struct
175 static void pkt_free_packet_data(struct packet_data *pkt)
177 int i;
179 for (i = 0; i < PACKET_MAX_SIZE; i++) {
180 struct bio *bio = pkt->r_bios[i];
181 if (bio)
182 bio_put(bio);
184 for (i = 0; i < PAGES_PER_PACKET; i++)
185 __free_page(pkt->pages[i]);
186 bio_put(pkt->w_bio);
187 kfree(pkt);
190 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
192 struct packet_data *pkt, *next;
194 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
196 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
197 pkt_free_packet_data(pkt);
201 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
203 struct packet_data *pkt;
205 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
206 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
207 spin_lock_init(&pd->cdrw.active_list_lock);
208 while (nr_packets > 0) {
209 pkt = pkt_alloc_packet_data();
210 if (!pkt) {
211 pkt_shrink_pktlist(pd);
212 return 0;
214 pkt->id = nr_packets;
215 pkt->pd = pd;
216 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
217 nr_packets--;
219 return 1;
222 static void *pkt_rb_alloc(unsigned int __nocast gfp_mask, void *data)
224 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
227 static void pkt_rb_free(void *ptr, void *data)
229 kfree(ptr);
232 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
234 struct rb_node *n = rb_next(&node->rb_node);
235 if (!n)
236 return NULL;
237 return rb_entry(n, struct pkt_rb_node, rb_node);
240 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
242 rb_erase(&node->rb_node, &pd->bio_queue);
243 mempool_free(node, pd->rb_pool);
244 pd->bio_queue_size--;
245 BUG_ON(pd->bio_queue_size < 0);
249 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
251 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
253 struct rb_node *n = pd->bio_queue.rb_node;
254 struct rb_node *next;
255 struct pkt_rb_node *tmp;
257 if (!n) {
258 BUG_ON(pd->bio_queue_size > 0);
259 return NULL;
262 for (;;) {
263 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
264 if (s <= tmp->bio->bi_sector)
265 next = n->rb_left;
266 else
267 next = n->rb_right;
268 if (!next)
269 break;
270 n = next;
273 if (s > tmp->bio->bi_sector) {
274 tmp = pkt_rbtree_next(tmp);
275 if (!tmp)
276 return NULL;
278 BUG_ON(s > tmp->bio->bi_sector);
279 return tmp;
283 * Insert a node into the pd->bio_queue rb tree.
285 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
287 struct rb_node **p = &pd->bio_queue.rb_node;
288 struct rb_node *parent = NULL;
289 sector_t s = node->bio->bi_sector;
290 struct pkt_rb_node *tmp;
292 while (*p) {
293 parent = *p;
294 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
295 if (s < tmp->bio->bi_sector)
296 p = &(*p)->rb_left;
297 else
298 p = &(*p)->rb_right;
300 rb_link_node(&node->rb_node, parent, p);
301 rb_insert_color(&node->rb_node, &pd->bio_queue);
302 pd->bio_queue_size++;
306 * Add a bio to a single linked list defined by its head and tail pointers.
308 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
310 bio->bi_next = NULL;
311 if (*list_tail) {
312 BUG_ON((*list_head) == NULL);
313 (*list_tail)->bi_next = bio;
314 (*list_tail) = bio;
315 } else {
316 BUG_ON((*list_head) != NULL);
317 (*list_head) = bio;
318 (*list_tail) = bio;
323 * Remove and return the first bio from a single linked list defined by its
324 * head and tail pointers.
326 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
328 struct bio *bio;
330 if (*list_head == NULL)
331 return NULL;
333 bio = *list_head;
334 *list_head = bio->bi_next;
335 if (*list_head == NULL)
336 *list_tail = NULL;
338 bio->bi_next = NULL;
339 return bio;
343 * Send a packet_command to the underlying block device and
344 * wait for completion.
346 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
348 char sense[SCSI_SENSE_BUFFERSIZE];
349 request_queue_t *q;
350 struct request *rq;
351 DECLARE_COMPLETION(wait);
352 int err = 0;
354 q = bdev_get_queue(pd->bdev);
356 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
357 __GFP_WAIT);
358 rq->errors = 0;
359 rq->rq_disk = pd->bdev->bd_disk;
360 rq->bio = NULL;
361 rq->buffer = NULL;
362 rq->timeout = 60*HZ;
363 rq->data = cgc->buffer;
364 rq->data_len = cgc->buflen;
365 rq->sense = sense;
366 memset(sense, 0, sizeof(sense));
367 rq->sense_len = 0;
368 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
369 if (cgc->quiet)
370 rq->flags |= REQ_QUIET;
371 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
372 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
373 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
375 rq->ref_count++;
376 rq->flags |= REQ_NOMERGE;
377 rq->waiting = &wait;
378 rq->end_io = blk_end_sync_rq;
379 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
380 generic_unplug_device(q);
381 wait_for_completion(&wait);
383 if (rq->errors)
384 err = -EIO;
386 blk_put_request(rq);
387 return err;
391 * A generic sense dump / resolve mechanism should be implemented across
392 * all ATAPI + SCSI devices.
394 static void pkt_dump_sense(struct packet_command *cgc)
396 static char *info[9] = { "No sense", "Recovered error", "Not ready",
397 "Medium error", "Hardware error", "Illegal request",
398 "Unit attention", "Data protect", "Blank check" };
399 int i;
400 struct request_sense *sense = cgc->sense;
402 printk("pktcdvd:");
403 for (i = 0; i < CDROM_PACKET_SIZE; i++)
404 printk(" %02x", cgc->cmd[i]);
405 printk(" - ");
407 if (sense == NULL) {
408 printk("no sense\n");
409 return;
412 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
414 if (sense->sense_key > 8) {
415 printk(" (INVALID)\n");
416 return;
419 printk(" (%s)\n", info[sense->sense_key]);
423 * flush the drive cache to media
425 static int pkt_flush_cache(struct pktcdvd_device *pd)
427 struct packet_command cgc;
429 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
430 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
431 cgc.quiet = 1;
434 * the IMMED bit -- we default to not setting it, although that
435 * would allow a much faster close, this is safer
437 #if 0
438 cgc.cmd[1] = 1 << 1;
439 #endif
440 return pkt_generic_packet(pd, &cgc);
444 * speed is given as the normal factor, e.g. 4 for 4x
446 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
448 struct packet_command cgc;
449 struct request_sense sense;
450 int ret;
452 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
453 cgc.sense = &sense;
454 cgc.cmd[0] = GPCMD_SET_SPEED;
455 cgc.cmd[2] = (read_speed >> 8) & 0xff;
456 cgc.cmd[3] = read_speed & 0xff;
457 cgc.cmd[4] = (write_speed >> 8) & 0xff;
458 cgc.cmd[5] = write_speed & 0xff;
460 if ((ret = pkt_generic_packet(pd, &cgc)))
461 pkt_dump_sense(&cgc);
463 return ret;
467 * Queue a bio for processing by the low-level CD device. Must be called
468 * from process context.
470 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
472 spin_lock(&pd->iosched.lock);
473 if (bio_data_dir(bio) == READ) {
474 pkt_add_list_last(bio, &pd->iosched.read_queue,
475 &pd->iosched.read_queue_tail);
476 } else {
477 pkt_add_list_last(bio, &pd->iosched.write_queue,
478 &pd->iosched.write_queue_tail);
480 spin_unlock(&pd->iosched.lock);
482 atomic_set(&pd->iosched.attention, 1);
483 wake_up(&pd->wqueue);
487 * Process the queued read/write requests. This function handles special
488 * requirements for CDRW drives:
489 * - A cache flush command must be inserted before a read request if the
490 * previous request was a write.
491 * - Switching between reading and writing is slow, so don't do it more often
492 * than necessary.
493 * - Optimize for throughput at the expense of latency. This means that streaming
494 * writes will never be interrupted by a read, but if the drive has to seek
495 * before the next write, switch to reading instead if there are any pending
496 * read requests.
