[PATCH] e1000: no need for reboot notifier
[linux-2.6/verdex.git] / drivers / net / e1000 / e1000_main.c
blob5e5d2c3c7ce4a130fd0b72c014f72f903b5c597b
1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 /* Change Log
32 * 6.0.58 4/20/05
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
34 * 6.0.44+ 2/15/05
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
39 char e1000_driver_name[] = "e1000";
40 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.0.60-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
50 /* e1000_pci_tbl - PCI Device ID Table
52 * Last entry must be all 0s
54 * Macro expands to...
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
57 static struct pci_device_id e1000_pci_tbl[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x108A),
92 INTEL_E1000_ETHERNET_DEVICE(0x108B),
93 INTEL_E1000_ETHERNET_DEVICE(0x108C),
94 INTEL_E1000_ETHERNET_DEVICE(0x1099),
95 /* required last entry */
96 {0,}
99 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
101 int e1000_up(struct e1000_adapter *adapter);
102 void e1000_down(struct e1000_adapter *adapter);
103 void e1000_reset(struct e1000_adapter *adapter);
104 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
105 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
106 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
107 void e1000_free_tx_resources(struct e1000_adapter *adapter);
108 void e1000_free_rx_resources(struct e1000_adapter *adapter);
109 void e1000_update_stats(struct e1000_adapter *adapter);
111 /* Local Function Prototypes */
113 static int e1000_init_module(void);
114 static void e1000_exit_module(void);
115 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
116 static void __devexit e1000_remove(struct pci_dev *pdev);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
124 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
125 static void e1000_set_multi(struct net_device *netdev);
126 static void e1000_update_phy_info(unsigned long data);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_watchdog_task(struct e1000_adapter *adapter);
129 static void e1000_82547_tx_fifo_stall(unsigned long data);
130 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
131 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
132 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
133 static int e1000_set_mac(struct net_device *netdev, void *p);
134 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
135 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
136 #ifdef CONFIG_E1000_NAPI
137 static int e1000_clean(struct net_device *netdev, int *budget);
138 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
139 int *work_done, int work_to_do);
140 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
141 int *work_done, int work_to_do);
142 #else
143 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
144 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
145 #endif
146 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
147 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
148 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
149 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
150 int cmd);
151 void e1000_set_ethtool_ops(struct net_device *netdev);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_tx_timeout_task(struct net_device *dev);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
166 #ifdef CONFIG_PM
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
170 #ifdef CONFIG_NET_POLL_CONTROLLER
171 /* for netdump / net console */
172 static void e1000_netpoll (struct net_device *netdev);
173 #endif
175 /* Exported from other modules */
177 extern void e1000_check_options(struct e1000_adapter *adapter);
179 static struct pci_driver e1000_driver = {
180 .name = e1000_driver_name,
181 .id_table = e1000_pci_tbl,
182 .probe = e1000_probe,
183 .remove = __devexit_p(e1000_remove),
184 /* Power Managment Hooks */
185 #ifdef CONFIG_PM
186 .suspend = e1000_suspend,
187 .resume = e1000_resume
188 #endif
191 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
192 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
193 MODULE_LICENSE("GPL");
194 MODULE_VERSION(DRV_VERSION);
196 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
197 module_param(debug, int, 0);
198 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
201 * e1000_init_module - Driver Registration Routine
203 * e1000_init_module is the first routine called when the driver is
204 * loaded. All it does is register with the PCI subsystem.
207 static int __init
208 e1000_init_module(void)
210 int ret;
211 printk(KERN_INFO "%s - version %s\n",
212 e1000_driver_string, e1000_driver_version);
214 printk(KERN_INFO "%s\n", e1000_copyright);
216 ret = pci_module_init(&e1000_driver);
218 return ret;
221 module_init(e1000_init_module);
224 * e1000_exit_module - Driver Exit Cleanup Routine
226 * e1000_exit_module is called just before the driver is removed
227 * from memory.
230 static void __exit
231 e1000_exit_module(void)
233 pci_unregister_driver(&e1000_driver);
236 module_exit(e1000_exit_module);
239 * e1000_irq_disable - Mask off interrupt generation on the NIC
240 * @adapter: board private structure
243 static inline void
244 e1000_irq_disable(struct e1000_adapter *adapter)
246 atomic_inc(&adapter->irq_sem);
247 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
248 E1000_WRITE_FLUSH(&adapter->hw);
249 synchronize_irq(adapter->pdev->irq);
253 * e1000_irq_enable - Enable default interrupt generation settings
254 * @adapter: board private structure
257 static inline void
258 e1000_irq_enable(struct e1000_adapter *adapter)
260 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
261 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
262 E1000_WRITE_FLUSH(&adapter->hw);
265 void
266 e1000_update_mng_vlan(struct e1000_adapter *adapter)
268 struct net_device *netdev = adapter->netdev;
269 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
270 uint16_t old_vid = adapter->mng_vlan_id;
271 if(adapter->vlgrp) {
272 if(!adapter->vlgrp->vlan_devices[vid]) {
273 if(adapter->hw.mng_cookie.status &
274 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
275 e1000_vlan_rx_add_vid(netdev, vid);
276 adapter->mng_vlan_id = vid;
277 } else
278 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
280 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
281 (vid != old_vid) &&
282 !adapter->vlgrp->vlan_devices[old_vid])
283 e1000_vlan_rx_kill_vid(netdev, old_vid);
289 e1000_up(struct e1000_adapter *adapter)
291 struct net_device *netdev = adapter->netdev;
292 int err;
294 /* hardware has been reset, we need to reload some things */
296 /* Reset the PHY if it was previously powered down */
297 if(adapter->hw.media_type == e1000_media_type_copper) {
298 uint16_t mii_reg;
299 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
300 if(mii_reg & MII_CR_POWER_DOWN)
301 e1000_phy_reset(&adapter->hw);
304 e1000_set_multi(netdev);
306 e1000_restore_vlan(adapter);
308 e1000_configure_tx(adapter);
309 e1000_setup_rctl(adapter);
310 e1000_configure_rx(adapter);
311 adapter->alloc_rx_buf(adapter);
313 #ifdef CONFIG_PCI_MSI
314 if(adapter->hw.mac_type > e1000_82547_rev_2) {
315 adapter->have_msi = TRUE;
316 if((err = pci_enable_msi(adapter->pdev))) {
317 DPRINTK(PROBE, ERR,
318 "Unable to allocate MSI interrupt Error: %d\n", err);
319 adapter->have_msi = FALSE;
322 #endif
323 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
324 SA_SHIRQ | SA_SAMPLE_RANDOM,
325 netdev->name, netdev))) {
326 DPRINTK(PROBE, ERR,
327 "Unable to allocate interrupt Error: %d\n", err);
328 return err;
331 mod_timer(&adapter->watchdog_timer, jiffies);
333 #ifdef CONFIG_E1000_NAPI
334 netif_poll_enable(netdev);
335 #endif
336 e1000_irq_enable(adapter);
338 return 0;
341 void
342 e1000_down(struct e1000_adapter *adapter)
344 struct net_device *netdev = adapter->netdev;
346 e1000_irq_disable(adapter);
347 free_irq(adapter->pdev->irq, netdev);
348 #ifdef CONFIG_PCI_MSI
349 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
350 adapter->have_msi == TRUE)
351 pci_disable_msi(adapter->pdev);
352 #endif
353 del_timer_sync(&adapter->tx_fifo_stall_timer);
354 del_timer_sync(&adapter->watchdog_timer);
355 del_timer_sync(&adapter->phy_info_timer);
357 #ifdef CONFIG_E1000_NAPI
358 netif_poll_disable(netdev);
359 #endif
360 adapter->link_speed = 0;
361 adapter->link_duplex = 0;
362 netif_carrier_off(netdev);
363 netif_stop_queue(netdev);
365 e1000_reset(adapter);
366 e1000_clean_tx_ring(adapter);
367 e1000_clean_rx_ring(adapter);
369 /* If WoL is not enabled
370 * and management mode is not IAMT
371 * Power down the PHY so no link is implied when interface is down */
372 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
373 adapter->hw.media_type == e1000_media_type_copper &&
374 !e1000_check_mng_mode(&adapter->hw) &&
375 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
376 uint16_t mii_reg;
377 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
378 mii_reg |= MII_CR_POWER_DOWN;
379 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
380 mdelay(1);
384 void
385 e1000_reset(struct e1000_adapter *adapter)
387 struct net_device *netdev = adapter->netdev;
388 uint32_t pba, manc;
389 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
390 uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
392 /* Repartition Pba for greater than 9k mtu
393 * To take effect CTRL.RST is required.
396 switch (adapter->hw.mac_type) {
397 case e1000_82547:
398 case e1000_82547_rev_2:
399 pba = E1000_PBA_30K;
400 break;
401 case e1000_82573:
402 pba = E1000_PBA_12K;
403 break;
404 default:
405 pba = E1000_PBA_48K;
406 break;
409 if((adapter->hw.mac_type != e1000_82573) &&
410 (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
411 pba -= 8; /* allocate more FIFO for Tx */
412 /* send an XOFF when there is enough space in the
413 * Rx FIFO to hold one extra full size Rx packet
415 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
416 ETHERNET_FCS_SIZE + 1;
417 fc_low_water_mark = fc_high_water_mark + 8;
421 if(adapter->hw.mac_type == e1000_82547) {
422 adapter->tx_fifo_head = 0;
423 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
424 adapter->tx_fifo_size =
425 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
426 atomic_set(&adapter->tx_fifo_stall, 0);
429 E1000_WRITE_REG(&adapter->hw, PBA, pba);
431 /* flow control settings */
432 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
433 fc_high_water_mark;
434 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
435 fc_low_water_mark;
436 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
437 adapter->hw.fc_send_xon = 1;
438 adapter->hw.fc = adapter->hw.original_fc;
440 /* Allow time for pending master requests to run */
441 e1000_reset_hw(&adapter->hw);
442 if(adapter->hw.mac_type >= e1000_82544)
443 E1000_WRITE_REG(&adapter->hw, WUC, 0);
444 if(e1000_init_hw(&adapter->hw))
445 DPRINTK(PROBE, ERR, "Hardware Error\n");
446 e1000_update_mng_vlan(adapter);
447 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
448 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
450 e1000_reset_adaptive(&adapter->hw);
451 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
452 if (adapter->en_mng_pt) {
453 manc = E1000_READ_REG(&adapter->hw, MANC);
454 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
455 E1000_WRITE_REG(&adapter->hw, MANC, manc);
460 * e1000_probe - Device Initialization Routine
461 * @pdev: PCI device information struct
462 * @ent: entry in e1000_pci_tbl
464 * Returns 0 on success, negative on failure
466 * e1000_probe initializes an adapter identified by a pci_dev structure.
