sched: Feature to disable APERF/MPERF cpu_power
[linux-2.6/verdex.git] / kernel / sched.c
blobe8e603bf8761e4785d9442eb0882383134875809
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
315 return list_empty(&root_task_group.children);
317 #endif
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
343 struct task_group init_task_group;
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
348 struct task_group *tg;
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
377 #else
379 #ifdef CONFIG_SMP
380 static int root_task_group_empty(void)
382 return 1;
384 #endif
386 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 static inline struct task_group *task_group(struct task_struct *p)
389 return NULL;
392 #endif /* CONFIG_GROUP_SCHED */
394 /* CFS-related fields in a runqueue */
395 struct cfs_rq {
396 struct load_weight load;
397 unsigned long nr_running;
399 u64 exec_clock;
400 u64 min_vruntime;
402 struct rb_root tasks_timeline;
403 struct rb_node *rb_leftmost;
405 struct list_head tasks;
406 struct list_head *balance_iterator;
409 * 'curr' points to currently running entity on this cfs_rq.
410 * It is set to NULL otherwise (i.e when none are currently running).
412 struct sched_entity *curr, *next, *last;
414 unsigned int nr_spread_over;
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
420 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
421 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
422 * (like users, containers etc.)
424 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
425 * list is used during load balance.
427 struct list_head leaf_cfs_rq_list;
428 struct task_group *tg; /* group that "owns" this runqueue */
430 #ifdef CONFIG_SMP
432 * the part of load.weight contributed by tasks
434 unsigned long task_weight;
437 * h_load = weight * f(tg)
439 * Where f(tg) is the recursive weight fraction assigned to
440 * this group.
442 unsigned long h_load;
445 * this cpu's part of tg->shares
447 unsigned long shares;
450 * load.weight at the time we set shares
452 unsigned long rq_weight;
453 #endif
454 #endif
457 /* Real-Time classes' related field in a runqueue: */
458 struct rt_rq {
459 struct rt_prio_array active;
460 unsigned long rt_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 struct {
463 int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 int next; /* next highest */
466 #endif
467 } highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 unsigned long rt_nr_migratory;
471 unsigned long rt_nr_total;
472 int overloaded;
473 struct plist_head pushable_tasks;
474 #endif
475 int rt_throttled;
476 u64 rt_time;
477 u64 rt_runtime;
478 /* Nests inside the rq lock: */
479 spinlock_t rt_runtime_lock;
481 #ifdef CONFIG_RT_GROUP_SCHED
482 unsigned long rt_nr_boosted;
484 struct rq *rq;
485 struct list_head leaf_rt_rq_list;
486 struct task_group *tg;
487 struct sched_rt_entity *rt_se;
488 #endif
491 #ifdef CONFIG_SMP
494 * We add the notion of a root-domain which will be used to define per-domain
495 * variables. Each exclusive cpuset essentially defines an island domain by
496 * fully partitioning the member cpus from any other cpuset. Whenever a new
497 * exclusive cpuset is created, we also create and attach a new root-domain
498 * object.
501 struct root_domain {
502 atomic_t refcount;
503 cpumask_var_t span;
504 cpumask_var_t online;
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
510 cpumask_var_t rto_mask;
511 atomic_t rto_count;
512 #ifdef CONFIG_SMP
513 struct cpupri cpupri;
514 #endif
518 * By default the system creates a single root-domain with all cpus as
519 * members (mimicking the global state we have today).
521 static struct root_domain def_root_domain;
523 #endif
526 * This is the main, per-CPU runqueue data structure.
528 * Locking rule: those places that want to lock multiple runqueues
529 * (such as the load balancing or the thread migration code), lock
530 * acquire operations must be ordered by ascending &runqueue.
532 struct rq {
533 /* runqueue lock: */
534 spinlock_t lock;
537 * nr_running and cpu_load should be in the same cacheline because
538 * remote CPUs use both these fields when doing load calculation.
540 unsigned long nr_running;
541 #define CPU_LOAD_IDX_MAX 5
542 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
543 #ifdef CONFIG_NO_HZ
544 unsigned long last_tick_seen;
545 unsigned char in_nohz_recently;
546 #endif
547 /* capture load from *all* tasks on this cpu: */
548 struct load_weight load;
549 unsigned long nr_load_updates;
550 u64 nr_switches;
551 u64 nr_migrations_in;
553 struct cfs_rq cfs;
554 struct rt_rq rt;
556 #ifdef CONFIG_FAIR_GROUP_SCHED
557 /* list of leaf cfs_rq on this cpu: */
558 struct list_head leaf_cfs_rq_list;
559 #endif
560 #ifdef CONFIG_RT_GROUP_SCHED
561 struct list_head leaf_rt_rq_list;
562 #endif
565 * This is part of a global counter where only the total sum
566 * over all CPUs matters. A task can increase this counter on
567 * one CPU and if it got migrated afterwards it may decrease
568 * it on another CPU. Always updated under the runqueue lock:
570 unsigned long nr_uninterruptible;
572 struct task_struct *curr, *idle;
573 unsigned long next_balance;
574 struct mm_struct *prev_mm;
576 u64 clock;
578 atomic_t nr_iowait;
580 #ifdef CONFIG_SMP
581 struct root_domain *rd;
582 struct sched_domain *sd;
584 unsigned char idle_at_tick;
585 /* For active balancing */
586 int post_schedule;
587 int active_balance;
588 int push_cpu;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
593 unsigned long avg_load_per_task;
595 struct task_struct *migration_thread;
596 struct list_head migration_queue;
598 u64 rt_avg;
599 u64 age_stamp;
600 #endif
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_count;
623 /* schedule() stats */
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
632 /* BKL stats */
633 unsigned int bkl_count;
634 #endif
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
639 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
644 static inline int cpu_of(struct rq *rq)
646 #ifdef CONFIG_SMP
647 return rq->cpu;
648 #else
649 return 0;
650 #endif
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667 #define raw_rq() (&__raw_get_cpu_var(runqueues))
669 inline void update_rq_clock(struct rq *rq)
671 rq->clock = sched_clock_cpu(cpu_of(rq));
675 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
677 #ifdef CONFIG_SCHED_DEBUG
678 # define const_debug __read_mostly
679 #else
680 # define const_debug static const
681 #endif
684 * runqueue_is_locked
686 * Returns true if the current cpu runqueue is locked.
687 * This interface allows printk to be called with the runqueue lock
688 * held and know whether or not it is OK to wake up the klogd.
690 int runqueue_is_locked(void)
692 int cpu = get_cpu();
693 struct rq *rq = cpu_rq(cpu);
694 int ret;
696 ret = spin_is_locked(&rq->lock);
697 put_cpu();
698 return ret;
702 * Debugging: various feature bits
705 #define SCHED_FEAT(name, enabled) \
706 __SCHED_FEAT_##name ,
708 enum {
709 #include "sched_features.h"
712 #undef SCHED_FEAT
714 #define SCHED_FEAT(name, enabled) \
715 (1UL << __SCHED_FEAT_##name) * enabled |
717 const_debug unsigned int sysctl_sched_features =
718 #include "sched_features.h"
721 #undef SCHED_FEAT
723 #ifdef CONFIG_SCHED_DEBUG
724 #define SCHED_FEAT(name, enabled) \
725 #name ,
727 static __read_mostly char *sched_feat_names[] = {
728 #include "sched_features.h"
729 NULL
732 #undef SCHED_FEAT
734 static int sched_feat_show(struct seq_file *m, void *v)
736 int i;
738 for (i = 0; sched_feat_names[i]; i++) {
739 if (!(sysctl_sched_features & (1UL << i)))
740 seq_puts(m, "NO_");
741 seq_printf(m, "%s ", sched_feat_names[i]);
743 seq_puts(m, "\n");
745 return 0;
748 static ssize_t
749 sched_feat_write(struct file *filp, const char __user *ubuf,
750 size_t cnt, loff_t *ppos)
752 char buf[64];
753 char *cmp = buf;
754 int neg = 0;
755 int i;
757 if (cnt > 63)
758 cnt = 63;
760 if (copy_from_user(&buf, ubuf, cnt))
761 return -EFAULT;
763 buf[cnt] = 0;
765 if (strncmp(buf, "NO_", 3) == 0) {
766 neg = 1;
767 cmp += 3;
770 for (i = 0; sched_feat_names[i]; i++) {
771 int len = strlen(sched_feat_names[i]);
773 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
774 if (neg)
775 sysctl_sched_features &= ~(1UL << i);
776 else
777 sysctl_sched_features |= (1UL << i);
778 break;
782 if (!sched_feat_names[i])
783 return -EINVAL;
785 filp->f_pos += cnt;
787 return cnt;
790 static int sched_feat_open(struct inode *inode, struct file *filp)
792 return single_open(filp, sched_feat_show, NULL);
795 static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .write = sched_feat_write,
798 .read = seq_read,
799 .llseek = seq_lseek,
800 .release = single_release,
803 static __init int sched_init_debug(void)
805 debugfs_create_file("sched_features", 0644, NULL, NULL,
806 &sched_feat_fops);
808 return 0;
810 late_initcall(sched_init_debug);
812 #endif
814 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
817 * Number of tasks to iterate in a single balance run.
818 * Limited because this is done with IRQs disabled.
820 const_debug unsigned int sysctl_sched_nr_migrate = 32;
823 * ratelimit for updating the group shares.
824 * default: 0.25ms
826 unsigned int sysctl_sched_shares_ratelimit = 250000;
829 * Inject some fuzzyness into changing the per-cpu group shares
830 * this avoids remote rq-locks at the expense of fairness.
831 * default: 4
833 unsigned int sysctl_sched_shares_thresh = 4;
836 * period over which we average the RT time consumption, measured
837 * in ms.
839 * default: 1s
841 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
844 * period over which we measure -rt task cpu usage in us.
845 * default: 1s
847 unsigned int sysctl_sched_rt_period = 1000000;
849 static __read_mostly int scheduler_running;
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
855 int sysctl_sched_rt_runtime = 950000;
857 static inline u64 global_rt_period(void)
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
862 static inline u64 global_rt_runtime(void)
864 if (sysctl_sched_rt_runtime < 0)
865 return RUNTIME_INF;
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
870 #ifndef prepare_arch_switch
871 # define prepare_arch_switch(next) do { } while (0)
872 #endif
873 #ifndef finish_arch_switch
874 # define finish_arch_switch(prev) do { } while (0)
875 #endif
877 static inline int task_current(struct rq *rq, struct task_struct *p)
879 return rq->curr == p;
882 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
883 static inline int task_running(struct rq *rq, struct task_struct *p)
885 return task_current(rq, p);
888 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
894 #ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897 #endif
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
905 spin_unlock_irq(&rq->lock);
908 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
909 static inline int task_running(struct rq *rq, struct task_struct *p)
911 #ifdef CONFIG_SMP
912 return p->oncpu;
913 #else
914 return task_current(rq, p);
915 #endif
918 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
920 #ifdef CONFIG_SMP
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
926 next->oncpu = 1;
927 #endif
928 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930 #else
931 spin_unlock(&rq->lock);
932 #endif
935 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
937 #ifdef CONFIG_SMP
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
943 smp_wmb();
944 prev->oncpu = 0;
945 #endif
946 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
948 #endif
950 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
956 static inline struct rq *__task_rq_lock(struct task_struct *p)
957 __acquires(rq->lock)
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
964 spin_unlock(&rq->lock);
969 * task_rq_lock - lock the runqueue a given task resides on and disable
970 * interrupts. Note the ordering: we can safely lookup the task_rq without
971 * explicitly disabling preemption.
973 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
974 __acquires(rq->lock)
976 struct rq *rq;
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
984 spin_unlock_irqrestore(&rq->lock, *flags);
988 void task_rq_unlock_wait(struct task_struct *p)
990 struct rq *rq = task_rq(p);
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
996 static void __task_rq_unlock(struct rq *rq)
997 __releases(rq->lock)
999 spin_unlock(&rq->lock);
1002 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1003 __releases(rq->lock)
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1009 * this_rq_lock - lock this runqueue and disable interrupts.
1011 static struct rq *this_rq_lock(void)
1012 __acquires(rq->lock)
1014 struct rq *rq;
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1020 return rq;
1023 #ifdef CONFIG_SCHED_HRTICK
1025 * Use HR-timers to deliver accurate preemption points.
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1040 static inline int hrtick_enabled(struct rq *rq)
1042 if (!sched_feat(HRTICK))
1043 return 0;
1044 if (!cpu_active(cpu_of(rq)))
1045 return 0;
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1049 static void hrtick_clear(struct rq *rq)
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1059 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1065 spin_lock(&rq->lock);
1066 update_rq_clock(rq);
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1070 return HRTIMER_NORESTART;
1073 #ifdef CONFIG_SMP
1075 * called from hardirq (IPI) context
1077 static void __hrtick_start(void *arg)
1079 struct rq *rq = arg;
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
1088 * Called to set the hrtick timer state.
1090 * called with rq->lock held and irqs disabled
1092 static void hrtick_start(struct rq *rq, u64 delay)
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1097 hrtimer_set_expires(timer, time);
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1103 rq->hrtick_csd_pending = 1;
1107 static int
1108 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1110 int cpu = (int)(long)hcpu;
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hrtick_clear(cpu_rq(cpu));
1120 return NOTIFY_OK;
1123 return NOTIFY_DONE;
1126 static __init void init_hrtick(void)
1128 hotcpu_notifier(hotplug_hrtick, 0);
1130 #else
1132 * Called to set the hrtick timer state.
1134 * called with rq->lock held and irqs disabled
1136 static void hrtick_start(struct rq *rq, u64 delay)
1138 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1139 HRTIMER_MODE_REL_PINNED, 0);
1142 static inline void init_hrtick(void)
1145 #endif /* CONFIG_SMP */
1147 static void init_rq_hrtick(struct rq *rq)
1149 #ifdef CONFIG_SMP
1150 rq->hrtick_csd_pending = 0;
1152 rq->hrtick_csd.flags = 0;
1153 rq->hrtick_csd.func = __hrtick_start;
1154 rq->hrtick_csd.info = rq;
1155 #endif
1157 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1158 rq->hrtick_timer.function = hrtick;
1160 #else /* CONFIG_SCHED_HRTICK */
1161 static inline void hrtick_clear(struct rq *rq)
1165 static inline void init_rq_hrtick(struct rq *rq)
1169 static inline void init_hrtick(void)
1172 #endif /* CONFIG_SCHED_HRTICK */
1175 * resched_task - mark a task 'to be rescheduled now'.
1177 * On UP this means the setting of the need_resched flag, on SMP it
1178 * might also involve a cross-CPU call to trigger the scheduler on
1179 * the target CPU.
1181 #ifdef CONFIG_SMP
1183 #ifndef tsk_is_polling
1184 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1185 #endif
1187 static void resched_task(struct task_struct *p)
1189 int cpu;
1191 assert_spin_locked(&task_rq(p)->lock);
1193 if (test_tsk_need_resched(p))
1194 return;
1196 set_tsk_need_resched(p);
1198 cpu = task_cpu(p);
1199 if (cpu == smp_processor_id())
1200 return;
1202 /* NEED_RESCHED must be visible before we test polling */
1203 smp_mb();
1204 if (!tsk_is_polling(p))
1205 smp_send_reschedule(cpu);
1208 static void resched_cpu(int cpu)
1210 struct rq *rq = cpu_rq(cpu);
1211 unsigned long flags;
1213 if (!spin_trylock_irqsave(&rq->lock, flags))
1214 return;
1215 resched_task(cpu_curr(cpu));
1216 spin_unlock_irqrestore(&rq->lock, flags);
1219 #ifdef CONFIG_NO_HZ
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1230 void wake_up_idle_cpu(int cpu)
1232 struct rq *rq = cpu_rq(cpu);
1234 if (cpu == smp_processor_id())
1235 return;
1238 * This is safe, as this function is called with the timer
1239 * wheel base lock of (cpu) held. When the CPU is on the way
1240 * to idle and has not yet set rq->curr to idle then it will
1241 * be serialized on the timer wheel base lock and take the new
1242 * timer into account automatically.
1244 if (rq->curr != rq->idle)
1245 return;
1248 * We can set TIF_RESCHED on the idle task of the other CPU
1249 * lockless. The worst case is that the other CPU runs the
1250 * idle task through an additional NOOP schedule()
1252 set_tsk_need_resched(rq->idle);
1254 /* NEED_RESCHED must be visible before we test polling */
1255 smp_mb();
1256 if (!tsk_is_polling(rq->idle))
1257 smp_send_reschedule(cpu);
1259 #endif /* CONFIG_NO_HZ */
1261 static u64 sched_avg_period(void)
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1266 static void sched_avg_update(struct rq *rq)
1268 s64 period = sched_avg_period();
1270 while ((s64)(rq->clock - rq->age_stamp) > period) {
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1282 #else /* !CONFIG_SMP */
1283 static void resched_task(struct task_struct *p)
1285 assert_spin_locked(&task_rq(p)->lock);
1286 set_tsk_need_resched(p);
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 #endif /* CONFIG_SMP */
1294 #if BITS_PER_LONG == 32
1295 # define WMULT_CONST (~0UL)
1296 #else
1297 # define WMULT_CONST (1UL << 32)
1298 #endif
1300 #define WMULT_SHIFT 32
1303 * Shift right and round:
1305 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1308 * delta *= weight / lw
1310 static unsigned long
1311 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1314 u64 tmp;
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1324 tmp = (u64)delta_exec * weight;
1326 * Check whether we'd overflow the 64-bit multiplication:
1328 if (unlikely(tmp > WMULT_CONST))
1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1330 WMULT_SHIFT/2);
1331 else
1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1337 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1339 lw->weight += inc;
1340 lw->inv_weight = 0;
1343 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1345 lw->weight -= dec;
1346 lw->inv_weight = 0;
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1402 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1409 struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1415 #ifdef CONFIG_SMP
1416 static unsigned long
1417 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1422 static int
1423 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
1426 #endif
1428 /* Time spent by the tasks of the cpu accounting group executing in ... */
1429 enum cpuacct_stat_index {
1430 CPUACCT_STAT_USER, /* ... user mode */
1431 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1433 CPUACCT_STAT_NSTATS,
1436 #ifdef CONFIG_CGROUP_CPUACCT
1437 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1438 static void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val);
1440 #else
1441 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1442 static inline void cpuacct_update_stats(struct task_struct *tsk,
1443 enum cpuacct_stat_index idx, cputime_t val) {}
1444 #endif
1446 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1448 update_load_add(&rq->load, load);
1451 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1453 update_load_sub(&rq->load, load);
1456 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1457 typedef int (*tg_visitor)(struct task_group *, void *);
1460 * Iterate the full tree, calling @down when first entering a node and @up when
1461 * leaving it for the final time.
1463 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1465 struct task_group *parent, *child;
1466 int ret;
1468 rcu_read_lock();
1469 parent = &root_task_group;
1470 down:
1471 ret = (*down)(parent, data);
1472 if (ret)
1473 goto out_unlock;
1474 list_for_each_entry_rcu(child, &parent->children, siblings) {
1475 parent = child;
1476 goto down;
1479 continue;
1481 ret = (*up)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 out_unlock:
1490 rcu_read_unlock();
1492 return ret;
1495 static int tg_nop(struct task_group *tg, void *data)
1497 return 0;
1499 #endif
1501 #ifdef CONFIG_SMP
1502 /* Used instead of source_load when we know the type == 0 */
1503 static unsigned long weighted_cpuload(const int cpu)
1505 return cpu_rq(cpu)->load.weight;
1509 * Return a low guess at the load of a migration-source cpu weighted
1510 * according to the scheduling class and "nice" value.
1512 * We want to under-estimate the load of migration sources, to
1513 * balance conservatively.
1515 static unsigned long source_load(int cpu, int type)
1517 struct rq *rq = cpu_rq(cpu);
1518 unsigned long total = weighted_cpuload(cpu);
1520 if (type == 0 || !sched_feat(LB_BIAS))
1521 return total;
1523 return min(rq->cpu_load[type-1], total);
1527 * Return a high guess at the load of a migration-target cpu weighted
1528 * according to the scheduling class and "nice" value.
1530 static unsigned long target_load(int cpu, int type)
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long total = weighted_cpuload(cpu);
1535 if (type == 0 || !sched_feat(LB_BIAS))
1536 return total;
1538 return max(rq->cpu_load[type-1], total);
1541 static struct sched_group *group_of(int cpu)
1543 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1545 if (!sd)
1546 return NULL;
1548 return sd->groups;
1551 static unsigned long power_of(int cpu)
1553 struct sched_group *group = group_of(cpu);
1555 if (!group)
1556 return SCHED_LOAD_SCALE;
1558 return group->cpu_power;
1561 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1563 static unsigned long cpu_avg_load_per_task(int cpu)
1565 struct rq *rq = cpu_rq(cpu);
1566 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1568 if (nr_running)
1569 rq->avg_load_per_task = rq->load.weight / nr_running;
1570 else
1571 rq->avg_load_per_task = 0;
1573 return rq->avg_load_per_task;
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1578 struct update_shares_data {
1579 unsigned long rq_weight[NR_CPUS];
1582 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1584 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1587 * Calculate and set the cpu's group shares.
1589 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1590 unsigned long sd_shares,
1591 unsigned long sd_rq_weight,
1592 struct update_shares_data *usd)
1594 unsigned long shares, rq_weight;
1595 int boost = 0;
1597 rq_weight = usd->rq_weight[cpu];
1598 if (!rq_weight) {
1599 boost = 1;
1600 rq_weight = NICE_0_LOAD;
1604 * \Sum_j shares_j * rq_weight_i
1605 * shares_i = -----------------------------
1606 * \Sum_j rq_weight_j
1608 shares = (sd_shares * rq_weight) / sd_rq_weight;
1609 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1611 if (abs(shares - tg->se[cpu]->load.weight) >
1612 sysctl_sched_shares_thresh) {
1613 struct rq *rq = cpu_rq(cpu);
1614 unsigned long flags;
1616 spin_lock_irqsave(&rq->lock, flags);
1617 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1618 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1619 __set_se_shares(tg->se[cpu], shares);
1620 spin_unlock_irqrestore(&rq->lock, flags);
1625 * Re-compute the task group their per cpu shares over the given domain.
1626 * This needs to be done in a bottom-up fashion because the rq weight of a
1627 * parent group depends on the shares of its child groups.
1629 static int tg_shares_up(struct task_group *tg, void *data)
1631 unsigned long weight, rq_weight = 0, shares = 0;
1632 struct update_shares_data *usd;
1633 struct sched_domain *sd = data;
1634 unsigned long flags;
1635 int i;
1637 if (!tg->se[0])
1638 return 0;
1640 local_irq_save(flags);
1641 usd = &__get_cpu_var(update_shares_data);
1643 for_each_cpu(i, sched_domain_span(sd)) {
1644 weight = tg->cfs_rq[i]->load.weight;
1645 usd->rq_weight[i] = weight;
1648 * If there are currently no tasks on the cpu pretend there
1649 * is one of average load so that when a new task gets to
1650 * run here it will not get delayed by group starvation.
1652 if (!weight)
1653 weight = NICE_0_LOAD;
1655 rq_weight += weight;
1656 shares += tg->cfs_rq[i]->shares;
1659 if ((!shares && rq_weight) || shares > tg->shares)
1660 shares = tg->shares;
1662 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1663 shares = tg->shares;
1665 for_each_cpu(i, sched_domain_span(sd))
1666 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1668 local_irq_restore(flags);
1670 return 0;
1674 * Compute the cpu's hierarchical load factor for each task group.
1675 * This needs to be done in a top-down fashion because the load of a child
1676 * group is a fraction of its parents load.
1678 static int tg_load_down(struct task_group *tg, void *data)
1680 unsigned long load;
1681 long cpu = (long)data;
1683 if (!tg->parent) {
1684 load = cpu_rq(cpu)->load.weight;
1685 } else {
1686 load = tg->parent->cfs_rq[cpu]->h_load;
1687 load *= tg->cfs_rq[cpu]->shares;
1688 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1691 tg->cfs_rq[cpu]->h_load = load;
1693 return 0;
1696 static void update_shares(struct sched_domain *sd)
1698 s64 elapsed;
1699 u64 now;
1701 if (root_task_group_empty())
1702 return;
1704 now = cpu_clock(raw_smp_processor_id());
1705 elapsed = now - sd->last_update;
1707 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1708 sd->last_update = now;
1709 walk_tg_tree(tg_nop, tg_shares_up, sd);
1713 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1715 if (root_task_group_empty())
1716 return;
1718 spin_unlock(&rq->lock);
1719 update_shares(sd);
1720 spin_lock(&rq->lock);
1723 static void update_h_load(long cpu)
1725 if (root_task_group_empty())
1726 return;
1728 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1731 #else
1733 static inline void update_shares(struct sched_domain *sd)
1737 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1741 #endif
1743 #ifdef CONFIG_PREEMPT
1745 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1748 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1749 * way at the expense of forcing extra atomic operations in all
1750 * invocations. This assures that the double_lock is acquired using the
1751 * same underlying policy as the spinlock_t on this architecture, which
1752 * reduces latency compared to the unfair variant below. However, it
1753 * also adds more overhead and therefore may reduce throughput.
1755 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 __releases(this_rq->lock)
1757 __acquires(busiest->lock)
1758 __acquires(this_rq->lock)
1760 spin_unlock(&this_rq->lock);
1761 double_rq_lock(this_rq, busiest);
1763 return 1;
1766 #else
1768 * Unfair double_lock_balance: Optimizes throughput at the expense of
1769 * latency by eliminating extra atomic operations when the locks are
1770 * already in proper order on entry. This favors lower cpu-ids and will
1771 * grant the double lock to lower cpus over higher ids under contention,
1772 * regardless of entry order into the function.
1774 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1775 __releases(this_rq->lock)
1776 __acquires(busiest->lock)
1777 __acquires(this_rq->lock)
1779 int ret = 0;
1781 if (unlikely(!spin_trylock(&busiest->lock))) {
1782 if (busiest < this_rq) {
1783 spin_unlock(&this_rq->lock);
1784 spin_lock(&busiest->lock);
1785 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1786 ret = 1;
1787 } else
1788 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1790 return ret;
1793 #endif /* CONFIG_PREEMPT */
1796 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1798 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1800 if (unlikely(!irqs_disabled())) {
1801 /* printk() doesn't work good under rq->lock */
1802 spin_unlock(&this_rq->lock);
1803 BUG_ON(1);
1806 return _double_lock_balance(this_rq, busiest);
1809 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1810 __releases(busiest->lock)
1812 spin_unlock(&busiest->lock);
1813 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1815 #endif
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1824 #endif
1826 static void calc_load_account_active(struct rq *this_rq);
1828 #include "sched_stats.h"
1829 #include "sched_idletask.c"
1830 #include "sched_fair.c"
1831 #include "sched_rt.c"
1832 #ifdef CONFIG_SCHED_DEBUG
1833 # include "sched_debug.c"
1834 #endif
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1840 static void inc_nr_running(struct rq *rq)
1842 rq->nr_running++;
1845 static void dec_nr_running(struct rq *rq)
1847 rq->nr_running--;
1850 static void set_load_weight(struct task_struct *p)
1852 if (task_has_rt_policy(p)) {
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1859 * SCHED_IDLE tasks get minimal weight:
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1871 static void update_avg(u64 *avg, u64 sample)
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1882 sched_info_queued(p);
1883 p->sched_class->enqueue_task(rq, p, wakeup);
1884 p->se.on_rq = 1;
1887 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1906 * __normal_prio - return the priority that is based on the static prio
1908 static inline int __normal_prio(struct task_struct *p)
1910 return p->static_prio;
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1920 static inline int normal_prio(struct task_struct *p)
1922 int prio;
1924 if (task_has_rt_policy(p))
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1938 static int effective_prio(struct task_struct *p)
1940 p->normal_prio = normal_prio(p);
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1952 * activate_task - move a task to the runqueue.
1954 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible--;
1959 enqueue_task(rq, p, wakeup);
1960 inc_nr_running(rq);
1964 * deactivate_task - remove a task from the runqueue.
1966 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1968 if (task_contributes_to_load(p))
1969 rq->nr_uninterruptible++;
1971 dequeue_task(rq, p, sleep);
1972 dec_nr_running(rq);
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1979 inline int task_curr(const struct task_struct *p)
1981 return cpu_curr(task_cpu(p)) == p;
1984 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1986 set_task_rq(p, cpu);
1987 #ifdef CONFIG_SMP
1989 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1990 * successfuly executed on another CPU. We must ensure that updates of
1991 * per-task data have been completed by this moment.
1993 smp_wmb();
1994 task_thread_info(p)->cpu = cpu;
1995 #endif
1998 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1999 const struct sched_class *prev_class,
2000 int oldprio, int running)
2002 if (prev_class != p->sched_class) {
2003 if (prev_class->switched_from)
2004 prev_class->switched_from(rq, p, running);
2005 p->sched_class->switched_to(rq, p, running);
2006 } else
2007 p->sched_class->prio_changed(rq, p, oldprio, running);
2010 #ifdef CONFIG_SMP
2012 * Is this task likely cache-hot:
2014 static int
2015 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2017 s64 delta;
2020 * Buddy candidates are cache hot:
2022 if (sched_feat(CACHE_HOT_BUDDY) &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2027 if (p->sched_class != &fair_sched_class)
2028 return 0;
2030 if (sysctl_sched_migration_cost == -1)
2031 return 1;
2032 if (sysctl_sched_migration_cost == 0)
2033 return 0;
2035 delta = now - p->se.exec_start;
2037 return delta < (s64)sysctl_sched_migration_cost;
2041 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2043 int old_cpu = task_cpu(p);
2044 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2045 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2046 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2047 u64 clock_offset;
2049 clock_offset = old_rq->clock - new_rq->clock;
2051 trace_sched_migrate_task(p, new_cpu);
2053 #ifdef CONFIG_SCHEDSTATS
2054 if (p->se.wait_start)
2055 p->se.wait_start -= clock_offset;
2056 if (p->se.sleep_start)
2057 p->se.sleep_start -= clock_offset;
2058 if (p->se.block_start)
2059 p->se.block_start -= clock_offset;
2060 #endif
2061 if (old_cpu != new_cpu) {
2062 p->se.nr_migrations++;
2063 new_rq->nr_migrations_in++;
2064 #ifdef CONFIG_SCHEDSTATS
2065 if (task_hot(p, old_rq->clock, NULL))
2066 schedstat_inc(p, se.nr_forced2_migrations);
2067 #endif
2068 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2069 1, 1, NULL, 0);
2071 p->se.vruntime -= old_cfsrq->min_vruntime -
2072 new_cfsrq->min_vruntime;
2074 __set_task_cpu(p, new_cpu);
2077 struct migration_req {
2078 struct list_head list;
2080 struct task_struct *task;
2081 int dest_cpu;
2083 struct completion done;
2087 * The task's runqueue lock must be held.