497 * - Set the read speed according to current usage pattern. When only reading
498 * from the device, it's best to use the highest possible read speed, but
499 * when switching often between reading and writing, it's better to have the
500 * same read and write speeds.
502 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
504 request_queue_t *q;
506 if (atomic_read(&pd->iosched.attention) == 0)
507 return;
508 atomic_set(&pd->iosched.attention, 0);
510 q = bdev_get_queue(pd->bdev);
512 for (;;) {
513 struct bio *bio;
514 int reads_queued, writes_queued;
516 spin_lock(&pd->iosched.lock);
517 reads_queued = (pd->iosched.read_queue != NULL);
518 writes_queued = (pd->iosched.write_queue != NULL);
519 spin_unlock(&pd->iosched.lock);
521 if (!reads_queued && !writes_queued)
522 break;
524 if (pd->iosched.writing) {
525 int need_write_seek = 1;
526 spin_lock(&pd->iosched.lock);
527 bio = pd->iosched.write_queue;
528 spin_unlock(&pd->iosched.lock);
529 if (bio && (bio->bi_sector == pd->iosched.last_write))
530 need_write_seek = 0;
531 if (need_write_seek && reads_queued) {
532 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
533 VPRINTK("pktcdvd: write, waiting\n");
534 break;
536 pkt_flush_cache(pd);
537 pd->iosched.writing = 0;
539 } else {
540 if (!reads_queued && writes_queued) {
541 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
542 VPRINTK("pktcdvd: read, waiting\n");
543 break;
545 pd->iosched.writing = 1;
549 spin_lock(&pd->iosched.lock);
550 if (pd->iosched.writing) {
551 bio = pkt_get_list_first(&pd->iosched.write_queue,
552 &pd->iosched.write_queue_tail);
553 } else {
554 bio = pkt_get_list_first(&pd->iosched.read_queue,
555 &pd->iosched.read_queue_tail);
557 spin_unlock(&pd->iosched.lock);
559 if (!bio)
560 continue;
562 if (bio_data_dir(bio) == READ)
563 pd->iosched.successive_reads += bio->bi_size >> 10;
564 else {
565 pd->iosched.successive_reads = 0;
566 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
568 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
569 if (pd->read_speed == pd->write_speed) {
570 pd->read_speed = MAX_SPEED;
571 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
573 } else {
574 if (pd->read_speed != pd->write_speed) {
575 pd->read_speed = pd->write_speed;
576 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
580 atomic_inc(&pd->cdrw.pending_bios);
581 generic_make_request(bio);
586 * Special care is needed if the underlying block device has a small
587 * max_phys_segments value.
589 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
591 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
593 * The cdrom device can handle one segment/frame
595 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
596 return 0;
597 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
599 * We can handle this case at the expense of some extra memory
600 * copies during write operations
602 set_bit(PACKET_MERGE_SEGS, &pd->flags);
603 return 0;
604 } else {
605 printk("pktcdvd: cdrom max_phys_segments too small\n");
606 return -EIO;
611 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
613 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
615 unsigned int copy_size = CD_FRAMESIZE;
617 while (copy_size > 0) {
618 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
619 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
620 src_bvl->bv_offset + offs;
621 void *vto = page_address(dst_page) + dst_offs;
622 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
624 BUG_ON(len < 0);
625 memcpy(vto, vfrom, len);
626 kunmap_atomic(vfrom, KM_USER0);
628 seg++;
629 offs = 0;
630 dst_offs += len;
631 copy_size -= len;
636 * Copy all data for this packet to pkt->pages[], so that
637 * a) The number of required segments for the write bio is minimized, which
638 * is necessary for some scsi controllers.
639 * b) The data can be used as cache to avoid read requests if we receive a
640 * new write request for the same zone.
642 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
644 int f, p, offs;
646 /* Copy all data to pkt->pages[] */
647 p = 0;
648 offs = 0;
649 for (f = 0; f < pkt->frames; f++) {
650 if (pages[f] != pkt->pages[p]) {
651 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
652 void *vto = page_address(pkt->pages[p]) + offs;
653 memcpy(vto, vfrom, CD_FRAMESIZE);
654 kunmap_atomic(vfrom, KM_USER0);
655 pages[f] = pkt->pages[p];
656 offsets[f] = offs;
657 } else {
658 BUG_ON(offsets[f] != offs);
660 offs += CD_FRAMESIZE;
661 if (offs >= PAGE_SIZE) {
662 BUG_ON(offs > PAGE_SIZE);
663 offs = 0;
664 p++;
669 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
671 struct packet_data *pkt = bio->bi_private;
672 struct pktcdvd_device *pd = pkt->pd;
673 BUG_ON(!pd);
675 if (bio->bi_size)
676 return 1;
678 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
679 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
681 if (err)
682 atomic_inc(&pkt->io_errors);
683 if (atomic_dec_and_test(&pkt->io_wait)) {
684 atomic_inc(&pkt->run_sm);
685 wake_up(&pd->wqueue);
687 pkt_bio_finished(pd);
689 return 0;
692 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
694 struct packet_data *pkt = bio->bi_private;
695 struct pktcdvd_device *pd = pkt->pd;
696 BUG_ON(!pd);
698 if (bio->bi_size)
699 return 1;
701 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
703 pd->stats.pkt_ended++;
705 pkt_bio_finished(pd);
706 atomic_dec(&pkt->io_wait);
707 atomic_inc(&pkt->run_sm);
708 wake_up(&pd->wqueue);
709 return 0;
713 * Schedule reads for the holes in a packet
715 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
717 int frames_read = 0;
718 struct bio *bio;
719 int f;
720 char written[PACKET_MAX_SIZE];
722 BUG_ON(!pkt->orig_bios);
724 atomic_set(&pkt->io_wait, 0);
725 atomic_set(&pkt->io_errors, 0);
727 if (pkt->cache_valid) {
728 VPRINTK("pkt_gather_data: zone %llx cached\n",
729 (unsigned long long)pkt->sector);
730 goto out_account;
734 * Figure out which frames we need to read before we can write.
736 memset(written, 0, sizeof(written));
737 spin_lock(&pkt->lock);
738 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
739 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
740 int num_frames = bio->bi_size / CD_FRAMESIZE;
741 BUG_ON(first_frame < 0);
742 BUG_ON(first_frame + num_frames > pkt->frames);
743 for (f = first_frame; f < first_frame + num_frames; f++)
744 written[f] = 1;
746 spin_unlock(&pkt->lock);
749 * Schedule reads for missing parts of the packet.
751 for (f = 0; f < pkt->frames; f++) {
752 int p, offset;
753 if (written[f])
754 continue;
755 bio = pkt->r_bios[f];
756 bio_init(bio);
757 bio->bi_max_vecs = 1;
758 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
759 bio->bi_bdev = pd->bdev;
760 bio->bi_end_io = pkt_end_io_read;
761 bio->bi_private = pkt;
763 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
764 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
765 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
766 f, pkt->pages[p], offset);
767 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
768 BUG();
770 atomic_inc(&pkt->io_wait);
771 bio->bi_rw = READ;
772 pkt_queue_bio(pd, bio);
773 frames_read++;
776 out_account:
777 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
778 frames_read, (unsigned long long)pkt->sector);
779 pd->stats.pkt_started++;
780 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
781 pd->stats.secs_w += pd->settings.size;
785 * Find a packet matching zone, or the least recently used packet if
786 * there is no match.
788 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
790 struct packet_data *pkt;
792 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
793 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
794 list_del_init(&pkt->list);
795 if (pkt->sector != zone)
796 pkt->cache_valid = 0;
797 break;
800 return pkt;
803 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
805 if (pkt->cache_valid) {
806 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
807 } else {
808 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
813 * recover a failed write, query for relocation if possible
815 * returns 1 if recovery is possible, or 0 if not
818 static int pkt_start_recovery(struct packet_data *pkt)
821 * FIXME. We need help from the file system to implement
822 * recovery handling.