467 * The OS initialization, configuring of the adapter private structure,
468 * and a hardware reset occur.
471 static int __devinit
472 e1000_probe(struct pci_dev *pdev,
473 const struct pci_device_id *ent)
475 struct net_device *netdev;
476 struct e1000_adapter *adapter;
477 unsigned long mmio_start, mmio_len;
478 uint32_t swsm;
480 static int cards_found = 0;
481 int i, err, pci_using_dac;
482 uint16_t eeprom_data;
483 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
484 if((err = pci_enable_device(pdev)))
485 return err;
487 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
488 pci_using_dac = 1;
489 } else {
490 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
491 E1000_ERR("No usable DMA configuration, aborting\n");
492 return err;
494 pci_using_dac = 0;
497 if((err = pci_request_regions(pdev, e1000_driver_name)))
498 return err;
500 pci_set_master(pdev);
502 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
503 if(!netdev) {
504 err = -ENOMEM;
505 goto err_alloc_etherdev;
508 SET_MODULE_OWNER(netdev);
509 SET_NETDEV_DEV(netdev, &pdev->dev);
511 pci_set_drvdata(pdev, netdev);
512 adapter = netdev_priv(netdev);
513 adapter->netdev = netdev;
514 adapter->pdev = pdev;
515 adapter->hw.back = adapter;
516 adapter->msg_enable = (1 << debug) - 1;
518 mmio_start = pci_resource_start(pdev, BAR_0);
519 mmio_len = pci_resource_len(pdev, BAR_0);
521 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
522 if(!adapter->hw.hw_addr) {
523 err = -EIO;
524 goto err_ioremap;
527 for(i = BAR_1; i <= BAR_5; i++) {
528 if(pci_resource_len(pdev, i) == 0)
529 continue;
530 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
531 adapter->hw.io_base = pci_resource_start(pdev, i);
532 break;
536 netdev->open = &e1000_open;
537 netdev->stop = &e1000_close;
538 netdev->hard_start_xmit = &e1000_xmit_frame;
539 netdev->get_stats = &e1000_get_stats;
540 netdev->set_multicast_list = &e1000_set_multi;
541 netdev->set_mac_address = &e1000_set_mac;
542 netdev->change_mtu = &e1000_change_mtu;
543 netdev->do_ioctl = &e1000_ioctl;
544 e1000_set_ethtool_ops(netdev);
545 netdev->tx_timeout = &e1000_tx_timeout;
546 netdev->watchdog_timeo = 5 * HZ;
547 #ifdef CONFIG_E1000_NAPI
548 netdev->poll = &e1000_clean;
549 netdev->weight = 64;
550 #endif
551 netdev->vlan_rx_register = e1000_vlan_rx_register;
552 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
553 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
554 #ifdef CONFIG_NET_POLL_CONTROLLER
555 netdev->poll_controller = e1000_netpoll;
556 #endif
557 strcpy(netdev->name, pci_name(pdev));
559 netdev->mem_start = mmio_start;
560 netdev->mem_end = mmio_start + mmio_len;
561 netdev->base_addr = adapter->hw.io_base;
563 adapter->bd_number = cards_found;
565 /* setup the private structure */
567 if((err = e1000_sw_init(adapter)))
568 goto err_sw_init;
570 if((err = e1000_check_phy_reset_block(&adapter->hw)))
571 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
573 if(adapter->hw.mac_type >= e1000_82543) {
574 netdev->features = NETIF_F_SG |
575 NETIF_F_HW_CSUM |
576 NETIF_F_HW_VLAN_TX |
577 NETIF_F_HW_VLAN_RX |
578 NETIF_F_HW_VLAN_FILTER;
581 #ifdef NETIF_F_TSO
582 if((adapter->hw.mac_type >= e1000_82544) &&
583 (adapter->hw.mac_type != e1000_82547))
584 netdev->features |= NETIF_F_TSO;
586 #ifdef NETIF_F_TSO_IPV6
587 if(adapter->hw.mac_type > e1000_82547_rev_2)
588 netdev->features |= NETIF_F_TSO_IPV6;
589 #endif
590 #endif
591 if(pci_using_dac)
592 netdev->features |= NETIF_F_HIGHDMA;
594 /* hard_start_xmit is safe against parallel locking */
595 netdev->features |= NETIF_F_LLTX;
597 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
599 /* before reading the EEPROM, reset the controller to
600 * put the device in a known good starting state */
602 e1000_reset_hw(&adapter->hw);
604 /* make sure the EEPROM is good */
606 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
607 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
608 err = -EIO;
609 goto err_eeprom;
612 /* copy the MAC address out of the EEPROM */
614 if(e1000_read_mac_addr(&adapter->hw))
615 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
616 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
618 if(!is_valid_ether_addr(netdev->dev_addr)) {
619 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
620 err = -EIO;
621 goto err_eeprom;
624 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
626 e1000_get_bus_info(&adapter->hw);
628 init_timer(&adapter->tx_fifo_stall_timer);
629 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
630 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
632 init_timer(&adapter->watchdog_timer);
633 adapter->watchdog_timer.function = &e1000_watchdog;
634 adapter->watchdog_timer.data = (unsigned long) adapter;
636 INIT_WORK(&adapter->watchdog_task,
637 (void (*)(void *))e1000_watchdog_task, adapter);
639 init_timer(&adapter->phy_info_timer);
640 adapter->phy_info_timer.function = &e1000_update_phy_info;
641 adapter->phy_info_timer.data = (unsigned long) adapter;
643 INIT_WORK(&adapter->tx_timeout_task,
644 (void (*)(void *))e1000_tx_timeout_task, netdev);
646 /* we're going to reset, so assume we have no link for now */
648 netif_carrier_off(netdev);
649 netif_stop_queue(netdev);
651 e1000_check_options(adapter);
653 /* Initial Wake on LAN setting
654 * If APM wake is enabled in the EEPROM,
655 * enable the ACPI Magic Packet filter
658 switch(adapter->hw.mac_type) {
659 case e1000_82542_rev2_0:
660 case e1000_82542_rev2_1:
661 case e1000_82543:
662 break;
663 case e1000_82544:
664 e1000_read_eeprom(&adapter->hw,
665 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
666 eeprom_apme_mask = E1000_EEPROM_82544_APM;
667 break;
668 case e1000_82546:
669 case e1000_82546_rev_3:
670 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
671 && (adapter->hw.media_type == e1000_media_type_copper)) {
672 e1000_read_eeprom(&adapter->hw,
673 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
674 break;
676 /* Fall Through */
677 default:
678 e1000_read_eeprom(&adapter->hw,
679 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
680 break;
682 if(eeprom_data & eeprom_apme_mask)
683 adapter->wol |= E1000_WUFC_MAG;
685 /* reset the hardware with the new settings */
686 e1000_reset(adapter);
688 /* Let firmware know the driver has taken over */
689 switch(adapter->hw.mac_type) {
690 case e1000_82573:
691 swsm = E1000_READ_REG(&adapter->hw, SWSM);
692 E1000_WRITE_REG(&adapter->hw, SWSM,
693 swsm | E1000_SWSM_DRV_LOAD);
694 break;
695 default:
696 break;
699 strcpy(netdev->name, "eth%d");
700 if((err = register_netdev(netdev)))
701 goto err_register;
703 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
705 cards_found++;
706 return 0;
708 err_register:
709 err_sw_init:
710 err_eeprom:
711 iounmap(adapter->hw.hw_addr);
712 err_ioremap:
713 free_netdev(netdev);
714 err_alloc_etherdev:
715 pci_release_regions(pdev);
716 return err;
720 * e1000_remove - Device Removal Routine
721 * @pdev: PCI device information struct
723 * e1000_remove is called by the PCI subsystem to alert the driver
724 * that it should release a PCI device. The could be caused by a
725 * Hot-Plug event, or because the driver is going to be removed from
726 * memory.
729 static void __devexit
730 e1000_remove(struct pci_dev *pdev)
732 struct net_device *netdev = pci_get_drvdata(pdev);
733 struct e1000_adapter *adapter = netdev_priv(netdev);
734 uint32_t manc, swsm;
736 flush_scheduled_work();
738 if(adapter->hw.mac_type >= e1000_82540 &&
739 adapter->hw.media_type == e1000_media_type_copper) {
740 manc = E1000_READ_REG(&adapter->hw, MANC);
741 if(manc & E1000_MANC_SMBUS_EN) {
742 manc |= E1000_MANC_ARP_EN;
743 E1000_WRITE_REG(&adapter->hw, MANC, manc);
747 switch(adapter->hw.mac_type) {
748 case e1000_82573:
749 swsm = E1000_READ_REG(&adapter->hw, SWSM);
750 E1000_WRITE_REG(&adapter->hw, SWSM,
751 swsm & ~E1000_SWSM_DRV_LOAD);
752 break;
754 default:
755 break;
758 unregister_netdev(netdev);
760 if(!e1000_check_phy_reset_block(&adapter->hw))
761 e1000_phy_hw_reset(&adapter->hw);
763 iounmap(adapter->hw.hw_addr);
764 pci_release_regions(pdev);
766 free_netdev(netdev);
768 pci_disable_device(pdev);
772 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
773 * @adapter: board private structure to initialize
775 * e1000_sw_init initializes the Adapter private data structure.
776 * Fields are initialized based on PCI device information and
777 * OS network device settings (MTU size).
780 static int __devinit
781 e1000_sw_init(struct e1000_adapter *adapter)
783 struct e1000_hw *hw = &adapter->hw;
784 struct net_device *netdev = adapter->netdev;
785 struct pci_dev *pdev = adapter->pdev;
787 /* PCI config space info */
789 hw->vendor_id = pdev->vendor;
790 hw->device_id = pdev->device;
791 hw->subsystem_vendor_id = pdev->subsystem_vendor;
792 hw->subsystem_id = pdev->subsystem_device;
794 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
796 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
798 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
799 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
800 hw->max_frame_size = netdev->mtu +
801 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
802 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
804 /* identify the MAC */
806 if(e1000_set_mac_type(hw)) {
807 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
808 return -EIO;
811 /* initialize eeprom parameters */
813 if(e1000_init_eeprom_params(hw)) {
814 E1000_ERR("EEPROM initialization failed\n");
815 return -EIO;
818 switch(hw->mac_type) {
819 default:
820 break;
821 case e1000_82541:
822 case e1000_82547:
823 case e1000_82541_rev_2:
824 case e1000_82547_rev_2:
825 hw->phy_init_script = 1;
826 break;
829 e1000_set_media_type(hw);
831 hw->wait_autoneg_complete = FALSE;
832 hw->tbi_compatibility_en = TRUE;
833 hw->adaptive_ifs = TRUE;
835 /* Copper options */
837 if(hw->media_type == e1000_media_type_copper) {
838 hw->mdix = AUTO_ALL_MODES;
839 hw->disable_polarity_correction = FALSE;
840 hw->master_slave = E1000_MASTER_SLAVE;
843 atomic_set(&adapter->irq_sem, 1);
844 spin_lock_init(&adapter->stats_lock);
845 spin_lock_init(&adapter->tx_lock);
847 return 0;
851 * e1000_open - Called when a network interface is made active
852 * @netdev: network interface device structure
854 * Returns 0 on success, negative value on failure
856 * The open entry point is called when a network interface is made
857 * active by the system (IFF_UP). At this point all resources needed
858 * for transmit and receive operations are allocated, the interrupt
859 * handler is registered with the OS, the watchdog timer is started,
860 * and the stack is notified that the interface is ready.