2088 * Returns true if you have to wait for migration thread.
2090 static int
2091 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2093 struct rq *rq = task_rq(p);
2096 * If the task is not on a runqueue (and not running), then
2097 * it is sufficient to simply update the task's cpu field.
2099 if (!p->se.on_rq && !task_running(rq, p)) {
2100 set_task_cpu(p, dest_cpu);
2101 return 0;
2104 init_completion(&req->done);
2105 req->task = p;
2106 req->dest_cpu = dest_cpu;
2107 list_add(&req->list, &rq->migration_queue);
2109 return 1;
2113 * wait_task_context_switch - wait for a thread to complete at least one
2114 * context switch.
2116 * @p must not be current.
2118 void wait_task_context_switch(struct task_struct *p)
2120 unsigned long nvcsw, nivcsw, flags;
2121 int running;
2122 struct rq *rq;
2124 nvcsw = p->nvcsw;
2125 nivcsw = p->nivcsw;
2126 for (;;) {
2128 * The runqueue is assigned before the actual context
2129 * switch. We need to take the runqueue lock.
2131 * We could check initially without the lock but it is
2132 * very likely that we need to take the lock in every
2133 * iteration.
2135 rq = task_rq_lock(p, &flags);
2136 running = task_running(rq, p);
2137 task_rq_unlock(rq, &flags);
2139 if (likely(!running))
2140 break;
2142 * The switch count is incremented before the actual
2143 * context switch. We thus wait for two switches to be
2144 * sure at least one completed.
2146 if ((p->nvcsw - nvcsw) > 1)
2147 break;
2148 if ((p->nivcsw - nivcsw) > 1)
2149 break;
2151 cpu_relax();
2156 * wait_task_inactive - wait for a thread to unschedule.
2158 * If @match_state is nonzero, it's the @p->state value just checked and
2159 * not expected to change. If it changes, i.e. @p might have woken up,
2160 * then return zero. When we succeed in waiting for @p to be off its CPU,
2161 * we return a positive number (its total switch count). If a second call
2162 * a short while later returns the same number, the caller can be sure that
2163 * @p has remained unscheduled the whole time.
2165 * The caller must ensure that the task *will* unschedule sometime soon,
2166 * else this function might spin for a *long* time. This function can't
2167 * be called with interrupts off, or it may introduce deadlock with
2168 * smp_call_function() if an IPI is sent by the same process we are
2169 * waiting to become inactive.
2171 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2173 unsigned long flags;
2174 int running, on_rq;
2175 unsigned long ncsw;
2176 struct rq *rq;
2178 for (;;) {
2180 * We do the initial early heuristics without holding
2181 * any task-queue locks at all. We'll only try to get
2182 * the runqueue lock when things look like they will
2183 * work out!
2185 rq = task_rq(p);
2188 * If the task is actively running on another CPU
2189 * still, just relax and busy-wait without holding
2190 * any locks.
2192 * NOTE! Since we don't hold any locks, it's not
2193 * even sure that "rq" stays as the right runqueue!
2194 * But we don't care, since "task_running()" will
2195 * return false if the runqueue has changed and p
2196 * is actually now running somewhere else!
2198 while (task_running(rq, p)) {
2199 if (match_state && unlikely(p->state != match_state))
2200 return 0;
2201 cpu_relax();
2205 * Ok, time to look more closely! We need the rq
2206 * lock now, to be *sure*. If we're wrong, we'll
2207 * just go back and repeat.
2209 rq = task_rq_lock(p, &flags);
2210 trace_sched_wait_task(rq, p);
2211 running = task_running(rq, p);
2212 on_rq = p->se.on_rq;
2213 ncsw = 0;
2214 if (!match_state || p->state == match_state)
2215 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2216 task_rq_unlock(rq, &flags);
2219 * If it changed from the expected state, bail out now.
2221 if (unlikely(!ncsw))
2222 break;
2225 * Was it really running after all now that we
2226 * checked with the proper locks actually held?
2228 * Oops. Go back and try again..
2230 if (unlikely(running)) {
2231 cpu_relax();
2232 continue;
2236 * It's not enough that it's not actively running,
2237 * it must be off the runqueue _entirely_, and not
2238 * preempted!
2240 * So if it was still runnable (but just not actively
2241 * running right now), it's preempted, and we should
2242 * yield - it could be a while.
2244 if (unlikely(on_rq)) {
2245 schedule_timeout_uninterruptible(1);
2246 continue;
2250 * Ahh, all good. It wasn't running, and it wasn't
2251 * runnable, which means that it will never become
2252 * running in the future either. We're all done!
2254 break;
2257 return ncsw;
2260 /***
2261 * kick_process - kick a running thread to enter/exit the kernel
2262 * @p: the to-be-kicked thread
2264 * Cause a process which is running on another CPU to enter
2265 * kernel-mode, without any delay. (to get signals handled.)
2267 * NOTE: this function doesnt have to take the runqueue lock,
2268 * because all it wants to ensure is that the remote task enters
2269 * the kernel. If the IPI races and the task has been migrated
2270 * to another CPU then no harm is done and the purpose has been
2271 * achieved as well.
2273 void kick_process(struct task_struct *p)
2275 int cpu;
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if ((cpu != smp_processor_id()) && task_curr(p))
2280 smp_send_reschedule(cpu);
2281 preempt_enable();
2283 EXPORT_SYMBOL_GPL(kick_process);
2284 #endif /* CONFIG_SMP */
2287 * task_oncpu_function_call - call a function on the cpu on which a task runs
2288 * @p: the task to evaluate
2289 * @func: the function to be called
2290 * @info: the function call argument
2292 * Calls the function @func when the task is currently running. This might
2293 * be on the current CPU, which just calls the function directly
2295 void task_oncpu_function_call(struct task_struct *p,
2296 void (*func) (void *info), void *info)
2298 int cpu;
2300 preempt_disable();
2301 cpu = task_cpu(p);
2302 if (task_curr(p))
2303 smp_call_function_single(cpu, func, info, 1);
2304 preempt_enable();
2307 /***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2319 * returns failure only if the task is already active.
2321 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2323 int cpu, orig_cpu, this_cpu, success = 0;
2324 unsigned long flags;
2325 struct rq *rq;
2327 if (!sched_feat(SYNC_WAKEUPS))
2328 sync = 0;
2330 this_cpu = get_cpu();
2332 smp_wmb();
2333 rq = task_rq_lock(p, &flags);
2334 update_rq_clock(rq);
2335 if (!(p->state & state))
2336 goto out;
2338 if (p->se.on_rq)
2339 goto out_running;
2341 cpu = task_cpu(p);
2342 orig_cpu = cpu;
2344 #ifdef CONFIG_SMP
2345 if (unlikely(task_running(rq, p)))
2346 goto out_activate;
2349 * In order to handle concurrent wakeups and release the rq->lock
2350 * we put the task in TASK_WAKING state.
2352 p->state = TASK_WAKING;
2353 task_rq_unlock(rq, &flags);
2355 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
2356 if (cpu != orig_cpu)
2357 set_task_cpu(p, cpu);
2359 rq = task_rq_lock(p, &flags);
2360 WARN_ON(p->state != TASK_WAKING);
2361 cpu = task_cpu(p);
2363 #ifdef CONFIG_SCHEDSTATS
2364 schedstat_inc(rq, ttwu_count);
2365 if (cpu == this_cpu)
2366 schedstat_inc(rq, ttwu_local);
2367 else {
2368 struct sched_domain *sd;
2369 for_each_domain(this_cpu, sd) {
2370 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2371 schedstat_inc(sd, ttwu_wake_remote);
2372 break;
2376 #endif /* CONFIG_SCHEDSTATS */
2378 out_activate:
2379 #endif /* CONFIG_SMP */
2380 schedstat_inc(p, se.nr_wakeups);
2381 if (sync)
2382 schedstat_inc(p, se.nr_wakeups_sync);
2383 if (orig_cpu != cpu)
2384 schedstat_inc(p, se.nr_wakeups_migrate);
2385 if (cpu == this_cpu)
2386 schedstat_inc(p, se.nr_wakeups_local);
2387 else
2388 schedstat_inc(p, se.nr_wakeups_remote);
2389 activate_task(rq, p, 1);
2390 success = 1;
2393 * Only attribute actual wakeups done by this task.
2395 if (!in_interrupt()) {
2396 struct sched_entity *se = &current->se;
2397 u64 sample = se->sum_exec_runtime;
2399 if (se->last_wakeup)
2400 sample -= se->last_wakeup;
2401 else
2402 sample -= se->start_runtime;
2403 update_avg(&se->avg_wakeup, sample);
2405 se->last_wakeup = se->sum_exec_runtime;
2408 out_running:
2409 trace_sched_wakeup(rq, p, success);
2410 check_preempt_curr(rq, p, sync);
2412 p->state = TASK_RUNNING;
2413 #ifdef CONFIG_SMP
2414 if (p->sched_class->task_wake_up)
2415 p->sched_class->task_wake_up(rq, p);
2416 #endif
2417 out:
2418 task_rq_unlock(rq, &flags);
2419 put_cpu();
2421 return success;
2425 * wake_up_process - Wake up a specific process
2426 * @p: The process to be woken up.
2428 * Attempt to wake up the nominated process and move it to the set of runnable
2429 * processes. Returns 1 if the process was woken up, 0 if it was already
2430 * running.
2432 * It may be assumed that this function implies a write memory barrier before
2433 * changing the task state if and only if any tasks are woken up.
2435 int wake_up_process(struct task_struct *p)
2437 return try_to_wake_up(p, TASK_ALL, 0);
2439 EXPORT_SYMBOL(wake_up_process);
2441 int wake_up_state(struct task_struct *p, unsigned int state)
2443 return try_to_wake_up(p, state, 0);
2447 * Perform scheduler related setup for a newly forked process p.
2448 * p is forked by current.
2450 * __sched_fork() is basic setup used by init_idle() too:
2452 static void __sched_fork(struct task_struct *p)
2454 p->se.exec_start = 0;
2455 p->se.sum_exec_runtime = 0;
2456 p->se.prev_sum_exec_runtime = 0;
2457 p->se.nr_migrations = 0;
2458 p->se.last_wakeup = 0;
2459 p->se.avg_overlap = 0;
2460 p->se.start_runtime = 0;
2461 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2463 #ifdef CONFIG_SCHEDSTATS
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2495 #endif
2497 INIT_LIST_HEAD(&p->rt.run_list);
2498 p->se.on_rq = 0;
2499 INIT_LIST_HEAD(&p->se.group_node);
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503 #endif
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2511 p->state = TASK_RUNNING;
2515 * fork()/clone()-time setup:
2517 void sched_fork(struct task_struct *p, int clone_flags)
2519 int cpu = get_cpu();
2521 __sched_fork(p);
2524 * Make sure we do not leak PI boosting priority to the child.
2526 p->prio = current->normal_prio;
2529 * Revert to default priority/policy on fork if requested.
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2547 p->sched_reset_on_fork = 0;
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
2553 #ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555 #endif
2556 set_task_cpu(p, cpu);
2558 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2559 if (likely(sched_info_on()))
2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
2561 #endif
2562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2563 p->oncpu = 0;
2564 #endif
2565 #ifdef CONFIG_PREEMPT
2566 /* Want to start with kernel preemption disabled. */
2567 task_thread_info(p)->preempt_count = 1;
2568 #endif
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2571 put_cpu();
2575 * wake_up_new_task - wake up a newly created task for the first time.
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2581 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2583 unsigned long flags;
2584 struct rq *rq;
2586 rq = task_rq_lock(p, &flags);
2587 BUG_ON(p->state != TASK_RUNNING);
2588 update_rq_clock(rq);
2590 p->prio = effective_prio(p);
2592 if (!p->sched_class->task_new || !current->se.on_rq) {
2593 activate_task(rq, p, 0);
2594 } else {
2596 * Let the scheduling class do new task startup
2597 * management (if any):
2599 p->sched_class->task_new(rq, p);
2600 inc_nr_running(rq);
2602 trace_sched_wakeup_new(rq, p, 1);
2603 check_preempt_curr(rq, p, 0);
2604 #ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607 #endif
2608 task_rq_unlock(rq, &flags);
2611 #ifdef CONFIG_PREEMPT_NOTIFIERS
2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2615 * @notifier: notifier struct to register
2617 void preempt_notifier_register(struct preempt_notifier *notifier)
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2621 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
2625 * @notifier: notifier struct to unregister
2627 * This is safe to call from within a preemption notifier.
2629 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2631 hlist_del(&notifier->link);
2633 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2635 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2644 static void
2645 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2655 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2657 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2661 static void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2667 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
2672 * @prev: the current task that is being switched out
2673 * @next: the task we are going to switch to.
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2682 static inline void
2683 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
2686 fire_sched_out_preempt_notifiers(prev, next);
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2692 * finish_task_switch - clean up after a task-switch
2693 * @rq: runqueue associated with task-switch
2694 * @prev: the thread we just switched away from.
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
2701 * Note that we may have delayed dropping an mm in context_switch(). If
2702 * so, we finish that here outside of the runqueue lock. (Doing it
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2706 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2707 __releases(rq->lock)
2709 struct mm_struct *mm = rq->prev_mm;
2710 long prev_state;
2712 rq->prev_mm = NULL;
2715 * A task struct has one reference for the use as "current".
2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
2719 * The test for TASK_DEAD must occur while the runqueue locks are
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2725 prev_state = prev->state;
2726 finish_arch_switch(prev);
2727 perf_counter_task_sched_in(current, cpu_of(rq));
2728 finish_lock_switch(rq, prev);
2730 fire_sched_in_preempt_notifiers(current);
2731 if (mm)
2732 mmdrop(mm);
2733 if (unlikely(prev_state == TASK_DEAD)) {
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
2738 kprobe_flush_task(prev);
2739 put_task_struct(prev);
2743 #ifdef CONFIG_SMP
2745 /* assumes rq->lock is held */
2746 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2752 /* rq->lock is NOT held, but preemption is disabled */
2753 static inline void post_schedule(struct rq *rq)
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2763 rq->post_schedule = 0;
2767 #else
2769 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2773 static inline void post_schedule(struct rq *rq)
2777 #endif
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2783 asmlinkage void schedule_tail(struct task_struct *prev)
2784 __releases(rq->lock)
2786 struct rq *rq = this_rq();
2788 finish_task_switch(rq, prev);
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2794 post_schedule(rq);
2796 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799 #endif
2800 if (current->set_child_tid)
2801 put_user(task_pid_vnr(current), current->set_child_tid);
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2808 static inline void
2809 context_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
2812 struct mm_struct *mm, *oldmm;
2814 prepare_task_switch(rq, prev, next);
2815 trace_sched_switch(rq, prev, next);
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2823 arch_start_context_switch(prev);
2825 if (unlikely(!mm)) {
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2832 if (unlikely(!prev->mm)) {
2833 prev->active_mm = NULL;
2834 rq->prev_mm = oldmm;
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2842 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2844 #endif
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2849 barrier();
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2855 finish_task_switch(this_rq(), prev);
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2865 unsigned long nr_running(void)
2867 unsigned long i, sum = 0;
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2872 return sum;
2875 unsigned long nr_uninterruptible(void)
2877 unsigned long i, sum = 0;
2879 for_each_possible_cpu(i)
2880 sum += cpu_rq(i)->nr_uninterruptible;
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2889 return sum;
2892 unsigned long long nr_context_switches(void)
2894 int i;
2895 unsigned long long sum = 0;
2897 for_each_possible_cpu(i)
2898 sum += cpu_rq(i)->nr_switches;
2900 return sum;
2903 unsigned long nr_iowait(void)
2905 unsigned long i, sum = 0;
2907 for_each_possible_cpu(i)
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2910 return sum;
2913 /* Variables and functions for calc_load */
2914 static atomic_long_t calc_load_tasks;
2915 static unsigned long calc_load_update;
2916 unsigned long avenrun[3];
2917 EXPORT_SYMBOL(avenrun);
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2925 * These values are estimates at best, so no need for locking.
2927 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2934 static unsigned long
2935 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2946 void calc_global_load(void)
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2951 if (time_before(jiffies, upd))
2952 return;
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2961 calc_load_update += LOAD_FREQ;
2965 * Either called from update_cpu_load() or from a cpu going idle
2967 static void calc_load_account_active(struct rq *this_rq)
2969 long nr_active, delta;
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2982 * Externally visible per-cpu scheduler statistics:
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2985 u64 cpu_nr_migrations(int cpu)
2987 return cpu_rq(cpu)->nr_migrations_in;
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
2994 static void update_cpu_load(struct rq *this_rq)
2996 unsigned long this_load = this_rq->load.weight;
2997 int i, scale;
2999 this_rq->nr_load_updates++;
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3014 if (new_load > old_load)
3015 new_load += scale-1;
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3025 #ifdef CONFIG_SMP
3028 * double_rq_lock - safely lock two runqueues
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3033 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3037 BUG_ON(!irqs_disabled());
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
3042 if (rq1 < rq2) {
3043 spin_lock(&rq1->lock);
3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3045 } else {
3046 spin_lock(&rq2->lock);
3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
3055 * double_rq_unlock - safely unlock two runqueues
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3060 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3075 * the cpu_allowed mask is restored.
3077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3079 struct migration_req req;
3080 unsigned long flags;
3081 struct rq *rq;
3083 rq = task_rq_lock(p, &flags);
3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3085 || unlikely(!cpu_active(dest_cpu)))
3086 goto out;
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
3099 return;
3101 out:
3102 task_rq_unlock(rq, &flags);
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
3109 void sched_exec(void)
3111 int new_cpu, this_cpu = get_cpu();
3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3113 put_cpu();
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3122 static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
3125 deactivate_task(src_rq, p, 0);
3126 set_task_cpu(p, this_cpu);
3127 activate_task(this_rq, p, 0);
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3132 check_preempt_curr(this_rq, p, 0);
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3138 static
3139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3143 int tsk_cache_hot = 0;
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3151 schedstat_inc(p, se.nr_failed_migrations_affine);
3152 return 0;
3154 *all_pinned = 0;
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
3158 return 0;
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(sd, lb_hot_gained[idle]);
3173 schedstat_inc(p, se.nr_forced_migrations);
3175 #endif
3176 return 1;
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.nr_failed_migrations_hot);
3181 return 0;
3183 return 1;
3186 static unsigned long
3187 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
3192 int loops = 0, pulled = 0, pinned = 0;
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
3196 if (max_load_move == 0)
3197 goto out;
3199 pinned = 1;
3202 * Start the load-balancing iterator:
3204 p = iterator->start(iterator->arg);
3205 next:
3206 if (!p || loops++ > sysctl_sched_nr_migrate)
3207 goto out;
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3211 p = iterator->next(iterator->arg);
3212 goto next;
3215 pull_task(busiest, p, this_rq, this_cpu);
3216 pulled++;
3217 rem_load_move -= p->se.load.weight;
3219 #ifdef CONFIG_PREEMPT
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227 #endif
3230 * We only want to steal up to the prescribed amount of weighted load.
3232 if (rem_load_move > 0) {
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
3235 p = iterator->next(iterator->arg);
3236 goto next;
3238 out:
3240 * Right now, this is one of only two places pull_task() is called,
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3244 schedstat_add(sd, lb_gained[idle], pulled);
3246 if (all_pinned)
3247 *all_pinned = pinned;
3249 return max_load_move - rem_load_move;
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
3257 * Called with both runqueues locked.
3259 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3260 unsigned long max_load_move,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3264 const struct sched_class *class = sched_class_highest;
3265 unsigned long total_load_moved = 0;
3266 int this_best_prio = this_rq->curr->prio;
3268 do {
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
3271 max_load_move - total_load_moved,
3272 sd, idle, all_pinned, &this_best_prio);
3273 class = class->next;
3275 #ifdef CONFIG_PREEMPT
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
3283 #endif
3284 } while (class && max_load_move > total_load_moved);
3286 return total_load_moved > 0;
3289 static int
3290 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3305 schedstat_inc(sd, lb_gained[idle]);
3307 return 1;
3309 p = iterator->next(iterator->arg);
3312 return 0;
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3320 * Called with both runqueues locked.
3322 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3325 const struct sched_class *class;
3327 for_each_class(class) {
3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3329 return 1;
3332 return 0;
3334 /********** Helpers for find_busiest_group ************************/
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
3339 struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3356 int group_imb; /* Is there imbalance in this sd */
3357 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
3364 #endif
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3370 struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3383 static inline unsigned int group_first_cpu(struct sched_group *group)
3385 return cpumask_first(sched_group_cpus(group));
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3393 static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3396 int load_idx;
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
3400 load_idx = sd->busy_idx;
3401 break;
3403 case CPU_NEWLY_IDLE:
3404 load_idx = sd->newidle_idx;
3405 break;
3406 default:
3407 load_idx = sd->idle_idx;
3408 break;
3411 return load_idx;
3415 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3424 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3428 * Busy processors will not participate in power savings
3429 * balance.
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3450 static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3454 if (!sds->power_savings_balance)
3455 return;
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3494 return;
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3519 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3522 if (!sds->power_savings_balance)
3523 return 0;
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
3532 return 1;
3535 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3539 return;
3542 static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3545 return;
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3551 return 0;
3553 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3556 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3558 return SCHED_LOAD_SCALE;
3561 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3563 return default_scale_freq_power(sd, cpu);
3566 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3568 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3569 unsigned long smt_gain = sd->smt_gain;
3571 smt_gain /= weight;
3573 return smt_gain;
3576 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3578 return default_scale_smt_power(sd, cpu);
3581 unsigned long scale_rt_power(int cpu)
3583 struct rq *rq = cpu_rq(cpu);
3584 u64 total, available;
3586 sched_avg_update(rq);
3588 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3589 available = total - rq->rt_avg;
3591 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3592 total = SCHED_LOAD_SCALE;
3594 total >>= SCHED_LOAD_SHIFT;
3596 return div_u64(available, total);
3599 static void update_cpu_power(struct sched_domain *sd, int cpu)
3601 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3602 unsigned long power = SCHED_LOAD_SCALE;
3603 struct sched_group *sdg = sd->groups;
3605 if (sched_feat(ARCH_POWER))
3606 power *= arch_scale_freq_power(sd, cpu);
3607 else
3608 power *= default_scale_freq_power(sd, cpu);
3610 power >>= SCHED_LOAD_SHIFT;
3612 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3613 if (sched_feat(ARCH_POWER))
3614 power *= arch_scale_smt_power(sd, cpu);
3615 else
3616 power *= default_scale_smt_power(sd, cpu);
3618 power >>= SCHED_LOAD_SHIFT;
3621 power *= scale_rt_power(cpu);
3622 power >>= SCHED_LOAD_SHIFT;
3624 if (!power)
3625 power = 1;
3627 sdg->cpu_power = power;
3630 static void update_group_power(struct sched_domain *sd, int cpu)
3632 struct sched_domain *child = sd->child;
3633 struct sched_group *group, *sdg = sd->groups;
3634 unsigned long power;
3636 if (!child) {
3637 update_cpu_power(sd, cpu);
3638 return;
3641 power = 0;
3643 group = child->groups;
3644 do {
3645 power += group->cpu_power;
3646 group = group->next;
3647 } while (group != child->groups);
3649 sdg->cpu_power = power;
3653 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3654 * @group: sched_group whose statistics are to be updated.
3655 * @this_cpu: Cpu for which load balance is currently performed.
3656 * @idle: Idle status of this_cpu
3657 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3658 * @sd_idle: Idle status of the sched_domain containing group.
3659 * @local_group: Does group contain this_cpu.
3660 * @cpus: Set of cpus considered for load balancing.
3661 * @balance: Should we balance.
3662 * @sgs: variable to hold the statistics for this group.
3664 static inline void update_sg_lb_stats(struct sched_domain *sd,
3665 struct sched_group *group, int this_cpu,
3666 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3667 int local_group, const struct cpumask *cpus,
3668 int *balance, struct sg_lb_stats *sgs)
3670 unsigned long load, max_cpu_load, min_cpu_load;
3671 int i;
3672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3673 unsigned long sum_avg_load_per_task;
3674 unsigned long avg_load_per_task;
3676 if (local_group) {
3677 balance_cpu = group_first_cpu(group);
3678 if (balance_cpu == this_cpu)
3679 update_group_power(sd, this_cpu);
3682 /* Tally up the load of all CPUs in the group */
3683 sum_avg_load_per_task = avg_load_per_task = 0;
3684 max_cpu_load = 0;
3685 min_cpu_load = ~0UL;
3687 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3688 struct rq *rq = cpu_rq(i);
3690 if (*sd_idle && rq->nr_running)
3691 *sd_idle = 0;
3693 /* Bias balancing toward cpus of our domain */
3694 if (local_group) {
3695 if (idle_cpu(i) && !first_idle_cpu) {
3696 first_idle_cpu = 1;
3697 balance_cpu = i;
3700 load = target_load(i, load_idx);
3701 } else {
3702 load = source_load(i, load_idx);
3703 if (load > max_cpu_load)
3704 max_cpu_load = load;
3705 if (min_cpu_load > load)
3706 min_cpu_load = load;
3709 sgs->group_load += load;
3710 sgs->sum_nr_running += rq->nr_running;
3711 sgs->sum_weighted_load += weighted_cpuload(i);
3713 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3717 * First idle cpu or the first cpu(busiest) in this sched group
3718 * is eligible for doing load balancing at this and above
3719 * domains. In the newly idle case, we will allow all the cpu's
3720 * to do the newly idle load balance.
3722 if (idle != CPU_NEWLY_IDLE && local_group &&
3723 balance_cpu != this_cpu && balance) {
3724 *balance = 0;
3725 return;
3728 /* Adjust by relative CPU power of the group */
3729 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3733 * Consider the group unbalanced when the imbalance is larger
3734 * than the average weight of two tasks.
3736 * APZ: with cgroup the avg task weight can vary wildly and
3737 * might not be a suitable number - should we keep a
3738 * normalized nr_running number somewhere that negates
3739 * the hierarchy?
3741 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3742 group->cpu_power;
3744 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3745 sgs->group_imb = 1;
3747 sgs->group_capacity =
3748 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3752 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3753 * @sd: sched_domain whose statistics are to be updated.
3754 * @this_cpu: Cpu for which load balance is currently performed.
3755 * @idle: Idle status of this_cpu
3756 * @sd_idle: Idle status of the sched_domain containing group.
3757 * @cpus: Set of cpus considered for load balancing.
3758 * @balance: Should we balance.
3759 * @sds: variable to hold the statistics for this sched_domain.
3761 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3762 enum cpu_idle_type idle, int *sd_idle,
3763 const struct cpumask *cpus, int *balance,
3764 struct sd_lb_stats *sds)
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group = sd->groups;
3768 struct sg_lb_stats sgs;
3769 int load_idx, prefer_sibling = 0;
3771 if (child && child->flags & SD_PREFER_SIBLING)
3772 prefer_sibling = 1;
3774 init_sd_power_savings_stats(sd, sds, idle);
3775 load_idx = get_sd_load_idx(sd, idle);
3777 do {
3778 int local_group;
3780 local_group = cpumask_test_cpu(this_cpu,
3781 sched_group_cpus(group));
3782 memset(&sgs, 0, sizeof(sgs));
3783 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3784 local_group, cpus, balance, &sgs);
3786 if (local_group && balance && !(*balance))
3787 return;
3789 sds->total_load += sgs.group_load;
3790 sds->total_pwr += group->cpu_power;
3793 * In case the child domain prefers tasks go to siblings
3794 * first, lower the group capacity to one so that we'll try
3795 * and move all the excess tasks away.
3797 if (prefer_sibling)
3798 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3800 if (local_group) {
3801 sds->this_load = sgs.avg_load;
3802 sds->this = group;
3803 sds->this_nr_running = sgs.sum_nr_running;
3804 sds->this_load_per_task = sgs.sum_weighted_load;
3805 } else if (sgs.avg_load > sds->max_load &&
3806 (sgs.sum_nr_running > sgs.group_capacity ||
3807 sgs.group_imb)) {
3808 sds->max_load = sgs.avg_load;
3809 sds->busiest = group;
3810 sds->busiest_nr_running = sgs.sum_nr_running;
3811 sds->busiest_load_per_task = sgs.sum_weighted_load;
3812 sds->group_imb = sgs.group_imb;
3815 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3816 group = group->next;
3817 } while (group != sd->groups);
3821 * fix_small_imbalance - Calculate the minor imbalance that exists
3822 * amongst the groups of a sched_domain, during
3823 * load balancing.
3824 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3826 * @imbalance: Variable to store the imbalance.
3828 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3829 int this_cpu, unsigned long *imbalance)
3831 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3832 unsigned int imbn = 2;
3834 if (sds->this_nr_running) {
3835 sds->this_load_per_task /= sds->this_nr_running;
3836 if (sds->busiest_load_per_task >
3837 sds->this_load_per_task)
3838 imbn = 1;
3839 } else
3840 sds->this_load_per_task =
3841 cpu_avg_load_per_task(this_cpu);
3843 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3844 sds->busiest_load_per_task * imbn) {
3845 *imbalance = sds->busiest_load_per_task;
3846 return;
3850 * OK, we don't have enough imbalance to justify moving tasks,
3851 * however we may be able to increase total CPU power used by
3852 * moving them.