824 return 0;
825 #if 0
826 struct request *rq = pkt->rq;
827 struct pktcdvd_device *pd = rq->rq_disk->private_data;
828 struct block_device *pkt_bdev;
829 struct super_block *sb = NULL;
830 unsigned long old_block, new_block;
831 sector_t new_sector;
833 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
834 if (pkt_bdev) {
835 sb = get_super(pkt_bdev);
836 bdput(pkt_bdev);
839 if (!sb)
840 return 0;
842 if (!sb->s_op || !sb->s_op->relocate_blocks)
843 goto out;
845 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
846 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
847 goto out;
849 new_sector = new_block * (CD_FRAMESIZE >> 9);
850 pkt->sector = new_sector;
852 pkt->bio->bi_sector = new_sector;
853 pkt->bio->bi_next = NULL;
854 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
855 pkt->bio->bi_idx = 0;
857 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
858 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
859 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
860 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
861 BUG_ON(pkt->bio->bi_private != pkt);
863 drop_super(sb);
864 return 1;
866 out:
867 drop_super(sb);
868 return 0;
869 #endif
872 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
874 #if PACKET_DEBUG > 1
875 static const char *state_name[] = {
876 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
878 enum packet_data_state old_state = pkt->state;
879 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
880 state_name[old_state], state_name[state]);
881 #endif
882 pkt->state = state;
886 * Scan the work queue to see if we can start a new packet.
887 * returns non-zero if any work was done.
889 static int pkt_handle_queue(struct pktcdvd_device *pd)
891 struct packet_data *pkt, *p;
892 struct bio *bio = NULL;
893 sector_t zone = 0; /* Suppress gcc warning */
894 struct pkt_rb_node *node, *first_node;
895 struct rb_node *n;
897 VPRINTK("handle_queue\n");
899 atomic_set(&pd->scan_queue, 0);
901 if (list_empty(&pd->cdrw.pkt_free_list)) {
902 VPRINTK("handle_queue: no pkt\n");
903 return 0;
907 * Try to find a zone we are not already working on.
909 spin_lock(&pd->lock);
910 first_node = pkt_rbtree_find(pd, pd->current_sector);
911 if (!first_node) {
912 n = rb_first(&pd->bio_queue);
913 if (n)
914 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
916 node = first_node;
917 while (node) {
918 bio = node->bio;
919 zone = ZONE(bio->bi_sector, pd);
920 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
921 if (p->sector == zone) {
922 bio = NULL;
923 goto try_next_bio;
926 break;
927 try_next_bio:
928 node = pkt_rbtree_next(node);
929 if (!node) {
930 n = rb_first(&pd->bio_queue);
931 if (n)
932 node = rb_entry(n, struct pkt_rb_node, rb_node);
934 if (node == first_node)
935 node = NULL;
937 spin_unlock(&pd->lock);
938 if (!bio) {
939 VPRINTK("handle_queue: no bio\n");
940 return 0;
943 pkt = pkt_get_packet_data(pd, zone);
944 BUG_ON(!pkt);
946 pd->current_sector = zone + pd->settings.size;
947 pkt->sector = zone;
948 pkt->frames = pd->settings.size >> 2;
949 BUG_ON(pkt->frames > PACKET_MAX_SIZE);
950 pkt->write_size = 0;
953 * Scan work queue for bios in the same zone and link them
954 * to this packet.
956 spin_lock(&pd->lock);
957 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
958 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
959 bio = node->bio;
960 VPRINTK("pkt_handle_queue: found zone=%llx\n",
961 (unsigned long long)ZONE(bio->bi_sector, pd));
962 if (ZONE(bio->bi_sector, pd) != zone)
963 break;
964 pkt_rbtree_erase(pd, node);
965 spin_lock(&pkt->lock);
966 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
967 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
968 spin_unlock(&pkt->lock);
970 spin_unlock(&pd->lock);
972 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
973 pkt_set_state(pkt, PACKET_WAITING_STATE);
974 atomic_set(&pkt->run_sm, 1);
976 spin_lock(&pd->cdrw.active_list_lock);
977 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
978 spin_unlock(&pd->cdrw.active_list_lock);
980 return 1;
984 * Assemble a bio to write one packet and queue the bio for processing
985 * by the underlying block device.
987 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
989 struct bio *bio;
990 struct page *pages[PACKET_MAX_SIZE];
991 int offsets[PACKET_MAX_SIZE];
992 int f;
993 int frames_write;
995 for (f = 0; f < pkt->frames; f++) {
996 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
997 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1001 * Fill-in pages[] and offsets[] with data from orig_bios.
1003 frames_write = 0;
1004 spin_lock(&pkt->lock);
1005 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1006 int segment = bio->bi_idx;
1007 int src_offs = 0;
1008 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1009 int num_frames = bio->bi_size / CD_FRAMESIZE;
1010 BUG_ON(first_frame < 0);
1011 BUG_ON(first_frame + num_frames > pkt->frames);
1012 for (f = first_frame; f < first_frame + num_frames; f++) {
1013 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1015 while (src_offs >= src_bvl->bv_len) {
1016 src_offs -= src_bvl->bv_len;
1017 segment++;
1018 BUG_ON(segment >= bio->bi_vcnt);
1019 src_bvl = bio_iovec_idx(bio, segment);
1022 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1023 pages[f] = src_bvl->bv_page;
1024 offsets[f] = src_bvl->bv_offset + src_offs;
1025 } else {
1026 pkt_copy_bio_data(bio, segment, src_offs,
1027 pages[f], offsets[f]);
1029 src_offs += CD_FRAMESIZE;
1030 frames_write++;
1033 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1034 spin_unlock(&pkt->lock);
1036 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1037 frames_write, (unsigned long long)pkt->sector);
1038 BUG_ON(frames_write != pkt->write_size);
1040 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1041 pkt_make_local_copy(pkt, pages, offsets);
1042 pkt->cache_valid = 1;
1043 } else {
1044 pkt->cache_valid = 0;
1047 /* Start the write request */
1048 bio_init(pkt->w_bio);
1049 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1050 pkt->w_bio->bi_sector = pkt->sector;
1051 pkt->w_bio->bi_bdev = pd->bdev;
1052 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1053 pkt->w_bio->bi_private = pkt;
1054 for (f = 0; f < pkt->frames; f++) {
1055 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1056 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1057 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1058 BUG();
1059 f++;
1060 } else {
1061 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1062 BUG();
1065 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1067 atomic_set(&pkt->io_wait, 1);
1068 pkt->w_bio->bi_rw = WRITE;
1069 pkt_queue_bio(pd, pkt->w_bio);
1072 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1074 struct bio *bio, *next;
1076 if (!uptodate)
1077 pkt->cache_valid = 0;
1079 /* Finish all bios corresponding to this packet */
1080 bio = pkt->orig_bios;
1081 while (bio) {
1082 next = bio->bi_next;
1083 bio->bi_next = NULL;
1084 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1085 bio = next;
1087 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1090 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1092 int uptodate;
1094 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1096 for (;;) {
1097 switch (pkt->state) {
1098 case PACKET_WAITING_STATE:
1099 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1100 return;
1102 pkt->sleep_time = 0;
1103 pkt_gather_data(pd, pkt);
1104 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1105 break;
1107 case PACKET_READ_WAIT_STATE:
1108 if (atomic_read(&pkt->io_wait) > 0)
1109 return;
1111 if (atomic_read(&pkt->io_errors) > 0) {
1112 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1113 } else {
1114 pkt_start_write(pd, pkt);
1116 break;
1118 case PACKET_WRITE_WAIT_STATE:
1119 if (atomic_read(&pkt->io_wait) > 0)
1120 return;
1122 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1123 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1124 } else {
1125 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1127 break;
1129 case PACKET_RECOVERY_STATE:
1130 if (pkt_start_recovery(pkt)) {
1131 pkt_start_write(pd, pkt);
1132 } else {
1133 VPRINTK("No recovery possible\n");
1134 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1136 break;
1138 case PACKET_FINISHED_STATE:
1139 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1140 pkt_finish_packet(pkt, uptodate);
1141 return;
1143 default:
1144 BUG();
1145 break;
1150 static void pkt_handle_packets(struct pktcdvd_device *pd)
1152 struct packet_data *pkt, *next;
1154 VPRINTK("pkt_handle_packets\n");
1157 * Run state machine for active packets
1159 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1160 if (atomic_read(&pkt->run_sm) > 0) {
1161 atomic_set(&pkt->run_sm, 0);
1162 pkt_run_state_machine(pd, pkt);