863 static int
864 e1000_open(struct net_device *netdev)
866 struct e1000_adapter *adapter = netdev_priv(netdev);
867 int err;
869 /* allocate transmit descriptors */
871 if((err = e1000_setup_tx_resources(adapter)))
872 goto err_setup_tx;
874 /* allocate receive descriptors */
876 if((err = e1000_setup_rx_resources(adapter)))
877 goto err_setup_rx;
879 if((err = e1000_up(adapter)))
880 goto err_up;
881 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
882 if((adapter->hw.mng_cookie.status &
883 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
884 e1000_update_mng_vlan(adapter);
887 return E1000_SUCCESS;
889 err_up:
890 e1000_free_rx_resources(adapter);
891 err_setup_rx:
892 e1000_free_tx_resources(adapter);
893 err_setup_tx:
894 e1000_reset(adapter);
896 return err;
900 * e1000_close - Disables a network interface
901 * @netdev: network interface device structure
903 * Returns 0, this is not allowed to fail
905 * The close entry point is called when an interface is de-activated
906 * by the OS. The hardware is still under the drivers control, but
907 * needs to be disabled. A global MAC reset is issued to stop the
908 * hardware, and all transmit and receive resources are freed.
911 static int
912 e1000_close(struct net_device *netdev)
914 struct e1000_adapter *adapter = netdev_priv(netdev);
916 e1000_down(adapter);
918 e1000_free_tx_resources(adapter);
919 e1000_free_rx_resources(adapter);
921 if((adapter->hw.mng_cookie.status &
922 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
923 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
925 return 0;
929 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
930 * @adapter: address of board private structure
931 * @start: address of beginning of memory
932 * @len: length of memory
934 static inline boolean_t
935 e1000_check_64k_bound(struct e1000_adapter *adapter,
936 void *start, unsigned long len)
938 unsigned long begin = (unsigned long) start;
939 unsigned long end = begin + len;
941 /* First rev 82545 and 82546 need to not allow any memory
942 * write location to cross 64k boundary due to errata 23 */
943 if (adapter->hw.mac_type == e1000_82545 ||
944 adapter->hw.mac_type == e1000_82546) {
945 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
948 return TRUE;
952 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
953 * @adapter: board private structure
955 * Return 0 on success, negative on failure
959 e1000_setup_tx_resources(struct e1000_adapter *adapter)
961 struct e1000_desc_ring *txdr = &adapter->tx_ring;
962 struct pci_dev *pdev = adapter->pdev;
963 int size;
965 size = sizeof(struct e1000_buffer) * txdr->count;
966 txdr->buffer_info = vmalloc(size);
967 if(!txdr->buffer_info) {
968 DPRINTK(PROBE, ERR,
969 "Unable to allocate memory for the transmit descriptor ring\n");
970 return -ENOMEM;
972 memset(txdr->buffer_info, 0, size);
974 /* round up to nearest 4K */
976 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
977 E1000_ROUNDUP(txdr->size, 4096);
979 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
980 if(!txdr->desc) {
981 setup_tx_desc_die:
982 vfree(txdr->buffer_info);
983 DPRINTK(PROBE, ERR,
984 "Unable to allocate memory for the transmit descriptor ring\n");
985 return -ENOMEM;
988 /* Fix for errata 23, can't cross 64kB boundary */
989 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
990 void *olddesc = txdr->desc;
991 dma_addr_t olddma = txdr->dma;
992 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
993 "at %p\n", txdr->size, txdr->desc);
994 /* Try again, without freeing the previous */
995 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
996 if(!txdr->desc) {
997 /* Failed allocation, critical failure */
998 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
999 goto setup_tx_desc_die;
1002 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1003 /* give up */
1004 pci_free_consistent(pdev, txdr->size, txdr->desc,
1005 txdr->dma);
1006 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1007 DPRINTK(PROBE, ERR,
1008 "Unable to allocate aligned memory "
1009 "for the transmit descriptor ring\n");
1010 vfree(txdr->buffer_info);
1011 return -ENOMEM;
1012 } else {
1013 /* Free old allocation, new allocation was successful */
1014 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1017 memset(txdr->desc, 0, txdr->size);
1019 txdr->next_to_use = 0;
1020 txdr->next_to_clean = 0;
1022 return 0;
1026 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1027 * @adapter: board private structure
1029 * Configure the Tx unit of the MAC after a reset.
1032 static void
1033 e1000_configure_tx(struct e1000_adapter *adapter)
1035 uint64_t tdba = adapter->tx_ring.dma;
1036 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1037 uint32_t tctl, tipg;
1039 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1040 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1042 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1044 /* Setup the HW Tx Head and Tail descriptor pointers */
1046 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1047 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1049 /* Set the default values for the Tx Inter Packet Gap timer */
1051 switch (adapter->hw.mac_type) {
1052 case e1000_82542_rev2_0:
1053 case e1000_82542_rev2_1:
1054 tipg = DEFAULT_82542_TIPG_IPGT;
1055 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1056 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1057 break;
1058 default:
1059 if(adapter->hw.media_type == e1000_media_type_fiber ||
1060 adapter->hw.media_type == e1000_media_type_internal_serdes)
1061 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1062 else
1063 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1064 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1065 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1067 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1069 /* Set the Tx Interrupt Delay register */
1071 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1072 if(adapter->hw.mac_type >= e1000_82540)
1073 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1075 /* Program the Transmit Control Register */
1077 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1079 tctl &= ~E1000_TCTL_CT;
1080 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1081 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1083 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1085 e1000_config_collision_dist(&adapter->hw);
1087 /* Setup Transmit Descriptor Settings for eop descriptor */
1088 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1089 E1000_TXD_CMD_IFCS;
1091 if(adapter->hw.mac_type < e1000_82543)
1092 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1093 else
1094 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1096 /* Cache if we're 82544 running in PCI-X because we'll
1097 * need this to apply a workaround later in the send path. */
1098 if(adapter->hw.mac_type == e1000_82544 &&
1099 adapter->hw.bus_type == e1000_bus_type_pcix)
1100 adapter->pcix_82544 = 1;
1104 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1105 * @adapter: board private structure
1107 * Returns 0 on success, negative on failure
1111 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1113 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1114 struct pci_dev *pdev = adapter->pdev;
1115 int size, desc_len;
1117 size = sizeof(struct e1000_buffer) * rxdr->count;
1118 rxdr->buffer_info = vmalloc(size);
1119 if(!rxdr->buffer_info) {
1120 DPRINTK(PROBE, ERR,
1121 "Unable to allocate memory for the receive descriptor ring\n");
1122 return -ENOMEM;
1124 memset(rxdr->buffer_info, 0, size);
1126 size = sizeof(struct e1000_ps_page) * rxdr->count;
1127 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1128 if(!rxdr->ps_page) {
1129 vfree(rxdr->buffer_info);
1130 DPRINTK(PROBE, ERR,
1131 "Unable to allocate memory for the receive descriptor ring\n");
1132 return -ENOMEM;
1134 memset(rxdr->ps_page, 0, size);
1136 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1137 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1138 if(!rxdr->ps_page_dma) {
1139 vfree(rxdr->buffer_info);
1140 kfree(rxdr->ps_page);
1141 DPRINTK(PROBE, ERR,
1142 "Unable to allocate memory for the receive descriptor ring\n");
1143 return -ENOMEM;
1145 memset(rxdr->ps_page_dma, 0, size);
1147 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1148 desc_len = sizeof(struct e1000_rx_desc);
1149 else
1150 desc_len = sizeof(union e1000_rx_desc_packet_split);
1152 /* Round up to nearest 4K */
1154 rxdr->size = rxdr->count * desc_len;
1155 E1000_ROUNDUP(rxdr->size, 4096);
1157 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1159 if(!rxdr->desc) {
1160 setup_rx_desc_die:
1161 vfree(rxdr->buffer_info);
1162 kfree(rxdr->ps_page);
1163 kfree(rxdr->ps_page_dma);
1164 DPRINTK(PROBE, ERR,
1165 "Unable to allocate memory for the receive descriptor ring\n");
1166 return -ENOMEM;
1169 /* Fix for errata 23, can't cross 64kB boundary */
1170 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1171 void *olddesc = rxdr->desc;
1172 dma_addr_t olddma = rxdr->dma;
1173 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1174 "at %p\n", rxdr->size, rxdr->desc);
1175 /* Try again, without freeing the previous */
1176 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1177 if(!rxdr->desc) {
1178 /* Failed allocation, critical failure */
1179 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1180 goto setup_rx_desc_die;
1183 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1184 /* give up */
1185 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1186 rxdr->dma);
1187 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1188 DPRINTK(PROBE, ERR,
1189 "Unable to allocate aligned memory "
1190 "for the receive descriptor ring\n");
1191 vfree(rxdr->buffer_info);
1192 kfree(rxdr->ps_page);
1193 kfree(rxdr->ps_page_dma);
1194 return -ENOMEM;
1195 } else {
1196 /* Free old allocation, new allocation was successful */
1197 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1200 memset(rxdr->desc, 0, rxdr->size);
1202 rxdr->next_to_clean = 0;
1203 rxdr->next_to_use = 0;
1205 return 0;
1209 * e1000_setup_rctl - configure the receive control registers
1210 * @adapter: Board private structure
1213 static void
1214 e1000_setup_rctl(struct e1000_adapter *adapter)
1216 uint32_t rctl, rfctl;
1217 uint32_t psrctl = 0;
1219 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1221 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1223 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1224 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1225 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1227 if(adapter->hw.tbi_compatibility_on == 1)
1228 rctl |= E1000_RCTL_SBP;
1229 else
1230 rctl &= ~E1000_RCTL_SBP;
1232 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1233 rctl &= ~E1000_RCTL_LPE;
1234 else
1235 rctl |= E1000_RCTL_LPE;
1237 /* Setup buffer sizes */
1238 if(adapter->hw.mac_type == e1000_82573) {
1239 /* We can now specify buffers in 1K increments.