3855 pwr_now += sds->busiest->cpu_power *
3856 min(sds->busiest_load_per_task, sds->max_load);
3857 pwr_now += sds->this->cpu_power *
3858 min(sds->this_load_per_task, sds->this_load);
3859 pwr_now /= SCHED_LOAD_SCALE;
3861 /* Amount of load we'd subtract */
3862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3863 sds->busiest->cpu_power;
3864 if (sds->max_load > tmp)
3865 pwr_move += sds->busiest->cpu_power *
3866 min(sds->busiest_load_per_task, sds->max_load - tmp);
3868 /* Amount of load we'd add */
3869 if (sds->max_load * sds->busiest->cpu_power <
3870 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3871 tmp = (sds->max_load * sds->busiest->cpu_power) /
3872 sds->this->cpu_power;
3873 else
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->this->cpu_power;
3876 pwr_move += sds->this->cpu_power *
3877 min(sds->this_load_per_task, sds->this_load + tmp);
3878 pwr_move /= SCHED_LOAD_SCALE;
3880 /* Move if we gain throughput */
3881 if (pwr_move > pwr_now)
3882 *imbalance = sds->busiest_load_per_task;
3886 * calculate_imbalance - Calculate the amount of imbalance present within the
3887 * groups of a given sched_domain during load balance.
3888 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: Cpu for which currently load balance is being performed.
3890 * @imbalance: The variable to store the imbalance.
3892 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3893 unsigned long *imbalance)
3895 unsigned long max_pull;
3897 * In the presence of smp nice balancing, certain scenarios can have
3898 * max load less than avg load(as we skip the groups at or below
3899 * its cpu_power, while calculating max_load..)
3901 if (sds->max_load < sds->avg_load) {
3902 *imbalance = 0;
3903 return fix_small_imbalance(sds, this_cpu, imbalance);
3906 /* Don't want to pull so many tasks that a group would go idle */
3907 max_pull = min(sds->max_load - sds->avg_load,
3908 sds->max_load - sds->busiest_load_per_task);
3910 /* How much load to actually move to equalise the imbalance */
3911 *imbalance = min(max_pull * sds->busiest->cpu_power,
3912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3913 / SCHED_LOAD_SCALE;
3916 * if *imbalance is less than the average load per runnable task
3917 * there is no gaurantee that any tasks will be moved so we'll have
3918 * a think about bumping its value to force at least one task to be
3919 * moved
3921 if (*imbalance < sds->busiest_load_per_task)
3922 return fix_small_imbalance(sds, this_cpu, imbalance);
3925 /******* find_busiest_group() helpers end here *********************/
3928 * find_busiest_group - Returns the busiest group within the sched_domain
3929 * if there is an imbalance. If there isn't an imbalance, and
3930 * the user has opted for power-savings, it returns a group whose
3931 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3932 * such a group exists.
3934 * Also calculates the amount of weighted load which should be moved
3935 * to restore balance.
3937 * @sd: The sched_domain whose busiest group is to be returned.
3938 * @this_cpu: The cpu for which load balancing is currently being performed.
3939 * @imbalance: Variable which stores amount of weighted load which should
3940 * be moved to restore balance/put a group to idle.
3941 * @idle: The idle status of this_cpu.
3942 * @sd_idle: The idleness of sd
3943 * @cpus: The set of CPUs under consideration for load-balancing.
3944 * @balance: Pointer to a variable indicating if this_cpu
3945 * is the appropriate cpu to perform load balancing at this_level.
3947 * Returns: - the busiest group if imbalance exists.
3948 * - If no imbalance and user has opted for power-savings balance,
3949 * return the least loaded group whose CPUs can be
3950 * put to idle by rebalancing its tasks onto our group.
3952 static struct sched_group *
3953 find_busiest_group(struct sched_domain *sd, int this_cpu,
3954 unsigned long *imbalance, enum cpu_idle_type idle,
3955 int *sd_idle, const struct cpumask *cpus, int *balance)
3957 struct sd_lb_stats sds;
3959 memset(&sds, 0, sizeof(sds));
3962 * Compute the various statistics relavent for load balancing at
3963 * this level.
3965 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3966 balance, &sds);
3968 /* Cases where imbalance does not exist from POV of this_cpu */
3969 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3970 * at this level.
3971 * 2) There is no busy sibling group to pull from.
3972 * 3) This group is the busiest group.
3973 * 4) This group is more busy than the avg busieness at this
3974 * sched_domain.
3975 * 5) The imbalance is within the specified limit.
3976 * 6) Any rebalance would lead to ping-pong
3978 if (balance && !(*balance))
3979 goto ret;
3981 if (!sds.busiest || sds.busiest_nr_running == 0)
3982 goto out_balanced;
3984 if (sds.this_load >= sds.max_load)
3985 goto out_balanced;
3987 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3989 if (sds.this_load >= sds.avg_load)
3990 goto out_balanced;
3992 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3993 goto out_balanced;
3995 sds.busiest_load_per_task /= sds.busiest_nr_running;
3996 if (sds.group_imb)
3997 sds.busiest_load_per_task =
3998 min(sds.busiest_load_per_task, sds.avg_load);
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load, as either of these
4004 * actions would just result in more rebalancing later, and ping-pong
4005 * tasks around. Thus we look for the minimum possible imbalance.
4006 * Negative imbalances (*we* are more loaded than anyone else) will
4007 * be counted as no imbalance for these purposes -- we can't fix that
4008 * by pulling tasks to us. Be careful of negative numbers as they'll
4009 * appear as very large values with unsigned longs.
4011 if (sds.max_load <= sds.busiest_load_per_task)
4012 goto out_balanced;
4014 /* Looks like there is an imbalance. Compute it */
4015 calculate_imbalance(&sds, this_cpu, imbalance);
4016 return sds.busiest;
4018 out_balanced:
4020 * There is no obvious imbalance. But check if we can do some balancing
4021 * to save power.
4023 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4024 return sds.busiest;
4025 ret:
4026 *imbalance = 0;
4027 return NULL;
4031 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4033 static struct rq *
4034 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4035 unsigned long imbalance, const struct cpumask *cpus)
4037 struct rq *busiest = NULL, *rq;
4038 unsigned long max_load = 0;
4039 int i;
4041 for_each_cpu(i, sched_group_cpus(group)) {
4042 unsigned long power = power_of(i);
4043 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4044 unsigned long wl;
4046 if (!cpumask_test_cpu(i, cpus))
4047 continue;
4049 rq = cpu_rq(i);
4050 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4051 wl /= power;
4053 if (capacity && rq->nr_running == 1 && wl > imbalance)
4054 continue;
4056 if (wl > max_load) {
4057 max_load = wl;
4058 busiest = rq;
4062 return busiest;
4066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4067 * so long as it is large enough.
4069 #define MAX_PINNED_INTERVAL 512
4071 /* Working cpumask for load_balance and load_balance_newidle. */
4072 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4076 * tasks if there is an imbalance.
4078 static int load_balance(int this_cpu, struct rq *this_rq,
4079 struct sched_domain *sd, enum cpu_idle_type idle,
4080 int *balance)
4082 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4083 struct sched_group *group;
4084 unsigned long imbalance;
4085 struct rq *busiest;
4086 unsigned long flags;
4087 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4089 cpumask_setall(cpus);
4092 * When power savings policy is enabled for the parent domain, idle
4093 * sibling can pick up load irrespective of busy siblings. In this case,
4094 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4095 * portraying it as CPU_NOT_IDLE.
4097 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4099 sd_idle = 1;
4101 schedstat_inc(sd, lb_count[idle]);
4103 redo:
4104 update_shares(sd);
4105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4106 cpus, balance);
4108 if (*balance == 0)
4109 goto out_balanced;
4111 if (!group) {
4112 schedstat_inc(sd, lb_nobusyg[idle]);
4113 goto out_balanced;
4116 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4117 if (!busiest) {
4118 schedstat_inc(sd, lb_nobusyq[idle]);
4119 goto out_balanced;
4122 BUG_ON(busiest == this_rq);
4124 schedstat_add(sd, lb_imbalance[idle], imbalance);
4126 ld_moved = 0;
4127 if (busiest->nr_running > 1) {
4129 * Attempt to move tasks. If find_busiest_group has found
4130 * an imbalance but busiest->nr_running <= 1, the group is
4131 * still unbalanced. ld_moved simply stays zero, so it is
4132 * correctly treated as an imbalance.
4134 local_irq_save(flags);
4135 double_rq_lock(this_rq, busiest);
4136 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4137 imbalance, sd, idle, &all_pinned);
4138 double_rq_unlock(this_rq, busiest);
4139 local_irq_restore(flags);
4142 * some other cpu did the load balance for us.
4144 if (ld_moved && this_cpu != smp_processor_id())
4145 resched_cpu(this_cpu);
4147 /* All tasks on this runqueue were pinned by CPU affinity */
4148 if (unlikely(all_pinned)) {
4149 cpumask_clear_cpu(cpu_of(busiest), cpus);
4150 if (!cpumask_empty(cpus))
4151 goto redo;
4152 goto out_balanced;
4156 if (!ld_moved) {
4157 schedstat_inc(sd, lb_failed[idle]);
4158 sd->nr_balance_failed++;
4160 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4162 spin_lock_irqsave(&busiest->lock, flags);
4164 /* don't kick the migration_thread, if the curr
4165 * task on busiest cpu can't be moved to this_cpu
4167 if (!cpumask_test_cpu(this_cpu,
4168 &busiest->curr->cpus_allowed)) {
4169 spin_unlock_irqrestore(&busiest->lock, flags);
4170 all_pinned = 1;
4171 goto out_one_pinned;
4174 if (!busiest->active_balance) {
4175 busiest->active_balance = 1;
4176 busiest->push_cpu = this_cpu;
4177 active_balance = 1;
4179 spin_unlock_irqrestore(&busiest->lock, flags);
4180 if (active_balance)
4181 wake_up_process(busiest->migration_thread);
4184 * We've kicked active balancing, reset the failure
4185 * counter.
4187 sd->nr_balance_failed = sd->cache_nice_tries+1;
4189 } else
4190 sd->nr_balance_failed = 0;
4192 if (likely(!active_balance)) {
4193 /* We were unbalanced, so reset the balancing interval */
4194 sd->balance_interval = sd->min_interval;
4195 } else {
4197 * If we've begun active balancing, start to back off. This
4198 * case may not be covered by the all_pinned logic if there
4199 * is only 1 task on the busy runqueue (because we don't call
4200 * move_tasks).
4202 if (sd->balance_interval < sd->max_interval)
4203 sd->balance_interval *= 2;
4206 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4208 ld_moved = -1;
4210 goto out;
4212 out_balanced:
4213 schedstat_inc(sd, lb_balanced[idle]);
4215 sd->nr_balance_failed = 0;
4217 out_one_pinned:
4218 /* tune up the balancing interval */
4219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4220 (sd->balance_interval < sd->max_interval))
4221 sd->balance_interval *= 2;
4223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4224 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4225 ld_moved = -1;
4226 else
4227 ld_moved = 0;
4228 out:
4229 if (ld_moved)
4230 update_shares(sd);
4231 return ld_moved;
4235 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4236 * tasks if there is an imbalance.
4238 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4239 * this_rq is locked.
4241 static int
4242 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4244 struct sched_group *group;
4245 struct rq *busiest = NULL;
4246 unsigned long imbalance;
4247 int ld_moved = 0;
4248 int sd_idle = 0;
4249 int all_pinned = 0;
4250 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4252 cpumask_setall(cpus);
4255 * When power savings policy is enabled for the parent domain, idle
4256 * sibling can pick up load irrespective of busy siblings. In this case,
4257 * let the state of idle sibling percolate up as IDLE, instead of
4258 * portraying it as CPU_NOT_IDLE.
4260 if (sd->flags & SD_SHARE_CPUPOWER &&
4261 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4262 sd_idle = 1;
4264 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4265 redo:
4266 update_shares_locked(this_rq, sd);
4267 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4268 &sd_idle, cpus, NULL);
4269 if (!group) {
4270 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4271 goto out_balanced;
4274 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4275 if (!busiest) {
4276 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4277 goto out_balanced;
4280 BUG_ON(busiest == this_rq);
4282 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4284 ld_moved = 0;
4285 if (busiest->nr_running > 1) {
4286 /* Attempt to move tasks */
4287 double_lock_balance(this_rq, busiest);
4288 /* this_rq->clock is already updated */
4289 update_rq_clock(busiest);
4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4291 imbalance, sd, CPU_NEWLY_IDLE,
4292 &all_pinned);
4293 double_unlock_balance(this_rq, busiest);
4295 if (unlikely(all_pinned)) {
4296 cpumask_clear_cpu(cpu_of(busiest), cpus);
4297 if (!cpumask_empty(cpus))
4298 goto redo;
4302 if (!ld_moved) {
4303 int active_balance = 0;
4305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4308 return -1;
4310 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4311 return -1;
4313 if (sd->nr_balance_failed++ < 2)
4314 return -1;
4317 * The only task running in a non-idle cpu can be moved to this
4318 * cpu in an attempt to completely freeup the other CPU
4319 * package. The same method used to move task in load_balance()
4320 * have been extended for load_balance_newidle() to speedup
4321 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4323 * The package power saving logic comes from
4324 * find_busiest_group(). If there are no imbalance, then
4325 * f_b_g() will return NULL. However when sched_mc={1,2} then
4326 * f_b_g() will select a group from which a running task may be
4327 * pulled to this cpu in order to make the other package idle.
4328 * If there is no opportunity to make a package idle and if
4329 * there are no imbalance, then f_b_g() will return NULL and no
4330 * action will be taken in load_balance_newidle().
4332 * Under normal task pull operation due to imbalance, there
4333 * will be more than one task in the source run queue and
4334 * move_tasks() will succeed. ld_moved will be true and this
4335 * active balance code will not be triggered.
4338 /* Lock busiest in correct order while this_rq is held */
4339 double_lock_balance(this_rq, busiest);
4342 * don't kick the migration_thread, if the curr
4343 * task on busiest cpu can't be moved to this_cpu
4345 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4346 double_unlock_balance(this_rq, busiest);
4347 all_pinned = 1;
4348 return ld_moved;
4351 if (!busiest->active_balance) {
4352 busiest->active_balance = 1;
4353 busiest->push_cpu = this_cpu;
4354 active_balance = 1;
4357 double_unlock_balance(this_rq, busiest);
4359 * Should not call ttwu while holding a rq->lock
4361 spin_unlock(&this_rq->lock);
4362 if (active_balance)
4363 wake_up_process(busiest->migration_thread);
4364 spin_lock(&this_rq->lock);
4366 } else
4367 sd->nr_balance_failed = 0;
4369 update_shares_locked(this_rq, sd);
4370 return ld_moved;
4372 out_balanced:
4373 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4376 return -1;
4377 sd->nr_balance_failed = 0;
4379 return 0;
4383 * idle_balance is called by schedule() if this_cpu is about to become
4384 * idle. Attempts to pull tasks from other CPUs.
4386 static void idle_balance(int this_cpu, struct rq *this_rq)
4388 struct sched_domain *sd;
4389 int pulled_task = 0;
4390 unsigned long next_balance = jiffies + HZ;
4392 for_each_domain(this_cpu, sd) {
4393 unsigned long interval;
4395 if (!(sd->flags & SD_LOAD_BALANCE))
4396 continue;
4398 if (sd->flags & SD_BALANCE_NEWIDLE)
4399 /* If we've pulled tasks over stop searching: */
4400 pulled_task = load_balance_newidle(this_cpu, this_rq,
4401 sd);
4403 interval = msecs_to_jiffies(sd->balance_interval);
4404 if (time_after(next_balance, sd->last_balance + interval))
4405 next_balance = sd->last_balance + interval;
4406 if (pulled_task)
4407 break;
4409 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4411 * We are going idle. next_balance may be set based on
4412 * a busy processor. So reset next_balance.
4414 this_rq->next_balance = next_balance;
4419 * active_load_balance is run by migration threads. It pushes running tasks
4420 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4421 * running on each physical CPU where possible, and avoids physical /
4422 * logical imbalances.
4424 * Called with busiest_rq locked.
4426 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4428 int target_cpu = busiest_rq->push_cpu;
4429 struct sched_domain *sd;
4430 struct rq *target_rq;
4432 /* Is there any task to move? */
4433 if (busiest_rq->nr_running <= 1)
4434 return;
4436 target_rq = cpu_rq(target_cpu);
4439 * This condition is "impossible", if it occurs
4440 * we need to fix it. Originally reported by
4441 * Bjorn Helgaas on a 128-cpu setup.
4443 BUG_ON(busiest_rq == target_rq);
4445 /* move a task from busiest_rq to target_rq */
4446 double_lock_balance(busiest_rq, target_rq);
4447 update_rq_clock(busiest_rq);
4448 update_rq_clock(target_rq);
4450 /* Search for an sd spanning us and the target CPU. */
4451 for_each_domain(target_cpu, sd) {
4452 if ((sd->flags & SD_LOAD_BALANCE) &&
4453 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4454 break;
4457 if (likely(sd)) {
4458 schedstat_inc(sd, alb_count);
4460 if (move_one_task(target_rq, target_cpu, busiest_rq,
4461 sd, CPU_IDLE))
4462 schedstat_inc(sd, alb_pushed);
4463 else
4464 schedstat_inc(sd, alb_failed);
4466 double_unlock_balance(busiest_rq, target_rq);
4469 #ifdef CONFIG_NO_HZ
4470 static struct {
4471 atomic_t load_balancer;
4472 cpumask_var_t cpu_mask;
4473 cpumask_var_t ilb_grp_nohz_mask;
4474 } nohz ____cacheline_aligned = {
4475 .load_balancer = ATOMIC_INIT(-1),
4478 int get_nohz_load_balancer(void)
4480 return atomic_read(&nohz.load_balancer);
4483 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4485 * lowest_flag_domain - Return lowest sched_domain containing flag.
4486 * @cpu: The cpu whose lowest level of sched domain is to
4487 * be returned.
4488 * @flag: The flag to check for the lowest sched_domain
4489 * for the given cpu.
4491 * Returns the lowest sched_domain of a cpu which contains the given flag.
4493 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4495 struct sched_domain *sd;
4497 for_each_domain(cpu, sd)
4498 if (sd && (sd->flags & flag))
4499 break;
4501 return sd;
4505 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4506 * @cpu: The cpu whose domains we're iterating over.
4507 * @sd: variable holding the value of the power_savings_sd
4508 * for cpu.
4509 * @flag: The flag to filter the sched_domains to be iterated.
4511 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4512 * set, starting from the lowest sched_domain to the highest.
4514 #define for_each_flag_domain(cpu, sd, flag) \
4515 for (sd = lowest_flag_domain(cpu, flag); \
4516 (sd && (sd->flags & flag)); sd = sd->parent)
4519 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4520 * @ilb_group: group to be checked for semi-idleness
4522 * Returns: 1 if the group is semi-idle. 0 otherwise.
4524 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4525 * and atleast one non-idle CPU. This helper function checks if the given
4526 * sched_group is semi-idle or not.
4528 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4530 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4531 sched_group_cpus(ilb_group));
4534 * A sched_group is semi-idle when it has atleast one busy cpu
4535 * and atleast one idle cpu.
4537 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4538 return 0;
4540 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4541 return 0;
4543 return 1;
4546 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4547 * @cpu: The cpu which is nominating a new idle_load_balancer.
4549 * Returns: Returns the id of the idle load balancer if it exists,
4550 * Else, returns >= nr_cpu_ids.
4552 * This algorithm picks the idle load balancer such that it belongs to a
4553 * semi-idle powersavings sched_domain. The idea is to try and avoid
4554 * completely idle packages/cores just for the purpose of idle load balancing
4555 * when there are other idle cpu's which are better suited for that job.
4557 static int find_new_ilb(int cpu)
4559 struct sched_domain *sd;
4560 struct sched_group *ilb_group;
4563 * Have idle load balancer selection from semi-idle packages only
4564 * when power-aware load balancing is enabled
4566 if (!(sched_smt_power_savings || sched_mc_power_savings))
4567 goto out_done;
4570 * Optimize for the case when we have no idle CPUs or only one
4571 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4573 if (cpumask_weight(nohz.cpu_mask) < 2)
4574 goto out_done;
4576 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4577 ilb_group = sd->groups;
4579 do {
4580 if (is_semi_idle_group(ilb_group))
4581 return cpumask_first(nohz.ilb_grp_nohz_mask);
4583 ilb_group = ilb_group->next;
4585 } while (ilb_group != sd->groups);
4588 out_done:
4589 return cpumask_first(nohz.cpu_mask);
4591 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4592 static inline int find_new_ilb(int call_cpu)
4594 return cpumask_first(nohz.cpu_mask);
4596 #endif
4599 * This routine will try to nominate the ilb (idle load balancing)
4600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4601 * load balancing on behalf of all those cpus. If all the cpus in the system
4602 * go into this tickless mode, then there will be no ilb owner (as there is
4603 * no need for one) and all the cpus will sleep till the next wakeup event
4604 * arrives...
4606 * For the ilb owner, tick is not stopped. And this tick will be used
4607 * for idle load balancing. ilb owner will still be part of
4608 * nohz.cpu_mask..
4610 * While stopping the tick, this cpu will become the ilb owner if there
4611 * is no other owner. And will be the owner till that cpu becomes busy
4612 * or if all cpus in the system stop their ticks at which point
4613 * there is no need for ilb owner.
4615 * When the ilb owner becomes busy, it nominates another owner, during the
4616 * next busy scheduler_tick()
4618 int select_nohz_load_balancer(int stop_tick)
4620 int cpu = smp_processor_id();
4622 if (stop_tick) {
4623 cpu_rq(cpu)->in_nohz_recently = 1;
4625 if (!cpu_active(cpu)) {
4626 if (atomic_read(&nohz.load_balancer) != cpu)
4627 return 0;
4630 * If we are going offline and still the leader,
4631 * give up!
4633 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4634 BUG();
4636 return 0;
4639 cpumask_set_cpu(cpu, nohz.cpu_mask);
4641 /* time for ilb owner also to sleep */
4642 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4643 if (atomic_read(&nohz.load_balancer) == cpu)
4644 atomic_set(&nohz.load_balancer, -1);
4645 return 0;
4648 if (atomic_read(&nohz.load_balancer) == -1) {
4649 /* make me the ilb owner */
4650 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4651 return 1;
4652 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4653 int new_ilb;
4655 if (!(sched_smt_power_savings ||
4656 sched_mc_power_savings))
4657 return 1;
4659 * Check to see if there is a more power-efficient
4660 * ilb.
4662 new_ilb = find_new_ilb(cpu);
4663 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4664 atomic_set(&nohz.load_balancer, -1);
4665 resched_cpu(new_ilb);
4666 return 0;
4668 return 1;
4670 } else {
4671 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4672 return 0;
4674 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4676 if (atomic_read(&nohz.load_balancer) == cpu)
4677 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4678 BUG();
4680 return 0;
4682 #endif
4684 static DEFINE_SPINLOCK(balancing);
4687 * It checks each scheduling domain to see if it is due to be balanced,
4688 * and initiates a balancing operation if so.
4690 * Balancing parameters are set up in arch_init_sched_domains.
4692 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4694 int balance = 1;
4695 struct rq *rq = cpu_rq(cpu);
4696 unsigned long interval;
4697 struct sched_domain *sd;
4698 /* Earliest time when we have to do rebalance again */
4699 unsigned long next_balance = jiffies + 60*HZ;
4700 int update_next_balance = 0;
4701 int need_serialize;
4703 for_each_domain(cpu, sd) {
4704 if (!(sd->flags & SD_LOAD_BALANCE))
4705 continue;
4707 interval = sd->balance_interval;
4708 if (idle != CPU_IDLE)
4709 interval *= sd->busy_factor;
4711 /* scale ms to jiffies */
4712 interval = msecs_to_jiffies(interval);
4713 if (unlikely(!interval))
4714 interval = 1;
4715 if (interval > HZ*NR_CPUS/10)
4716 interval = HZ*NR_CPUS/10;
4718 need_serialize = sd->flags & SD_SERIALIZE;
4720 if (need_serialize) {
4721 if (!spin_trylock(&balancing))
4722 goto out;
4725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4726 if (load_balance(cpu, rq, sd, idle, &balance)) {
4728 * We've pulled tasks over so either we're no
4729 * longer idle, or one of our SMT siblings is
4730 * not idle.
4732 idle = CPU_NOT_IDLE;
4734 sd->last_balance = jiffies;
4736 if (need_serialize)
4737 spin_unlock(&balancing);
4738 out:
4739 if (time_after(next_balance, sd->last_balance + interval)) {
4740 next_balance = sd->last_balance + interval;
4741 update_next_balance = 1;
4745 * Stop the load balance at this level. There is another
4746 * CPU in our sched group which is doing load balancing more
4747 * actively.
4749 if (!balance)
4750 break;
4754 * next_balance will be updated only when there is a need.
4755 * When the cpu is attached to null domain for ex, it will not be
4756 * updated.
4758 if (likely(update_next_balance))
4759 rq->next_balance = next_balance;
4763 * run_rebalance_domains is triggered when needed from the scheduler tick.
4764 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4765 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4767 static void run_rebalance_domains(struct softirq_action *h)
4769 int this_cpu = smp_processor_id();
4770 struct rq *this_rq = cpu_rq(this_cpu);
4771 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4772 CPU_IDLE : CPU_NOT_IDLE;
4774 rebalance_domains(this_cpu, idle);
4776 #ifdef CONFIG_NO_HZ
4778 * If this cpu is the owner for idle load balancing, then do the
4779 * balancing on behalf of the other idle cpus whose ticks are
4780 * stopped.
4782 if (this_rq->idle_at_tick &&
4783 atomic_read(&nohz.load_balancer) == this_cpu) {
4784 struct rq *rq;
4785 int balance_cpu;
4787 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4788 if (balance_cpu == this_cpu)
4789 continue;
4792 * If this cpu gets work to do, stop the load balancing
4793 * work being done for other cpus. Next load
4794 * balancing owner will pick it up.
4796 if (need_resched())
4797 break;
4799 rebalance_domains(balance_cpu, CPU_IDLE);
4801 rq = cpu_rq(balance_cpu);
4802 if (time_after(this_rq->next_balance, rq->next_balance))
4803 this_rq->next_balance = rq->next_balance;
4806 #endif
4809 static inline int on_null_domain(int cpu)
4811 return !rcu_dereference(cpu_rq(cpu)->sd);
4815 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4817 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4818 * idle load balancing owner or decide to stop the periodic load balancing,
4819 * if the whole system is idle.
4821 static inline void trigger_load_balance(struct rq *rq, int cpu)
4823 #ifdef CONFIG_NO_HZ
4825 * If we were in the nohz mode recently and busy at the current
4826 * scheduler tick, then check if we need to nominate new idle
4827 * load balancer.
4829 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4830 rq->in_nohz_recently = 0;
4832 if (atomic_read(&nohz.load_balancer) == cpu) {
4833 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4834 atomic_set(&nohz.load_balancer, -1);
4837 if (atomic_read(&nohz.load_balancer) == -1) {
4838 int ilb = find_new_ilb(cpu);
4840 if (ilb < nr_cpu_ids)
4841 resched_cpu(ilb);
4846 * If this cpu is idle and doing idle load balancing for all the
4847 * cpus with ticks stopped, is it time for that to stop?
4849 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4850 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4851 resched_cpu(cpu);
4852 return;
4856 * If this cpu is idle and the idle load balancing is done by
4857 * someone else, then no need raise the SCHED_SOFTIRQ
4859 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4860 cpumask_test_cpu(cpu, nohz.cpu_mask))
4861 return;
4862 #endif
4863 /* Don't need to rebalance while attached to NULL domain */
4864 if (time_after_eq(jiffies, rq->next_balance) &&
4865 likely(!on_null_domain(cpu)))
4866 raise_softirq(SCHED_SOFTIRQ);
4869 #else /* CONFIG_SMP */
4872 * on UP we do not need to balance between CPUs:
4874 static inline void idle_balance(int cpu, struct rq *rq)
4878 #endif
4880 DEFINE_PER_CPU(struct kernel_stat, kstat);
4882 EXPORT_PER_CPU_SYMBOL(kstat);
4885 * Return any ns on the sched_clock that have not yet been accounted in
4886 * @p in case that task is currently running.
4888 * Called with task_rq_lock() held on @rq.
4890 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4892 u64 ns = 0;
4894 if (task_current(rq, p)) {
4895 update_rq_clock(rq);
4896 ns = rq->clock - p->se.exec_start;
4897 if ((s64)ns < 0)
4898 ns = 0;
4901 return ns;
4904 unsigned long long task_delta_exec(struct task_struct *p)
4906 unsigned long flags;
4907 struct rq *rq;
4908 u64 ns = 0;
4910 rq = task_rq_lock(p, &flags);
4911 ns = do_task_delta_exec(p, rq);
4912 task_rq_unlock(rq, &flags);
4914 return ns;
4918 * Return accounted runtime for the task.
4919 * In case the task is currently running, return the runtime plus current's
4920 * pending runtime that have not been accounted yet.
4922 unsigned long long task_sched_runtime(struct task_struct *p)
4924 unsigned long flags;
4925 struct rq *rq;
4926 u64 ns = 0;
4928 rq = task_rq_lock(p, &flags);
4929 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4930 task_rq_unlock(rq, &flags);
4932 return ns;
4936 * Return sum_exec_runtime for the thread group.
4937 * In case the task is currently running, return the sum plus current's
4938 * pending runtime that have not been accounted yet.
4940 * Note that the thread group might have other running tasks as well,
4941 * so the return value not includes other pending runtime that other
4942 * running tasks might have.
4944 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4946 struct task_cputime totals;
4947 unsigned long flags;
4948 struct rq *rq;
4949 u64 ns;
4951 rq = task_rq_lock(p, &flags);
4952 thread_group_cputime(p, &totals);
4953 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4954 task_rq_unlock(rq, &flags);
4956 return ns;
4960 * Account user cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
4962 * @cputime: the cpu time spent in user space since the last update
4963 * @cputime_scaled: cputime scaled by cpu frequency
4965 void account_user_time(struct task_struct *p, cputime_t cputime,
4966 cputime_t cputime_scaled)
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969 cputime64_t tmp;
4971 /* Add user time to process. */
4972 p->utime = cputime_add(p->utime, cputime);
4973 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4974 account_group_user_time(p, cputime);
4976 /* Add user time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (TASK_NICE(p) > 0)
4979 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4980 else
4981 cpustat->user = cputime64_add(cpustat->user, tmp);
4983 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4984 /* Account for user time used */
4985 acct_update_integrals(p);
4989 * Account guest cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in virtual machine since the last update
4992 * @cputime_scaled: cputime scaled by cpu frequency
4994 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
4997 cputime64_t tmp;
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5000 tmp = cputime_to_cputime64(cputime);
5002 /* Add guest time to process. */
5003 p->utime = cputime_add(p->utime, cputime);
5004 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5005 account_group_user_time(p, cputime);
5006 p->gtime = cputime_add(p->gtime, cputime);
5008 /* Add guest time to cpustat. */
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
5010 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5014 * Account system cpu time to a process.