1167 * Move no longer active packets to the free list
1169 spin_lock(&pd->cdrw.active_list_lock);
1170 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1171 if (pkt->state == PACKET_FINISHED_STATE) {
1172 list_del(&pkt->list);
1173 pkt_put_packet_data(pd, pkt);
1174 pkt_set_state(pkt, PACKET_IDLE_STATE);
1175 atomic_set(&pd->scan_queue, 1);
1178 spin_unlock(&pd->cdrw.active_list_lock);
1181 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1183 struct packet_data *pkt;
1184 int i;
1186 for (i = 0; i <= PACKET_NUM_STATES; i++)
1187 states[i] = 0;
1189 spin_lock(&pd->cdrw.active_list_lock);
1190 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1191 states[pkt->state]++;
1193 spin_unlock(&pd->cdrw.active_list_lock);
1197 * kcdrwd is woken up when writes have been queued for one of our
1198 * registered devices
1200 static int kcdrwd(void *foobar)
1202 struct pktcdvd_device *pd = foobar;
1203 struct packet_data *pkt;
1204 long min_sleep_time, residue;
1206 set_user_nice(current, -20);
1208 for (;;) {
1209 DECLARE_WAITQUEUE(wait, current);
1212 * Wait until there is something to do
1214 add_wait_queue(&pd->wqueue, &wait);
1215 for (;;) {
1216 set_current_state(TASK_INTERRUPTIBLE);
1218 /* Check if we need to run pkt_handle_queue */
1219 if (atomic_read(&pd->scan_queue) > 0)
1220 goto work_to_do;
1222 /* Check if we need to run the state machine for some packet */
1223 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1224 if (atomic_read(&pkt->run_sm) > 0)
1225 goto work_to_do;
1228 /* Check if we need to process the iosched queues */
1229 if (atomic_read(&pd->iosched.attention) != 0)
1230 goto work_to_do;
1232 /* Otherwise, go to sleep */
1233 if (PACKET_DEBUG > 1) {
1234 int states[PACKET_NUM_STATES];
1235 pkt_count_states(pd, states);
1236 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1237 states[0], states[1], states[2], states[3],
1238 states[4], states[5]);
1241 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1242 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1243 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1244 min_sleep_time = pkt->sleep_time;
1247 generic_unplug_device(bdev_get_queue(pd->bdev));
1249 VPRINTK("kcdrwd: sleeping\n");
1250 residue = schedule_timeout(min_sleep_time);
1251 VPRINTK("kcdrwd: wake up\n");
1253 /* make swsusp happy with our thread */
1254 if (current->flags & PF_FREEZE)
1255 refrigerator(PF_FREEZE);
1257 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1258 if (!pkt->sleep_time)
1259 continue;
1260 pkt->sleep_time -= min_sleep_time - residue;
1261 if (pkt->sleep_time <= 0) {
1262 pkt->sleep_time = 0;
1263 atomic_inc(&pkt->run_sm);
1267 if (signal_pending(current)) {
1268 flush_signals(current);
1270 if (kthread_should_stop())
1271 break;
1273 work_to_do:
1274 set_current_state(TASK_RUNNING);
1275 remove_wait_queue(&pd->wqueue, &wait);
1277 if (kthread_should_stop())
1278 break;
1281 * if pkt_handle_queue returns true, we can queue
1282 * another request.
1284 while (pkt_handle_queue(pd))
1288 * Handle packet state machine
1290 pkt_handle_packets(pd);
1293 * Handle iosched queues
1295 pkt_iosched_process_queue(pd);
1298 return 0;
1301 static void pkt_print_settings(struct pktcdvd_device *pd)
1303 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1304 printk("%u blocks, ", pd->settings.size >> 2);
1305 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1308 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1310 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1312 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1313 cgc->cmd[2] = page_code | (page_control << 6);
1314 cgc->cmd[7] = cgc->buflen >> 8;
1315 cgc->cmd[8] = cgc->buflen & 0xff;
1316 cgc->data_direction = CGC_DATA_READ;
1317 return pkt_generic_packet(pd, cgc);
1320 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1322 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1323 memset(cgc->buffer, 0, 2);
1324 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1325 cgc->cmd[1] = 0x10; /* PF */
1326 cgc->cmd[7] = cgc->buflen >> 8;
1327 cgc->cmd[8] = cgc->buflen & 0xff;
1328 cgc->data_direction = CGC_DATA_WRITE;
1329 return pkt_generic_packet(pd, cgc);
1332 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1334 struct packet_command cgc;
1335 int ret;
1337 /* set up command and get the disc info */
1338 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1339 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1340 cgc.cmd[8] = cgc.buflen = 2;
1341 cgc.quiet = 1;
1343 if ((ret = pkt_generic_packet(pd, &cgc)))
1344 return ret;
1346 /* not all drives have the same disc_info length, so requeue
1347 * packet with the length the drive tells us it can supply
1349 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1350 sizeof(di->disc_information_length);
1352 if (cgc.buflen > sizeof(disc_information))
1353 cgc.buflen = sizeof(disc_information);
1355 cgc.cmd[8] = cgc.buflen;
1356 return pkt_generic_packet(pd, &cgc);
1359 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1361 struct packet_command cgc;
1362 int ret;
1364 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1365 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1366 cgc.cmd[1] = type & 3;
1367 cgc.cmd[4] = (track & 0xff00) >> 8;
1368 cgc.cmd[5] = track & 0xff;
1369 cgc.cmd[8] = 8;
1370 cgc.quiet = 1;
1372 if ((ret = pkt_generic_packet(pd, &cgc)))
1373 return ret;
1375 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1376 sizeof(ti->track_information_length);
1378 if (cgc.buflen > sizeof(track_information))
1379 cgc.buflen = sizeof(track_information);
1381 cgc.cmd[8] = cgc.buflen;
1382 return pkt_generic_packet(pd, &cgc);
1385 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1387 disc_information di;
1388 track_information ti;
1389 __u32 last_track;
1390 int ret = -1;
1392 if ((ret = pkt_get_disc_info(pd, &di)))
1393 return ret;
1395 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1396 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1397 return ret;
1399 /* if this track is blank, try the previous. */
1400 if (ti.blank) {
1401 last_track--;
1402 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1403 return ret;
1406 /* if last recorded field is valid, return it. */
1407 if (ti.lra_v) {
1408 *last_written = be32_to_cpu(ti.last_rec_address);
1409 } else {
1410 /* make it up instead */
1411 *last_written = be32_to_cpu(ti.track_start) +
1412 be32_to_cpu(ti.track_size);
1413 if (ti.free_blocks)
1414 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1416 return 0;
1420 * write mode select package based on pd->settings
1422 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1424 struct packet_command cgc;
1425 struct request_sense sense;
1426 write_param_page *wp;
1427 char buffer[128];
1428 int ret, size;
1430 /* doesn't apply to DVD+RW or DVD-RAM */
1431 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1432 return 0;
1434 memset(buffer, 0, sizeof(buffer));
1435 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1436 cgc.sense = &sense;
1437 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1438 pkt_dump_sense(&cgc);
1439 return ret;
1442 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1443 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1444 if (size > sizeof(buffer))
1445 size = sizeof(buffer);
1448 * now get it all
1450 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1451 cgc.sense = &sense;
1452 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1453 pkt_dump_sense(&cgc);
1454 return ret;
1458 * write page is offset header + block descriptor length
1460 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1462 wp->fp = pd->settings.fp;
1463 wp->track_mode = pd->settings.track_mode;
1464 wp->write_type = pd->settings.write_type;
1465 wp->data_block_type = pd->settings.block_mode;
1467 wp->multi_session = 0;
1469 #ifdef PACKET_USE_LS
1470 wp->link_size = 7;
1471 wp->ls_v = 1;
1472 #endif
1474 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1475 wp->session_format = 0;
1476 wp->subhdr2 = 0x20;
1477 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1478 wp->session_format = 0x20;
1479 wp->subhdr2 = 8;
1480 #if 0
1481 wp->mcn[0] = 0x80;
1482 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1483 #endif
1484 } else {
1486 * paranoia
1488 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1489 return 1;
1491 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1493 cgc.buflen = cgc.cmd[8] = size;
1494 if ((ret = pkt_mode_select(pd, &cgc))) {
1495 pkt_dump_sense(&cgc);
1496 return ret;
1499 pkt_print_settings(pd);
1500 return 0;
1504 * 0 -- we can write to this track, 1 -- we can't
1506 static int pkt_good_track(track_information *ti)
1509 * only good for CD-RW at the moment, not DVD-RW
1513 * FIXME: only for FP
1515 if (ti->fp == 0)
1516 return 0;
1519 * "good" settings as per Mt Fuji.