1240 * BSIZE and BSEX are ignored in this case. */
1241 rctl |= adapter->rx_buffer_len << 0x11;
1242 } else {
1243 rctl &= ~E1000_RCTL_SZ_4096;
1244 rctl |= E1000_RCTL_BSEX;
1245 switch (adapter->rx_buffer_len) {
1246 case E1000_RXBUFFER_2048:
1247 default:
1248 rctl |= E1000_RCTL_SZ_2048;
1249 rctl &= ~E1000_RCTL_BSEX;
1250 break;
1251 case E1000_RXBUFFER_4096:
1252 rctl |= E1000_RCTL_SZ_4096;
1253 break;
1254 case E1000_RXBUFFER_8192:
1255 rctl |= E1000_RCTL_SZ_8192;
1256 break;
1257 case E1000_RXBUFFER_16384:
1258 rctl |= E1000_RCTL_SZ_16384;
1259 break;
1263 #ifdef CONFIG_E1000_PACKET_SPLIT
1264 /* 82571 and greater support packet-split where the protocol
1265 * header is placed in skb->data and the packet data is
1266 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1267 * In the case of a non-split, skb->data is linearly filled,
1268 * followed by the page buffers. Therefore, skb->data is
1269 * sized to hold the largest protocol header.
1271 adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
1272 && (adapter->netdev->mtu
1273 < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1274 #endif
1275 if(adapter->rx_ps) {
1276 /* Configure extra packet-split registers */
1277 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1278 rfctl |= E1000_RFCTL_EXTEN;
1279 /* disable IPv6 packet split support */
1280 rfctl |= E1000_RFCTL_IPV6_DIS;
1281 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1283 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1285 psrctl |= adapter->rx_ps_bsize0 >>
1286 E1000_PSRCTL_BSIZE0_SHIFT;
1287 psrctl |= PAGE_SIZE >>
1288 E1000_PSRCTL_BSIZE1_SHIFT;
1289 psrctl |= PAGE_SIZE <<
1290 E1000_PSRCTL_BSIZE2_SHIFT;
1291 psrctl |= PAGE_SIZE <<
1292 E1000_PSRCTL_BSIZE3_SHIFT;
1294 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1297 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1301 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1302 * @adapter: board private structure
1304 * Configure the Rx unit of the MAC after a reset.
1307 static void
1308 e1000_configure_rx(struct e1000_adapter *adapter)
1310 uint64_t rdba = adapter->rx_ring.dma;
1311 uint32_t rdlen, rctl, rxcsum;
1313 if(adapter->rx_ps) {
1314 rdlen = adapter->rx_ring.count *
1315 sizeof(union e1000_rx_desc_packet_split);
1316 adapter->clean_rx = e1000_clean_rx_irq_ps;
1317 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1318 } else {
1319 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1320 adapter->clean_rx = e1000_clean_rx_irq;
1321 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1324 /* disable receives while setting up the descriptors */
1325 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1326 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1328 /* set the Receive Delay Timer Register */
1329 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1331 if(adapter->hw.mac_type >= e1000_82540) {
1332 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1333 if(adapter->itr > 1)
1334 E1000_WRITE_REG(&adapter->hw, ITR,
1335 1000000000 / (adapter->itr * 256));
1338 /* Setup the Base and Length of the Rx Descriptor Ring */
1339 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1340 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1342 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1344 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1345 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1346 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1348 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1349 if(adapter->hw.mac_type >= e1000_82543) {
1350 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1351 if(adapter->rx_csum == TRUE) {
1352 rxcsum |= E1000_RXCSUM_TUOFL;
1354 /* Enable 82573 IPv4 payload checksum for UDP fragments
1355 * Must be used in conjunction with packet-split. */
1356 if((adapter->hw.mac_type > e1000_82547_rev_2) &&
1357 (adapter->rx_ps)) {
1358 rxcsum |= E1000_RXCSUM_IPPCSE;
1360 } else {
1361 rxcsum &= ~E1000_RXCSUM_TUOFL;
1362 /* don't need to clear IPPCSE as it defaults to 0 */
1364 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1367 if (adapter->hw.mac_type == e1000_82573)
1368 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1370 /* Enable Receives */
1371 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1375 * e1000_free_tx_resources - Free Tx Resources
1376 * @adapter: board private structure
1378 * Free all transmit software resources
1381 void
1382 e1000_free_tx_resources(struct e1000_adapter *adapter)
1384 struct pci_dev *pdev = adapter->pdev;
1386 e1000_clean_tx_ring(adapter);
1388 vfree(adapter->tx_ring.buffer_info);
1389 adapter->tx_ring.buffer_info = NULL;
1391 pci_free_consistent(pdev, adapter->tx_ring.size,
1392 adapter->tx_ring.desc, adapter->tx_ring.dma);
1394 adapter->tx_ring.desc = NULL;
1397 static inline void
1398 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1399 struct e1000_buffer *buffer_info)
1401 if(buffer_info->dma) {
1402 pci_unmap_page(adapter->pdev,
1403 buffer_info->dma,
1404 buffer_info->length,
1405 PCI_DMA_TODEVICE);
1406 buffer_info->dma = 0;
1408 if(buffer_info->skb) {
1409 dev_kfree_skb_any(buffer_info->skb);
1410 buffer_info->skb = NULL;
1415 * e1000_clean_tx_ring - Free Tx Buffers
1416 * @adapter: board private structure
1419 static void
1420 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1422 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1423 struct e1000_buffer *buffer_info;
1424 unsigned long size;
1425 unsigned int i;
1427 /* Free all the Tx ring sk_buffs */
1429 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1430 e1000_unmap_and_free_tx_resource(adapter,
1431 &adapter->previous_buffer_info);
1434 for(i = 0; i < tx_ring->count; i++) {
1435 buffer_info = &tx_ring->buffer_info[i];
1436 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1439 size = sizeof(struct e1000_buffer) * tx_ring->count;
1440 memset(tx_ring->buffer_info, 0, size);
1442 /* Zero out the descriptor ring */
1444 memset(tx_ring->desc, 0, tx_ring->size);
1446 tx_ring->next_to_use = 0;
1447 tx_ring->next_to_clean = 0;
1449 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1450 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1454 * e1000_free_rx_resources - Free Rx Resources
1455 * @adapter: board private structure
1457 * Free all receive software resources
1460 void
1461 e1000_free_rx_resources(struct e1000_adapter *adapter)
1463 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1464 struct pci_dev *pdev = adapter->pdev;
1466 e1000_clean_rx_ring(adapter);
1468 vfree(rx_ring->buffer_info);
1469 rx_ring->buffer_info = NULL;
1470 kfree(rx_ring->ps_page);
1471 rx_ring->ps_page = NULL;
1472 kfree(rx_ring->ps_page_dma);
1473 rx_ring->ps_page_dma = NULL;
1475 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1477 rx_ring->desc = NULL;
1481 * e1000_clean_rx_ring - Free Rx Buffers
1482 * @adapter: board private structure
1485 static void
1486 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1488 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1489 struct e1000_buffer *buffer_info;
1490 struct e1000_ps_page *ps_page;
1491 struct e1000_ps_page_dma *ps_page_dma;
1492 struct pci_dev *pdev = adapter->pdev;
1493 unsigned long size;
1494 unsigned int i, j;
1496 /* Free all the Rx ring sk_buffs */
1498 for(i = 0; i < rx_ring->count; i++) {
1499 buffer_info = &rx_ring->buffer_info[i];
1500 if(buffer_info->skb) {
1501 ps_page = &rx_ring->ps_page[i];
1502 ps_page_dma = &rx_ring->ps_page_dma[i];
1503 pci_unmap_single(pdev,
1504 buffer_info->dma,
1505 buffer_info->length,
1506 PCI_DMA_FROMDEVICE);
1508 dev_kfree_skb(buffer_info->skb);
1509 buffer_info->skb = NULL;
1511 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1512 if(!ps_page->ps_page[j]) break;
1513 pci_unmap_single(pdev,
1514 ps_page_dma->ps_page_dma[j],
1515 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1516 ps_page_dma->ps_page_dma[j] = 0;
1517 put_page(ps_page->ps_page[j]);
1518 ps_page->ps_page[j] = NULL;
1523 size = sizeof(struct e1000_buffer) * rx_ring->count;
1524 memset(rx_ring->buffer_info, 0, size);
1525 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1526 memset(rx_ring->ps_page, 0, size);
1527 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1528 memset(rx_ring->ps_page_dma, 0, size);
1530 /* Zero out the descriptor ring */
1532 memset(rx_ring->desc, 0, rx_ring->size);
1534 rx_ring->next_to_clean = 0;
1535 rx_ring->next_to_use = 0;
1537 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1538 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1541 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1542 * and memory write and invalidate disabled for certain operations
1544 static void
1545 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1547 struct net_device *netdev = adapter->netdev;
1548 uint32_t rctl;
1550 e1000_pci_clear_mwi(&adapter->hw);
1552 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1553 rctl |= E1000_RCTL_RST;
1554 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1555 E1000_WRITE_FLUSH(&adapter->hw);
1556 mdelay(5);
1558 if(netif_running(netdev))
1559 e1000_clean_rx_ring(adapter);
1562 static void
1563 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1565 struct net_device *netdev = adapter->netdev;
1566 uint32_t rctl;
1568 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1569 rctl &= ~E1000_RCTL_RST;
1570 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1571 E1000_WRITE_FLUSH(&adapter->hw);
1572 mdelay(5);
1574 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1575 e1000_pci_set_mwi(&adapter->hw);
1577 if(netif_running(netdev)) {
1578 e1000_configure_rx(adapter);
1579 e1000_alloc_rx_buffers(adapter);
1584 * e1000_set_mac - Change the Ethernet Address of the NIC
1585 * @netdev: network interface device structure
1586 * @p: pointer to an address structure
1588 * Returns 0 on success, negative on failure
1591 static int
1592 e1000_set_mac(struct net_device *netdev, void *p)
1594 struct e1000_adapter *adapter = netdev_priv(netdev);
1595 struct sockaddr *addr = p;
1597 if(!is_valid_ether_addr(addr->sa_data))
1598 return -EADDRNOTAVAIL;
1600 /* 82542 2.0 needs to be in reset to write receive address registers */
1602 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1603 e1000_enter_82542_rst(adapter);
1605 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1606 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1608 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1610 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1611 e1000_leave_82542_rst(adapter);
1613 return 0;
1617 * e1000_set_multi - Multicast and Promiscuous mode set
1618 * @netdev: network interface device structure
1620 * The set_multi entry point is called whenever the multicast address
1621 * list or the network interface flags are updated. This routine is
1622 * responsible for configuring the hardware for proper multicast,
1623 * promiscuous mode, and all-multi behavior.