5015 * @p: the process that the cpu time gets accounted to
5016 * @hardirq_offset: the offset to subtract from hardirq_count()
5017 * @cputime: the cpu time spent in kernel space since the last update
5018 * @cputime_scaled: cputime scaled by cpu frequency
5020 void account_system_time(struct task_struct *p, int hardirq_offset,
5021 cputime_t cputime, cputime_t cputime_scaled)
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5024 cputime64_t tmp;
5026 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5027 account_guest_time(p, cputime, cputime_scaled);
5028 return;
5031 /* Add system time to process. */
5032 p->stime = cputime_add(p->stime, cputime);
5033 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5034 account_group_system_time(p, cputime);
5036 /* Add system time to cpustat. */
5037 tmp = cputime_to_cputime64(cputime);
5038 if (hardirq_count() - hardirq_offset)
5039 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5040 else if (softirq_count())
5041 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5042 else
5043 cpustat->system = cputime64_add(cpustat->system, tmp);
5045 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5047 /* Account for system time used */
5048 acct_update_integrals(p);
5052 * Account for involuntary wait time.
5053 * @steal: the cpu time spent in involuntary wait
5055 void account_steal_time(cputime_t cputime)
5057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5058 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5060 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5064 * Account for idle time.
5065 * @cputime: the cpu time spent in idle wait
5067 void account_idle_time(cputime_t cputime)
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5070 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5071 struct rq *rq = this_rq();
5073 if (atomic_read(&rq->nr_iowait) > 0)
5074 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5075 else
5076 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5079 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5082 * Account a single tick of cpu time.
5083 * @p: the process that the cpu time gets accounted to
5084 * @user_tick: indicates if the tick is a user or a system tick
5086 void account_process_tick(struct task_struct *p, int user_tick)
5088 cputime_t one_jiffy = jiffies_to_cputime(1);
5089 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5090 struct rq *rq = this_rq();
5092 if (user_tick)
5093 account_user_time(p, one_jiffy, one_jiffy_scaled);
5094 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5095 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5096 one_jiffy_scaled);
5097 else
5098 account_idle_time(one_jiffy);
5102 * Account multiple ticks of steal time.
5103 * @p: the process from which the cpu time has been stolen
5104 * @ticks: number of stolen ticks
5106 void account_steal_ticks(unsigned long ticks)
5108 account_steal_time(jiffies_to_cputime(ticks));
5112 * Account multiple ticks of idle time.
5113 * @ticks: number of stolen ticks
5115 void account_idle_ticks(unsigned long ticks)
5117 account_idle_time(jiffies_to_cputime(ticks));
5120 #endif
5123 * Use precise platform statistics if available:
5125 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5126 cputime_t task_utime(struct task_struct *p)
5128 return p->utime;
5131 cputime_t task_stime(struct task_struct *p)
5133 return p->stime;
5135 #else
5136 cputime_t task_utime(struct task_struct *p)
5138 clock_t utime = cputime_to_clock_t(p->utime),
5139 total = utime + cputime_to_clock_t(p->stime);
5140 u64 temp;
5143 * Use CFS's precise accounting:
5145 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5147 if (total) {
5148 temp *= utime;
5149 do_div(temp, total);
5151 utime = (clock_t)temp;
5153 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5154 return p->prev_utime;
5157 cputime_t task_stime(struct task_struct *p)
5159 clock_t stime;
5162 * Use CFS's precise accounting. (we subtract utime from
5163 * the total, to make sure the total observed by userspace
5164 * grows monotonically - apps rely on that):
5166 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5167 cputime_to_clock_t(task_utime(p));
5169 if (stime >= 0)
5170 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5172 return p->prev_stime;
5174 #endif
5176 inline cputime_t task_gtime(struct task_struct *p)
5178 return p->gtime;
5182 * This function gets called by the timer code, with HZ frequency.
5183 * We call it with interrupts disabled.
5185 * It also gets called by the fork code, when changing the parent's
5186 * timeslices.
5188 void scheduler_tick(void)
5190 int cpu = smp_processor_id();
5191 struct rq *rq = cpu_rq(cpu);
5192 struct task_struct *curr = rq->curr;
5194 sched_clock_tick();
5196 spin_lock(&rq->lock);
5197 update_rq_clock(rq);
5198 update_cpu_load(rq);
5199 curr->sched_class->task_tick(rq, curr, 0);
5200 spin_unlock(&rq->lock);
5202 perf_counter_task_tick(curr, cpu);
5204 #ifdef CONFIG_SMP
5205 rq->idle_at_tick = idle_cpu(cpu);
5206 trigger_load_balance(rq, cpu);
5207 #endif
5210 notrace unsigned long get_parent_ip(unsigned long addr)
5212 if (in_lock_functions(addr)) {
5213 addr = CALLER_ADDR2;
5214 if (in_lock_functions(addr))
5215 addr = CALLER_ADDR3;
5217 return addr;
5220 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5221 defined(CONFIG_PREEMPT_TRACER))
5223 void __kprobes add_preempt_count(int val)
5225 #ifdef CONFIG_DEBUG_PREEMPT
5227 * Underflow?
5229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5230 return;
5231 #endif
5232 preempt_count() += val;
5233 #ifdef CONFIG_DEBUG_PREEMPT
5235 * Spinlock count overflowing soon?
5237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5238 PREEMPT_MASK - 10);
5239 #endif
5240 if (preempt_count() == val)
5241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5243 EXPORT_SYMBOL(add_preempt_count);
5245 void __kprobes sub_preempt_count(int val)
5247 #ifdef CONFIG_DEBUG_PREEMPT
5249 * Underflow?
5251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5252 return;
5254 * Is the spinlock portion underflowing?
5256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5257 !(preempt_count() & PREEMPT_MASK)))
5258 return;
5259 #endif
5261 if (preempt_count() == val)
5262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5263 preempt_count() -= val;
5265 EXPORT_SYMBOL(sub_preempt_count);
5267 #endif
5270 * Print scheduling while atomic bug:
5272 static noinline void __schedule_bug(struct task_struct *prev)
5274 struct pt_regs *regs = get_irq_regs();
5276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5277 prev->comm, prev->pid, preempt_count());
5279 debug_show_held_locks(prev);
5280 print_modules();
5281 if (irqs_disabled())
5282 print_irqtrace_events(prev);
5284 if (regs)
5285 show_regs(regs);
5286 else
5287 dump_stack();
5291 * Various schedule()-time debugging checks and statistics:
5293 static inline void schedule_debug(struct task_struct *prev)
5296 * Test if we are atomic. Since do_exit() needs to call into
5297 * schedule() atomically, we ignore that path for now.
5298 * Otherwise, whine if we are scheduling when we should not be.
5300 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5301 __schedule_bug(prev);
5303 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5305 schedstat_inc(this_rq(), sched_count);
5306 #ifdef CONFIG_SCHEDSTATS
5307 if (unlikely(prev->lock_depth >= 0)) {
5308 schedstat_inc(this_rq(), bkl_count);
5309 schedstat_inc(prev, sched_info.bkl_count);
5311 #endif
5314 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5316 if (prev->state == TASK_RUNNING) {
5317 u64 runtime = prev->se.sum_exec_runtime;
5319 runtime -= prev->se.prev_sum_exec_runtime;
5320 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5323 * In order to avoid avg_overlap growing stale when we are
5324 * indeed overlapping and hence not getting put to sleep, grow
5325 * the avg_overlap on preemption.
5327 * We use the average preemption runtime because that
5328 * correlates to the amount of cache footprint a task can
5329 * build up.
5331 update_avg(&prev->se.avg_overlap, runtime);
5333 prev->sched_class->put_prev_task(rq, prev);
5337 * Pick up the highest-prio task:
5339 static inline struct task_struct *
5340 pick_next_task(struct rq *rq)
5342 const struct sched_class *class;
5343 struct task_struct *p;
5346 * Optimization: we know that if all tasks are in
5347 * the fair class we can call that function directly:
5349 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5350 p = fair_sched_class.pick_next_task(rq);
5351 if (likely(p))
5352 return p;
5355 class = sched_class_highest;
5356 for ( ; ; ) {
5357 p = class->pick_next_task(rq);
5358 if (p)
5359 return p;
5361 * Will never be NULL as the idle class always
5362 * returns a non-NULL p:
5364 class = class->next;
5369 * schedule() is the main scheduler function.
5371 asmlinkage void __sched schedule(void)
5373 struct task_struct *prev, *next;
5374 unsigned long *switch_count;
5375 struct rq *rq;
5376 int cpu;
5378 need_resched:
5379 preempt_disable();
5380 cpu = smp_processor_id();
5381 rq = cpu_rq(cpu);
5382 rcu_sched_qs(cpu);
5383 prev = rq->curr;
5384 switch_count = &prev->nivcsw;
5386 release_kernel_lock(prev);
5387 need_resched_nonpreemptible:
5389 schedule_debug(prev);
5391 if (sched_feat(HRTICK))
5392 hrtick_clear(rq);
5394 spin_lock_irq(&rq->lock);
5395 update_rq_clock(rq);
5396 clear_tsk_need_resched(prev);
5398 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5399 if (unlikely(signal_pending_state(prev->state, prev)))
5400 prev->state = TASK_RUNNING;
5401 else
5402 deactivate_task(rq, prev, 1);
5403 switch_count = &prev->nvcsw;
5406 pre_schedule(rq, prev);
5408 if (unlikely(!rq->nr_running))
5409 idle_balance(cpu, rq);
5411 put_prev_task(rq, prev);
5412 next = pick_next_task(rq);
5414 if (likely(prev != next)) {
5415 sched_info_switch(prev, next);
5416 perf_counter_task_sched_out(prev, next, cpu);
5418 rq->nr_switches++;
5419 rq->curr = next;
5420 ++*switch_count;
5422 context_switch(rq, prev, next); /* unlocks the rq */
5424 * the context switch might have flipped the stack from under
5425 * us, hence refresh the local variables.
5427 cpu = smp_processor_id();
5428 rq = cpu_rq(cpu);
5429 } else
5430 spin_unlock_irq(&rq->lock);
5432 post_schedule(rq);
5434 if (unlikely(reacquire_kernel_lock(current) < 0))
5435 goto need_resched_nonpreemptible;
5437 preempt_enable_no_resched();
5438 if (need_resched())
5439 goto need_resched;
5441 EXPORT_SYMBOL(schedule);
5443 #ifdef CONFIG_SMP
5445 * Look out! "owner" is an entirely speculative pointer
5446 * access and not reliable.
5448 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5450 unsigned int cpu;
5451 struct rq *rq;
5453 if (!sched_feat(OWNER_SPIN))
5454 return 0;
5456 #ifdef CONFIG_DEBUG_PAGEALLOC
5458 * Need to access the cpu field knowing that
5459 * DEBUG_PAGEALLOC could have unmapped it if
5460 * the mutex owner just released it and exited.
5462 if (probe_kernel_address(&owner->cpu, cpu))
5463 goto out;
5464 #else
5465 cpu = owner->cpu;
5466 #endif
5469 * Even if the access succeeded (likely case),
5470 * the cpu field may no longer be valid.
5472 if (cpu >= nr_cpumask_bits)
5473 goto out;
5476 * We need to validate that we can do a
5477 * get_cpu() and that we have the percpu area.
5479 if (!cpu_online(cpu))
5480 goto out;
5482 rq = cpu_rq(cpu);
5484 for (;;) {
5486 * Owner changed, break to re-assess state.
5488 if (lock->owner != owner)
5489 break;
5492 * Is that owner really running on that cpu?
5494 if (task_thread_info(rq->curr) != owner || need_resched())
5495 return 0;
5497 cpu_relax();
5499 out:
5500 return 1;
5502 #endif
5504 #ifdef CONFIG_PREEMPT
5506 * this is the entry point to schedule() from in-kernel preemption
5507 * off of preempt_enable. Kernel preemptions off return from interrupt
5508 * occur there and call schedule directly.
5510 asmlinkage void __sched preempt_schedule(void)
5512 struct thread_info *ti = current_thread_info();
5515 * If there is a non-zero preempt_count or interrupts are disabled,
5516 * we do not want to preempt the current task. Just return..
5518 if (likely(ti->preempt_count || irqs_disabled()))
5519 return;
5521 do {
5522 add_preempt_count(PREEMPT_ACTIVE);
5523 schedule();
5524 sub_preempt_count(PREEMPT_ACTIVE);
5527 * Check again in case we missed a preemption opportunity
5528 * between schedule and now.
5530 barrier();
5531 } while (need_resched());
5533 EXPORT_SYMBOL(preempt_schedule);
5536 * this is the entry point to schedule() from kernel preemption
5537 * off of irq context.
5538 * Note, that this is called and return with irqs disabled. This will
5539 * protect us against recursive calling from irq.
5541 asmlinkage void __sched preempt_schedule_irq(void)
5543 struct thread_info *ti = current_thread_info();
5545 /* Catch callers which need to be fixed */
5546 BUG_ON(ti->preempt_count || !irqs_disabled());
5548 do {
5549 add_preempt_count(PREEMPT_ACTIVE);
5550 local_irq_enable();
5551 schedule();
5552 local_irq_disable();
5553 sub_preempt_count(PREEMPT_ACTIVE);
5556 * Check again in case we missed a preemption opportunity
5557 * between schedule and now.
5559 barrier();
5560 } while (need_resched());
5563 #endif /* CONFIG_PREEMPT */
5565 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5566 void *key)
5568 return try_to_wake_up(curr->private, mode, sync);
5570 EXPORT_SYMBOL(default_wake_function);
5573 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5574 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5575 * number) then we wake all the non-exclusive tasks and one exclusive task.
5577 * There are circumstances in which we can try to wake a task which has already
5578 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5579 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5581 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5582 int nr_exclusive, int sync, void *key)
5584 wait_queue_t *curr, *next;
5586 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5587 unsigned flags = curr->flags;
5589 if (curr->func(curr, mode, sync, key) &&
5590 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5591 break;
5596 * __wake_up - wake up threads blocked on a waitqueue.
5597 * @q: the waitqueue
5598 * @mode: which threads
5599 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5600 * @key: is directly passed to the wakeup function
5602 * It may be assumed that this function implies a write memory barrier before
5603 * changing the task state if and only if any tasks are woken up.
5605 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5606 int nr_exclusive, void *key)
5608 unsigned long flags;
5610 spin_lock_irqsave(&q->lock, flags);
5611 __wake_up_common(q, mode, nr_exclusive, 0, key);
5612 spin_unlock_irqrestore(&q->lock, flags);
5614 EXPORT_SYMBOL(__wake_up);
5617 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5619 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5621 __wake_up_common(q, mode, 1, 0, NULL);
5624 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5626 __wake_up_common(q, mode, 1, 0, key);
5630 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5631 * @q: the waitqueue
5632 * @mode: which threads
5633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5634 * @key: opaque value to be passed to wakeup targets
5636 * The sync wakeup differs that the waker knows that it will schedule
5637 * away soon, so while the target thread will be woken up, it will not
5638 * be migrated to another CPU - ie. the two threads are 'synchronized'
5639 * with each other. This can prevent needless bouncing between CPUs.
5641 * On UP it can prevent extra preemption.
5643 * It may be assumed that this function implies a write memory barrier before
5644 * changing the task state if and only if any tasks are woken up.
5646 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5647 int nr_exclusive, void *key)
5649 unsigned long flags;
5650 int sync = 1;
5652 if (unlikely(!q))
5653 return;
5655 if (unlikely(!nr_exclusive))
5656 sync = 0;
5658 spin_lock_irqsave(&q->lock, flags);
5659 __wake_up_common(q, mode, nr_exclusive, sync, key);
5660 spin_unlock_irqrestore(&q->lock, flags);
5662 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5665 * __wake_up_sync - see __wake_up_sync_key()
5667 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5669 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5671 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5674 * complete: - signals a single thread waiting on this completion
5675 * @x: holds the state of this particular completion
5677 * This will wake up a single thread waiting on this completion. Threads will be
5678 * awakened in the same order in which they were queued.
5680 * See also complete_all(), wait_for_completion() and related routines.
5682 * It may be assumed that this function implies a write memory barrier before
5683 * changing the task state if and only if any tasks are woken up.
5685 void complete(struct completion *x)
5687 unsigned long flags;
5689 spin_lock_irqsave(&x->wait.lock, flags);
5690 x->done++;
5691 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5692 spin_unlock_irqrestore(&x->wait.lock, flags);
5694 EXPORT_SYMBOL(complete);
5697 * complete_all: - signals all threads waiting on this completion
5698 * @x: holds the state of this particular completion
5700 * This will wake up all threads waiting on this particular completion event.
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
5705 void complete_all(struct completion *x)
5707 unsigned long flags;
5709 spin_lock_irqsave(&x->wait.lock, flags);
5710 x->done += UINT_MAX/2;
5711 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5712 spin_unlock_irqrestore(&x->wait.lock, flags);
5714 EXPORT_SYMBOL(complete_all);
5716 static inline long __sched
5717 do_wait_for_common(struct completion *x, long timeout, int state)
5719 if (!x->done) {
5720 DECLARE_WAITQUEUE(wait, current);
5722 wait.flags |= WQ_FLAG_EXCLUSIVE;
5723 __add_wait_queue_tail(&x->wait, &wait);
5724 do {
5725 if (signal_pending_state(state, current)) {
5726 timeout = -ERESTARTSYS;
5727 break;
5729 __set_current_state(state);
5730 spin_unlock_irq(&x->wait.lock);
5731 timeout = schedule_timeout(timeout);
5732 spin_lock_irq(&x->wait.lock);
5733 } while (!x->done && timeout);
5734 __remove_wait_queue(&x->wait, &wait);
5735 if (!x->done)
5736 return timeout;
5738 x->done--;
5739 return timeout ?: 1;
5742 static long __sched
5743 wait_for_common(struct completion *x, long timeout, int state)
5745 might_sleep();
5747 spin_lock_irq(&x->wait.lock);
5748 timeout = do_wait_for_common(x, timeout, state);
5749 spin_unlock_irq(&x->wait.lock);
5750 return timeout;
5754 * wait_for_completion: - waits for completion of a task
5755 * @x: holds the state of this particular completion
5757 * This waits to be signaled for completion of a specific task. It is NOT
5758 * interruptible and there is no timeout.
5760 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5761 * and interrupt capability. Also see complete().
5763 void __sched wait_for_completion(struct completion *x)
5765 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5767 EXPORT_SYMBOL(wait_for_completion);
5770 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5771 * @x: holds the state of this particular completion
5772 * @timeout: timeout value in jiffies
5774 * This waits for either a completion of a specific task to be signaled or for a
5775 * specified timeout to expire. The timeout is in jiffies. It is not
5776 * interruptible.
5778 unsigned long __sched
5779 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5781 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5783 EXPORT_SYMBOL(wait_for_completion_timeout);
5786 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5787 * @x: holds the state of this particular completion
5789 * This waits for completion of a specific task to be signaled. It is
5790 * interruptible.
5792 int __sched wait_for_completion_interruptible(struct completion *x)
5794 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5795 if (t == -ERESTARTSYS)
5796 return t;
5797 return 0;
5799 EXPORT_SYMBOL(wait_for_completion_interruptible);
5802 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5803 * @x: holds the state of this particular completion
5804 * @timeout: timeout value in jiffies
5806 * This waits for either a completion of a specific task to be signaled or for a
5807 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5809 unsigned long __sched
5810 wait_for_completion_interruptible_timeout(struct completion *x,
5811 unsigned long timeout)
5813 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5815 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5818 * wait_for_completion_killable: - waits for completion of a task (killable)
5819 * @x: holds the state of this particular completion
5821 * This waits to be signaled for completion of a specific task. It can be
5822 * interrupted by a kill signal.
5824 int __sched wait_for_completion_killable(struct completion *x)
5826 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5827 if (t == -ERESTARTSYS)
5828 return t;
5829 return 0;
5831 EXPORT_SYMBOL(wait_for_completion_killable);
5834 * try_wait_for_completion - try to decrement a completion without blocking
5835 * @x: completion structure
5837 * Returns: 0 if a decrement cannot be done without blocking
5838 * 1 if a decrement succeeded.
5840 * If a completion is being used as a counting completion,
5841 * attempt to decrement the counter without blocking. This
5842 * enables us to avoid waiting if the resource the completion
5843 * is protecting is not available.
5845 bool try_wait_for_completion(struct completion *x)
5847 int ret = 1;
5849 spin_lock_irq(&x->wait.lock);
5850 if (!x->done)
5851 ret = 0;
5852 else
5853 x->done--;
5854 spin_unlock_irq(&x->wait.lock);
5855 return ret;
5857 EXPORT_SYMBOL(try_wait_for_completion);
5860 * completion_done - Test to see if a completion has any waiters
5861 * @x: completion structure
5863 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5864 * 1 if there are no waiters.
5867 bool completion_done(struct completion *x)
5869 int ret = 1;
5871 spin_lock_irq(&x->wait.lock);
5872 if (!x->done)
5873 ret = 0;
5874 spin_unlock_irq(&x->wait.lock);
5875 return ret;
5877 EXPORT_SYMBOL(completion_done);
5879 static long __sched
5880 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5882 unsigned long flags;
5883 wait_queue_t wait;
5885 init_waitqueue_entry(&wait, current);
5887 __set_current_state(state);
5889 spin_lock_irqsave(&q->lock, flags);
5890 __add_wait_queue(q, &wait);
5891 spin_unlock(&q->lock);
5892 timeout = schedule_timeout(timeout);
5893 spin_lock_irq(&q->lock);
5894 __remove_wait_queue(q, &wait);
5895 spin_unlock_irqrestore(&q->lock, flags);
5897 return timeout;
5900 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5902 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5904 EXPORT_SYMBOL(interruptible_sleep_on);
5906 long __sched
5907 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5909 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5911 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5913 void __sched sleep_on(wait_queue_head_t *q)
5915 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5917 EXPORT_SYMBOL(sleep_on);
5919 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5921 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5923 EXPORT_SYMBOL(sleep_on_timeout);
5925 #ifdef CONFIG_RT_MUTEXES
5928 * rt_mutex_setprio - set the current priority of a task
5929 * @p: task
5930 * @prio: prio value (kernel-internal form)
5932 * This function changes the 'effective' priority of a task. It does
5933 * not touch ->normal_prio like __setscheduler().
5935 * Used by the rt_mutex code to implement priority inheritance logic.
5937 void rt_mutex_setprio(struct task_struct *p, int prio)
5939 unsigned long flags;
5940 int oldprio, on_rq, running;
5941 struct rq *rq;
5942 const struct sched_class *prev_class = p->sched_class;
5944 BUG_ON(prio < 0 || prio > MAX_PRIO);
5946 rq = task_rq_lock(p, &flags);
5947 update_rq_clock(rq);
5949 oldprio = p->prio;
5950 on_rq = p->se.on_rq;
5951 running = task_current(rq, p);
5952 if (on_rq)
5953 dequeue_task(rq, p, 0);
5954 if (running)
5955 p->sched_class->put_prev_task(rq, p);
5957 if (rt_prio(prio))
5958 p->sched_class = &rt_sched_class;
5959 else
5960 p->sched_class = &fair_sched_class;
5962 p->prio = prio;
5964 if (running)
5965 p->sched_class->set_curr_task(rq);
5966 if (on_rq) {
5967 enqueue_task(rq, p, 0);
5969 check_class_changed(rq, p, prev_class, oldprio, running);
5971 task_rq_unlock(rq, &flags);
5974 #endif
5976 void set_user_nice(struct task_struct *p, long nice)
5978 int old_prio, delta, on_rq;
5979 unsigned long flags;
5980 struct rq *rq;
5982 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5983 return;
5985 * We have to be careful, if called from sys_setpriority(),
5986 * the task might be in the middle of scheduling on another CPU.
5988 rq = task_rq_lock(p, &flags);
5989 update_rq_clock(rq);
5991 * The RT priorities are set via sched_setscheduler(), but we still
5992 * allow the 'normal' nice value to be set - but as expected
5993 * it wont have any effect on scheduling until the task is
5994 * SCHED_FIFO/SCHED_RR:
5996 if (task_has_rt_policy(p)) {
5997 p->static_prio = NICE_TO_PRIO(nice);
5998 goto out_unlock;
6000 on_rq = p->se.on_rq;
6001 if (on_rq)
6002 dequeue_task(rq, p, 0);
6004 p->static_prio = NICE_TO_PRIO(nice);
6005 set_load_weight(p);
6006 old_prio = p->prio;
6007 p->prio = effective_prio(p);
6008 delta = p->prio - old_prio;
6010 if (on_rq) {
6011 enqueue_task(rq, p, 0);
6013 * If the task increased its priority or is running and
6014 * lowered its priority, then reschedule its CPU:
6016 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6017 resched_task(rq->curr);
6019 out_unlock:
6020 task_rq_unlock(rq, &flags);
6022 EXPORT_SYMBOL(set_user_nice);
6025 * can_nice - check if a task can reduce its nice value
6026 * @p: task
6027 * @nice: nice value
6029 int can_nice(const struct task_struct *p, const int nice)
6031 /* convert nice value [19,-20] to rlimit style value [1,40] */
6032 int nice_rlim = 20 - nice;
6034 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6035 capable(CAP_SYS_NICE));
6038 #ifdef __ARCH_WANT_SYS_NICE
6041 * sys_nice - change the priority of the current process.
6042 * @increment: priority increment
6044 * sys_setpriority is a more generic, but much slower function that
6045 * does similar things.
6047 SYSCALL_DEFINE1(nice, int, increment)
6049 long nice, retval;
6052 * Setpriority might change our priority at the same moment.
6053 * We don't have to worry. Conceptually one call occurs first
6054 * and we have a single winner.
6056 if (increment < -40)
6057 increment = -40;
6058 if (increment > 40)
6059 increment = 40;
6061 nice = TASK_NICE(current) + increment;
6062 if (nice < -20)
6063 nice = -20;
6064 if (nice > 19)
6065 nice = 19;
6067 if (increment < 0 && !can_nice(current, nice))
6068 return -EPERM;
6070 retval = security_task_setnice(current, nice);
6071 if (retval)
6072 return retval;
6074 set_user_nice(current, nice);
6075 return 0;
6078 #endif
6081 * task_prio - return the priority value of a given task.
6082 * @p: the task in question.
6084 * This is the priority value as seen by users in /proc.
6085 * RT tasks are offset by -200. Normal tasks are centered
6086 * around 0, value goes from -16 to +15.
6088 int task_prio(const struct task_struct *p)
6090 return p->prio - MAX_RT_PRIO;
6094 * task_nice - return the nice value of a given task.
6095 * @p: the task in question.
6097 int task_nice(const struct task_struct *p)
6099 return TASK_NICE(p);
6101 EXPORT_SYMBOL(task_nice);
6104 * idle_cpu - is a given cpu idle currently?
6105 * @cpu: the processor in question.
6107 int idle_cpu(int cpu)
6109 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6113 * idle_task - return the idle task for a given cpu.
6114 * @cpu: the processor in question.
6116 struct task_struct *idle_task(int cpu)
6118 return cpu_rq(cpu)->idle;
6122 * find_process_by_pid - find a process with a matching PID value.
6123 * @pid: the pid in question.
6125 static struct task_struct *find_process_by_pid(pid_t pid)
6127 return pid ? find_task_by_vpid(pid) : current;
6130 /* Actually do priority change: must hold rq lock. */
6131 static void
6132 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6134 BUG_ON(p->se.on_rq);
6136 p->policy = policy;
6137 switch (p->policy) {
6138 case SCHED_NORMAL:
6139 case SCHED_BATCH:
6140 case SCHED_IDLE:
6141 p->sched_class = &fair_sched_class;
6142 break;
6143 case SCHED_FIFO:
6144 case SCHED_RR:
6145 p->sched_class = &rt_sched_class;
6146 break;
6149 p->rt_priority = prio;
6150 p->normal_prio = normal_prio(p);
6151 /* we are holding p->pi_lock already */
6152 p->prio = rt_mutex_getprio(p);
6153 set_load_weight(p);
6157 * check the target process has a UID that matches the current process's
6159 static bool check_same_owner(struct task_struct *p)
6161 const struct cred *cred = current_cred(), *pcred;
6162 bool match;
6164 rcu_read_lock();
6165 pcred = __task_cred(p);
6166 match = (cred->euid == pcred->euid ||
6167 cred->euid == pcred->uid);
6168 rcu_read_unlock();
6169 return match;
6172 static int __sched_setscheduler(struct task_struct *p, int policy,
6173 struct sched_param *param, bool user)
6175 int retval, oldprio, oldpolicy = -1, on_rq, running;
6176 unsigned long flags;
6177 const struct sched_class *prev_class = p->sched_class;
6178 struct rq *rq;
6179 int reset_on_fork;
6181 /* may grab non-irq protected spin_locks */
6182 BUG_ON(in_interrupt());
6183 recheck:
6184 /* double check policy once rq lock held */
6185 if (policy < 0) {
6186 reset_on_fork = p->sched_reset_on_fork;
6187 policy = oldpolicy = p->policy;
6188 } else {
6189 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6190 policy &= ~SCHED_RESET_ON_FORK;
6192 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6193 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6194 policy != SCHED_IDLE)
6195 return -EINVAL;
6199 * Valid priorities for SCHED_FIFO and SCHED_RR are
6200 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6201 * SCHED_BATCH and SCHED_IDLE is 0.