1521 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1522 return 0;
1524 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1525 return 0;
1527 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1528 return 0;
1530 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1531 return 1;
1535 * 0 -- we can write to this disc, 1 -- we can't
1537 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1539 switch (pd->mmc3_profile) {
1540 case 0x0a: /* CD-RW */
1541 case 0xffff: /* MMC3 not supported */
1542 break;
1543 case 0x1a: /* DVD+RW */
1544 case 0x13: /* DVD-RW */
1545 case 0x12: /* DVD-RAM */
1546 return 0;
1547 default:
1548 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1549 return 1;
1553 * for disc type 0xff we should probably reserve a new track.
1554 * but i'm not sure, should we leave this to user apps? probably.
1556 if (di->disc_type == 0xff) {
1557 printk("pktcdvd: Unknown disc. No track?\n");
1558 return 1;
1561 if (di->disc_type != 0x20 && di->disc_type != 0) {
1562 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1563 return 1;
1566 if (di->erasable == 0) {
1567 printk("pktcdvd: Disc not erasable\n");
1568 return 1;
1571 if (di->border_status == PACKET_SESSION_RESERVED) {
1572 printk("pktcdvd: Can't write to last track (reserved)\n");
1573 return 1;
1576 return 0;
1579 static int pkt_probe_settings(struct pktcdvd_device *pd)
1581 struct packet_command cgc;
1582 unsigned char buf[12];
1583 disc_information di;
1584 track_information ti;
1585 int ret, track;
1587 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1588 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1589 cgc.cmd[8] = 8;
1590 ret = pkt_generic_packet(pd, &cgc);
1591 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1593 memset(&di, 0, sizeof(disc_information));
1594 memset(&ti, 0, sizeof(track_information));
1596 if ((ret = pkt_get_disc_info(pd, &di))) {
1597 printk("failed get_disc\n");
1598 return ret;
1601 if (pkt_good_disc(pd, &di))
1602 return -ENXIO;
1604 switch (pd->mmc3_profile) {
1605 case 0x1a: /* DVD+RW */
1606 printk("pktcdvd: inserted media is DVD+RW\n");
1607 break;
1608 case 0x13: /* DVD-RW */
1609 printk("pktcdvd: inserted media is DVD-RW\n");
1610 break;
1611 case 0x12: /* DVD-RAM */
1612 printk("pktcdvd: inserted media is DVD-RAM\n");
1613 break;
1614 default:
1615 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1616 break;
1618 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1620 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1621 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1622 printk("pktcdvd: failed get_track\n");
1623 return ret;
1626 if (pkt_good_track(&ti)) {
1627 printk("pktcdvd: can't write to this track\n");
1628 return -ENXIO;
1632 * we keep packet size in 512 byte units, makes it easier to
1633 * deal with request calculations.
1635 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1636 if (pd->settings.size == 0) {
1637 printk("pktcdvd: detected zero packet size!\n");
1638 pd->settings.size = 128;
1640 pd->settings.fp = ti.fp;
1641 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1643 if (ti.nwa_v) {
1644 pd->nwa = be32_to_cpu(ti.next_writable);
1645 set_bit(PACKET_NWA_VALID, &pd->flags);
1649 * in theory we could use lra on -RW media as well and just zero
1650 * blocks that haven't been written yet, but in practice that
1651 * is just a no-go. we'll use that for -R, naturally.
1653 if (ti.lra_v) {
1654 pd->lra = be32_to_cpu(ti.last_rec_address);
1655 set_bit(PACKET_LRA_VALID, &pd->flags);
1656 } else {
1657 pd->lra = 0xffffffff;
1658 set_bit(PACKET_LRA_VALID, &pd->flags);
1662 * fine for now
1664 pd->settings.link_loss = 7;
1665 pd->settings.write_type = 0; /* packet */
1666 pd->settings.track_mode = ti.track_mode;
1669 * mode1 or mode2 disc
1671 switch (ti.data_mode) {
1672 case PACKET_MODE1:
1673 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1674 break;
1675 case PACKET_MODE2:
1676 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1677 break;
1678 default:
1679 printk("pktcdvd: unknown data mode\n");
1680 return 1;
1682 return 0;
1686 * enable/disable write caching on drive
1688 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1690 struct packet_command cgc;
1691 struct request_sense sense;
1692 unsigned char buf[64];
1693 int ret;
1695 memset(buf, 0, sizeof(buf));
1696 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1697 cgc.sense = &sense;
1698 cgc.buflen = pd->mode_offset + 12;
1701 * caching mode page might not be there, so quiet this command
1703 cgc.quiet = 1;
1705 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1706 return ret;
1708 buf[pd->mode_offset + 10] |= (!!set << 2);
1710 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1711 ret = pkt_mode_select(pd, &cgc);
1712 if (ret) {
1713 printk("pktcdvd: write caching control failed\n");
1714 pkt_dump_sense(&cgc);
1715 } else if (!ret && set)
1716 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1717 return ret;
1720 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1722 struct packet_command cgc;
1724 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1725 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1726 cgc.cmd[4] = lockflag ? 1 : 0;
1727 return pkt_generic_packet(pd, &cgc);
1731 * Returns drive maximum write speed
1733 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1735 struct packet_command cgc;
1736 struct request_sense sense;
1737 unsigned char buf[256+18];
1738 unsigned char *cap_buf;
1739 int ret, offset;
1741 memset(buf, 0, sizeof(buf));
1742 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1743 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1744 cgc.sense = &sense;
1746 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1747 if (ret) {
1748 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1749 sizeof(struct mode_page_header);
1750 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1751 if (ret) {
1752 pkt_dump_sense(&cgc);
1753 return ret;
1757 offset = 20; /* Obsoleted field, used by older drives */
1758 if (cap_buf[1] >= 28)
1759 offset = 28; /* Current write speed selected */
1760 if (cap_buf[1] >= 30) {
1761 /* If the drive reports at least one "Logical Unit Write
1762 * Speed Performance Descriptor Block", use the information
1763 * in the first block. (contains the highest speed)
1765 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1766 if (num_spdb > 0)
1767 offset = 34;
1770 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1771 return 0;
1774 /* These tables from cdrecord - I don't have orange book */
1775 /* standard speed CD-RW (1-4x) */
1776 static char clv_to_speed[16] = {
1777 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1778 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1780 /* high speed CD-RW (-10x) */
1781 static char hs_clv_to_speed[16] = {
1782 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1783 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1785 /* ultra high speed CD-RW */
1786 static char us_clv_to_speed[16] = {
1787 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1788 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1792 * reads the maximum media speed from ATIP
1794 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1796 struct packet_command cgc;
1797 struct request_sense sense;
1798 unsigned char buf[64];
1799 unsigned int size, st, sp;
1800 int ret;
1802 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1803 cgc.sense = &sense;