1626 static void
1627 e1000_set_multi(struct net_device *netdev)
1629 struct e1000_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1631 struct dev_mc_list *mc_ptr;
1632 unsigned long flags;
1633 uint32_t rctl;
1634 uint32_t hash_value;
1635 int i;
1637 spin_lock_irqsave(&adapter->tx_lock, flags);
1639 /* Check for Promiscuous and All Multicast modes */
1641 rctl = E1000_READ_REG(hw, RCTL);
1643 if(netdev->flags & IFF_PROMISC) {
1644 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1645 } else if(netdev->flags & IFF_ALLMULTI) {
1646 rctl |= E1000_RCTL_MPE;
1647 rctl &= ~E1000_RCTL_UPE;
1648 } else {
1649 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1652 E1000_WRITE_REG(hw, RCTL, rctl);
1654 /* 82542 2.0 needs to be in reset to write receive address registers */
1656 if(hw->mac_type == e1000_82542_rev2_0)
1657 e1000_enter_82542_rst(adapter);
1659 /* load the first 14 multicast address into the exact filters 1-14
1660 * RAR 0 is used for the station MAC adddress
1661 * if there are not 14 addresses, go ahead and clear the filters
1663 mc_ptr = netdev->mc_list;
1665 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1666 if(mc_ptr) {
1667 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1668 mc_ptr = mc_ptr->next;
1669 } else {
1670 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1671 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1675 /* clear the old settings from the multicast hash table */
1677 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1678 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1680 /* load any remaining addresses into the hash table */
1682 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1683 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1684 e1000_mta_set(hw, hash_value);
1687 if(hw->mac_type == e1000_82542_rev2_0)
1688 e1000_leave_82542_rst(adapter);
1690 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1693 /* Need to wait a few seconds after link up to get diagnostic information from
1694 * the phy */
1696 static void
1697 e1000_update_phy_info(unsigned long data)
1699 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1700 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1704 * e1000_82547_tx_fifo_stall - Timer Call-back
1705 * @data: pointer to adapter cast into an unsigned long
1708 static void
1709 e1000_82547_tx_fifo_stall(unsigned long data)
1711 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1712 struct net_device *netdev = adapter->netdev;
1713 uint32_t tctl;
1715 if(atomic_read(&adapter->tx_fifo_stall)) {
1716 if((E1000_READ_REG(&adapter->hw, TDT) ==
1717 E1000_READ_REG(&adapter->hw, TDH)) &&
1718 (E1000_READ_REG(&adapter->hw, TDFT) ==
1719 E1000_READ_REG(&adapter->hw, TDFH)) &&
1720 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1721 E1000_READ_REG(&adapter->hw, TDFHS))) {
1722 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1723 E1000_WRITE_REG(&adapter->hw, TCTL,
1724 tctl & ~E1000_TCTL_EN);
1725 E1000_WRITE_REG(&adapter->hw, TDFT,
1726 adapter->tx_head_addr);
1727 E1000_WRITE_REG(&adapter->hw, TDFH,
1728 adapter->tx_head_addr);
1729 E1000_WRITE_REG(&adapter->hw, TDFTS,
1730 adapter->tx_head_addr);
1731 E1000_WRITE_REG(&adapter->hw, TDFHS,
1732 adapter->tx_head_addr);
1733 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1734 E1000_WRITE_FLUSH(&adapter->hw);
1736 adapter->tx_fifo_head = 0;
1737 atomic_set(&adapter->tx_fifo_stall, 0);
1738 netif_wake_queue(netdev);
1739 } else {
1740 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1746 * e1000_watchdog - Timer Call-back
1747 * @data: pointer to adapter cast into an unsigned long
1749 static void
1750 e1000_watchdog(unsigned long data)
1752 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1754 /* Do the rest outside of interrupt context */
1755 schedule_work(&adapter->watchdog_task);
1758 static void
1759 e1000_watchdog_task(struct e1000_adapter *adapter)
1761 struct net_device *netdev = adapter->netdev;
1762 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1763 uint32_t link;
1765 e1000_check_for_link(&adapter->hw);
1766 if (adapter->hw.mac_type == e1000_82573) {
1767 e1000_enable_tx_pkt_filtering(&adapter->hw);
1768 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1769 e1000_update_mng_vlan(adapter);
1772 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1773 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1774 link = !adapter->hw.serdes_link_down;
1775 else
1776 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1778 if(link) {
1779 if(!netif_carrier_ok(netdev)) {
1780 e1000_get_speed_and_duplex(&adapter->hw,
1781 &adapter->link_speed,
1782 &adapter->link_duplex);
1784 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1785 adapter->link_speed,
1786 adapter->link_duplex == FULL_DUPLEX ?
1787 "Full Duplex" : "Half Duplex");
1789 netif_carrier_on(netdev);
1790 netif_wake_queue(netdev);
1791 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1792 adapter->smartspeed = 0;
1794 } else {
1795 if(netif_carrier_ok(netdev)) {
1796 adapter->link_speed = 0;
1797 adapter->link_duplex = 0;
1798 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1799 netif_carrier_off(netdev);
1800 netif_stop_queue(netdev);
1801 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1804 e1000_smartspeed(adapter);
1807 e1000_update_stats(adapter);
1809 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1810 adapter->tpt_old = adapter->stats.tpt;
1811 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1812 adapter->colc_old = adapter->stats.colc;
1814 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1815 adapter->gorcl_old = adapter->stats.gorcl;
1816 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1817 adapter->gotcl_old = adapter->stats.gotcl;
1819 e1000_update_adaptive(&adapter->hw);
1821 if(!netif_carrier_ok(netdev)) {
1822 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1823 /* We've lost link, so the controller stops DMA,
1824 * but we've got queued Tx work that's never going
1825 * to get done, so reset controller to flush Tx.
1826 * (Do the reset outside of interrupt context). */
1827 schedule_work(&adapter->tx_timeout_task);
1831 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1832 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1833 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1834 * asymmetrical Tx or Rx gets ITR=8000; everyone
1835 * else is between 2000-8000. */
1836 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1837 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1838 adapter->gotcl - adapter->gorcl :
1839 adapter->gorcl - adapter->gotcl) / 10000;
1840 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1841 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1844 /* Cause software interrupt to ensure rx ring is cleaned */
1845 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1847 /* Force detection of hung controller every watchdog period */
1848 adapter->detect_tx_hung = TRUE;
1850 /* Reset the timer */
1851 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1854 #define E1000_TX_FLAGS_CSUM 0x00000001
1855 #define E1000_TX_FLAGS_VLAN 0x00000002
1856 #define E1000_TX_FLAGS_TSO 0x00000004
1857 #define E1000_TX_FLAGS_IPV4 0x00000008
1858 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1859 #define E1000_TX_FLAGS_VLAN_SHIFT 16
1861 static inline int
1862 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1864 #ifdef NETIF_F_TSO
1865 struct e1000_context_desc *context_desc;
1866 unsigned int i;
1867 uint32_t cmd_length = 0;
1868 uint16_t ipcse = 0, tucse, mss;
1869 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1870 int err;
1872 if(skb_shinfo(skb)->tso_size) {
1873 if (skb_header_cloned(skb)) {
1874 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1875 if (err)
1876 return err;
1879 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1880 mss = skb_shinfo(skb)->tso_size;
1881 if(skb->protocol == ntohs(ETH_P_IP)) {
1882 skb->nh.iph->tot_len = 0;
1883 skb->nh.iph->check = 0;
1884 skb->h.th->check =
1885 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1886 skb->nh.iph->daddr,
1888 IPPROTO_TCP,
1890 cmd_length = E1000_TXD_CMD_IP;
1891 ipcse = skb->h.raw - skb->data - 1;
1892 #ifdef NETIF_F_TSO_IPV6
1893 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1894 skb->nh.ipv6h->payload_len = 0;
1895 skb->h.th->check =
1896 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1897 &skb->nh.ipv6h->daddr,
1899 IPPROTO_TCP,
1901 ipcse = 0;
1902 #endif
1904 ipcss = skb->nh.raw - skb->data;
1905 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1906 tucss = skb->h.raw - skb->data;
1907 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1908 tucse = 0;
1910 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1911 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1913 i = adapter->tx_ring.next_to_use;
1914 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1916 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1917 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1918 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1919 context_desc->upper_setup.tcp_fields.tucss = tucss;
1920 context_desc->upper_setup.tcp_fields.tucso = tucso;
1921 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1922 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1923 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1924 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1926 if(++i == adapter->tx_ring.count) i = 0;
1927 adapter->tx_ring.next_to_use = i;
1929 return 1;
1931 #endif
1933 return 0;
1936 static inline boolean_t
1937 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1939 struct e1000_context_desc *context_desc;
1940 unsigned int i;
1941 uint8_t css;
1943 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1944 css = skb->h.raw - skb->data;
1946 i = adapter->tx_ring.next_to_use;
1947 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1949 context_desc->upper_setup.tcp_fields.tucss = css;
1950 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1951 context_desc->upper_setup.tcp_fields.tucse = 0;
1952 context_desc->tcp_seg_setup.data = 0;
1953 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1955 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1956 adapter->tx_ring.next_to_use = i;
1958 return TRUE;
1961 return FALSE;
1964 #define E1000_MAX_TXD_PWR 12
1965 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1967 static inline int
1968 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1969 unsigned int first, unsigned int max_per_txd,
1970 unsigned int nr_frags, unsigned int mss)
1972 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1973 struct e1000_buffer *buffer_info;
1974 unsigned int len = skb->len;
1975 unsigned int offset = 0, size, count = 0, i;
1976 unsigned int f;
1977 len -= skb->data_len;
1979 i = tx_ring->next_to_use;
1981 while(len) {
1982 buffer_info = &tx_ring->buffer_info[i];
1983 size = min(len, max_per_txd);
1984 #ifdef NETIF_F_TSO
1985 /* Workaround for premature desc write-backs
1986 * in TSO mode. Append 4-byte sentinel desc */
1987 if(unlikely(mss && !nr_frags && size == len && size > 8))
1988 size -= 4;
1989 #endif
1990 /* work-around for errata 10 and it applies
1991 * to all controllers in PCI-X mode
1992 * The fix is to make sure that the first descriptor of a
1993 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
1995 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
1996 (size > 2015) && count == 0))
1997 size = 2015;
1999 /* Workaround for potential 82544 hang in PCI-X. Avoid
2000 * terminating buffers within evenly-aligned dwords. */
2001 if(unlikely(adapter->pcix_82544 &&
2002 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2003 size > 4))
2004 size -= 4;
2006 buffer_info->length = size;
2007 buffer_info->dma =
2008 pci_map_single(adapter->pdev,
2009 skb->data + offset,
2010 size,
2011 PCI_DMA_TODEVICE);
2012 buffer_info->time_stamp = jiffies;
2014 len -= size;
2015 offset += size;
2016 count++;
2017 if(unlikely(++i == tx_ring->count)) i = 0;
2020 for(f = 0; f < nr_frags; f++) {
2021 struct skb_frag_struct *frag;
2023 frag = &skb_shinfo(skb)->frags[f];
2024 len = frag->size;
2025 offset = frag->page_offset;
2027 while(len) {
2028 buffer_info = &tx_ring->buffer_info[i];
2029 size = min(len, max_per_txd);
2030 #ifdef NETIF_F_TSO
2031 /* Workaround for premature desc write-backs
2032 * in TSO mode. Append 4-byte sentinel desc */
2033 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2034 size -= 4;
2035 #endif
2036 /* Workaround for potential 82544 hang in PCI-X.