6203 if (param->sched_priority < 0 ||
6204 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6205 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6206 return -EINVAL;
6207 if (rt_policy(policy) != (param->sched_priority != 0))
6208 return -EINVAL;
6211 * Allow unprivileged RT tasks to decrease priority:
6213 if (user && !capable(CAP_SYS_NICE)) {
6214 if (rt_policy(policy)) {
6215 unsigned long rlim_rtprio;
6217 if (!lock_task_sighand(p, &flags))
6218 return -ESRCH;
6219 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6220 unlock_task_sighand(p, &flags);
6222 /* can't set/change the rt policy */
6223 if (policy != p->policy && !rlim_rtprio)
6224 return -EPERM;
6226 /* can't increase priority */
6227 if (param->sched_priority > p->rt_priority &&
6228 param->sched_priority > rlim_rtprio)
6229 return -EPERM;
6232 * Like positive nice levels, dont allow tasks to
6233 * move out of SCHED_IDLE either:
6235 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6236 return -EPERM;
6238 /* can't change other user's priorities */
6239 if (!check_same_owner(p))
6240 return -EPERM;
6242 /* Normal users shall not reset the sched_reset_on_fork flag */
6243 if (p->sched_reset_on_fork && !reset_on_fork)
6244 return -EPERM;
6247 if (user) {
6248 #ifdef CONFIG_RT_GROUP_SCHED
6250 * Do not allow realtime tasks into groups that have no runtime
6251 * assigned.
6253 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6254 task_group(p)->rt_bandwidth.rt_runtime == 0)
6255 return -EPERM;
6256 #endif
6258 retval = security_task_setscheduler(p, policy, param);
6259 if (retval)
6260 return retval;
6264 * make sure no PI-waiters arrive (or leave) while we are
6265 * changing the priority of the task:
6267 spin_lock_irqsave(&p->pi_lock, flags);
6269 * To be able to change p->policy safely, the apropriate
6270 * runqueue lock must be held.
6272 rq = __task_rq_lock(p);
6273 /* recheck policy now with rq lock held */
6274 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6275 policy = oldpolicy = -1;
6276 __task_rq_unlock(rq);
6277 spin_unlock_irqrestore(&p->pi_lock, flags);
6278 goto recheck;
6280 update_rq_clock(rq);
6281 on_rq = p->se.on_rq;
6282 running = task_current(rq, p);
6283 if (on_rq)
6284 deactivate_task(rq, p, 0);
6285 if (running)
6286 p->sched_class->put_prev_task(rq, p);
6288 p->sched_reset_on_fork = reset_on_fork;
6290 oldprio = p->prio;
6291 __setscheduler(rq, p, policy, param->sched_priority);
6293 if (running)
6294 p->sched_class->set_curr_task(rq);
6295 if (on_rq) {
6296 activate_task(rq, p, 0);
6298 check_class_changed(rq, p, prev_class, oldprio, running);
6300 __task_rq_unlock(rq);
6301 spin_unlock_irqrestore(&p->pi_lock, flags);
6303 rt_mutex_adjust_pi(p);
6305 return 0;
6309 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6310 * @p: the task in question.
6311 * @policy: new policy.
6312 * @param: structure containing the new RT priority.
6314 * NOTE that the task may be already dead.
6316 int sched_setscheduler(struct task_struct *p, int policy,
6317 struct sched_param *param)
6319 return __sched_setscheduler(p, policy, param, true);
6321 EXPORT_SYMBOL_GPL(sched_setscheduler);
6324 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6325 * @p: the task in question.
6326 * @policy: new policy.
6327 * @param: structure containing the new RT priority.
6329 * Just like sched_setscheduler, only don't bother checking if the
6330 * current context has permission. For example, this is needed in
6331 * stop_machine(): we create temporary high priority worker threads,
6332 * but our caller might not have that capability.
6334 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6335 struct sched_param *param)
6337 return __sched_setscheduler(p, policy, param, false);
6340 static int
6341 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6343 struct sched_param lparam;
6344 struct task_struct *p;
6345 int retval;
6347 if (!param || pid < 0)
6348 return -EINVAL;
6349 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6350 return -EFAULT;
6352 rcu_read_lock();
6353 retval = -ESRCH;
6354 p = find_process_by_pid(pid);
6355 if (p != NULL)
6356 retval = sched_setscheduler(p, policy, &lparam);
6357 rcu_read_unlock();
6359 return retval;
6363 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6364 * @pid: the pid in question.
6365 * @policy: new policy.
6366 * @param: structure containing the new RT priority.
6368 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6369 struct sched_param __user *, param)
6371 /* negative values for policy are not valid */
6372 if (policy < 0)
6373 return -EINVAL;
6375 return do_sched_setscheduler(pid, policy, param);
6379 * sys_sched_setparam - set/change the RT priority of a thread
6380 * @pid: the pid in question.
6381 * @param: structure containing the new RT priority.
6383 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6385 return do_sched_setscheduler(pid, -1, param);
6389 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6390 * @pid: the pid in question.
6392 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6394 struct task_struct *p;
6395 int retval;
6397 if (pid < 0)
6398 return -EINVAL;
6400 retval = -ESRCH;
6401 read_lock(&tasklist_lock);
6402 p = find_process_by_pid(pid);
6403 if (p) {
6404 retval = security_task_getscheduler(p);
6405 if (!retval)
6406 retval = p->policy
6407 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6409 read_unlock(&tasklist_lock);
6410 return retval;
6414 * sys_sched_getparam - get the RT priority of a thread
6415 * @pid: the pid in question.
6416 * @param: structure containing the RT priority.
6418 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6420 struct sched_param lp;
6421 struct task_struct *p;
6422 int retval;
6424 if (!param || pid < 0)
6425 return -EINVAL;
6427 read_lock(&tasklist_lock);
6428 p = find_process_by_pid(pid);
6429 retval = -ESRCH;
6430 if (!p)
6431 goto out_unlock;
6433 retval = security_task_getscheduler(p);
6434 if (retval)
6435 goto out_unlock;
6437 lp.sched_priority = p->rt_priority;
6438 read_unlock(&tasklist_lock);
6441 * This one might sleep, we cannot do it with a spinlock held ...
6443 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6445 return retval;
6447 out_unlock:
6448 read_unlock(&tasklist_lock);
6449 return retval;
6452 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6454 cpumask_var_t cpus_allowed, new_mask;
6455 struct task_struct *p;
6456 int retval;
6458 get_online_cpus();
6459 read_lock(&tasklist_lock);
6461 p = find_process_by_pid(pid);
6462 if (!p) {
6463 read_unlock(&tasklist_lock);
6464 put_online_cpus();
6465 return -ESRCH;
6469 * It is not safe to call set_cpus_allowed with the
6470 * tasklist_lock held. We will bump the task_struct's
6471 * usage count and then drop tasklist_lock.
6473 get_task_struct(p);
6474 read_unlock(&tasklist_lock);
6476 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6477 retval = -ENOMEM;
6478 goto out_put_task;
6480 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6481 retval = -ENOMEM;
6482 goto out_free_cpus_allowed;
6484 retval = -EPERM;
6485 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6486 goto out_unlock;
6488 retval = security_task_setscheduler(p, 0, NULL);
6489 if (retval)
6490 goto out_unlock;
6492 cpuset_cpus_allowed(p, cpus_allowed);
6493 cpumask_and(new_mask, in_mask, cpus_allowed);
6494 again:
6495 retval = set_cpus_allowed_ptr(p, new_mask);
6497 if (!retval) {
6498 cpuset_cpus_allowed(p, cpus_allowed);
6499 if (!cpumask_subset(new_mask, cpus_allowed)) {
6501 * We must have raced with a concurrent cpuset
6502 * update. Just reset the cpus_allowed to the
6503 * cpuset's cpus_allowed
6505 cpumask_copy(new_mask, cpus_allowed);
6506 goto again;
6509 out_unlock:
6510 free_cpumask_var(new_mask);
6511 out_free_cpus_allowed:
6512 free_cpumask_var(cpus_allowed);
6513 out_put_task:
6514 put_task_struct(p);
6515 put_online_cpus();
6516 return retval;
6519 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6520 struct cpumask *new_mask)
6522 if (len < cpumask_size())
6523 cpumask_clear(new_mask);
6524 else if (len > cpumask_size())
6525 len = cpumask_size();
6527 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6531 * sys_sched_setaffinity - set the cpu affinity of a process
6532 * @pid: pid of the process
6533 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6534 * @user_mask_ptr: user-space pointer to the new cpu mask
6536 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6537 unsigned long __user *, user_mask_ptr)
6539 cpumask_var_t new_mask;
6540 int retval;
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6543 return -ENOMEM;
6545 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6546 if (retval == 0)
6547 retval = sched_setaffinity(pid, new_mask);
6548 free_cpumask_var(new_mask);
6549 return retval;
6552 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6554 struct task_struct *p;
6555 int retval;
6557 get_online_cpus();
6558 read_lock(&tasklist_lock);
6560 retval = -ESRCH;
6561 p = find_process_by_pid(pid);
6562 if (!p)
6563 goto out_unlock;
6565 retval = security_task_getscheduler(p);
6566 if (retval)
6567 goto out_unlock;
6569 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6571 out_unlock:
6572 read_unlock(&tasklist_lock);
6573 put_online_cpus();
6575 return retval;
6579 * sys_sched_getaffinity - get the cpu affinity of a process
6580 * @pid: pid of the process
6581 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6582 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6584 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6585 unsigned long __user *, user_mask_ptr)
6587 int ret;
6588 cpumask_var_t mask;
6590 if (len < cpumask_size())
6591 return -EINVAL;
6593 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6594 return -ENOMEM;
6596 ret = sched_getaffinity(pid, mask);
6597 if (ret == 0) {
6598 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6599 ret = -EFAULT;
6600 else
6601 ret = cpumask_size();
6603 free_cpumask_var(mask);
6605 return ret;
6609 * sys_sched_yield - yield the current processor to other threads.
6611 * This function yields the current CPU to other tasks. If there are no
6612 * other threads running on this CPU then this function will return.
6614 SYSCALL_DEFINE0(sched_yield)
6616 struct rq *rq = this_rq_lock();
6618 schedstat_inc(rq, yld_count);
6619 current->sched_class->yield_task(rq);
6622 * Since we are going to call schedule() anyway, there's
6623 * no need to preempt or enable interrupts:
6625 __release(rq->lock);
6626 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6627 _raw_spin_unlock(&rq->lock);
6628 preempt_enable_no_resched();
6630 schedule();
6632 return 0;
6635 static inline int should_resched(void)
6637 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6640 static void __cond_resched(void)
6642 add_preempt_count(PREEMPT_ACTIVE);
6643 schedule();
6644 sub_preempt_count(PREEMPT_ACTIVE);
6647 int __sched _cond_resched(void)
6649 if (should_resched()) {
6650 __cond_resched();
6651 return 1;
6653 return 0;
6655 EXPORT_SYMBOL(_cond_resched);
6658 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6659 * call schedule, and on return reacquire the lock.
6661 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6662 * operations here to prevent schedule() from being called twice (once via
6663 * spin_unlock(), once by hand).
6665 int __cond_resched_lock(spinlock_t *lock)
6667 int resched = should_resched();
6668 int ret = 0;
6670 lockdep_assert_held(lock);
6672 if (spin_needbreak(lock) || resched) {
6673 spin_unlock(lock);
6674 if (resched)
6675 __cond_resched();
6676 else
6677 cpu_relax();
6678 ret = 1;
6679 spin_lock(lock);
6681 return ret;
6683 EXPORT_SYMBOL(__cond_resched_lock);
6685 int __sched __cond_resched_softirq(void)
6687 BUG_ON(!in_softirq());
6689 if (should_resched()) {
6690 local_bh_enable();
6691 __cond_resched();
6692 local_bh_disable();
6693 return 1;
6695 return 0;
6697 EXPORT_SYMBOL(__cond_resched_softirq);
6700 * yield - yield the current processor to other threads.
6702 * This is a shortcut for kernel-space yielding - it marks the
6703 * thread runnable and calls sys_sched_yield().
6705 void __sched yield(void)
6707 set_current_state(TASK_RUNNING);
6708 sys_sched_yield();
6710 EXPORT_SYMBOL(yield);
6713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6714 * that process accounting knows that this is a task in IO wait state.
6716 * But don't do that if it is a deliberate, throttling IO wait (this task
6717 * has set its backing_dev_info: the queue against which it should throttle)
6719 void __sched io_schedule(void)
6721 struct rq *rq = raw_rq();
6723 delayacct_blkio_start();
6724 atomic_inc(&rq->nr_iowait);
6725 current->in_iowait = 1;
6726 schedule();
6727 current->in_iowait = 0;
6728 atomic_dec(&rq->nr_iowait);
6729 delayacct_blkio_end();
6731 EXPORT_SYMBOL(io_schedule);
6733 long __sched io_schedule_timeout(long timeout)
6735 struct rq *rq = raw_rq();
6736 long ret;
6738 delayacct_blkio_start();
6739 atomic_inc(&rq->nr_iowait);
6740 current->in_iowait = 1;
6741 ret = schedule_timeout(timeout);
6742 current->in_iowait = 0;
6743 atomic_dec(&rq->nr_iowait);
6744 delayacct_blkio_end();
6745 return ret;
6749 * sys_sched_get_priority_max - return maximum RT priority.
6750 * @policy: scheduling class.
6752 * this syscall returns the maximum rt_priority that can be used
6753 * by a given scheduling class.
6755 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6757 int ret = -EINVAL;
6759 switch (policy) {
6760 case SCHED_FIFO:
6761 case SCHED_RR:
6762 ret = MAX_USER_RT_PRIO-1;
6763 break;
6764 case SCHED_NORMAL:
6765 case SCHED_BATCH:
6766 case SCHED_IDLE:
6767 ret = 0;
6768 break;
6770 return ret;
6774 * sys_sched_get_priority_min - return minimum RT priority.
6775 * @policy: scheduling class.
6777 * this syscall returns the minimum rt_priority that can be used
6778 * by a given scheduling class.
6780 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6782 int ret = -EINVAL;
6784 switch (policy) {
6785 case SCHED_FIFO:
6786 case SCHED_RR:
6787 ret = 1;
6788 break;
6789 case SCHED_NORMAL:
6790 case SCHED_BATCH:
6791 case SCHED_IDLE:
6792 ret = 0;
6794 return ret;
6798 * sys_sched_rr_get_interval - return the default timeslice of a process.
6799 * @pid: pid of the process.
6800 * @interval: userspace pointer to the timeslice value.
6802 * this syscall writes the default timeslice value of a given process
6803 * into the user-space timespec buffer. A value of '0' means infinity.
6805 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6806 struct timespec __user *, interval)
6808 struct task_struct *p;
6809 unsigned int time_slice;
6810 int retval;
6811 struct timespec t;
6813 if (pid < 0)
6814 return -EINVAL;
6816 retval = -ESRCH;
6817 read_lock(&tasklist_lock);
6818 p = find_process_by_pid(pid);
6819 if (!p)
6820 goto out_unlock;
6822 retval = security_task_getscheduler(p);
6823 if (retval)
6824 goto out_unlock;
6827 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6828 * tasks that are on an otherwise idle runqueue:
6830 time_slice = 0;
6831 if (p->policy == SCHED_RR) {
6832 time_slice = DEF_TIMESLICE;
6833 } else if (p->policy != SCHED_FIFO) {
6834 struct sched_entity *se = &p->se;
6835 unsigned long flags;
6836 struct rq *rq;
6838 rq = task_rq_lock(p, &flags);
6839 if (rq->cfs.load.weight)
6840 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6841 task_rq_unlock(rq, &flags);
6843 read_unlock(&tasklist_lock);
6844 jiffies_to_timespec(time_slice, &t);
6845 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6846 return retval;
6848 out_unlock:
6849 read_unlock(&tasklist_lock);
6850 return retval;
6853 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6855 void sched_show_task(struct task_struct *p)
6857 unsigned long free = 0;
6858 unsigned state;
6860 state = p->state ? __ffs(p->state) + 1 : 0;
6861 printk(KERN_INFO "%-13.13s %c", p->comm,
6862 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6863 #if BITS_PER_LONG == 32
6864 if (state == TASK_RUNNING)
6865 printk(KERN_CONT " running ");
6866 else
6867 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6868 #else
6869 if (state == TASK_RUNNING)
6870 printk(KERN_CONT " running task ");
6871 else
6872 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6873 #endif
6874 #ifdef CONFIG_DEBUG_STACK_USAGE
6875 free = stack_not_used(p);
6876 #endif
6877 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6878 task_pid_nr(p), task_pid_nr(p->real_parent),
6879 (unsigned long)task_thread_info(p)->flags);
6881 show_stack(p, NULL);
6884 void show_state_filter(unsigned long state_filter)
6886 struct task_struct *g, *p;
6888 #if BITS_PER_LONG == 32
6889 printk(KERN_INFO
6890 " task PC stack pid father\n");
6891 #else
6892 printk(KERN_INFO
6893 " task PC stack pid father\n");
6894 #endif
6895 read_lock(&tasklist_lock);
6896 do_each_thread(g, p) {
6898 * reset the NMI-timeout, listing all files on a slow
6899 * console might take alot of time:
6901 touch_nmi_watchdog();
6902 if (!state_filter || (p->state & state_filter))
6903 sched_show_task(p);
6904 } while_each_thread(g, p);
6906 touch_all_softlockup_watchdogs();
6908 #ifdef CONFIG_SCHED_DEBUG
6909 sysrq_sched_debug_show();
6910 #endif
6911 read_unlock(&tasklist_lock);
6913 * Only show locks if all tasks are dumped:
6915 if (state_filter == -1)
6916 debug_show_all_locks();
6919 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6921 idle->sched_class = &idle_sched_class;
6925 * init_idle - set up an idle thread for a given CPU
6926 * @idle: task in question
6927 * @cpu: cpu the idle task belongs to
6929 * NOTE: this function does not set the idle thread's NEED_RESCHED
6930 * flag, to make booting more robust.
6932 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6934 struct rq *rq = cpu_rq(cpu);
6935 unsigned long flags;
6937 spin_lock_irqsave(&rq->lock, flags);
6939 __sched_fork(idle);
6940 idle->se.exec_start = sched_clock();
6942 idle->prio = idle->normal_prio = MAX_PRIO;
6943 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6944 __set_task_cpu(idle, cpu);
6946 rq->curr = rq->idle = idle;
6947 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6948 idle->oncpu = 1;
6949 #endif
6950 spin_unlock_irqrestore(&rq->lock, flags);
6952 /* Set the preempt count _outside_ the spinlocks! */
6953 #if defined(CONFIG_PREEMPT)
6954 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6955 #else
6956 task_thread_info(idle)->preempt_count = 0;
6957 #endif
6959 * The idle tasks have their own, simple scheduling class:
6961 idle->sched_class = &idle_sched_class;
6962 ftrace_graph_init_task(idle);
6966 * In a system that switches off the HZ timer nohz_cpu_mask
6967 * indicates which cpus entered this state. This is used
6968 * in the rcu update to wait only for active cpus. For system
6969 * which do not switch off the HZ timer nohz_cpu_mask should
6970 * always be CPU_BITS_NONE.
6972 cpumask_var_t nohz_cpu_mask;
6975 * Increase the granularity value when there are more CPUs,
6976 * because with more CPUs the 'effective latency' as visible
6977 * to users decreases. But the relationship is not linear,
6978 * so pick a second-best guess by going with the log2 of the
6979 * number of CPUs.
6981 * This idea comes from the SD scheduler of Con Kolivas:
6983 static inline void sched_init_granularity(void)
6985 unsigned int factor = 1 + ilog2(num_online_cpus());
6986 const unsigned long limit = 200000000;
6988 sysctl_sched_min_granularity *= factor;
6989 if (sysctl_sched_min_granularity > limit)
6990 sysctl_sched_min_granularity = limit;
6992 sysctl_sched_latency *= factor;
6993 if (sysctl_sched_latency > limit)
6994 sysctl_sched_latency = limit;
6996 sysctl_sched_wakeup_granularity *= factor;
6998 sysctl_sched_shares_ratelimit *= factor;
7001 #ifdef CONFIG_SMP
7003 * This is how migration works:
7005 * 1) we queue a struct migration_req structure in the source CPU's
7006 * runqueue and wake up that CPU's migration thread.
7007 * 2) we down() the locked semaphore => thread blocks.
7008 * 3) migration thread wakes up (implicitly it forces the migrated
7009 * thread off the CPU)
7010 * 4) it gets the migration request and checks whether the migrated
7011 * task is still in the wrong runqueue.
7012 * 5) if it's in the wrong runqueue then the migration thread removes
7013 * it and puts it into the right queue.
7014 * 6) migration thread up()s the semaphore.
7015 * 7) we wake up and the migration is done.
7019 * Change a given task's CPU affinity. Migrate the thread to a
7020 * proper CPU and schedule it away if the CPU it's executing on
7021 * is removed from the allowed bitmask.
7023 * NOTE: the caller must have a valid reference to the task, the
7024 * task must not exit() & deallocate itself prematurely. The
7025 * call is not atomic; no spinlocks may be held.
7027 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7029 struct migration_req req;
7030 unsigned long flags;
7031 struct rq *rq;
7032 int ret = 0;
7034 rq = task_rq_lock(p, &flags);
7035 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7036 ret = -EINVAL;
7037 goto out;
7040 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7041 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7042 ret = -EINVAL;
7043 goto out;
7046 if (p->sched_class->set_cpus_allowed)
7047 p->sched_class->set_cpus_allowed(p, new_mask);
7048 else {
7049 cpumask_copy(&p->cpus_allowed, new_mask);
7050 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7053 /* Can the task run on the task's current CPU? If so, we're done */
7054 if (cpumask_test_cpu(task_cpu(p), new_mask))
7055 goto out;
7057 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7058 /* Need help from migration thread: drop lock and wait. */
7059 struct task_struct *mt = rq->migration_thread;
7061 get_task_struct(mt);
7062 task_rq_unlock(rq, &flags);
7063 wake_up_process(rq->migration_thread);
7064 put_task_struct(mt);
7065 wait_for_completion(&req.done);
7066 tlb_migrate_finish(p->mm);
7067 return 0;
7069 out:
7070 task_rq_unlock(rq, &flags);
7072 return ret;
7074 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7077 * Move (not current) task off this cpu, onto dest cpu. We're doing
7078 * this because either it can't run here any more (set_cpus_allowed()
7079 * away from this CPU, or CPU going down), or because we're
7080 * attempting to rebalance this task on exec (sched_exec).
7082 * So we race with normal scheduler movements, but that's OK, as long
7083 * as the task is no longer on this CPU.
7085 * Returns non-zero if task was successfully migrated.
7087 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7089 struct rq *rq_dest, *rq_src;
7090 int ret = 0, on_rq;
7092 if (unlikely(!cpu_active(dest_cpu)))
7093 return ret;
7095 rq_src = cpu_rq(src_cpu);
7096 rq_dest = cpu_rq(dest_cpu);
7098 double_rq_lock(rq_src, rq_dest);
7099 /* Already moved. */
7100 if (task_cpu(p) != src_cpu)
7101 goto done;
7102 /* Affinity changed (again). */
7103 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7104 goto fail;
7106 on_rq = p->se.on_rq;
7107 if (on_rq)
7108 deactivate_task(rq_src, p, 0);
7110 set_task_cpu(p, dest_cpu);
7111 if (on_rq) {
7112 activate_task(rq_dest, p, 0);
7113 check_preempt_curr(rq_dest, p, 0);
7115 done:
7116 ret = 1;
7117 fail:
7118 double_rq_unlock(rq_src, rq_dest);
7119 return ret;
7122 #define RCU_MIGRATION_IDLE 0
7123 #define RCU_MIGRATION_NEED_QS 1
7124 #define RCU_MIGRATION_GOT_QS 2
7125 #define RCU_MIGRATION_MUST_SYNC 3
7128 * migration_thread - this is a highprio system thread that performs
7129 * thread migration by bumping thread off CPU then 'pushing' onto
7130 * another runqueue.
7132 static int migration_thread(void *data)
7134 int badcpu;
7135 int cpu = (long)data;
7136 struct rq *rq;
7138 rq = cpu_rq(cpu);
7139 BUG_ON(rq->migration_thread != current);
7141 set_current_state(TASK_INTERRUPTIBLE);
7142 while (!kthread_should_stop()) {
7143 struct migration_req *req;
7144 struct list_head *head;
7146 spin_lock_irq(&rq->lock);
7148 if (cpu_is_offline(cpu)) {
7149 spin_unlock_irq(&rq->lock);
7150 break;
7153 if (rq->active_balance) {
7154 active_load_balance(rq, cpu);
7155 rq->active_balance = 0;
7158 head = &rq->migration_queue;
7160 if (list_empty(head)) {
7161 spin_unlock_irq(&rq->lock);
7162 schedule();
7163 set_current_state(TASK_INTERRUPTIBLE);
7164 continue;
7166 req = list_entry(head->next, struct migration_req, list);
7167 list_del_init(head->next);
7169 if (req->task != NULL) {
7170 spin_unlock(&rq->lock);
7171 __migrate_task(req->task, cpu, req->dest_cpu);
7172 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7173 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7174 spin_unlock(&rq->lock);
7175 } else {
7176 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7177 spin_unlock(&rq->lock);
7178 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7180 local_irq_enable();
7182 complete(&req->done);
7184 __set_current_state(TASK_RUNNING);
7186 return 0;
7189 #ifdef CONFIG_HOTPLUG_CPU
7191 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7193 int ret;
7195 local_irq_disable();
7196 ret = __migrate_task(p, src_cpu, dest_cpu);
7197 local_irq_enable();
7198 return ret;
7202 * Figure out where task on dead CPU should go, use force if necessary.
7204 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7206 int dest_cpu;
7207 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7209 again:
7210 /* Look for allowed, online CPU in same node. */
7211 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7213 goto move;
7215 /* Any allowed, online CPU? */
7216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7217 if (dest_cpu < nr_cpu_ids)
7218 goto move;
7220 /* No more Mr. Nice Guy. */
7221 if (dest_cpu >= nr_cpu_ids) {
7222 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7223 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7226 * Don't tell them about moving exiting tasks or
7227 * kernel threads (both mm NULL), since they never
7228 * leave kernel.
7230 if (p->mm && printk_ratelimit()) {
7231 printk(KERN_INFO "process %d (%s) no "
7232 "longer affine to cpu%d\n",
7233 task_pid_nr(p), p->comm, dead_cpu);
7237 move:
7238 /* It can have affinity changed while we were choosing. */
7239 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7240 goto again;
7244 * While a dead CPU has no uninterruptible tasks queued at this point,
7245 * it might still have a nonzero ->nr_uninterruptible counter, because
7246 * for performance reasons the counter is not stricly tracking tasks to
7247 * their home CPUs. So we just add the counter to another CPU's counter,
7248 * to keep the global sum constant after CPU-down:
7250 static void migrate_nr_uninterruptible(struct rq *rq_src)
7252 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7253 unsigned long flags;
7255 local_irq_save(flags);
7256 double_rq_lock(rq_src, rq_dest);
7257 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7258 rq_src->nr_uninterruptible = 0;
7259 double_rq_unlock(rq_src, rq_dest);
7260 local_irq_restore(flags);
7263 /* Run through task list and migrate tasks from the dead cpu. */
7264 static void migrate_live_tasks(int src_cpu)
7266 struct task_struct *p, *t;
7268 read_lock(&tasklist_lock);
7270 do_each_thread(t, p) {
7271 if (p == current)
7272 continue;
7274 if (task_cpu(p) == src_cpu)
7275 move_task_off_dead_cpu(src_cpu, p);
7276 } while_each_thread(t, p);
7278 read_unlock(&tasklist_lock);
7282 * Schedules idle task to be the next runnable task on current CPU.
7283 * It does so by boosting its priority to highest possible.
7284 * Used by CPU offline code.
7286 void sched_idle_next(void)
7288 int this_cpu = smp_processor_id();
7289 struct rq *rq = cpu_rq(this_cpu);
7290 struct task_struct *p = rq->idle;
7291 unsigned long flags;
7293 /* cpu has to be offline */
7294 BUG_ON(cpu_online(this_cpu));
7297 * Strictly not necessary since rest of the CPUs are stopped by now
7298 * and interrupts disabled on the current cpu.
7300 spin_lock_irqsave(&rq->lock, flags);
7302 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7304 update_rq_clock(rq);
7305 activate_task(rq, p, 0);
7307 spin_unlock_irqrestore(&rq->lock, flags);
7311 * Ensures that the idle task is using init_mm right before its cpu goes
7312 * offline.
7314 void idle_task_exit(void)
7316 struct mm_struct *mm = current->active_mm;
7318 BUG_ON(cpu_online(smp_processor_id()));
7320 if (mm != &init_mm)
7321 switch_mm(mm, &init_mm, current);
7322 mmdrop(mm);
7325 /* called under rq->lock with disabled interrupts */
7326 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7328 struct rq *rq = cpu_rq(dead_cpu);
7330 /* Must be exiting, otherwise would be on tasklist. */
7331 BUG_ON(!p->exit_state);
7333 /* Cannot have done final schedule yet: would have vanished. */
7334 BUG_ON(p->state == TASK_DEAD);
7336 get_task_struct(p);
7339 * Drop lock around migration; if someone else moves it,
7340 * that's OK. No task can be added to this CPU, so iteration is
7341 * fine.
7343 spin_unlock_irq(&rq->lock);
7344 move_task_off_dead_cpu(dead_cpu, p);
7345 spin_lock_irq(&rq->lock);
7347 put_task_struct(p);
7350 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7351 static void migrate_dead_tasks(unsigned int dead_cpu)
7353 struct rq *rq = cpu_rq(dead_cpu);
7354 struct task_struct *next;
7356 for ( ; ; ) {
7357 if (!rq->nr_running)
7358 break;
7359 update_rq_clock(rq);
7360 next = pick_next_task(rq);
7361 if (!next)
7362 break;
7363 next->sched_class->put_prev_task(rq, next);
7364 migrate_dead(dead_cpu, next);
7370 * remove the tasks which were accounted by rq from calc_load_tasks.
7372 static void calc_global_load_remove(struct rq *rq)
7374 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7375 rq->calc_load_active = 0;
7377 #endif /* CONFIG_HOTPLUG_CPU */
7379 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7381 static struct ctl_table sd_ctl_dir[] = {
7383 .procname = "sched_domain",
7384 .mode = 0555,
7386 {0, },
7389 static struct ctl_table sd_ctl_root[] = {
7391 .ctl_name = CTL_KERN,
7392 .procname = "kernel",
7393 .mode = 0555,
7394 .child = sd_ctl_dir,
7396 {0, },
7399 static struct ctl_table *sd_alloc_ctl_entry(int n)
7401 struct ctl_table *entry =
7402 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7404 return entry;
7407 static void sd_free_ctl_entry(struct ctl_table **tablep)
7409 struct ctl_table *entry;
7412 * In the intermediate directories, both the child directory and
7413 * procname are dynamically allocated and could fail but the mode
7414 * will always be set. In the lowest directory the names are
7415 * static strings and all have proc handlers.