1804 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1805 cgc.cmd[1] = 2;
1806 cgc.cmd[2] = 4; /* READ ATIP */
1807 cgc.cmd[8] = 2;
1808 ret = pkt_generic_packet(pd, &cgc);
1809 if (ret) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1813 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1814 if (size > sizeof(buf))
1815 size = sizeof(buf);
1817 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1818 cgc.sense = &sense;
1819 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1820 cgc.cmd[1] = 2;
1821 cgc.cmd[2] = 4;
1822 cgc.cmd[8] = size;
1823 ret = pkt_generic_packet(pd, &cgc);
1824 if (ret) {
1825 pkt_dump_sense(&cgc);
1826 return ret;
1829 if (!buf[6] & 0x40) {
1830 printk("pktcdvd: Disc type is not CD-RW\n");
1831 return 1;
1833 if (!buf[6] & 0x4) {
1834 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1835 return 1;
1838 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1840 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1842 /* Info from cdrecord */
1843 switch (st) {
1844 case 0: /* standard speed */
1845 *speed = clv_to_speed[sp];
1846 break;
1847 case 1: /* high speed */
1848 *speed = hs_clv_to_speed[sp];
1849 break;
1850 case 2: /* ultra high speed */
1851 *speed = us_clv_to_speed[sp];
1852 break;
1853 default:
1854 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1855 return 1;
1857 if (*speed) {
1858 printk("pktcdvd: Max. media speed: %d\n",*speed);
1859 return 0;
1860 } else {
1861 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1862 return 1;
1866 static int pkt_perform_opc(struct pktcdvd_device *pd)
1868 struct packet_command cgc;
1869 struct request_sense sense;
1870 int ret;
1872 VPRINTK("pktcdvd: Performing OPC\n");
1874 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1875 cgc.sense = &sense;
1876 cgc.timeout = 60*HZ;
1877 cgc.cmd[0] = GPCMD_SEND_OPC;
1878 cgc.cmd[1] = 1;
1879 if ((ret = pkt_generic_packet(pd, &cgc)))
1880 pkt_dump_sense(&cgc);
1881 return ret;
1884 static int pkt_open_write(struct pktcdvd_device *pd)
1886 int ret;
1887 unsigned int write_speed, media_write_speed, read_speed;
1889 if ((ret = pkt_probe_settings(pd))) {
1890 DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1891 return -EIO;
1894 if ((ret = pkt_set_write_settings(pd))) {
1895 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1896 return -EIO;
1899 pkt_write_caching(pd, USE_WCACHING);
1901 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1902 write_speed = 16 * 177;
1903 switch (pd->mmc3_profile) {
1904 case 0x13: /* DVD-RW */
1905 case 0x1a: /* DVD+RW */
1906 case 0x12: /* DVD-RAM */
1907 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1908 break;
1909 default:
1910 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1911 media_write_speed = 16;
1912 write_speed = min(write_speed, media_write_speed * 177);
1913 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1914 break;
1916 read_speed = write_speed;
1918 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1919 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1920 return -EIO;
1922 pd->write_speed = write_speed;
1923 pd->read_speed = read_speed;
1925 if ((ret = pkt_perform_opc(pd))) {
1926 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1929 return 0;
1933 * called at open time.
1935 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1937 int ret;
1938 long lba;
1939 request_queue_t *q;
1942 * We need to re-open the cdrom device without O_NONBLOCK to be able
1943 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1944 * so bdget() can't fail.
1946 bdget(pd->bdev->bd_dev);
1947 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1948 goto out;
1950 if ((ret = pkt_get_last_written(pd, &lba))) {
1951 printk("pktcdvd: pkt_get_last_written failed\n");
1952 goto out_putdev;
1955 set_capacity(pd->disk, lba << 2);
1956 set_capacity(pd->bdev->bd_disk, lba << 2);
1957 bd_set_size(pd->bdev, (loff_t)lba << 11);
1959 q = bdev_get_queue(pd->bdev);
1960 if (write) {
1961 if ((ret = pkt_open_write(pd)))
1962 goto out_putdev;
1964 * Some CDRW drives can not handle writes larger than one packet,
1965 * even if the size is a multiple of the packet size.
1967 spin_lock_irq(q->queue_lock);
1968 blk_queue_max_sectors(q, pd->settings.size);
1969 spin_unlock_irq(q->queue_lock);
1970 set_bit(PACKET_WRITABLE, &pd->flags);
1971 } else {
1972 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1973 clear_bit(PACKET_WRITABLE, &pd->flags);
1976 if ((ret = pkt_set_segment_merging(pd, q)))
1977 goto out_putdev;
1979 if (write)
1980 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1982 return 0;
1984 out_putdev:
1985 blkdev_put(pd->bdev);
1986 out:
1987 return ret;
1991 * called when the device is closed. makes sure that the device flushes
1992 * the internal cache before we close.
1994 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
1996 if (flush && pkt_flush_cache(pd))
1997 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
1999 pkt_lock_door(pd, 0);
2001 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2002 blkdev_put(pd->bdev);
2005 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2007 if (dev_minor >= MAX_WRITERS)
2008 return NULL;
2009 return pkt_devs[dev_minor];
2012 static int pkt_open(struct inode *inode, struct file *file)
2014 struct pktcdvd_device *pd = NULL;
2015 int ret;
2017 VPRINTK("pktcdvd: entering open\n");
2019 down(&ctl_mutex);
2020 pd = pkt_find_dev_from_minor(iminor(inode));
2021 if (!pd) {
2022 ret = -ENODEV;
2023 goto out;
2025 BUG_ON(pd->refcnt < 0);
2027 pd->refcnt++;
2028 if (pd->refcnt > 1) {
2029 if ((file->f_mode & FMODE_WRITE) &&
2030 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2031 ret = -EBUSY;
2032 goto out_dec;
2034 } else {
2035 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2036 ret = -EIO;
2037 goto out_dec;
2040 * needed here as well, since ext2 (among others) may change
2041 * the blocksize at mount time
2043 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2046 up(&ctl_mutex);
2047 return 0;
2049 out_dec:
2050 pd->refcnt--;
2051 out:
2052 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2053 up(&ctl_mutex);
2054 return ret;
2057 static int pkt_close(struct inode *inode, struct file *file)
2059 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2060 int ret = 0;
2062 down(&ctl_mutex);
2063 pd->refcnt--;
2064 BUG_ON(pd->refcnt < 0);
2065 if (pd->refcnt == 0) {
2066 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2067 pkt_release_dev(pd, flush);
2069 up(&ctl_mutex);
2070 return ret;
2074 static void *psd_pool_alloc(unsigned int __nocast gfp_mask, void *data)
2076 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2079 static void psd_pool_free(void *ptr, void *data)
2081 kfree(ptr);
2084 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2086 struct packet_stacked_data *psd = bio->bi_private;
2087 struct pktcdvd_device *pd = psd->pd;
2089 if (bio->bi_size)
2090 return 1;
2092 bio_put(bio);
2093 bio_endio(psd->bio, psd->bio->bi_size, err);
2094 mempool_free(psd, psd_pool);
2095 pkt_bio_finished(pd);
2096 return 0;
2099 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2101 struct pktcdvd_device *pd;
2102 char b[BDEVNAME_SIZE];
2103 sector_t zone;
2104 struct packet_data *pkt;
2105 int was_empty, blocked_bio;
2106 struct pkt_rb_node *node;
2108 pd = q->queuedata;
2109 if (!pd) {
2110 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2111 goto end_io;
2115 * Clone READ bios so we can have our own bi_end_io callback.