2037 * Avoid terminating buffers within evenly-aligned
2038 * dwords. */
2039 if(unlikely(adapter->pcix_82544 &&
2040 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2041 size > 4))
2042 size -= 4;
2044 buffer_info->length = size;
2045 buffer_info->dma =
2046 pci_map_page(adapter->pdev,
2047 frag->page,
2048 offset,
2049 size,
2050 PCI_DMA_TODEVICE);
2051 buffer_info->time_stamp = jiffies;
2053 len -= size;
2054 offset += size;
2055 count++;
2056 if(unlikely(++i == tx_ring->count)) i = 0;
2060 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2061 tx_ring->buffer_info[i].skb = skb;
2062 tx_ring->buffer_info[first].next_to_watch = i;
2064 return count;
2067 static inline void
2068 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2070 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2071 struct e1000_tx_desc *tx_desc = NULL;
2072 struct e1000_buffer *buffer_info;
2073 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2074 unsigned int i;
2076 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2077 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2078 E1000_TXD_CMD_TSE;
2079 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2081 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2082 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2085 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2086 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2087 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2090 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2091 txd_lower |= E1000_TXD_CMD_VLE;
2092 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2095 i = tx_ring->next_to_use;
2097 while(count--) {
2098 buffer_info = &tx_ring->buffer_info[i];
2099 tx_desc = E1000_TX_DESC(*tx_ring, i);
2100 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2101 tx_desc->lower.data =
2102 cpu_to_le32(txd_lower | buffer_info->length);
2103 tx_desc->upper.data = cpu_to_le32(txd_upper);
2104 if(unlikely(++i == tx_ring->count)) i = 0;
2107 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2109 /* Force memory writes to complete before letting h/w
2110 * know there are new descriptors to fetch. (Only
2111 * applicable for weak-ordered memory model archs,
2112 * such as IA-64). */
2113 wmb();
2115 tx_ring->next_to_use = i;
2116 E1000_WRITE_REG(&adapter->hw, TDT, i);
2120 * 82547 workaround to avoid controller hang in half-duplex environment.
2121 * The workaround is to avoid queuing a large packet that would span
2122 * the internal Tx FIFO ring boundary by notifying the stack to resend
2123 * the packet at a later time. This gives the Tx FIFO an opportunity to
2124 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2125 * to the beginning of the Tx FIFO.
2128 #define E1000_FIFO_HDR 0x10
2129 #define E1000_82547_PAD_LEN 0x3E0
2131 static inline int
2132 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2134 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2135 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2137 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2139 if(adapter->link_duplex != HALF_DUPLEX)
2140 goto no_fifo_stall_required;
2142 if(atomic_read(&adapter->tx_fifo_stall))
2143 return 1;
2145 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2146 atomic_set(&adapter->tx_fifo_stall, 1);
2147 return 1;
2150 no_fifo_stall_required:
2151 adapter->tx_fifo_head += skb_fifo_len;
2152 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2153 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2154 return 0;
2157 #define MINIMUM_DHCP_PACKET_SIZE 282
2158 static inline int
2159 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2161 struct e1000_hw *hw = &adapter->hw;
2162 uint16_t length, offset;
2163 if(vlan_tx_tag_present(skb)) {
2164 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2165 ( adapter->hw.mng_cookie.status &
2166 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2167 return 0;
2169 if(htons(ETH_P_IP) == skb->protocol) {
2170 const struct iphdr *ip = skb->nh.iph;
2171 if(IPPROTO_UDP == ip->protocol) {
2172 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2173 if(ntohs(udp->dest) == 67) {
2174 offset = (uint8_t *)udp + 8 - skb->data;
2175 length = skb->len - offset;
2177 return e1000_mng_write_dhcp_info(hw,
2178 (uint8_t *)udp + 8, length);
2181 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2182 struct ethhdr *eth = (struct ethhdr *) skb->data;
2183 if((htons(ETH_P_IP) == eth->h_proto)) {
2184 const struct iphdr *ip =
2185 (struct iphdr *)((uint8_t *)skb->data+14);
2186 if(IPPROTO_UDP == ip->protocol) {
2187 struct udphdr *udp =
2188 (struct udphdr *)((uint8_t *)ip +
2189 (ip->ihl << 2));
2190 if(ntohs(udp->dest) == 67) {
2191 offset = (uint8_t *)udp + 8 - skb->data;
2192 length = skb->len - offset;
2194 return e1000_mng_write_dhcp_info(hw,
2195 (uint8_t *)udp + 8,
2196 length);
2201 return 0;
2204 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2205 static int
2206 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2210 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2211 unsigned int tx_flags = 0;
2212 unsigned int len = skb->len;
2213 unsigned long flags;
2214 unsigned int nr_frags = 0;
2215 unsigned int mss = 0;
2216 int count = 0;
2217 int tso;
2218 unsigned int f;
2219 len -= skb->data_len;
2221 if(unlikely(skb->len <= 0)) {
2222 dev_kfree_skb_any(skb);
2223 return NETDEV_TX_OK;
2226 #ifdef NETIF_F_TSO
2227 mss = skb_shinfo(skb)->tso_size;
2228 /* The controller does a simple calculation to
2229 * make sure there is enough room in the FIFO before
2230 * initiating the DMA for each buffer. The calc is:
2231 * 4 = ceil(buffer len/mss). To make sure we don't
2232 * overrun the FIFO, adjust the max buffer len if mss
2233 * drops. */
2234 if(mss) {
2235 max_per_txd = min(mss << 2, max_per_txd);
2236 max_txd_pwr = fls(max_per_txd) - 1;
2239 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2240 count++;
2241 count++;
2242 #else
2243 if(skb->ip_summed == CHECKSUM_HW)
2244 count++;
2245 #endif
2246 count += TXD_USE_COUNT(len, max_txd_pwr);
2248 if(adapter->pcix_82544)
2249 count++;
2251 /* work-around for errata 10 and it applies to all controllers
2252 * in PCI-X mode, so add one more descriptor to the count
2254 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2255 (len > 2015)))
2256 count++;
2258 nr_frags = skb_shinfo(skb)->nr_frags;
2259 for(f = 0; f < nr_frags; f++)
2260 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2261 max_txd_pwr);
2262 if(adapter->pcix_82544)
2263 count += nr_frags;
2265 local_irq_save(flags);
2266 if (!spin_trylock(&adapter->tx_lock)) {
2267 /* Collision - tell upper layer to requeue */
2268 local_irq_restore(flags);
2269 return NETDEV_TX_LOCKED;
2271 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2272 e1000_transfer_dhcp_info(adapter, skb);
2275 /* need: count + 2 desc gap to keep tail from touching
2276 * head, otherwise try next time */
2277 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2278 netif_stop_queue(netdev);
2279 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2280 return NETDEV_TX_BUSY;
2283 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2284 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2285 netif_stop_queue(netdev);
2286 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2287 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2288 return NETDEV_TX_BUSY;
2292 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2293 tx_flags |= E1000_TX_FLAGS_VLAN;
2294 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2297 first = adapter->tx_ring.next_to_use;
2299 tso = e1000_tso(adapter, skb);
2300 if (tso < 0) {
2301 dev_kfree_skb_any(skb);
2302 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2303 return NETDEV_TX_OK;
2306 if (likely(tso))
2307 tx_flags |= E1000_TX_FLAGS_TSO;
2308 else if(likely(e1000_tx_csum(adapter, skb)))
2309 tx_flags |= E1000_TX_FLAGS_CSUM;
2311 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2312 * 82573 hardware supports TSO capabilities for IPv6 as well...
2313 * no longer assume, we must. */
2314 if(likely(skb->protocol == ntohs(ETH_P_IP)))
2315 tx_flags |= E1000_TX_FLAGS_IPV4;
2317 e1000_tx_queue(adapter,
2318 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2319 tx_flags);
2321 netdev->trans_start = jiffies;
2323 /* Make sure there is space in the ring for the next send. */
2324 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2325 netif_stop_queue(netdev);
2327 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2328 return NETDEV_TX_OK;
2332 * e1000_tx_timeout - Respond to a Tx Hang
2333 * @netdev: network interface device structure
2336 static void
2337 e1000_tx_timeout(struct net_device *netdev)
2339 struct e1000_adapter *adapter = netdev_priv(netdev);
2341 /* Do the reset outside of interrupt context */
2342 schedule_work(&adapter->tx_timeout_task);
2345 static void
2346 e1000_tx_timeout_task(struct net_device *netdev)
2348 struct e1000_adapter *adapter = netdev_priv(netdev);
2350 e1000_down(adapter);
2351 e1000_up(adapter);
2355 * e1000_get_stats - Get System Network Statistics
2356 * @netdev: network interface device structure
2358 * Returns the address of the device statistics structure.
2359 * The statistics are actually updated from the timer callback.