7417 for (entry = *tablep; entry->mode; entry++) {
7418 if (entry->child)
7419 sd_free_ctl_entry(&entry->child);
7420 if (entry->proc_handler == NULL)
7421 kfree(entry->procname);
7424 kfree(*tablep);
7425 *tablep = NULL;
7428 static void
7429 set_table_entry(struct ctl_table *entry,
7430 const char *procname, void *data, int maxlen,
7431 mode_t mode, proc_handler *proc_handler)
7433 entry->procname = procname;
7434 entry->data = data;
7435 entry->maxlen = maxlen;
7436 entry->mode = mode;
7437 entry->proc_handler = proc_handler;
7440 static struct ctl_table *
7441 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7443 struct ctl_table *table = sd_alloc_ctl_entry(13);
7445 if (table == NULL)
7446 return NULL;
7448 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7449 sizeof(long), 0644, proc_doulongvec_minmax);
7450 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7451 sizeof(long), 0644, proc_doulongvec_minmax);
7452 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7453 sizeof(int), 0644, proc_dointvec_minmax);
7454 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7459 sizeof(int), 0644, proc_dointvec_minmax);
7460 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7461 sizeof(int), 0644, proc_dointvec_minmax);
7462 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7463 sizeof(int), 0644, proc_dointvec_minmax);
7464 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7465 sizeof(int), 0644, proc_dointvec_minmax);
7466 set_table_entry(&table[9], "cache_nice_tries",
7467 &sd->cache_nice_tries,
7468 sizeof(int), 0644, proc_dointvec_minmax);
7469 set_table_entry(&table[10], "flags", &sd->flags,
7470 sizeof(int), 0644, proc_dointvec_minmax);
7471 set_table_entry(&table[11], "name", sd->name,
7472 CORENAME_MAX_SIZE, 0444, proc_dostring);
7473 /* &table[12] is terminator */
7475 return table;
7478 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7480 struct ctl_table *entry, *table;
7481 struct sched_domain *sd;
7482 int domain_num = 0, i;
7483 char buf[32];
7485 for_each_domain(cpu, sd)
7486 domain_num++;
7487 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7488 if (table == NULL)
7489 return NULL;
7491 i = 0;
7492 for_each_domain(cpu, sd) {
7493 snprintf(buf, 32, "domain%d", i);
7494 entry->procname = kstrdup(buf, GFP_KERNEL);
7495 entry->mode = 0555;
7496 entry->child = sd_alloc_ctl_domain_table(sd);
7497 entry++;
7498 i++;
7500 return table;
7503 static struct ctl_table_header *sd_sysctl_header;
7504 static void register_sched_domain_sysctl(void)
7506 int i, cpu_num = num_online_cpus();
7507 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7508 char buf[32];
7510 WARN_ON(sd_ctl_dir[0].child);
7511 sd_ctl_dir[0].child = entry;
7513 if (entry == NULL)
7514 return;
7516 for_each_online_cpu(i) {
7517 snprintf(buf, 32, "cpu%d", i);
7518 entry->procname = kstrdup(buf, GFP_KERNEL);
7519 entry->mode = 0555;
7520 entry->child = sd_alloc_ctl_cpu_table(i);
7521 entry++;
7524 WARN_ON(sd_sysctl_header);
7525 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7528 /* may be called multiple times per register */
7529 static void unregister_sched_domain_sysctl(void)
7531 if (sd_sysctl_header)
7532 unregister_sysctl_table(sd_sysctl_header);
7533 sd_sysctl_header = NULL;
7534 if (sd_ctl_dir[0].child)
7535 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7537 #else
7538 static void register_sched_domain_sysctl(void)
7541 static void unregister_sched_domain_sysctl(void)
7544 #endif
7546 static void set_rq_online(struct rq *rq)
7548 if (!rq->online) {
7549 const struct sched_class *class;
7551 cpumask_set_cpu(rq->cpu, rq->rd->online);
7552 rq->online = 1;
7554 for_each_class(class) {
7555 if (class->rq_online)
7556 class->rq_online(rq);
7561 static void set_rq_offline(struct rq *rq)
7563 if (rq->online) {
7564 const struct sched_class *class;
7566 for_each_class(class) {
7567 if (class->rq_offline)
7568 class->rq_offline(rq);
7571 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7572 rq->online = 0;
7577 * migration_call - callback that gets triggered when a CPU is added.
7578 * Here we can start up the necessary migration thread for the new CPU.
7580 static int __cpuinit
7581 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7583 struct task_struct *p;
7584 int cpu = (long)hcpu;
7585 unsigned long flags;
7586 struct rq *rq;
7588 switch (action) {
7590 case CPU_UP_PREPARE:
7591 case CPU_UP_PREPARE_FROZEN:
7592 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7593 if (IS_ERR(p))
7594 return NOTIFY_BAD;
7595 kthread_bind(p, cpu);
7596 /* Must be high prio: stop_machine expects to yield to it. */
7597 rq = task_rq_lock(p, &flags);
7598 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7599 task_rq_unlock(rq, &flags);
7600 get_task_struct(p);
7601 cpu_rq(cpu)->migration_thread = p;
7602 rq->calc_load_update = calc_load_update;
7603 break;
7605 case CPU_ONLINE:
7606 case CPU_ONLINE_FROZEN:
7607 /* Strictly unnecessary, as first user will wake it. */
7608 wake_up_process(cpu_rq(cpu)->migration_thread);
7610 /* Update our root-domain */
7611 rq = cpu_rq(cpu);
7612 spin_lock_irqsave(&rq->lock, flags);
7613 if (rq->rd) {
7614 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7616 set_rq_online(rq);
7618 spin_unlock_irqrestore(&rq->lock, flags);
7619 break;
7621 #ifdef CONFIG_HOTPLUG_CPU
7622 case CPU_UP_CANCELED:
7623 case CPU_UP_CANCELED_FROZEN:
7624 if (!cpu_rq(cpu)->migration_thread)
7625 break;
7626 /* Unbind it from offline cpu so it can run. Fall thru. */
7627 kthread_bind(cpu_rq(cpu)->migration_thread,
7628 cpumask_any(cpu_online_mask));
7629 kthread_stop(cpu_rq(cpu)->migration_thread);
7630 put_task_struct(cpu_rq(cpu)->migration_thread);
7631 cpu_rq(cpu)->migration_thread = NULL;
7632 break;
7634 case CPU_DEAD:
7635 case CPU_DEAD_FROZEN:
7636 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7637 migrate_live_tasks(cpu);
7638 rq = cpu_rq(cpu);
7639 kthread_stop(rq->migration_thread);
7640 put_task_struct(rq->migration_thread);
7641 rq->migration_thread = NULL;
7642 /* Idle task back to normal (off runqueue, low prio) */
7643 spin_lock_irq(&rq->lock);
7644 update_rq_clock(rq);
7645 deactivate_task(rq, rq->idle, 0);
7646 rq->idle->static_prio = MAX_PRIO;
7647 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7648 rq->idle->sched_class = &idle_sched_class;
7649 migrate_dead_tasks(cpu);
7650 spin_unlock_irq(&rq->lock);
7651 cpuset_unlock();
7652 migrate_nr_uninterruptible(rq);
7653 BUG_ON(rq->nr_running != 0);
7654 calc_global_load_remove(rq);
7656 * No need to migrate the tasks: it was best-effort if
7657 * they didn't take sched_hotcpu_mutex. Just wake up
7658 * the requestors.
7660 spin_lock_irq(&rq->lock);
7661 while (!list_empty(&rq->migration_queue)) {
7662 struct migration_req *req;
7664 req = list_entry(rq->migration_queue.next,
7665 struct migration_req, list);
7666 list_del_init(&req->list);
7667 spin_unlock_irq(&rq->lock);
7668 complete(&req->done);
7669 spin_lock_irq(&rq->lock);
7671 spin_unlock_irq(&rq->lock);
7672 break;
7674 case CPU_DYING:
7675 case CPU_DYING_FROZEN:
7676 /* Update our root-domain */
7677 rq = cpu_rq(cpu);
7678 spin_lock_irqsave(&rq->lock, flags);
7679 if (rq->rd) {
7680 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7681 set_rq_offline(rq);
7683 spin_unlock_irqrestore(&rq->lock, flags);
7684 break;
7685 #endif
7687 return NOTIFY_OK;
7691 * Register at high priority so that task migration (migrate_all_tasks)
7692 * happens before everything else. This has to be lower priority than
7693 * the notifier in the perf_counter subsystem, though.
7695 static struct notifier_block __cpuinitdata migration_notifier = {
7696 .notifier_call = migration_call,
7697 .priority = 10
7700 static int __init migration_init(void)
7702 void *cpu = (void *)(long)smp_processor_id();
7703 int err;
7705 /* Start one for the boot CPU: */
7706 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7707 BUG_ON(err == NOTIFY_BAD);
7708 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7709 register_cpu_notifier(&migration_notifier);
7711 return 0;
7713 early_initcall(migration_init);
7714 #endif
7716 #ifdef CONFIG_SMP
7718 #ifdef CONFIG_SCHED_DEBUG
7720 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7721 struct cpumask *groupmask)
7723 struct sched_group *group = sd->groups;
7724 char str[256];
7726 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7727 cpumask_clear(groupmask);
7729 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7731 if (!(sd->flags & SD_LOAD_BALANCE)) {
7732 printk("does not load-balance\n");
7733 if (sd->parent)
7734 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7735 " has parent");
7736 return -1;
7739 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7741 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7742 printk(KERN_ERR "ERROR: domain->span does not contain "
7743 "CPU%d\n", cpu);
7745 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7746 printk(KERN_ERR "ERROR: domain->groups does not contain"
7747 " CPU%d\n", cpu);
7750 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7751 do {
7752 if (!group) {
7753 printk("\n");
7754 printk(KERN_ERR "ERROR: group is NULL\n");
7755 break;
7758 if (!group->cpu_power) {
7759 printk(KERN_CONT "\n");
7760 printk(KERN_ERR "ERROR: domain->cpu_power not "
7761 "set\n");
7762 break;
7765 if (!cpumask_weight(sched_group_cpus(group))) {
7766 printk(KERN_CONT "\n");
7767 printk(KERN_ERR "ERROR: empty group\n");
7768 break;
7771 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7772 printk(KERN_CONT "\n");
7773 printk(KERN_ERR "ERROR: repeated CPUs\n");
7774 break;
7777 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7779 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7781 printk(KERN_CONT " %s", str);
7782 if (group->cpu_power != SCHED_LOAD_SCALE) {
7783 printk(KERN_CONT " (cpu_power = %d)",
7784 group->cpu_power);
7787 group = group->next;
7788 } while (group != sd->groups);
7789 printk(KERN_CONT "\n");
7791 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7792 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7794 if (sd->parent &&
7795 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7796 printk(KERN_ERR "ERROR: parent span is not a superset "
7797 "of domain->span\n");
7798 return 0;
7801 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7803 cpumask_var_t groupmask;
7804 int level = 0;
7806 if (!sd) {
7807 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7808 return;
7811 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7813 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7814 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7815 return;
7818 for (;;) {
7819 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7820 break;
7821 level++;
7822 sd = sd->parent;
7823 if (!sd)
7824 break;
7826 free_cpumask_var(groupmask);
7828 #else /* !CONFIG_SCHED_DEBUG */
7829 # define sched_domain_debug(sd, cpu) do { } while (0)
7830 #endif /* CONFIG_SCHED_DEBUG */
7832 static int sd_degenerate(struct sched_domain *sd)
7834 if (cpumask_weight(sched_domain_span(sd)) == 1)
7835 return 1;
7837 /* Following flags need at least 2 groups */
7838 if (sd->flags & (SD_LOAD_BALANCE |
7839 SD_BALANCE_NEWIDLE |
7840 SD_BALANCE_FORK |
7841 SD_BALANCE_EXEC |
7842 SD_SHARE_CPUPOWER |
7843 SD_SHARE_PKG_RESOURCES)) {
7844 if (sd->groups != sd->groups->next)
7845 return 0;
7848 /* Following flags don't use groups */
7849 if (sd->flags & (SD_WAKE_AFFINE))
7850 return 0;
7852 return 1;
7855 static int
7856 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7858 unsigned long cflags = sd->flags, pflags = parent->flags;
7860 if (sd_degenerate(parent))
7861 return 1;
7863 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7864 return 0;
7866 /* Flags needing groups don't count if only 1 group in parent */
7867 if (parent->groups == parent->groups->next) {
7868 pflags &= ~(SD_LOAD_BALANCE |
7869 SD_BALANCE_NEWIDLE |
7870 SD_BALANCE_FORK |
7871 SD_BALANCE_EXEC |
7872 SD_SHARE_CPUPOWER |
7873 SD_SHARE_PKG_RESOURCES);
7874 if (nr_node_ids == 1)
7875 pflags &= ~SD_SERIALIZE;
7877 if (~cflags & pflags)
7878 return 0;
7880 return 1;
7883 static void free_rootdomain(struct root_domain *rd)
7885 cpupri_cleanup(&rd->cpupri);
7887 free_cpumask_var(rd->rto_mask);
7888 free_cpumask_var(rd->online);
7889 free_cpumask_var(rd->span);
7890 kfree(rd);
7893 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7895 struct root_domain *old_rd = NULL;
7896 unsigned long flags;
7898 spin_lock_irqsave(&rq->lock, flags);
7900 if (rq->rd) {
7901 old_rd = rq->rd;
7903 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7904 set_rq_offline(rq);
7906 cpumask_clear_cpu(rq->cpu, old_rd->span);
7909 * If we dont want to free the old_rt yet then
7910 * set old_rd to NULL to skip the freeing later
7911 * in this function:
7913 if (!atomic_dec_and_test(&old_rd->refcount))
7914 old_rd = NULL;
7917 atomic_inc(&rd->refcount);
7918 rq->rd = rd;
7920 cpumask_set_cpu(rq->cpu, rd->span);
7921 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7922 set_rq_online(rq);
7924 spin_unlock_irqrestore(&rq->lock, flags);
7926 if (old_rd)
7927 free_rootdomain(old_rd);
7930 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7932 gfp_t gfp = GFP_KERNEL;
7934 memset(rd, 0, sizeof(*rd));
7936 if (bootmem)
7937 gfp = GFP_NOWAIT;
7939 if (!alloc_cpumask_var(&rd->span, gfp))
7940 goto out;
7941 if (!alloc_cpumask_var(&rd->online, gfp))
7942 goto free_span;
7943 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7944 goto free_online;
7946 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7947 goto free_rto_mask;
7948 return 0;
7950 free_rto_mask:
7951 free_cpumask_var(rd->rto_mask);
7952 free_online:
7953 free_cpumask_var(rd->online);
7954 free_span:
7955 free_cpumask_var(rd->span);
7956 out:
7957 return -ENOMEM;
7960 static void init_defrootdomain(void)
7962 init_rootdomain(&def_root_domain, true);
7964 atomic_set(&def_root_domain.refcount, 1);
7967 static struct root_domain *alloc_rootdomain(void)
7969 struct root_domain *rd;
7971 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7972 if (!rd)
7973 return NULL;
7975 if (init_rootdomain(rd, false) != 0) {
7976 kfree(rd);
7977 return NULL;
7980 return rd;
7984 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7985 * hold the hotplug lock.
7987 static void
7988 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7990 struct rq *rq = cpu_rq(cpu);
7991 struct sched_domain *tmp;
7993 /* Remove the sched domains which do not contribute to scheduling. */
7994 for (tmp = sd; tmp; ) {
7995 struct sched_domain *parent = tmp->parent;
7996 if (!parent)
7997 break;
7999 if (sd_parent_degenerate(tmp, parent)) {
8000 tmp->parent = parent->parent;
8001 if (parent->parent)
8002 parent->parent->child = tmp;
8003 } else
8004 tmp = tmp->parent;
8007 if (sd && sd_degenerate(sd)) {
8008 sd = sd->parent;
8009 if (sd)
8010 sd->child = NULL;
8013 sched_domain_debug(sd, cpu);
8015 rq_attach_root(rq, rd);
8016 rcu_assign_pointer(rq->sd, sd);
8019 /* cpus with isolated domains */
8020 static cpumask_var_t cpu_isolated_map;
8022 /* Setup the mask of cpus configured for isolated domains */
8023 static int __init isolated_cpu_setup(char *str)
8025 cpulist_parse(str, cpu_isolated_map);
8026 return 1;
8029 __setup("isolcpus=", isolated_cpu_setup);
8032 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8033 * to a function which identifies what group(along with sched group) a CPU
8034 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8035 * (due to the fact that we keep track of groups covered with a struct cpumask).
8037 * init_sched_build_groups will build a circular linked list of the groups
8038 * covered by the given span, and will set each group's ->cpumask correctly,
8039 * and ->cpu_power to 0.
8041 static void
8042 init_sched_build_groups(const struct cpumask *span,
8043 const struct cpumask *cpu_map,
8044 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8045 struct sched_group **sg,
8046 struct cpumask *tmpmask),
8047 struct cpumask *covered, struct cpumask *tmpmask)
8049 struct sched_group *first = NULL, *last = NULL;
8050 int i;
8052 cpumask_clear(covered);
8054 for_each_cpu(i, span) {
8055 struct sched_group *sg;
8056 int group = group_fn(i, cpu_map, &sg, tmpmask);
8057 int j;
8059 if (cpumask_test_cpu(i, covered))
8060 continue;
8062 cpumask_clear(sched_group_cpus(sg));
8063 sg->cpu_power = 0;
8065 for_each_cpu(j, span) {
8066 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8067 continue;
8069 cpumask_set_cpu(j, covered);
8070 cpumask_set_cpu(j, sched_group_cpus(sg));
8072 if (!first)
8073 first = sg;
8074 if (last)
8075 last->next = sg;
8076 last = sg;
8078 last->next = first;
8081 #define SD_NODES_PER_DOMAIN 16
8083 #ifdef CONFIG_NUMA
8086 * find_next_best_node - find the next node to include in a sched_domain
8087 * @node: node whose sched_domain we're building
8088 * @used_nodes: nodes already in the sched_domain
8090 * Find the next node to include in a given scheduling domain. Simply
8091 * finds the closest node not already in the @used_nodes map.
8093 * Should use nodemask_t.
8095 static int find_next_best_node(int node, nodemask_t *used_nodes)
8097 int i, n, val, min_val, best_node = 0;
8099 min_val = INT_MAX;
8101 for (i = 0; i < nr_node_ids; i++) {
8102 /* Start at @node */
8103 n = (node + i) % nr_node_ids;
8105 if (!nr_cpus_node(n))
8106 continue;
8108 /* Skip already used nodes */
8109 if (node_isset(n, *used_nodes))
8110 continue;
8112 /* Simple min distance search */
8113 val = node_distance(node, n);
8115 if (val < min_val) {
8116 min_val = val;
8117 best_node = n;
8121 node_set(best_node, *used_nodes);
8122 return best_node;
8126 * sched_domain_node_span - get a cpumask for a node's sched_domain
8127 * @node: node whose cpumask we're constructing
8128 * @span: resulting cpumask
8130 * Given a node, construct a good cpumask for its sched_domain to span. It
8131 * should be one that prevents unnecessary balancing, but also spreads tasks
8132 * out optimally.
8134 static void sched_domain_node_span(int node, struct cpumask *span)
8136 nodemask_t used_nodes;
8137 int i;
8139 cpumask_clear(span);
8140 nodes_clear(used_nodes);
8142 cpumask_or(span, span, cpumask_of_node(node));
8143 node_set(node, used_nodes);
8145 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8146 int next_node = find_next_best_node(node, &used_nodes);
8148 cpumask_or(span, span, cpumask_of_node(next_node));
8151 #endif /* CONFIG_NUMA */
8153 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8156 * The cpus mask in sched_group and sched_domain hangs off the end.
8158 * ( See the the comments in include/linux/sched.h:struct sched_group
8159 * and struct sched_domain. )
8161 struct static_sched_group {
8162 struct sched_group sg;
8163 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8166 struct static_sched_domain {
8167 struct sched_domain sd;
8168 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8171 struct s_data {
8172 #ifdef CONFIG_NUMA
8173 int sd_allnodes;
8174 cpumask_var_t domainspan;
8175 cpumask_var_t covered;
8176 cpumask_var_t notcovered;
8177 #endif
8178 cpumask_var_t nodemask;
8179 cpumask_var_t this_sibling_map;
8180 cpumask_var_t this_core_map;
8181 cpumask_var_t send_covered;
8182 cpumask_var_t tmpmask;
8183 struct sched_group **sched_group_nodes;
8184 struct root_domain *rd;
8187 enum s_alloc {
8188 sa_sched_groups = 0,
8189 sa_rootdomain,
8190 sa_tmpmask,
8191 sa_send_covered,
8192 sa_this_core_map,
8193 sa_this_sibling_map,
8194 sa_nodemask,
8195 sa_sched_group_nodes,
8196 #ifdef CONFIG_NUMA
8197 sa_notcovered,
8198 sa_covered,
8199 sa_domainspan,
8200 #endif
8201 sa_none,
8205 * SMT sched-domains:
8207 #ifdef CONFIG_SCHED_SMT
8208 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8209 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8211 static int
8212 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8213 struct sched_group **sg, struct cpumask *unused)
8215 if (sg)
8216 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8217 return cpu;
8219 #endif /* CONFIG_SCHED_SMT */
8222 * multi-core sched-domains:
8224 #ifdef CONFIG_SCHED_MC
8225 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8226 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8227 #endif /* CONFIG_SCHED_MC */
8229 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8230 static int
8231 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8232 struct sched_group **sg, struct cpumask *mask)
8234 int group;
8236 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8237 group = cpumask_first(mask);
8238 if (sg)
8239 *sg = &per_cpu(sched_group_core, group).sg;
8240 return group;
8242 #elif defined(CONFIG_SCHED_MC)
8243 static int
8244 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8245 struct sched_group **sg, struct cpumask *unused)
8247 if (sg)
8248 *sg = &per_cpu(sched_group_core, cpu).sg;
8249 return cpu;
8251 #endif
8253 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8254 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8256 static int
8257 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8258 struct sched_group **sg, struct cpumask *mask)
8260 int group;
8261 #ifdef CONFIG_SCHED_MC
8262 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8263 group = cpumask_first(mask);
8264 #elif defined(CONFIG_SCHED_SMT)
8265 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8266 group = cpumask_first(mask);
8267 #else
8268 group = cpu;
8269 #endif
8270 if (sg)
8271 *sg = &per_cpu(sched_group_phys, group).sg;
8272 return group;
8275 #ifdef CONFIG_NUMA
8277 * The init_sched_build_groups can't handle what we want to do with node
8278 * groups, so roll our own. Now each node has its own list of groups which
8279 * gets dynamically allocated.
8281 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8282 static struct sched_group ***sched_group_nodes_bycpu;
8284 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8285 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8287 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8288 struct sched_group **sg,
8289 struct cpumask *nodemask)
8291 int group;
8293 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8294 group = cpumask_first(nodemask);
8296 if (sg)
8297 *sg = &per_cpu(sched_group_allnodes, group).sg;
8298 return group;
8301 static void init_numa_sched_groups_power(struct sched_group *group_head)
8303 struct sched_group *sg = group_head;
8304 int j;
8306 if (!sg)
8307 return;
8308 do {
8309 for_each_cpu(j, sched_group_cpus(sg)) {
8310 struct sched_domain *sd;
8312 sd = &per_cpu(phys_domains, j).sd;
8313 if (j != group_first_cpu(sd->groups)) {
8315 * Only add "power" once for each
8316 * physical package.
8318 continue;
8321 sg->cpu_power += sd->groups->cpu_power;
8323 sg = sg->next;
8324 } while (sg != group_head);
8327 static int build_numa_sched_groups(struct s_data *d,
8328 const struct cpumask *cpu_map, int num)
8330 struct sched_domain *sd;
8331 struct sched_group *sg, *prev;
8332 int n, j;
8334 cpumask_clear(d->covered);
8335 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8336 if (cpumask_empty(d->nodemask)) {
8337 d->sched_group_nodes[num] = NULL;
8338 goto out;
8341 sched_domain_node_span(num, d->domainspan);
8342 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8344 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8345 GFP_KERNEL, num);
8346 if (!sg) {
8347 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8348 num);
8349 return -ENOMEM;
8351 d->sched_group_nodes[num] = sg;
8353 for_each_cpu(j, d->nodemask) {
8354 sd = &per_cpu(node_domains, j).sd;
8355 sd->groups = sg;
8358 sg->cpu_power = 0;
8359 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8360 sg->next = sg;
8361 cpumask_or(d->covered, d->covered, d->nodemask);
8363 prev = sg;
8364 for (j = 0; j < nr_node_ids; j++) {
8365 n = (num + j) % nr_node_ids;
8366 cpumask_complement(d->notcovered, d->covered);
8367 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8368 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8369 if (cpumask_empty(d->tmpmask))
8370 break;
8371 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8372 if (cpumask_empty(d->tmpmask))
8373 continue;
8374 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8375 GFP_KERNEL, num);
8376 if (!sg) {
8377 printk(KERN_WARNING
8378 "Can not alloc domain group for node %d\n", j);
8379 return -ENOMEM;
8381 sg->cpu_power = 0;
8382 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8383 sg->next = prev->next;
8384 cpumask_or(d->covered, d->covered, d->tmpmask);
8385 prev->next = sg;
8386 prev = sg;
8388 out:
8389 return 0;
8391 #endif /* CONFIG_NUMA */
8393 #ifdef CONFIG_NUMA
8394 /* Free memory allocated for various sched_group structures */
8395 static void free_sched_groups(const struct cpumask *cpu_map,
8396 struct cpumask *nodemask)
8398 int cpu, i;
8400 for_each_cpu(cpu, cpu_map) {
8401 struct sched_group **sched_group_nodes
8402 = sched_group_nodes_bycpu[cpu];
8404 if (!sched_group_nodes)
8405 continue;
8407 for (i = 0; i < nr_node_ids; i++) {
8408 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8410 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8411 if (cpumask_empty(nodemask))
8412 continue;
8414 if (sg == NULL)
8415 continue;
8416 sg = sg->next;
8417 next_sg:
8418 oldsg = sg;
8419 sg = sg->next;
8420 kfree(oldsg);
8421 if (oldsg != sched_group_nodes[i])
8422 goto next_sg;
8424 kfree(sched_group_nodes);
8425 sched_group_nodes_bycpu[cpu] = NULL;
8428 #else /* !CONFIG_NUMA */
8429 static void free_sched_groups(const struct cpumask *cpu_map,
8430 struct cpumask *nodemask)
8433 #endif /* CONFIG_NUMA */
8436 * Initialize sched groups cpu_power.
8438 * cpu_power indicates the capacity of sched group, which is used while
8439 * distributing the load between different sched groups in a sched domain.
8440 * Typically cpu_power for all the groups in a sched domain will be same unless
8441 * there are asymmetries in the topology. If there are asymmetries, group
8442 * having more cpu_power will pickup more load compared to the group having
8443 * less cpu_power.
8445 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8447 struct sched_domain *child;
8448 struct sched_group *group;
8449 long power;
8450 int weight;
8452 WARN_ON(!sd || !sd->groups);
8454 if (cpu != group_first_cpu(sd->groups))
8455 return;
8457 child = sd->child;
8459 sd->groups->cpu_power = 0;
8461 if (!child) {
8462 power = SCHED_LOAD_SCALE;
8463 weight = cpumask_weight(sched_domain_span(sd));
8465 * SMT siblings share the power of a single core.
8466 * Usually multiple threads get a better yield out of
8467 * that one core than a single thread would have,
8468 * reflect that in sd->smt_gain.
8470 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8471 power *= sd->smt_gain;
8472 power /= weight;
8473 power >>= SCHED_LOAD_SHIFT;
8475 sd->groups->cpu_power += power;
8476 return;
8480 * Add cpu_power of each child group to this groups cpu_power.