2117 if (bio_data_dir(bio) == READ) {
2118 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2119 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2121 psd->pd = pd;
2122 psd->bio = bio;
2123 cloned_bio->bi_bdev = pd->bdev;
2124 cloned_bio->bi_private = psd;
2125 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2126 pd->stats.secs_r += bio->bi_size >> 9;
2127 pkt_queue_bio(pd, cloned_bio);
2128 return 0;
2131 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2132 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2133 pd->name, (unsigned long long)bio->bi_sector);
2134 goto end_io;
2137 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2138 printk("pktcdvd: wrong bio size\n");
2139 goto end_io;
2142 blk_queue_bounce(q, &bio);
2144 zone = ZONE(bio->bi_sector, pd);
2145 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2146 (unsigned long long)bio->bi_sector,
2147 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2149 /* Check if we have to split the bio */
2151 struct bio_pair *bp;
2152 sector_t last_zone;
2153 int first_sectors;
2155 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2156 if (last_zone != zone) {
2157 BUG_ON(last_zone != zone + pd->settings.size);
2158 first_sectors = last_zone - bio->bi_sector;
2159 bp = bio_split(bio, bio_split_pool, first_sectors);
2160 BUG_ON(!bp);
2161 pkt_make_request(q, &bp->bio1);
2162 pkt_make_request(q, &bp->bio2);
2163 bio_pair_release(bp);
2164 return 0;
2169 * If we find a matching packet in state WAITING or READ_WAIT, we can
2170 * just append this bio to that packet.
2172 spin_lock(&pd->cdrw.active_list_lock);
2173 blocked_bio = 0;
2174 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2175 if (pkt->sector == zone) {
2176 spin_lock(&pkt->lock);
2177 if ((pkt->state == PACKET_WAITING_STATE) ||
2178 (pkt->state == PACKET_READ_WAIT_STATE)) {
2179 pkt_add_list_last(bio, &pkt->orig_bios,
2180 &pkt->orig_bios_tail);
2181 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2182 if ((pkt->write_size >= pkt->frames) &&
2183 (pkt->state == PACKET_WAITING_STATE)) {
2184 atomic_inc(&pkt->run_sm);
2185 wake_up(&pd->wqueue);
2187 spin_unlock(&pkt->lock);
2188 spin_unlock(&pd->cdrw.active_list_lock);
2189 return 0;
2190 } else {
2191 blocked_bio = 1;
2193 spin_unlock(&pkt->lock);
2196 spin_unlock(&pd->cdrw.active_list_lock);
2199 * No matching packet found. Store the bio in the work queue.
2201 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2202 BUG_ON(!node);
2203 node->bio = bio;
2204 spin_lock(&pd->lock);
2205 BUG_ON(pd->bio_queue_size < 0);
2206 was_empty = (pd->bio_queue_size == 0);
2207 pkt_rbtree_insert(pd, node);
2208 spin_unlock(&pd->lock);
2211 * Wake up the worker thread.
2213 atomic_set(&pd->scan_queue, 1);
2214 if (was_empty) {
2215 /* This wake_up is required for correct operation */
2216 wake_up(&pd->wqueue);
2217 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2219 * This wake up is not required for correct operation,
2220 * but improves performance in some cases.
2222 wake_up(&pd->wqueue);
2224 return 0;
2225 end_io:
2226 bio_io_error(bio, bio->bi_size);
2227 return 0;
2232 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2234 struct pktcdvd_device *pd = q->queuedata;
2235 sector_t zone = ZONE(bio->bi_sector, pd);
2236 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2237 int remaining = (pd->settings.size << 9) - used;
2238 int remaining2;
2241 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2242 * boundary, pkt_make_request() will split the bio.
2244 remaining2 = PAGE_SIZE - bio->bi_size;
2245 remaining = max(remaining, remaining2);
2247 BUG_ON(remaining < 0);
2248 return remaining;
2251 static void pkt_init_queue(struct pktcdvd_device *pd)
2253 request_queue_t *q = pd->disk->queue;
2255 blk_queue_make_request(q, pkt_make_request);
2256 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2257 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2258 blk_queue_merge_bvec(q, pkt_merge_bvec);
2259 q->queuedata = pd;
2262 static int pkt_seq_show(struct seq_file *m, void *p)
2264 struct pktcdvd_device *pd = m->private;
2265 char *msg;
2266 char bdev_buf[BDEVNAME_SIZE];
2267 int states[PACKET_NUM_STATES];
2269 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2270 bdevname(pd->bdev, bdev_buf));
2272 seq_printf(m, "\nSettings:\n");
2273 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2275 if (pd->settings.write_type == 0)
2276 msg = "Packet";
2277 else
2278 msg = "Unknown";
2279 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2281 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2282 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2284 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2286 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2287 msg = "Mode 1";
2288 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2289 msg = "Mode 2";
2290 else
2291 msg = "Unknown";
2292 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2294 seq_printf(m, "\nStatistics:\n");
2295 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2296 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2297 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2298 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2299 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2301 seq_printf(m, "\nMisc:\n");
2302 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2303 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2304 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2305 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2306 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2307 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2309 seq_printf(m, "\nQueue state:\n");
2310 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2311 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2312 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2314 pkt_count_states(pd, states);
2315 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2316 states[0], states[1], states[2], states[3], states[4], states[5]);
2318 return 0;
2321 static int pkt_seq_open(struct inode *inode, struct file *file)
2323 return single_open(file, pkt_seq_show, PDE(inode)->data);
2326 static struct file_operations pkt_proc_fops = {
2327 .open = pkt_seq_open,
2328 .read = seq_read,
2329 .llseek = seq_lseek,
2330 .release = single_release
2333 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2335 int i;
2336 int ret = 0;
2337 char b[BDEVNAME_SIZE];
2338 struct proc_dir_entry *proc;
2339 struct block_device *bdev;
2341 if (pd->pkt_dev == dev) {
2342 printk("pktcdvd: Recursive setup not allowed\n");
2343 return -EBUSY;
2345 for (i = 0; i < MAX_WRITERS; i++) {
2346 struct pktcdvd_device *pd2 = pkt_devs[i];
2347 if (!pd2)
2348 continue;
2349 if (pd2->bdev->bd_dev == dev) {
2350 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2351 return -EBUSY;
2353 if (pd2->pkt_dev == dev) {
2354 printk("pktcdvd: Can't chain pktcdvd devices\n");
2355 return -EBUSY;
2359 bdev = bdget(dev);
2360 if (!bdev)
2361 return -ENOMEM;
2362 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2363 if (ret)
2364 return ret;
2366 /* This is safe, since we have a reference from open(). */
2367 __module_get(THIS_MODULE);
2369 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2370 printk("pktcdvd: not enough memory for buffers\n");
2371 ret = -ENOMEM;
2372 goto out_mem;
2375 pd->bdev = bdev;
2376 set_blocksize(bdev, CD_FRAMESIZE);
2378 pkt_init_queue(pd);
2380 atomic_set(&pd->cdrw.pending_bios, 0);
2381 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2382 if (IS_ERR(pd->cdrw.thread)) {
2383 printk("pktcdvd: can't start kernel thread\n");
2384 ret = -ENOMEM;
2385 goto out_thread;
2388 proc = create_proc_entry(pd->name, 0, pkt_proc);
2389 if (proc) {
2390 proc->data = pd;
2391 proc->proc_fops = &pkt_proc_fops;
2393 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2394 return 0;
2396 out_thread:
2397 pkt_shrink_pktlist(pd);
2398 out_mem:
2399 blkdev_put(bdev);
2400 /* This is safe: open() is still holding a reference. */
2401 module_put(THIS_MODULE);
2402 return ret;
2405 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2407 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2409 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2410 BUG_ON(!pd);
2412 switch (cmd) {
2414 * forward selected CDROM ioctls to CD-ROM, for UDF
2416 case CDROMMULTISESSION:
2417 case CDROMREADTOCENTRY:
2418 case CDROM_LAST_WRITTEN:
2419 case CDROM_SEND_PACKET:
2420 case SCSI_IOCTL_SEND_COMMAND:
2421 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2423 case CDROMEJECT:
2425 * The door gets locked when the device is opened, so we
2426 * have to unlock it or else the eject command fails.