2362 static struct net_device_stats *
2363 e1000_get_stats(struct net_device *netdev)
2365 struct e1000_adapter *adapter = netdev_priv(netdev);
2367 e1000_update_stats(adapter);
2368 return &adapter->net_stats;
2372 * e1000_change_mtu - Change the Maximum Transfer Unit
2373 * @netdev: network interface device structure
2374 * @new_mtu: new value for maximum frame size
2376 * Returns 0 on success, negative on failure
2379 static int
2380 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2382 struct e1000_adapter *adapter = netdev_priv(netdev);
2383 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2385 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2386 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2387 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2388 return -EINVAL;
2391 #define MAX_STD_JUMBO_FRAME_SIZE 9216
2392 /* might want this to be bigger enum check... */
2393 if (adapter->hw.mac_type == e1000_82573 &&
2394 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2395 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2396 "on 82573\n");
2397 return -EINVAL;
2400 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2401 adapter->rx_buffer_len = max_frame;
2402 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2403 } else {
2404 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2405 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2406 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2407 "on 82542\n");
2408 return -EINVAL;
2410 } else {
2411 if(max_frame <= E1000_RXBUFFER_2048) {
2412 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2413 } else if(max_frame <= E1000_RXBUFFER_4096) {
2414 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2415 } else if(max_frame <= E1000_RXBUFFER_8192) {
2416 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2417 } else if(max_frame <= E1000_RXBUFFER_16384) {
2418 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2423 netdev->mtu = new_mtu;
2425 if(netif_running(netdev)) {
2426 e1000_down(adapter);
2427 e1000_up(adapter);
2430 adapter->hw.max_frame_size = max_frame;
2432 return 0;
2436 * e1000_update_stats - Update the board statistics counters
2437 * @adapter: board private structure
2440 void
2441 e1000_update_stats(struct e1000_adapter *adapter)
2443 struct e1000_hw *hw = &adapter->hw;
2444 unsigned long flags;
2445 uint16_t phy_tmp;
2447 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2449 spin_lock_irqsave(&adapter->stats_lock, flags);
2451 /* these counters are modified from e1000_adjust_tbi_stats,
2452 * called from the interrupt context, so they must only
2453 * be written while holding adapter->stats_lock
2456 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2457 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2458 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2459 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2460 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2461 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2462 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2463 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2464 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2465 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2466 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2467 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2468 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2470 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2471 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2472 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2473 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2474 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2475 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2476 adapter->stats.dc += E1000_READ_REG(hw, DC);
2477 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2478 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2479 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2480 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2481 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2482 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2483 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2484 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2485 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2486 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2487 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2488 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2489 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2490 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2491 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2492 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2493 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2494 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2495 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2496 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2497 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2498 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2499 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2500 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2501 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2502 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2503 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2505 /* used for adaptive IFS */
2507 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2508 adapter->stats.tpt += hw->tx_packet_delta;
2509 hw->collision_delta = E1000_READ_REG(hw, COLC);
2510 adapter->stats.colc += hw->collision_delta;
2512 if(hw->mac_type >= e1000_82543) {
2513 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2514 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2515 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2516 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2517 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2518 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2520 if(hw->mac_type > e1000_82547_rev_2) {
2521 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2522 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2523 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2524 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2525 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2526 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2527 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2528 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2529 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2532 /* Fill out the OS statistics structure */
2534 adapter->net_stats.rx_packets = adapter->stats.gprc;
2535 adapter->net_stats.tx_packets = adapter->stats.gptc;
2536 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2537 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2538 adapter->net_stats.multicast = adapter->stats.mprc;
2539 adapter->net_stats.collisions = adapter->stats.colc;
2541 /* Rx Errors */
2543 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2544 adapter->stats.crcerrs + adapter->stats.algnerrc +
2545 adapter->stats.rlec + adapter->stats.mpc +
2546 adapter->stats.cexterr;
2547 adapter->net_stats.rx_dropped = adapter->stats.mpc;
2548 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2549 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2550 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2551 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2552 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2554 /* Tx Errors */
2556 adapter->net_stats.tx_errors = adapter->stats.ecol +
2557 adapter->stats.latecol;
2558 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2559 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2560 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2562 /* Tx Dropped needs to be maintained elsewhere */
2564 /* Phy Stats */
2566 if(hw->media_type == e1000_media_type_copper) {
2567 if((adapter->link_speed == SPEED_1000) &&
2568 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2569 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2570 adapter->phy_stats.idle_errors += phy_tmp;
2573 if((hw->mac_type <= e1000_82546) &&
2574 (hw->phy_type == e1000_phy_m88) &&
2575 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2576 adapter->phy_stats.receive_errors += phy_tmp;
2579 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2583 * e1000_intr - Interrupt Handler
2584 * @irq: interrupt number
2585 * @data: pointer to a network interface device structure
2586 * @pt_regs: CPU registers structure
2589 static irqreturn_t
2590 e1000_intr(int irq, void *data, struct pt_regs *regs)
2592 struct net_device *netdev = data;
2593 struct e1000_adapter *adapter = netdev_priv(netdev);
2594 struct e1000_hw *hw = &adapter->hw;
2595 uint32_t icr = E1000_READ_REG(hw, ICR);
2596 #ifndef CONFIG_E1000_NAPI
2597 unsigned int i;
2598 #endif
2600 if(unlikely(!icr))
2601 return IRQ_NONE; /* Not our interrupt */
2603 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2604 hw->get_link_status = 1;
2605 mod_timer(&adapter->watchdog_timer, jiffies);
2608 #ifdef CONFIG_E1000_NAPI
2609 if(likely(netif_rx_schedule_prep(netdev))) {
2611 /* Disable interrupts and register for poll. The flush
2612 of the posted write is intentionally left out.
2615 atomic_inc(&adapter->irq_sem);
2616 E1000_WRITE_REG(hw, IMC, ~0);
2617 __netif_rx_schedule(netdev);
2619 #else
2620 /* Writing IMC and IMS is needed for 82547.
2621 Due to Hub Link bus being occupied, an interrupt
2622 de-assertion message is not able to be sent.
2623 When an interrupt assertion message is generated later,
2624 two messages are re-ordered and sent out.
2625 That causes APIC to think 82547 is in de-assertion
2626 state, while 82547 is in assertion state, resulting
2627 in dead lock. Writing IMC forces 82547 into
2628 de-assertion state.
2630 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2631 atomic_inc(&adapter->irq_sem);
2632 E1000_WRITE_REG(hw, IMC, ~0);
2635 for(i = 0; i < E1000_MAX_INTR; i++)
2636 if(unlikely(!adapter->clean_rx(adapter) &
2637 !e1000_clean_tx_irq(adapter)))
2638 break;
2640 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2641 e1000_irq_enable(adapter);
2642 #endif
2644 return IRQ_HANDLED;
2647 #ifdef CONFIG_E1000_NAPI
2649 * e1000_clean - NAPI Rx polling callback
2650 * @adapter: board private structure
2653 static int
2654 e1000_clean(struct net_device *netdev, int *budget)
2656 struct e1000_adapter *adapter = netdev_priv(netdev);
2657 int work_to_do = min(*budget, netdev->quota);
2658 int tx_cleaned;
2659 int work_done = 0;
2661 tx_cleaned = e1000_clean_tx_irq(adapter);
2662 adapter->clean_rx(adapter, &work_done, work_to_do);
2664 *budget -= work_done;
2665 netdev->quota -= work_done;
2667 if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
2668 /* If no Tx and not enough Rx work done, exit the polling mode */
2669 netif_rx_complete(netdev);
2670 e1000_irq_enable(adapter);
2671 return 0;
2674 return 1;
2677 #endif
2679 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2680 * @adapter: board private structure
2683 static boolean_t
2684 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2686 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2687 struct net_device *netdev = adapter->netdev;
2688 struct e1000_tx_desc *tx_desc, *eop_desc;
2689 struct e1000_buffer *buffer_info;
2690 unsigned int i, eop;
2691 boolean_t cleaned = FALSE;
2693 i = tx_ring->next_to_clean;
2694 eop = tx_ring->buffer_info[i].next_to_watch;
2695 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2697 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2698 /* Premature writeback of Tx descriptors clear (free buffers
2699 * and unmap pci_mapping) previous_buffer_info */
2700 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2701 e1000_unmap_and_free_tx_resource(adapter,
2702 &adapter->previous_buffer_info);
2705 for(cleaned = FALSE; !cleaned; ) {
2706 tx_desc = E1000_TX_DESC(*tx_ring, i);
2707 buffer_info = &tx_ring->buffer_info[i];
2708 cleaned = (i == eop);
2710 #ifdef NETIF_F_TSO
2711 if (!(netdev->features & NETIF_F_TSO)) {
2712 #endif
2713 e1000_unmap_and_free_tx_resource(adapter,
2714 buffer_info);
2715 #ifdef NETIF_F_TSO
2716 } else {
2717 if (cleaned) {
2718 memcpy(&adapter->previous_buffer_info,
2719 buffer_info,
2720 sizeof(struct e1000_buffer));
2721 memset(buffer_info, 0,
2722 sizeof(struct e1000_buffer));
2723 } else {
2724 e1000_unmap_and_free_tx_resource(
2725 adapter, buffer_info);
2728 #endif
2730 tx_desc->buffer_addr = 0;
2731 tx_desc->lower.data = 0;
2732 tx_desc->upper.data = 0;
2734 if(unlikely(++i == tx_ring->count)) i = 0;
2737 eop = tx_ring->buffer_info[i].next_to_watch;
2738 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2741 tx_ring->next_to_clean = i;
2743 spin_lock(&adapter->tx_lock);
2745 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2746 netif_carrier_ok(netdev)))
2747 netif_wake_queue(netdev);
2749 spin_unlock(&adapter->tx_lock);
2750 if(adapter->detect_tx_hung) {
2752 /* Detect a transmit hang in hardware, this serializes the
2753 * check with the clearing of time_stamp and movement of i */
2754 adapter->detect_tx_hung = FALSE;
2755 if (tx_ring->buffer_info[i].dma &&
2756 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2757 && !(E1000_READ_REG(&adapter->hw, STATUS) &
2758 E1000_STATUS_TXOFF)) {
2760 /* detected Tx unit hang */
2761 i = tx_ring->next_to_clean;
2762 eop = tx_ring->buffer_info[i].next_to_watch;
2763 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2764 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
2765 " TDH <%x>\n"
2766 " TDT <%x>\n"
2767 " next_to_use <%x>\n"
2768 " next_to_clean <%x>\n"
2769 "buffer_info[next_to_clean]\n"
2770 " dma <%zx>\n"
2771 " time_stamp <%lx>\n"
2772 " next_to_watch <%x>\n"
2773 " jiffies <%lx>\n"
2774 " next_to_watch.status <%x>\n",
2775 E1000_READ_REG(&adapter->hw, TDH),
2776 E1000_READ_REG(&adapter->hw, TDT),
2777 tx_ring->next_to_use,
2779 tx_ring->buffer_info[i].dma,
2780 tx_ring->buffer_info[i].time_stamp,
2781 eop,
2782 jiffies,
2783 eop_desc->upper.fields.status);
2784 netif_stop_queue(netdev);
2787 #ifdef NETIF_F_TSO
2789 if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2790 time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2791 e1000_unmap_and_free_tx_resource(
2792 adapter, &adapter->previous_buffer_info);
2794 #endif
2795 return cleaned;
2799 * e1000_rx_checksum - Receive Checksum Offload for 82543
2800 * @adapter: board private structure
2801 * @status_err: receive descriptor status and error fields
2802 * @csum: receive descriptor csum field
2803 * @sk_buff: socket buffer with received data
2806 static inline void
2807 e1000_rx_checksum(struct e1000_adapter *adapter,
2808 uint32_t status_err, uint32_t csum,
2809 struct sk_buff *skb)
2811 uint16_t status = (uint16_t)status_err;
2812 uint8_t errors = (uint8_t)(status_err >> 24);
2813 skb->ip_summed = CHECKSUM_NONE;
2815 /* 82543 or newer only */
2816 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
2817 /* Ignore Checksum bit is set */
2818 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2819 /* TCP/UDP checksum error bit is set */
2820 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2821 /* let the stack verify checksum errors */
2822 adapter->hw_csum_err++;
2823 return;
2825 /* TCP/UDP Checksum has not been calculated */
2826 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2827 if(!(status & E1000_RXD_STAT_TCPCS))
2828 return;
2829 } else {
2830 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2831 return;
2833 /* It must be a TCP or UDP packet with a valid checksum */
2834 if (likely(status & E1000_RXD_STAT_TCPCS)) {
2835 /* TCP checksum is good */
2836 skb->ip_summed = CHECKSUM_UNNECESSARY;
2837 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2838 /* IP fragment with UDP payload */
2839 /* Hardware complements the payload checksum, so we undo it
2840 * and then put the value in host order for further stack use.