8482 group = child->groups;
8483 do {
8484 sd->groups->cpu_power += group->cpu_power;
8485 group = group->next;
8486 } while (group != child->groups);
8490 * Initializers for schedule domains
8491 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8494 #ifdef CONFIG_SCHED_DEBUG
8495 # define SD_INIT_NAME(sd, type) sd->name = #type
8496 #else
8497 # define SD_INIT_NAME(sd, type) do { } while (0)
8498 #endif
8500 #define SD_INIT(sd, type) sd_init_##type(sd)
8502 #define SD_INIT_FUNC(type) \
8503 static noinline void sd_init_##type(struct sched_domain *sd) \
8505 memset(sd, 0, sizeof(*sd)); \
8506 *sd = SD_##type##_INIT; \
8507 sd->level = SD_LV_##type; \
8508 SD_INIT_NAME(sd, type); \
8511 SD_INIT_FUNC(CPU)
8512 #ifdef CONFIG_NUMA
8513 SD_INIT_FUNC(ALLNODES)
8514 SD_INIT_FUNC(NODE)
8515 #endif
8516 #ifdef CONFIG_SCHED_SMT
8517 SD_INIT_FUNC(SIBLING)
8518 #endif
8519 #ifdef CONFIG_SCHED_MC
8520 SD_INIT_FUNC(MC)
8521 #endif
8523 static int default_relax_domain_level = -1;
8525 static int __init setup_relax_domain_level(char *str)
8527 unsigned long val;
8529 val = simple_strtoul(str, NULL, 0);
8530 if (val < SD_LV_MAX)
8531 default_relax_domain_level = val;
8533 return 1;
8535 __setup("relax_domain_level=", setup_relax_domain_level);
8537 static void set_domain_attribute(struct sched_domain *sd,
8538 struct sched_domain_attr *attr)
8540 int request;
8542 if (!attr || attr->relax_domain_level < 0) {
8543 if (default_relax_domain_level < 0)
8544 return;
8545 else
8546 request = default_relax_domain_level;
8547 } else
8548 request = attr->relax_domain_level;
8549 if (request < sd->level) {
8550 /* turn off idle balance on this domain */
8551 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8552 } else {
8553 /* turn on idle balance on this domain */
8554 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8558 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8559 const struct cpumask *cpu_map)
8561 switch (what) {
8562 case sa_sched_groups:
8563 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8564 d->sched_group_nodes = NULL;
8565 case sa_rootdomain:
8566 free_rootdomain(d->rd); /* fall through */
8567 case sa_tmpmask:
8568 free_cpumask_var(d->tmpmask); /* fall through */
8569 case sa_send_covered:
8570 free_cpumask_var(d->send_covered); /* fall through */
8571 case sa_this_core_map:
8572 free_cpumask_var(d->this_core_map); /* fall through */
8573 case sa_this_sibling_map:
8574 free_cpumask_var(d->this_sibling_map); /* fall through */
8575 case sa_nodemask:
8576 free_cpumask_var(d->nodemask); /* fall through */
8577 case sa_sched_group_nodes:
8578 #ifdef CONFIG_NUMA
8579 kfree(d->sched_group_nodes); /* fall through */
8580 case sa_notcovered:
8581 free_cpumask_var(d->notcovered); /* fall through */
8582 case sa_covered:
8583 free_cpumask_var(d->covered); /* fall through */
8584 case sa_domainspan:
8585 free_cpumask_var(d->domainspan); /* fall through */
8586 #endif
8587 case sa_none:
8588 break;
8592 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8593 const struct cpumask *cpu_map)
8595 #ifdef CONFIG_NUMA
8596 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8597 return sa_none;
8598 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8599 return sa_domainspan;
8600 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8601 return sa_covered;
8602 /* Allocate the per-node list of sched groups */
8603 d->sched_group_nodes = kcalloc(nr_node_ids,
8604 sizeof(struct sched_group *), GFP_KERNEL);
8605 if (!d->sched_group_nodes) {
8606 printk(KERN_WARNING "Can not alloc sched group node list\n");
8607 return sa_notcovered;
8609 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8610 #endif
8611 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8612 return sa_sched_group_nodes;
8613 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8614 return sa_nodemask;
8615 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8616 return sa_this_sibling_map;
8617 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8618 return sa_this_core_map;
8619 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8620 return sa_send_covered;
8621 d->rd = alloc_rootdomain();
8622 if (!d->rd) {
8623 printk(KERN_WARNING "Cannot alloc root domain\n");
8624 return sa_tmpmask;
8626 return sa_rootdomain;
8629 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8630 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8632 struct sched_domain *sd = NULL;
8633 #ifdef CONFIG_NUMA
8634 struct sched_domain *parent;
8636 d->sd_allnodes = 0;
8637 if (cpumask_weight(cpu_map) >
8638 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8639 sd = &per_cpu(allnodes_domains, i).sd;
8640 SD_INIT(sd, ALLNODES);
8641 set_domain_attribute(sd, attr);
8642 cpumask_copy(sched_domain_span(sd), cpu_map);
8643 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8644 d->sd_allnodes = 1;
8646 parent = sd;
8648 sd = &per_cpu(node_domains, i).sd;
8649 SD_INIT(sd, NODE);
8650 set_domain_attribute(sd, attr);
8651 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8652 sd->parent = parent;
8653 if (parent)
8654 parent->child = sd;
8655 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8656 #endif
8657 return sd;
8660 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8661 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8662 struct sched_domain *parent, int i)
8664 struct sched_domain *sd;
8665 sd = &per_cpu(phys_domains, i).sd;
8666 SD_INIT(sd, CPU);
8667 set_domain_attribute(sd, attr);
8668 cpumask_copy(sched_domain_span(sd), d->nodemask);
8669 sd->parent = parent;
8670 if (parent)
8671 parent->child = sd;
8672 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8673 return sd;
8676 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8677 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8678 struct sched_domain *parent, int i)
8680 struct sched_domain *sd = parent;
8681 #ifdef CONFIG_SCHED_MC
8682 sd = &per_cpu(core_domains, i).sd;
8683 SD_INIT(sd, MC);
8684 set_domain_attribute(sd, attr);
8685 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8686 sd->parent = parent;
8687 parent->child = sd;
8688 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8689 #endif
8690 return sd;
8693 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8694 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8695 struct sched_domain *parent, int i)
8697 struct sched_domain *sd = parent;
8698 #ifdef CONFIG_SCHED_SMT
8699 sd = &per_cpu(cpu_domains, i).sd;
8700 SD_INIT(sd, SIBLING);
8701 set_domain_attribute(sd, attr);
8702 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8703 sd->parent = parent;
8704 parent->child = sd;
8705 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8706 #endif
8707 return sd;
8710 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8711 const struct cpumask *cpu_map, int cpu)
8713 switch (l) {
8714 #ifdef CONFIG_SCHED_SMT
8715 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8716 cpumask_and(d->this_sibling_map, cpu_map,
8717 topology_thread_cpumask(cpu));
8718 if (cpu == cpumask_first(d->this_sibling_map))
8719 init_sched_build_groups(d->this_sibling_map, cpu_map,
8720 &cpu_to_cpu_group,
8721 d->send_covered, d->tmpmask);
8722 break;
8723 #endif
8724 #ifdef CONFIG_SCHED_MC
8725 case SD_LV_MC: /* set up multi-core groups */
8726 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8727 if (cpu == cpumask_first(d->this_core_map))
8728 init_sched_build_groups(d->this_core_map, cpu_map,
8729 &cpu_to_core_group,
8730 d->send_covered, d->tmpmask);
8731 break;
8732 #endif
8733 case SD_LV_CPU: /* set up physical groups */
8734 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8735 if (!cpumask_empty(d->nodemask))
8736 init_sched_build_groups(d->nodemask, cpu_map,
8737 &cpu_to_phys_group,
8738 d->send_covered, d->tmpmask);
8739 break;
8740 #ifdef CONFIG_NUMA
8741 case SD_LV_ALLNODES:
8742 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8743 d->send_covered, d->tmpmask);
8744 break;
8745 #endif
8746 default:
8747 break;
8752 * Build sched domains for a given set of cpus and attach the sched domains
8753 * to the individual cpus
8755 static int __build_sched_domains(const struct cpumask *cpu_map,
8756 struct sched_domain_attr *attr)
8758 enum s_alloc alloc_state = sa_none;
8759 struct s_data d;
8760 struct sched_domain *sd;
8761 int i;
8762 #ifdef CONFIG_NUMA
8763 d.sd_allnodes = 0;
8764 #endif
8766 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8767 if (alloc_state != sa_rootdomain)
8768 goto error;
8769 alloc_state = sa_sched_groups;
8772 * Set up domains for cpus specified by the cpu_map.
8774 for_each_cpu(i, cpu_map) {
8775 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8776 cpu_map);
8778 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8779 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8780 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8781 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8784 for_each_cpu(i, cpu_map) {
8785 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8786 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8789 /* Set up physical groups */
8790 for (i = 0; i < nr_node_ids; i++)
8791 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8793 #ifdef CONFIG_NUMA
8794 /* Set up node groups */
8795 if (d.sd_allnodes)
8796 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8798 for (i = 0; i < nr_node_ids; i++)
8799 if (build_numa_sched_groups(&d, cpu_map, i))
8800 goto error;
8801 #endif
8803 /* Calculate CPU power for physical packages and nodes */
8804 #ifdef CONFIG_SCHED_SMT
8805 for_each_cpu(i, cpu_map) {
8806 sd = &per_cpu(cpu_domains, i).sd;
8807 init_sched_groups_power(i, sd);
8809 #endif
8810 #ifdef CONFIG_SCHED_MC
8811 for_each_cpu(i, cpu_map) {
8812 sd = &per_cpu(core_domains, i).sd;
8813 init_sched_groups_power(i, sd);
8815 #endif
8817 for_each_cpu(i, cpu_map) {
8818 sd = &per_cpu(phys_domains, i).sd;
8819 init_sched_groups_power(i, sd);
8822 #ifdef CONFIG_NUMA
8823 for (i = 0; i < nr_node_ids; i++)
8824 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8826 if (d.sd_allnodes) {
8827 struct sched_group *sg;
8829 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8830 d.tmpmask);
8831 init_numa_sched_groups_power(sg);
8833 #endif
8835 /* Attach the domains */
8836 for_each_cpu(i, cpu_map) {
8837 #ifdef CONFIG_SCHED_SMT
8838 sd = &per_cpu(cpu_domains, i).sd;
8839 #elif defined(CONFIG_SCHED_MC)
8840 sd = &per_cpu(core_domains, i).sd;
8841 #else
8842 sd = &per_cpu(phys_domains, i).sd;
8843 #endif
8844 cpu_attach_domain(sd, d.rd, i);
8847 d.sched_group_nodes = NULL; /* don't free this we still need it */
8848 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8849 return 0;
8851 error:
8852 __free_domain_allocs(&d, alloc_state, cpu_map);
8853 return -ENOMEM;
8856 static int build_sched_domains(const struct cpumask *cpu_map)
8858 return __build_sched_domains(cpu_map, NULL);
8861 static struct cpumask *doms_cur; /* current sched domains */
8862 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8863 static struct sched_domain_attr *dattr_cur;
8864 /* attribues of custom domains in 'doms_cur' */
8867 * Special case: If a kmalloc of a doms_cur partition (array of
8868 * cpumask) fails, then fallback to a single sched domain,
8869 * as determined by the single cpumask fallback_doms.
8871 static cpumask_var_t fallback_doms;
8874 * arch_update_cpu_topology lets virtualized architectures update the
8875 * cpu core maps. It is supposed to return 1 if the topology changed
8876 * or 0 if it stayed the same.
8878 int __attribute__((weak)) arch_update_cpu_topology(void)
8880 return 0;
8884 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8885 * For now this just excludes isolated cpus, but could be used to
8886 * exclude other special cases in the future.
8888 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8890 int err;
8892 arch_update_cpu_topology();
8893 ndoms_cur = 1;
8894 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8895 if (!doms_cur)
8896 doms_cur = fallback_doms;
8897 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8898 dattr_cur = NULL;
8899 err = build_sched_domains(doms_cur);
8900 register_sched_domain_sysctl();
8902 return err;
8905 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8906 struct cpumask *tmpmask)
8908 free_sched_groups(cpu_map, tmpmask);
8912 * Detach sched domains from a group of cpus specified in cpu_map
8913 * These cpus will now be attached to the NULL domain
8915 static void detach_destroy_domains(const struct cpumask *cpu_map)
8917 /* Save because hotplug lock held. */
8918 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8919 int i;
8921 for_each_cpu(i, cpu_map)
8922 cpu_attach_domain(NULL, &def_root_domain, i);
8923 synchronize_sched();
8924 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8927 /* handle null as "default" */
8928 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8929 struct sched_domain_attr *new, int idx_new)
8931 struct sched_domain_attr tmp;
8933 /* fast path */
8934 if (!new && !cur)
8935 return 1;
8937 tmp = SD_ATTR_INIT;
8938 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8939 new ? (new + idx_new) : &tmp,
8940 sizeof(struct sched_domain_attr));
8944 * Partition sched domains as specified by the 'ndoms_new'
8945 * cpumasks in the array doms_new[] of cpumasks. This compares
8946 * doms_new[] to the current sched domain partitioning, doms_cur[].
8947 * It destroys each deleted domain and builds each new domain.
8949 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8950 * The masks don't intersect (don't overlap.) We should setup one
8951 * sched domain for each mask. CPUs not in any of the cpumasks will
8952 * not be load balanced. If the same cpumask appears both in the
8953 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8954 * it as it is.
8956 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8957 * ownership of it and will kfree it when done with it. If the caller
8958 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8959 * ndoms_new == 1, and partition_sched_domains() will fallback to
8960 * the single partition 'fallback_doms', it also forces the domains
8961 * to be rebuilt.
8963 * If doms_new == NULL it will be replaced with cpu_online_mask.
8964 * ndoms_new == 0 is a special case for destroying existing domains,
8965 * and it will not create the default domain.
8967 * Call with hotplug lock held
8969 /* FIXME: Change to struct cpumask *doms_new[] */
8970 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8971 struct sched_domain_attr *dattr_new)
8973 int i, j, n;
8974 int new_topology;
8976 mutex_lock(&sched_domains_mutex);
8978 /* always unregister in case we don't destroy any domains */
8979 unregister_sched_domain_sysctl();
8981 /* Let architecture update cpu core mappings. */
8982 new_topology = arch_update_cpu_topology();
8984 n = doms_new ? ndoms_new : 0;
8986 /* Destroy deleted domains */
8987 for (i = 0; i < ndoms_cur; i++) {
8988 for (j = 0; j < n && !new_topology; j++) {
8989 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8990 && dattrs_equal(dattr_cur, i, dattr_new, j))
8991 goto match1;
8993 /* no match - a current sched domain not in new doms_new[] */
8994 detach_destroy_domains(doms_cur + i);
8995 match1:
8999 if (doms_new == NULL) {
9000 ndoms_cur = 0;
9001 doms_new = fallback_doms;
9002 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9003 WARN_ON_ONCE(dattr_new);
9006 /* Build new domains */
9007 for (i = 0; i < ndoms_new; i++) {
9008 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9009 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9010 && dattrs_equal(dattr_new, i, dattr_cur, j))
9011 goto match2;
9013 /* no match - add a new doms_new */
9014 __build_sched_domains(doms_new + i,
9015 dattr_new ? dattr_new + i : NULL);
9016 match2:
9020 /* Remember the new sched domains */
9021 if (doms_cur != fallback_doms)
9022 kfree(doms_cur);
9023 kfree(dattr_cur); /* kfree(NULL) is safe */
9024 doms_cur = doms_new;
9025 dattr_cur = dattr_new;
9026 ndoms_cur = ndoms_new;
9028 register_sched_domain_sysctl();
9030 mutex_unlock(&sched_domains_mutex);
9033 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9034 static void arch_reinit_sched_domains(void)
9036 get_online_cpus();
9038 /* Destroy domains first to force the rebuild */
9039 partition_sched_domains(0, NULL, NULL);
9041 rebuild_sched_domains();
9042 put_online_cpus();
9045 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9047 unsigned int level = 0;
9049 if (sscanf(buf, "%u", &level) != 1)
9050 return -EINVAL;
9053 * level is always be positive so don't check for
9054 * level < POWERSAVINGS_BALANCE_NONE which is 0
9055 * What happens on 0 or 1 byte write,
9056 * need to check for count as well?
9059 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9060 return -EINVAL;
9062 if (smt)
9063 sched_smt_power_savings = level;
9064 else
9065 sched_mc_power_savings = level;
9067 arch_reinit_sched_domains();
9069 return count;
9072 #ifdef CONFIG_SCHED_MC
9073 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9074 char *page)
9076 return sprintf(page, "%u\n", sched_mc_power_savings);
9078 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9079 const char *buf, size_t count)
9081 return sched_power_savings_store(buf, count, 0);
9083 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9084 sched_mc_power_savings_show,
9085 sched_mc_power_savings_store);
9086 #endif
9088 #ifdef CONFIG_SCHED_SMT
9089 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9090 char *page)
9092 return sprintf(page, "%u\n", sched_smt_power_savings);
9094 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9095 const char *buf, size_t count)
9097 return sched_power_savings_store(buf, count, 1);
9099 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9100 sched_smt_power_savings_show,
9101 sched_smt_power_savings_store);
9102 #endif
9104 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9106 int err = 0;
9108 #ifdef CONFIG_SCHED_SMT
9109 if (smt_capable())
9110 err = sysfs_create_file(&cls->kset.kobj,
9111 &attr_sched_smt_power_savings.attr);
9112 #endif
9113 #ifdef CONFIG_SCHED_MC
9114 if (!err && mc_capable())
9115 err = sysfs_create_file(&cls->kset.kobj,
9116 &attr_sched_mc_power_savings.attr);
9117 #endif
9118 return err;
9120 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9122 #ifndef CONFIG_CPUSETS
9124 * Add online and remove offline CPUs from the scheduler domains.
9125 * When cpusets are enabled they take over this function.
9127 static int update_sched_domains(struct notifier_block *nfb,
9128 unsigned long action, void *hcpu)
9130 switch (action) {
9131 case CPU_ONLINE:
9132 case CPU_ONLINE_FROZEN:
9133 case CPU_DEAD:
9134 case CPU_DEAD_FROZEN:
9135 partition_sched_domains(1, NULL, NULL);
9136 return NOTIFY_OK;
9138 default:
9139 return NOTIFY_DONE;
9142 #endif
9144 static int update_runtime(struct notifier_block *nfb,
9145 unsigned long action, void *hcpu)
9147 int cpu = (int)(long)hcpu;
9149 switch (action) {
9150 case CPU_DOWN_PREPARE:
9151 case CPU_DOWN_PREPARE_FROZEN:
9152 disable_runtime(cpu_rq(cpu));
9153 return NOTIFY_OK;
9155 case CPU_DOWN_FAILED:
9156 case CPU_DOWN_FAILED_FROZEN:
9157 case CPU_ONLINE:
9158 case CPU_ONLINE_FROZEN:
9159 enable_runtime(cpu_rq(cpu));
9160 return NOTIFY_OK;
9162 default:
9163 return NOTIFY_DONE;
9167 void __init sched_init_smp(void)
9169 cpumask_var_t non_isolated_cpus;
9171 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9173 #if defined(CONFIG_NUMA)
9174 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9175 GFP_KERNEL);
9176 BUG_ON(sched_group_nodes_bycpu == NULL);
9177 #endif
9178 get_online_cpus();
9179 mutex_lock(&sched_domains_mutex);
9180 arch_init_sched_domains(cpu_online_mask);
9181 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9182 if (cpumask_empty(non_isolated_cpus))
9183 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9184 mutex_unlock(&sched_domains_mutex);
9185 put_online_cpus();
9187 #ifndef CONFIG_CPUSETS
9188 /* XXX: Theoretical race here - CPU may be hotplugged now */
9189 hotcpu_notifier(update_sched_domains, 0);
9190 #endif
9192 /* RT runtime code needs to handle some hotplug events */
9193 hotcpu_notifier(update_runtime, 0);
9195 init_hrtick();
9197 /* Move init over to a non-isolated CPU */
9198 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9199 BUG();
9200 sched_init_granularity();
9201 free_cpumask_var(non_isolated_cpus);
9203 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9204 init_sched_rt_class();
9206 #else
9207 void __init sched_init_smp(void)
9209 sched_init_granularity();
9211 #endif /* CONFIG_SMP */
9213 const_debug unsigned int sysctl_timer_migration = 1;
9215 int in_sched_functions(unsigned long addr)
9217 return in_lock_functions(addr) ||
9218 (addr >= (unsigned long)__sched_text_start
9219 && addr < (unsigned long)__sched_text_end);
9222 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9224 cfs_rq->tasks_timeline = RB_ROOT;
9225 INIT_LIST_HEAD(&cfs_rq->tasks);
9226 #ifdef CONFIG_FAIR_GROUP_SCHED
9227 cfs_rq->rq = rq;
9228 #endif
9229 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9232 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9234 struct rt_prio_array *array;
9235 int i;
9237 array = &rt_rq->active;
9238 for (i = 0; i < MAX_RT_PRIO; i++) {
9239 INIT_LIST_HEAD(array->queue + i);
9240 __clear_bit(i, array->bitmap);
9242 /* delimiter for bitsearch: */
9243 __set_bit(MAX_RT_PRIO, array->bitmap);
9245 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9246 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9247 #ifdef CONFIG_SMP
9248 rt_rq->highest_prio.next = MAX_RT_PRIO;
9249 #endif
9250 #endif
9251 #ifdef CONFIG_SMP
9252 rt_rq->rt_nr_migratory = 0;
9253 rt_rq->overloaded = 0;
9254 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9255 #endif
9257 rt_rq->rt_time = 0;
9258 rt_rq->rt_throttled = 0;
9259 rt_rq->rt_runtime = 0;
9260 spin_lock_init(&rt_rq->rt_runtime_lock);
9262 #ifdef CONFIG_RT_GROUP_SCHED
9263 rt_rq->rt_nr_boosted = 0;
9264 rt_rq->rq = rq;
9265 #endif
9268 #ifdef CONFIG_FAIR_GROUP_SCHED
9269 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9270 struct sched_entity *se, int cpu, int add,
9271 struct sched_entity *parent)
9273 struct rq *rq = cpu_rq(cpu);
9274 tg->cfs_rq[cpu] = cfs_rq;
9275 init_cfs_rq(cfs_rq, rq);
9276 cfs_rq->tg = tg;
9277 if (add)
9278 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9280 tg->se[cpu] = se;
9281 /* se could be NULL for init_task_group */
9282 if (!se)
9283 return;
9285 if (!parent)
9286 se->cfs_rq = &rq->cfs;
9287 else
9288 se->cfs_rq = parent->my_q;
9290 se->my_q = cfs_rq;
9291 se->load.weight = tg->shares;
9292 se->load.inv_weight = 0;
9293 se->parent = parent;
9295 #endif
9297 #ifdef CONFIG_RT_GROUP_SCHED
9298 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9299 struct sched_rt_entity *rt_se, int cpu, int add,
9300 struct sched_rt_entity *parent)
9302 struct rq *rq = cpu_rq(cpu);
9304 tg->rt_rq[cpu] = rt_rq;
9305 init_rt_rq(rt_rq, rq);
9306 rt_rq->tg = tg;
9307 rt_rq->rt_se = rt_se;
9308 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9309 if (add)
9310 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9312 tg->rt_se[cpu] = rt_se;
9313 if (!rt_se)
9314 return;
9316 if (!parent)
9317 rt_se->rt_rq = &rq->rt;
9318 else
9319 rt_se->rt_rq = parent->my_q;
9321 rt_se->my_q = rt_rq;
9322 rt_se->parent = parent;
9323 INIT_LIST_HEAD(&rt_se->run_list);
9325 #endif
9327 void __init sched_init(void)
9329 int i, j;
9330 unsigned long alloc_size = 0, ptr;
9332 #ifdef CONFIG_FAIR_GROUP_SCHED
9333 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9334 #endif
9335 #ifdef CONFIG_RT_GROUP_SCHED
9336 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9337 #endif
9338 #ifdef CONFIG_USER_SCHED
9339 alloc_size *= 2;
9340 #endif
9341 #ifdef CONFIG_CPUMASK_OFFSTACK
9342 alloc_size += num_possible_cpus() * cpumask_size();
9343 #endif
9345 * As sched_init() is called before page_alloc is setup,
9346 * we use alloc_bootmem().
9348 if (alloc_size) {
9349 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9351 #ifdef CONFIG_FAIR_GROUP_SCHED
9352 init_task_group.se = (struct sched_entity **)ptr;
9353 ptr += nr_cpu_ids * sizeof(void **);
9355 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
9358 #ifdef CONFIG_USER_SCHED
9359 root_task_group.se = (struct sched_entity **)ptr;
9360 ptr += nr_cpu_ids * sizeof(void **);
9362 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9364 #endif /* CONFIG_USER_SCHED */
9365 #endif /* CONFIG_FAIR_GROUP_SCHED */
9366 #ifdef CONFIG_RT_GROUP_SCHED
9367 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9368 ptr += nr_cpu_ids * sizeof(void **);
9370 init_task_group.rt_rq = (struct rt_rq **)ptr;
9371 ptr += nr_cpu_ids * sizeof(void **);
9373 #ifdef CONFIG_USER_SCHED
9374 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
9377 root_task_group.rt_rq = (struct rt_rq **)ptr;
9378 ptr += nr_cpu_ids * sizeof(void **);
9379 #endif /* CONFIG_USER_SCHED */
9380 #endif /* CONFIG_RT_GROUP_SCHED */
9381 #ifdef CONFIG_CPUMASK_OFFSTACK
9382 for_each_possible_cpu(i) {
9383 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9384 ptr += cpumask_size();
9386 #endif /* CONFIG_CPUMASK_OFFSTACK */
9389 #ifdef CONFIG_SMP
9390 init_defrootdomain();
9391 #endif
9393 init_rt_bandwidth(&def_rt_bandwidth,
9394 global_rt_period(), global_rt_runtime());
9396 #ifdef CONFIG_RT_GROUP_SCHED
9397 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9398 global_rt_period(), global_rt_runtime());
9399 #ifdef CONFIG_USER_SCHED
9400 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9401 global_rt_period(), RUNTIME_INF);
9402 #endif /* CONFIG_USER_SCHED */
9403 #endif /* CONFIG_RT_GROUP_SCHED */
9405 #ifdef CONFIG_GROUP_SCHED
9406 list_add(&init_task_group.list, &task_groups);
9407 INIT_LIST_HEAD(&init_task_group.children);
9409 #ifdef CONFIG_USER_SCHED
9410 INIT_LIST_HEAD(&root_task_group.children);
9411 init_task_group.parent = &root_task_group;
9412 list_add(&init_task_group.siblings, &root_task_group.children);
9413 #endif /* CONFIG_USER_SCHED */
9414 #endif /* CONFIG_GROUP_SCHED */
9416 for_each_possible_cpu(i) {
9417 struct rq *rq;
9419 rq = cpu_rq(i);
9420 spin_lock_init(&rq->lock);
9421 rq->nr_running = 0;
9422 rq->calc_load_active = 0;
9423 rq->calc_load_update = jiffies + LOAD_FREQ;
9424 init_cfs_rq(&rq->cfs, rq);
9425 init_rt_rq(&rq->rt, rq);
9426 #ifdef CONFIG_FAIR_GROUP_SCHED
9427 init_task_group.shares = init_task_group_load;
9428 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9429 #ifdef CONFIG_CGROUP_SCHED
9431 * How much cpu bandwidth does init_task_group get?
9433 * In case of task-groups formed thr' the cgroup filesystem, it
9434 * gets 100% of the cpu resources in the system. This overall
9435 * system cpu resource is divided among the tasks of
9436 * init_task_group and its child task-groups in a fair manner,
9437 * based on each entity's (task or task-group's) weight
9438 * (se->load.weight).
9440 * In other words, if init_task_group has 10 tasks of weight
9441 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9442 * then A0's share of the cpu resource is:
9444 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9446 * We achieve this by letting init_task_group's tasks sit
9447 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9449 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9450 #elif defined CONFIG_USER_SCHED
9451 root_task_group.shares = NICE_0_LOAD;
9452 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9454 * In case of task-groups formed thr' the user id of tasks,
9455 * init_task_group represents tasks belonging to root user.
9456 * Hence it forms a sibling of all subsequent groups formed.
9457 * In this case, init_task_group gets only a fraction of overall
9458 * system cpu resource, based on the weight assigned to root
9459 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9460 * by letting tasks of init_task_group sit in a separate cfs_rq
9461 * (init_tg_cfs_rq) and having one entity represent this group of
9462 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9464 init_tg_cfs_entry(&init_task_group,
9465 &per_cpu(init_tg_cfs_rq, i),
9466 &per_cpu(init_sched_entity, i), i, 1,
9467 root_task_group.se[i]);
9469 #endif
9470 #endif /* CONFIG_FAIR_GROUP_SCHED */
9472 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9473 #ifdef CONFIG_RT_GROUP_SCHED
9474 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9475 #ifdef CONFIG_CGROUP_SCHED
9476 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9477 #elif defined CONFIG_USER_SCHED
9478 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9479 init_tg_rt_entry(&init_task_group,
9480 &per_cpu(init_rt_rq, i),
9481 &per_cpu(init_sched_rt_entity, i), i, 1,
9482 root_task_group.rt_se[i]);
9483 #endif
9484 #endif
9486 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9487 rq->cpu_load[j] = 0;
9488 #ifdef CONFIG_SMP
9489 rq->sd = NULL;
9490 rq->rd = NULL;
9491 rq->post_schedule = 0;
9492 rq->active_balance = 0;
9493 rq->next_balance = jiffies;
9494 rq->push_cpu = 0;
9495 rq->cpu = i;
9496 rq->online = 0;
9497 rq->migration_thread = NULL;
9498 INIT_LIST_HEAD(&rq->migration_queue);
9499 rq_attach_root(rq, &def_root_domain);
9500 #endif
9501 init_rq_hrtick(rq);
9502 atomic_set(&rq->nr_iowait, 0);
9505 set_load_weight(&init_task);
9507 #ifdef CONFIG_PREEMPT_NOTIFIERS
9508 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9509 #endif
9511 #ifdef CONFIG_SMP
9512 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9513 #endif
9515 #ifdef CONFIG_RT_MUTEXES
9516 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9517 #endif
9520 * The boot idle thread does lazy MMU switching as well:
9522 atomic_inc(&init_mm.mm_count);
9523 enter_lazy_tlb(&init_mm, current);
9526 * Make us the idle thread. Technically, schedule() should not be
9527 * called from this thread, however somewhere below it might be,
9528 * but because we are the idle thread, we just pick up running again
9529 * when this runqueue becomes "idle".