2428 pkt_lock_door(pd, 0);
2429 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2431 default:
2432 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2433 return -ENOTTY;
2436 return 0;
2439 static int pkt_media_changed(struct gendisk *disk)
2441 struct pktcdvd_device *pd = disk->private_data;
2442 struct gendisk *attached_disk;
2444 if (!pd)
2445 return 0;
2446 if (!pd->bdev)
2447 return 0;
2448 attached_disk = pd->bdev->bd_disk;
2449 if (!attached_disk)
2450 return 0;
2451 return attached_disk->fops->media_changed(attached_disk);
2454 static struct block_device_operations pktcdvd_ops = {
2455 .owner = THIS_MODULE,
2456 .open = pkt_open,
2457 .release = pkt_close,
2458 .ioctl = pkt_ioctl,
2459 .media_changed = pkt_media_changed,
2463 * Set up mapping from pktcdvd device to CD-ROM device.
2465 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2467 int idx;
2468 int ret = -ENOMEM;
2469 struct pktcdvd_device *pd;
2470 struct gendisk *disk;
2471 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2473 for (idx = 0; idx < MAX_WRITERS; idx++)
2474 if (!pkt_devs[idx])
2475 break;
2476 if (idx == MAX_WRITERS) {
2477 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2478 return -EBUSY;
2481 pd = kmalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2482 if (!pd)
2483 return ret;
2484 memset(pd, 0, sizeof(struct pktcdvd_device));
2486 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2487 if (!pd->rb_pool)
2488 goto out_mem;
2490 disk = alloc_disk(1);
2491 if (!disk)
2492 goto out_mem;
2493 pd->disk = disk;
2495 spin_lock_init(&pd->lock);
2496 spin_lock_init(&pd->iosched.lock);
2497 sprintf(pd->name, "pktcdvd%d", idx);
2498 init_waitqueue_head(&pd->wqueue);
2499 pd->bio_queue = RB_ROOT;
2501 disk->major = pkt_major;
2502 disk->first_minor = idx;
2503 disk->fops = &pktcdvd_ops;
2504 disk->flags = GENHD_FL_REMOVABLE;
2505 sprintf(disk->disk_name, "pktcdvd%d", idx);
2506 disk->private_data = pd;
2507 disk->queue = blk_alloc_queue(GFP_KERNEL);
2508 if (!disk->queue)
2509 goto out_mem2;
2511 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2512 ret = pkt_new_dev(pd, dev);
2513 if (ret)
2514 goto out_new_dev;
2516 add_disk(disk);
2517 pkt_devs[idx] = pd;
2518 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2519 return 0;
2521 out_new_dev:
2522 blk_put_queue(disk->queue);
2523 out_mem2:
2524 put_disk(disk);
2525 out_mem:
2526 if (pd->rb_pool)
2527 mempool_destroy(pd->rb_pool);
2528 kfree(pd);
2529 return ret;
2533 * Tear down mapping from pktcdvd device to CD-ROM device.
2535 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2537 struct pktcdvd_device *pd;
2538 int idx;
2539 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2541 for (idx = 0; idx < MAX_WRITERS; idx++) {
2542 pd = pkt_devs[idx];
2543 if (pd && (pd->pkt_dev == pkt_dev))
2544 break;
2546 if (idx == MAX_WRITERS) {
2547 DPRINTK("pktcdvd: dev not setup\n");
2548 return -ENXIO;
2551 if (pd->refcnt > 0)
2552 return -EBUSY;
2554 if (!IS_ERR(pd->cdrw.thread))
2555 kthread_stop(pd->cdrw.thread);
2557 blkdev_put(pd->bdev);
2559 pkt_shrink_pktlist(pd);
2561 remove_proc_entry(pd->name, pkt_proc);
2562 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2564 del_gendisk(pd->disk);
2565 blk_put_queue(pd->disk->queue);
2566 put_disk(pd->disk);
2568 pkt_devs[idx] = NULL;
2569 mempool_destroy(pd->rb_pool);
2570 kfree(pd);
2572 /* This is safe: open() is still holding a reference. */
2573 module_put(THIS_MODULE);
2574 return 0;
2577 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2579 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2580 if (pd) {
2581 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2582 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2583 } else {
2584 ctrl_cmd->dev = 0;
2585 ctrl_cmd->pkt_dev = 0;
2587 ctrl_cmd->num_devices = MAX_WRITERS;
2590 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2592 void __user *argp = (void __user *)arg;
2593 struct pkt_ctrl_command ctrl_cmd;
2594 int ret = 0;
2596 if (cmd != PACKET_CTRL_CMD)
2597 return -ENOTTY;
2599 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2600 return -EFAULT;
2602 switch (ctrl_cmd.command) {
2603 case PKT_CTRL_CMD_SETUP:
2604 if (!capable(CAP_SYS_ADMIN))
2605 return -EPERM;
2606 down(&ctl_mutex);
2607 ret = pkt_setup_dev(&ctrl_cmd);
2608 up(&ctl_mutex);
2609 break;
2610 case PKT_CTRL_CMD_TEARDOWN:
2611 if (!capable(CAP_SYS_ADMIN))
2612 return -EPERM;
2613 down(&ctl_mutex);
2614 ret = pkt_remove_dev(&ctrl_cmd);
2615 up(&ctl_mutex);
2616 break;
2617 case PKT_CTRL_CMD_STATUS:
2618 down(&ctl_mutex);
2619 pkt_get_status(&ctrl_cmd);
2620 up(&ctl_mutex);
2621 break;
2622 default:
2623 return -ENOTTY;
2626 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2627 return -EFAULT;
2628 return ret;
2632 static struct file_operations pkt_ctl_fops = {
2633 .ioctl = pkt_ctl_ioctl,
2634 .owner = THIS_MODULE,
2637 static struct miscdevice pkt_misc = {
2638 .minor = MISC_DYNAMIC_MINOR,
2639 .name = "pktcdvd",
2640 .devfs_name = "pktcdvd/control",
2641 .fops = &pkt_ctl_fops
2644 static int __init pkt_init(void)
2646 int ret;
2648 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2649 if (!psd_pool)
2650 return -ENOMEM;
2652 ret = register_blkdev(pkt_major, "pktcdvd");
2653 if (ret < 0) {
2654 printk("pktcdvd: Unable to register block device\n");
2655 goto out2;
2657 if (!pkt_major)
2658 pkt_major = ret;
2660 ret = misc_register(&pkt_misc);
2661 if (ret) {
2662 printk("pktcdvd: Unable to register misc device\n");
2663 goto out;
2666 init_MUTEX(&ctl_mutex);
2668 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2670 DPRINTK("pktcdvd: %s\n", VERSION_CODE);
2671 return 0;
2673 out:
2674 unregister_blkdev(pkt_major, "pktcdvd");
2675 out2:
2676 mempool_destroy(psd_pool);
2677 return ret;
2680 static void __exit pkt_exit(void)
2682 remove_proc_entry("pktcdvd", proc_root_driver);
2683 misc_deregister(&pkt_misc);
2684 unregister_blkdev(pkt_major, "pktcdvd");
2685 mempool_destroy(psd_pool);
2688 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2689 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2690 MODULE_LICENSE("GPL");
2692 module_init(pkt_init);
2693 module_exit(pkt_exit);