9531 init_idle(current, smp_processor_id());
9533 calc_load_update = jiffies + LOAD_FREQ;
9536 * During early bootup we pretend to be a normal task:
9538 current->sched_class = &fair_sched_class;
9540 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9541 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9542 #ifdef CONFIG_SMP
9543 #ifdef CONFIG_NO_HZ
9544 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9545 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9546 #endif
9547 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9548 #endif /* SMP */
9550 perf_counter_init();
9552 scheduler_running = 1;
9555 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9556 static inline int preempt_count_equals(int preempt_offset)
9558 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9560 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9563 void __might_sleep(char *file, int line, int preempt_offset)
9565 #ifdef in_atomic
9566 static unsigned long prev_jiffy; /* ratelimiting */
9568 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9569 system_state != SYSTEM_RUNNING || oops_in_progress)
9570 return;
9571 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9572 return;
9573 prev_jiffy = jiffies;
9575 printk(KERN_ERR
9576 "BUG: sleeping function called from invalid context at %s:%d\n",
9577 file, line);
9578 printk(KERN_ERR
9579 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9580 in_atomic(), irqs_disabled(),
9581 current->pid, current->comm);
9583 debug_show_held_locks(current);
9584 if (irqs_disabled())
9585 print_irqtrace_events(current);
9586 dump_stack();
9587 #endif
9589 EXPORT_SYMBOL(__might_sleep);
9590 #endif
9592 #ifdef CONFIG_MAGIC_SYSRQ
9593 static void normalize_task(struct rq *rq, struct task_struct *p)
9595 int on_rq;
9597 update_rq_clock(rq);
9598 on_rq = p->se.on_rq;
9599 if (on_rq)
9600 deactivate_task(rq, p, 0);
9601 __setscheduler(rq, p, SCHED_NORMAL, 0);
9602 if (on_rq) {
9603 activate_task(rq, p, 0);
9604 resched_task(rq->curr);
9608 void normalize_rt_tasks(void)
9610 struct task_struct *g, *p;
9611 unsigned long flags;
9612 struct rq *rq;
9614 read_lock_irqsave(&tasklist_lock, flags);
9615 do_each_thread(g, p) {
9617 * Only normalize user tasks:
9619 if (!p->mm)
9620 continue;
9622 p->se.exec_start = 0;
9623 #ifdef CONFIG_SCHEDSTATS
9624 p->se.wait_start = 0;
9625 p->se.sleep_start = 0;
9626 p->se.block_start = 0;
9627 #endif
9629 if (!rt_task(p)) {
9631 * Renice negative nice level userspace
9632 * tasks back to 0:
9634 if (TASK_NICE(p) < 0 && p->mm)
9635 set_user_nice(p, 0);
9636 continue;
9639 spin_lock(&p->pi_lock);
9640 rq = __task_rq_lock(p);
9642 normalize_task(rq, p);
9644 __task_rq_unlock(rq);
9645 spin_unlock(&p->pi_lock);
9646 } while_each_thread(g, p);
9648 read_unlock_irqrestore(&tasklist_lock, flags);
9651 #endif /* CONFIG_MAGIC_SYSRQ */
9653 #ifdef CONFIG_IA64
9655 * These functions are only useful for the IA64 MCA handling.
9657 * They can only be called when the whole system has been
9658 * stopped - every CPU needs to be quiescent, and no scheduling
9659 * activity can take place. Using them for anything else would
9660 * be a serious bug, and as a result, they aren't even visible
9661 * under any other configuration.
9665 * curr_task - return the current task for a given cpu.
9666 * @cpu: the processor in question.
9668 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9670 struct task_struct *curr_task(int cpu)
9672 return cpu_curr(cpu);
9676 * set_curr_task - set the current task for a given cpu.
9677 * @cpu: the processor in question.
9678 * @p: the task pointer to set.
9680 * Description: This function must only be used when non-maskable interrupts
9681 * are serviced on a separate stack. It allows the architecture to switch the
9682 * notion of the current task on a cpu in a non-blocking manner. This function
9683 * must be called with all CPU's synchronized, and interrupts disabled, the
9684 * and caller must save the original value of the current task (see
9685 * curr_task() above) and restore that value before reenabling interrupts and
9686 * re-starting the system.
9688 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9690 void set_curr_task(int cpu, struct task_struct *p)
9692 cpu_curr(cpu) = p;
9695 #endif
9697 #ifdef CONFIG_FAIR_GROUP_SCHED
9698 static void free_fair_sched_group(struct task_group *tg)
9700 int i;
9702 for_each_possible_cpu(i) {
9703 if (tg->cfs_rq)
9704 kfree(tg->cfs_rq[i]);
9705 if (tg->se)
9706 kfree(tg->se[i]);
9709 kfree(tg->cfs_rq);
9710 kfree(tg->se);
9713 static
9714 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9716 struct cfs_rq *cfs_rq;
9717 struct sched_entity *se;
9718 struct rq *rq;
9719 int i;
9721 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9722 if (!tg->cfs_rq)
9723 goto err;
9724 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9725 if (!tg->se)
9726 goto err;
9728 tg->shares = NICE_0_LOAD;
9730 for_each_possible_cpu(i) {
9731 rq = cpu_rq(i);
9733 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9734 GFP_KERNEL, cpu_to_node(i));
9735 if (!cfs_rq)
9736 goto err;
9738 se = kzalloc_node(sizeof(struct sched_entity),
9739 GFP_KERNEL, cpu_to_node(i));
9740 if (!se)
9741 goto err;
9743 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9746 return 1;
9748 err:
9749 return 0;
9752 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9754 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9755 &cpu_rq(cpu)->leaf_cfs_rq_list);
9758 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9760 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9762 #else /* !CONFG_FAIR_GROUP_SCHED */
9763 static inline void free_fair_sched_group(struct task_group *tg)
9767 static inline
9768 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9770 return 1;
9773 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9777 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9780 #endif /* CONFIG_FAIR_GROUP_SCHED */
9782 #ifdef CONFIG_RT_GROUP_SCHED
9783 static void free_rt_sched_group(struct task_group *tg)
9785 int i;
9787 destroy_rt_bandwidth(&tg->rt_bandwidth);
9789 for_each_possible_cpu(i) {
9790 if (tg->rt_rq)
9791 kfree(tg->rt_rq[i]);
9792 if (tg->rt_se)
9793 kfree(tg->rt_se[i]);
9796 kfree(tg->rt_rq);
9797 kfree(tg->rt_se);
9800 static
9801 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9803 struct rt_rq *rt_rq;
9804 struct sched_rt_entity *rt_se;
9805 struct rq *rq;
9806 int i;
9808 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9809 if (!tg->rt_rq)
9810 goto err;
9811 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9812 if (!tg->rt_se)
9813 goto err;
9815 init_rt_bandwidth(&tg->rt_bandwidth,
9816 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9818 for_each_possible_cpu(i) {
9819 rq = cpu_rq(i);
9821 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9822 GFP_KERNEL, cpu_to_node(i));
9823 if (!rt_rq)
9824 goto err;
9826 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9827 GFP_KERNEL, cpu_to_node(i));
9828 if (!rt_se)
9829 goto err;
9831 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9834 return 1;
9836 err:
9837 return 0;
9840 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9842 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9843 &cpu_rq(cpu)->leaf_rt_rq_list);
9846 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9848 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9850 #else /* !CONFIG_RT_GROUP_SCHED */
9851 static inline void free_rt_sched_group(struct task_group *tg)
9855 static inline
9856 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9858 return 1;
9861 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9865 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9868 #endif /* CONFIG_RT_GROUP_SCHED */
9870 #ifdef CONFIG_GROUP_SCHED
9871 static void free_sched_group(struct task_group *tg)
9873 free_fair_sched_group(tg);
9874 free_rt_sched_group(tg);
9875 kfree(tg);
9878 /* allocate runqueue etc for a new task group */
9879 struct task_group *sched_create_group(struct task_group *parent)
9881 struct task_group *tg;
9882 unsigned long flags;
9883 int i;
9885 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9886 if (!tg)
9887 return ERR_PTR(-ENOMEM);
9889 if (!alloc_fair_sched_group(tg, parent))
9890 goto err;
9892 if (!alloc_rt_sched_group(tg, parent))
9893 goto err;
9895 spin_lock_irqsave(&task_group_lock, flags);
9896 for_each_possible_cpu(i) {
9897 register_fair_sched_group(tg, i);
9898 register_rt_sched_group(tg, i);
9900 list_add_rcu(&tg->list, &task_groups);
9902 WARN_ON(!parent); /* root should already exist */
9904 tg->parent = parent;
9905 INIT_LIST_HEAD(&tg->children);
9906 list_add_rcu(&tg->siblings, &parent->children);
9907 spin_unlock_irqrestore(&task_group_lock, flags);
9909 return tg;
9911 err:
9912 free_sched_group(tg);
9913 return ERR_PTR(-ENOMEM);
9916 /* rcu callback to free various structures associated with a task group */
9917 static void free_sched_group_rcu(struct rcu_head *rhp)
9919 /* now it should be safe to free those cfs_rqs */
9920 free_sched_group(container_of(rhp, struct task_group, rcu));
9923 /* Destroy runqueue etc associated with a task group */
9924 void sched_destroy_group(struct task_group *tg)
9926 unsigned long flags;
9927 int i;
9929 spin_lock_irqsave(&task_group_lock, flags);
9930 for_each_possible_cpu(i) {
9931 unregister_fair_sched_group(tg, i);
9932 unregister_rt_sched_group(tg, i);
9934 list_del_rcu(&tg->list);
9935 list_del_rcu(&tg->siblings);
9936 spin_unlock_irqrestore(&task_group_lock, flags);
9938 /* wait for possible concurrent references to cfs_rqs complete */
9939 call_rcu(&tg->rcu, free_sched_group_rcu);
9942 /* change task's runqueue when it moves between groups.
9943 * The caller of this function should have put the task in its new group
9944 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9945 * reflect its new group.
9947 void sched_move_task(struct task_struct *tsk)
9949 int on_rq, running;
9950 unsigned long flags;
9951 struct rq *rq;
9953 rq = task_rq_lock(tsk, &flags);
9955 update_rq_clock(rq);
9957 running = task_current(rq, tsk);
9958 on_rq = tsk->se.on_rq;
9960 if (on_rq)
9961 dequeue_task(rq, tsk, 0);
9962 if (unlikely(running))
9963 tsk->sched_class->put_prev_task(rq, tsk);
9965 set_task_rq(tsk, task_cpu(tsk));
9967 #ifdef CONFIG_FAIR_GROUP_SCHED
9968 if (tsk->sched_class->moved_group)
9969 tsk->sched_class->moved_group(tsk);
9970 #endif
9972 if (unlikely(running))
9973 tsk->sched_class->set_curr_task(rq);
9974 if (on_rq)
9975 enqueue_task(rq, tsk, 0);
9977 task_rq_unlock(rq, &flags);
9979 #endif /* CONFIG_GROUP_SCHED */
9981 #ifdef CONFIG_FAIR_GROUP_SCHED
9982 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9984 struct cfs_rq *cfs_rq = se->cfs_rq;
9985 int on_rq;
9987 on_rq = se->on_rq;
9988 if (on_rq)
9989 dequeue_entity(cfs_rq, se, 0);
9991 se->load.weight = shares;
9992 se->load.inv_weight = 0;
9994 if (on_rq)
9995 enqueue_entity(cfs_rq, se, 0);
9998 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10000 struct cfs_rq *cfs_rq = se->cfs_rq;
10001 struct rq *rq = cfs_rq->rq;
10002 unsigned long flags;
10004 spin_lock_irqsave(&rq->lock, flags);
10005 __set_se_shares(se, shares);
10006 spin_unlock_irqrestore(&rq->lock, flags);
10009 static DEFINE_MUTEX(shares_mutex);
10011 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10013 int i;
10014 unsigned long flags;
10017 * We can't change the weight of the root cgroup.
10019 if (!tg->se[0])
10020 return -EINVAL;
10022 if (shares < MIN_SHARES)
10023 shares = MIN_SHARES;
10024 else if (shares > MAX_SHARES)
10025 shares = MAX_SHARES;
10027 mutex_lock(&shares_mutex);
10028 if (tg->shares == shares)
10029 goto done;
10031 spin_lock_irqsave(&task_group_lock, flags);
10032 for_each_possible_cpu(i)
10033 unregister_fair_sched_group(tg, i);
10034 list_del_rcu(&tg->siblings);
10035 spin_unlock_irqrestore(&task_group_lock, flags);
10037 /* wait for any ongoing reference to this group to finish */
10038 synchronize_sched();
10041 * Now we are free to modify the group's share on each cpu
10042 * w/o tripping rebalance_share or load_balance_fair.
10044 tg->shares = shares;
10045 for_each_possible_cpu(i) {
10047 * force a rebalance
10049 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10050 set_se_shares(tg->se[i], shares);
10054 * Enable load balance activity on this group, by inserting it back on
10055 * each cpu's rq->leaf_cfs_rq_list.
10057 spin_lock_irqsave(&task_group_lock, flags);
10058 for_each_possible_cpu(i)
10059 register_fair_sched_group(tg, i);
10060 list_add_rcu(&tg->siblings, &tg->parent->children);
10061 spin_unlock_irqrestore(&task_group_lock, flags);
10062 done:
10063 mutex_unlock(&shares_mutex);
10064 return 0;
10067 unsigned long sched_group_shares(struct task_group *tg)
10069 return tg->shares;
10071 #endif
10073 #ifdef CONFIG_RT_GROUP_SCHED
10075 * Ensure that the real time constraints are schedulable.
10077 static DEFINE_MUTEX(rt_constraints_mutex);
10079 static unsigned long to_ratio(u64 period, u64 runtime)
10081 if (runtime == RUNTIME_INF)
10082 return 1ULL << 20;
10084 return div64_u64(runtime << 20, period);
10087 /* Must be called with tasklist_lock held */
10088 static inline int tg_has_rt_tasks(struct task_group *tg)
10090 struct task_struct *g, *p;
10092 do_each_thread(g, p) {
10093 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10094 return 1;
10095 } while_each_thread(g, p);
10097 return 0;
10100 struct rt_schedulable_data {
10101 struct task_group *tg;
10102 u64 rt_period;
10103 u64 rt_runtime;
10106 static int tg_schedulable(struct task_group *tg, void *data)
10108 struct rt_schedulable_data *d = data;
10109 struct task_group *child;
10110 unsigned long total, sum = 0;
10111 u64 period, runtime;
10113 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10114 runtime = tg->rt_bandwidth.rt_runtime;
10116 if (tg == d->tg) {
10117 period = d->rt_period;
10118 runtime = d->rt_runtime;
10121 #ifdef CONFIG_USER_SCHED
10122 if (tg == &root_task_group) {
10123 period = global_rt_period();
10124 runtime = global_rt_runtime();
10126 #endif
10129 * Cannot have more runtime than the period.
10131 if (runtime > period && runtime != RUNTIME_INF)
10132 return -EINVAL;
10135 * Ensure we don't starve existing RT tasks.
10137 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10138 return -EBUSY;
10140 total = to_ratio(period, runtime);
10143 * Nobody can have more than the global setting allows.
10145 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10146 return -EINVAL;
10149 * The sum of our children's runtime should not exceed our own.
10151 list_for_each_entry_rcu(child, &tg->children, siblings) {
10152 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10153 runtime = child->rt_bandwidth.rt_runtime;
10155 if (child == d->tg) {
10156 period = d->rt_period;
10157 runtime = d->rt_runtime;
10160 sum += to_ratio(period, runtime);
10163 if (sum > total)
10164 return -EINVAL;
10166 return 0;
10169 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10171 struct rt_schedulable_data data = {
10172 .tg = tg,
10173 .rt_period = period,
10174 .rt_runtime = runtime,
10177 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10180 static int tg_set_bandwidth(struct task_group *tg,
10181 u64 rt_period, u64 rt_runtime)
10183 int i, err = 0;
10185 mutex_lock(&rt_constraints_mutex);
10186 read_lock(&tasklist_lock);
10187 err = __rt_schedulable(tg, rt_period, rt_runtime);
10188 if (err)
10189 goto unlock;
10191 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10192 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10193 tg->rt_bandwidth.rt_runtime = rt_runtime;
10195 for_each_possible_cpu(i) {
10196 struct rt_rq *rt_rq = tg->rt_rq[i];
10198 spin_lock(&rt_rq->rt_runtime_lock);
10199 rt_rq->rt_runtime = rt_runtime;
10200 spin_unlock(&rt_rq->rt_runtime_lock);
10202 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10203 unlock:
10204 read_unlock(&tasklist_lock);
10205 mutex_unlock(&rt_constraints_mutex);
10207 return err;
10210 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10212 u64 rt_runtime, rt_period;
10214 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10215 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10216 if (rt_runtime_us < 0)
10217 rt_runtime = RUNTIME_INF;
10219 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10222 long sched_group_rt_runtime(struct task_group *tg)
10224 u64 rt_runtime_us;
10226 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10227 return -1;
10229 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10230 do_div(rt_runtime_us, NSEC_PER_USEC);
10231 return rt_runtime_us;
10234 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10236 u64 rt_runtime, rt_period;
10238 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10239 rt_runtime = tg->rt_bandwidth.rt_runtime;
10241 if (rt_period == 0)
10242 return -EINVAL;
10244 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10247 long sched_group_rt_period(struct task_group *tg)
10249 u64 rt_period_us;
10251 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10252 do_div(rt_period_us, NSEC_PER_USEC);
10253 return rt_period_us;
10256 static int sched_rt_global_constraints(void)
10258 u64 runtime, period;
10259 int ret = 0;
10261 if (sysctl_sched_rt_period <= 0)
10262 return -EINVAL;
10264 runtime = global_rt_runtime();
10265 period = global_rt_period();
10268 * Sanity check on the sysctl variables.
10270 if (runtime > period && runtime != RUNTIME_INF)
10271 return -EINVAL;
10273 mutex_lock(&rt_constraints_mutex);
10274 read_lock(&tasklist_lock);
10275 ret = __rt_schedulable(NULL, 0, 0);
10276 read_unlock(&tasklist_lock);
10277 mutex_unlock(&rt_constraints_mutex);
10279 return ret;
10282 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10284 /* Don't accept realtime tasks when there is no way for them to run */
10285 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10286 return 0;
10288 return 1;
10291 #else /* !CONFIG_RT_GROUP_SCHED */
10292 static int sched_rt_global_constraints(void)
10294 unsigned long flags;
10295 int i;
10297 if (sysctl_sched_rt_period <= 0)
10298 return -EINVAL;
10301 * There's always some RT tasks in the root group
10302 * -- migration, kstopmachine etc..
10304 if (sysctl_sched_rt_runtime == 0)
10305 return -EBUSY;
10307 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10308 for_each_possible_cpu(i) {
10309 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10311 spin_lock(&rt_rq->rt_runtime_lock);
10312 rt_rq->rt_runtime = global_rt_runtime();
10313 spin_unlock(&rt_rq->rt_runtime_lock);
10315 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10317 return 0;
10319 #endif /* CONFIG_RT_GROUP_SCHED */
10321 int sched_rt_handler(struct ctl_table *table, int write,
10322 struct file *filp, void __user *buffer, size_t *lenp,
10323 loff_t *ppos)
10325 int ret;
10326 int old_period, old_runtime;
10327 static DEFINE_MUTEX(mutex);
10329 mutex_lock(&mutex);
10330 old_period = sysctl_sched_rt_period;
10331 old_runtime = sysctl_sched_rt_runtime;
10333 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10335 if (!ret && write) {
10336 ret = sched_rt_global_constraints();
10337 if (ret) {
10338 sysctl_sched_rt_period = old_period;
10339 sysctl_sched_rt_runtime = old_runtime;
10340 } else {
10341 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10342 def_rt_bandwidth.rt_period =
10343 ns_to_ktime(global_rt_period());
10346 mutex_unlock(&mutex);
10348 return ret;
10351 #ifdef CONFIG_CGROUP_SCHED
10353 /* return corresponding task_group object of a cgroup */
10354 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10356 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10357 struct task_group, css);
10360 static struct cgroup_subsys_state *
10361 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10363 struct task_group *tg, *parent;
10365 if (!cgrp->parent) {
10366 /* This is early initialization for the top cgroup */
10367 return &init_task_group.css;
10370 parent = cgroup_tg(cgrp->parent);
10371 tg = sched_create_group(parent);
10372 if (IS_ERR(tg))
10373 return ERR_PTR(-ENOMEM);
10375 return &tg->css;
10378 static void
10379 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10381 struct task_group *tg = cgroup_tg(cgrp);
10383 sched_destroy_group(tg);
10386 static int
10387 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10388 struct task_struct *tsk)
10390 #ifdef CONFIG_RT_GROUP_SCHED
10391 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10392 return -EINVAL;
10393 #else
10394 /* We don't support RT-tasks being in separate groups */
10395 if (tsk->sched_class != &fair_sched_class)
10396 return -EINVAL;
10397 #endif
10399 return 0;
10402 static void
10403 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10404 struct cgroup *old_cont, struct task_struct *tsk)
10406 sched_move_task(tsk);
10409 #ifdef CONFIG_FAIR_GROUP_SCHED
10410 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10411 u64 shareval)
10413 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10416 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10418 struct task_group *tg = cgroup_tg(cgrp);
10420 return (u64) tg->shares;
10422 #endif /* CONFIG_FAIR_GROUP_SCHED */
10424 #ifdef CONFIG_RT_GROUP_SCHED
10425 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10426 s64 val)
10428 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10431 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10433 return sched_group_rt_runtime(cgroup_tg(cgrp));
10436 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10437 u64 rt_period_us)
10439 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10442 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10444 return sched_group_rt_period(cgroup_tg(cgrp));
10446 #endif /* CONFIG_RT_GROUP_SCHED */
10448 static struct cftype cpu_files[] = {
10449 #ifdef CONFIG_FAIR_GROUP_SCHED
10451 .name = "shares",
10452 .read_u64 = cpu_shares_read_u64,
10453 .write_u64 = cpu_shares_write_u64,
10455 #endif
10456 #ifdef CONFIG_RT_GROUP_SCHED
10458 .name = "rt_runtime_us",
10459 .read_s64 = cpu_rt_runtime_read,
10460 .write_s64 = cpu_rt_runtime_write,
10463 .name = "rt_period_us",
10464 .read_u64 = cpu_rt_period_read_uint,
10465 .write_u64 = cpu_rt_period_write_uint,
10467 #endif
10470 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10472 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10475 struct cgroup_subsys cpu_cgroup_subsys = {
10476 .name = "cpu",
10477 .create = cpu_cgroup_create,
10478 .destroy = cpu_cgroup_destroy,
10479 .can_attach = cpu_cgroup_can_attach,
10480 .attach = cpu_cgroup_attach,
10481 .populate = cpu_cgroup_populate,
10482 .subsys_id = cpu_cgroup_subsys_id,
10483 .early_init = 1,
10486 #endif /* CONFIG_CGROUP_SCHED */
10488 #ifdef CONFIG_CGROUP_CPUACCT
10491 * CPU accounting code for task groups.
10493 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10494 * (balbir@in.ibm.com).
10497 /* track cpu usage of a group of tasks and its child groups */
10498 struct cpuacct {
10499 struct cgroup_subsys_state css;
10500 /* cpuusage holds pointer to a u64-type object on every cpu */
10501 u64 *cpuusage;
10502 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10503 struct cpuacct *parent;
10506 struct cgroup_subsys cpuacct_subsys;
10508 /* return cpu accounting group corresponding to this container */
10509 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10511 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10512 struct cpuacct, css);
10515 /* return cpu accounting group to which this task belongs */
10516 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10518 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10519 struct cpuacct, css);
10522 /* create a new cpu accounting group */
10523 static struct cgroup_subsys_state *cpuacct_create(
10524 struct cgroup_subsys *ss, struct cgroup *cgrp)
10526 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10527 int i;
10529 if (!ca)
10530 goto out;
10532 ca->cpuusage = alloc_percpu(u64);
10533 if (!ca->cpuusage)
10534 goto out_free_ca;
10536 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10537 if (percpu_counter_init(&ca->cpustat[i], 0))
10538 goto out_free_counters;
10540 if (cgrp->parent)
10541 ca->parent = cgroup_ca(cgrp->parent);
10543 return &ca->css;
10545 out_free_counters:
10546 while (--i >= 0)
10547 percpu_counter_destroy(&ca->cpustat[i]);
10548 free_percpu(ca->cpuusage);
10549 out_free_ca:
10550 kfree(ca);
10551 out:
10552 return ERR_PTR(-ENOMEM);
10555 /* destroy an existing cpu accounting group */
10556 static void
10557 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10559 struct cpuacct *ca = cgroup_ca(cgrp);
10560 int i;
10562 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10563 percpu_counter_destroy(&ca->cpustat[i]);
10564 free_percpu(ca->cpuusage);
10565 kfree(ca);
10568 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10570 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10571 u64 data;
10573 #ifndef CONFIG_64BIT
10575 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10577 spin_lock_irq(&cpu_rq(cpu)->lock);
10578 data = *cpuusage;
10579 spin_unlock_irq(&cpu_rq(cpu)->lock);
10580 #else
10581 data = *cpuusage;
10582 #endif
10584 return data;
10587 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10589 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10591 #ifndef CONFIG_64BIT
10593 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10595 spin_lock_irq(&cpu_rq(cpu)->lock);
10596 *cpuusage = val;
10597 spin_unlock_irq(&cpu_rq(cpu)->lock);
10598 #else
10599 *cpuusage = val;
10600 #endif
10603 /* return total cpu usage (in nanoseconds) of a group */
10604 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10606 struct cpuacct *ca = cgroup_ca(cgrp);
10607 u64 totalcpuusage = 0;
10608 int i;
10610 for_each_present_cpu(i)
10611 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10613 return totalcpuusage;
10616 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10617 u64 reset)
10619 struct cpuacct *ca = cgroup_ca(cgrp);
10620 int err = 0;
10621 int i;
10623 if (reset) {
10624 err = -EINVAL;
10625 goto out;
10628 for_each_present_cpu(i)
10629 cpuacct_cpuusage_write(ca, i, 0);
10631 out:
10632 return err;
10635 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10636 struct seq_file *m)
10638 struct cpuacct *ca = cgroup_ca(cgroup);
10639 u64 percpu;
10640 int i;
10642 for_each_present_cpu(i) {
10643 percpu = cpuacct_cpuusage_read(ca, i);
10644 seq_printf(m, "%llu ", (unsigned long long) percpu);
10646 seq_printf(m, "\n");
10647 return 0;
10650 static const char *cpuacct_stat_desc[] = {
10651 [CPUACCT_STAT_USER] = "user",
10652 [CPUACCT_STAT_SYSTEM] = "system",
10655 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10656 struct cgroup_map_cb *cb)
10658 struct cpuacct *ca = cgroup_ca(cgrp);
10659 int i;
10661 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10662 s64 val = percpu_counter_read(&ca->cpustat[i]);
10663 val = cputime64_to_clock_t(val);
10664 cb->fill(cb, cpuacct_stat_desc[i], val);
10666 return 0;
10669 static struct cftype files[] = {
10671 .name = "usage",
10672 .read_u64 = cpuusage_read,
10673 .write_u64 = cpuusage_write,
10676 .name = "usage_percpu",
10677 .read_seq_string = cpuacct_percpu_seq_read,
10680 .name = "stat",
10681 .read_map = cpuacct_stats_show,
10685 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10687 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10691 * charge this task's execution time to its accounting group.
10693 * called with rq->lock held.
10695 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10697 struct cpuacct *ca;
10698 int cpu;
10700 if (unlikely(!cpuacct_subsys.active))
10701 return;
10703 cpu = task_cpu(tsk);
10705 rcu_read_lock();
10707 ca = task_ca(tsk);
10709 for (; ca; ca = ca->parent) {
10710 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10711 *cpuusage += cputime;
10714 rcu_read_unlock();
10718 * Charge the system/user time to the task's accounting group.
10720 static void cpuacct_update_stats(struct task_struct *tsk,
10721 enum cpuacct_stat_index idx, cputime_t val)
10723 struct cpuacct *ca;
10725 if (unlikely(!cpuacct_subsys.active))
10726 return;
10728 rcu_read_lock();
10729 ca = task_ca(tsk);
10731 do {
10732 percpu_counter_add(&ca->cpustat[idx], val);
10733 ca = ca->parent;
10734 } while (ca);
10735 rcu_read_unlock();
10738 struct cgroup_subsys cpuacct_subsys = {
10739 .name = "cpuacct",
10740 .create = cpuacct_create,
10741 .destroy = cpuacct_destroy,
10742 .populate = cpuacct_populate,
10743 .subsys_id = cpuacct_subsys_id,
10745 #endif /* CONFIG_CGROUP_CPUACCT */
10747 #ifndef CONFIG_SMP
10749 int rcu_expedited_torture_stats(char *page)
10751 return 0;
10753 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10755 void synchronize_sched_expedited(void)
10758 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10760 #else /* #ifndef CONFIG_SMP */
10762 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10763 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10765 #define RCU_EXPEDITED_STATE_POST -2
10766 #define RCU_EXPEDITED_STATE_IDLE -1
10768 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10770 int rcu_expedited_torture_stats(char *page)
10772 int cnt = 0;
10773 int cpu;
10775 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10776 for_each_online_cpu(cpu) {
10777 cnt += sprintf(&page[cnt], " %d:%d",
10778 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10780 cnt += sprintf(&page[cnt], "\n");
10781 return cnt;
10783 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10785 static long synchronize_sched_expedited_count;
10788 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10789 * approach to force grace period to end quickly. This consumes
10790 * significant time on all CPUs, and is thus not recommended for
10791 * any sort of common-case code.
10793 * Note that it is illegal to call this function while holding any
10794 * lock that is acquired by a CPU-hotplug notifier. Failing to
10795 * observe this restriction will result in deadlock.
10797 void synchronize_sched_expedited(void)
10799 int cpu;
10800 unsigned long flags;
10801 bool need_full_sync = 0;
10802 struct rq *rq;
10803 struct migration_req *req;
10804 long snap;
10805 int trycount = 0;
10807 smp_mb(); /* ensure prior mod happens before capturing snap. */
10808 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10809 get_online_cpus();
10810 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10811 put_online_cpus();
10812 if (trycount++ < 10)
10813 udelay(trycount * num_online_cpus());
10814 else {
10815 synchronize_sched();
10816 return;
10818 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10819 smp_mb(); /* ensure test happens before caller kfree */
10820 return;
10822 get_online_cpus();
10824 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10825 for_each_online_cpu(cpu) {
10826 rq = cpu_rq(cpu);
10827 req = &per_cpu(rcu_migration_req, cpu);
10828 init_completion(&req->done);
10829 req->task = NULL;
10830 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10831 spin_lock_irqsave(&rq->lock, flags);
10832 list_add(&req->list, &rq->migration_queue);
10833 spin_unlock_irqrestore(&rq->lock, flags);
10834 wake_up_process(rq->migration_thread);
10836 for_each_online_cpu(cpu) {
10837 rcu_expedited_state = cpu;
10838 req = &per_cpu(rcu_migration_req, cpu);
10839 rq = cpu_rq(cpu);
10840 wait_for_completion(&req->done);
10841 spin_lock_irqsave(&rq->lock, flags);
10842 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10843 need_full_sync = 1;
10844 req->dest_cpu = RCU_MIGRATION_IDLE;
10845 spin_unlock_irqrestore(&rq->lock, flags);
10847 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10848 mutex_unlock(&rcu_sched_expedited_mutex);
10849 put_online_cpus();
10850 if (need_full_sync)
10851 synchronize_sched();
10853 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10855 #endif /* #else #ifndef CONFIG_SMP */