2842 csum = ntohl(csum ^ 0xFFFF);
2843 skb->csum = csum;
2844 skb->ip_summed = CHECKSUM_HW;
2846 adapter->hw_csum_good++;
2850 * e1000_clean_rx_irq - Send received data up the network stack; legacy
2851 * @adapter: board private structure
2854 static boolean_t
2855 #ifdef CONFIG_E1000_NAPI
2856 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2857 int work_to_do)
2858 #else
2859 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2860 #endif
2862 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2863 struct net_device *netdev = adapter->netdev;
2864 struct pci_dev *pdev = adapter->pdev;
2865 struct e1000_rx_desc *rx_desc;
2866 struct e1000_buffer *buffer_info;
2867 struct sk_buff *skb;
2868 unsigned long flags;
2869 uint32_t length;
2870 uint8_t last_byte;
2871 unsigned int i;
2872 boolean_t cleaned = FALSE;
2874 i = rx_ring->next_to_clean;
2875 rx_desc = E1000_RX_DESC(*rx_ring, i);
2877 while(rx_desc->status & E1000_RXD_STAT_DD) {
2878 buffer_info = &rx_ring->buffer_info[i];
2879 #ifdef CONFIG_E1000_NAPI
2880 if(*work_done >= work_to_do)
2881 break;
2882 (*work_done)++;
2883 #endif
2884 cleaned = TRUE;
2886 pci_unmap_single(pdev,
2887 buffer_info->dma,
2888 buffer_info->length,
2889 PCI_DMA_FROMDEVICE);
2891 skb = buffer_info->skb;
2892 length = le16_to_cpu(rx_desc->length);
2894 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2895 /* All receives must fit into a single buffer */
2896 E1000_DBG("%s: Receive packet consumed multiple"
2897 " buffers\n", netdev->name);
2898 dev_kfree_skb_irq(skb);
2899 goto next_desc;
2902 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2903 last_byte = *(skb->data + length - 1);
2904 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2905 rx_desc->errors, length, last_byte)) {
2906 spin_lock_irqsave(&adapter->stats_lock, flags);
2907 e1000_tbi_adjust_stats(&adapter->hw,
2908 &adapter->stats,
2909 length, skb->data);
2910 spin_unlock_irqrestore(&adapter->stats_lock,
2911 flags);
2912 length--;
2913 } else {
2914 dev_kfree_skb_irq(skb);
2915 goto next_desc;
2919 /* Good Receive */
2920 skb_put(skb, length - ETHERNET_FCS_SIZE);
2922 /* Receive Checksum Offload */
2923 e1000_rx_checksum(adapter,
2924 (uint32_t)(rx_desc->status) |
2925 ((uint32_t)(rx_desc->errors) << 24),
2926 rx_desc->csum, skb);
2927 skb->protocol = eth_type_trans(skb, netdev);
2928 #ifdef CONFIG_E1000_NAPI
2929 if(unlikely(adapter->vlgrp &&
2930 (rx_desc->status & E1000_RXD_STAT_VP))) {
2931 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2932 le16_to_cpu(rx_desc->special) &
2933 E1000_RXD_SPC_VLAN_MASK);
2934 } else {
2935 netif_receive_skb(skb);
2937 #else /* CONFIG_E1000_NAPI */
2938 if(unlikely(adapter->vlgrp &&
2939 (rx_desc->status & E1000_RXD_STAT_VP))) {
2940 vlan_hwaccel_rx(skb, adapter->vlgrp,
2941 le16_to_cpu(rx_desc->special) &
2942 E1000_RXD_SPC_VLAN_MASK);
2943 } else {
2944 netif_rx(skb);
2946 #endif /* CONFIG_E1000_NAPI */
2947 netdev->last_rx = jiffies;
2949 next_desc:
2950 rx_desc->status = 0;
2951 buffer_info->skb = NULL;
2952 if(unlikely(++i == rx_ring->count)) i = 0;
2954 rx_desc = E1000_RX_DESC(*rx_ring, i);
2956 rx_ring->next_to_clean = i;
2957 adapter->alloc_rx_buf(adapter);
2959 return cleaned;
2963 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2964 * @adapter: board private structure
2967 static boolean_t
2968 #ifdef CONFIG_E1000_NAPI
2969 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2970 int work_to_do)
2971 #else
2972 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2973 #endif
2975 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2976 union e1000_rx_desc_packet_split *rx_desc;
2977 struct net_device *netdev = adapter->netdev;
2978 struct pci_dev *pdev = adapter->pdev;
2979 struct e1000_buffer *buffer_info;
2980 struct e1000_ps_page *ps_page;
2981 struct e1000_ps_page_dma *ps_page_dma;
2982 struct sk_buff *skb;
2983 unsigned int i, j;
2984 uint32_t length, staterr;
2985 boolean_t cleaned = FALSE;
2987 i = rx_ring->next_to_clean;
2988 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
2989 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2991 while(staterr & E1000_RXD_STAT_DD) {
2992 buffer_info = &rx_ring->buffer_info[i];
2993 ps_page = &rx_ring->ps_page[i];
2994 ps_page_dma = &rx_ring->ps_page_dma[i];
2995 #ifdef CONFIG_E1000_NAPI
2996 if(unlikely(*work_done >= work_to_do))
2997 break;
2998 (*work_done)++;
2999 #endif
3000 cleaned = TRUE;
3001 pci_unmap_single(pdev, buffer_info->dma,
3002 buffer_info->length,
3003 PCI_DMA_FROMDEVICE);
3005 skb = buffer_info->skb;
3007 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3008 E1000_DBG("%s: Packet Split buffers didn't pick up"
3009 " the full packet\n", netdev->name);
3010 dev_kfree_skb_irq(skb);
3011 goto next_desc;
3014 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3015 dev_kfree_skb_irq(skb);
3016 goto next_desc;
3019 length = le16_to_cpu(rx_desc->wb.middle.length0);
3021 if(unlikely(!length)) {
3022 E1000_DBG("%s: Last part of the packet spanning"
3023 " multiple descriptors\n", netdev->name);
3024 dev_kfree_skb_irq(skb);
3025 goto next_desc;
3028 /* Good Receive */
3029 skb_put(skb, length);
3031 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3032 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3033 break;
3035 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3036 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3037 ps_page_dma->ps_page_dma[j] = 0;
3038 skb_shinfo(skb)->frags[j].page =
3039 ps_page->ps_page[j];
3040 ps_page->ps_page[j] = NULL;
3041 skb_shinfo(skb)->frags[j].page_offset = 0;
3042 skb_shinfo(skb)->frags[j].size = length;
3043 skb_shinfo(skb)->nr_frags++;
3044 skb->len += length;
3045 skb->data_len += length;
3048 e1000_rx_checksum(adapter, staterr,
3049 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3050 skb->protocol = eth_type_trans(skb, netdev);
3052 #ifdef HAVE_RX_ZERO_COPY
3053 if(likely(rx_desc->wb.upper.header_status &
3054 E1000_RXDPS_HDRSTAT_HDRSP))
3055 skb_shinfo(skb)->zero_copy = TRUE;
3056 #endif
3057 #ifdef CONFIG_E1000_NAPI
3058 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3059 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3060 le16_to_cpu(rx_desc->wb.middle.vlan) &
3061 E1000_RXD_SPC_VLAN_MASK);
3062 } else {
3063 netif_receive_skb(skb);
3065 #else /* CONFIG_E1000_NAPI */
3066 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3067 vlan_hwaccel_rx(skb, adapter->vlgrp,
3068 le16_to_cpu(rx_desc->wb.middle.vlan) &
3069 E1000_RXD_SPC_VLAN_MASK);
3070 } else {
3071 netif_rx(skb);
3073 #endif /* CONFIG_E1000_NAPI */
3074 netdev->last_rx = jiffies;
3076 next_desc:
3077 rx_desc->wb.middle.status_error &= ~0xFF;
3078 buffer_info->skb = NULL;
3079 if(unlikely(++i == rx_ring->count)) i = 0;
3081 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3082 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3084 rx_ring->next_to_clean = i;
3085 adapter->alloc_rx_buf(adapter);
3087 return cleaned;
3091 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3092 * @adapter: address of board private structure
3095 static void
3096 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3098 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3099 struct net_device *netdev = adapter->netdev;
3100 struct pci_dev *pdev = adapter->pdev;
3101 struct e1000_rx_desc *rx_desc;
3102 struct e1000_buffer *buffer_info;
3103 struct sk_buff *skb;
3104 unsigned int i;
3105 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3107 i = rx_ring->next_to_use;
3108 buffer_info = &rx_ring->buffer_info[i];
3110 while(!buffer_info->skb) {
3111 skb = dev_alloc_skb(bufsz);
3113 if(unlikely(!skb)) {
3114 /* Better luck next round */
3115 break;
3118 /* Fix for errata 23, can't cross 64kB boundary */
3119 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3120 struct sk_buff *oldskb = skb;
3121 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3122 "at %p\n", bufsz, skb->data);
3123 /* Try again, without freeing the previous */
3124 skb = dev_alloc_skb(bufsz);
3125 /* Failed allocation, critical failure */
3126 if (!skb) {
3127 dev_kfree_skb(oldskb);
3128 break;
3131 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3132 /* give up */
3133 dev_kfree_skb(skb);
3134 dev_kfree_skb(oldskb);
3135 break; /* while !buffer_info->skb */
3136 } else {
3137 /* Use new allocation */
3138 dev_kfree_skb(oldskb);
3141 /* Make buffer alignment 2 beyond a 16 byte boundary
3142 * this will result in a 16 byte aligned IP header after
3143 * the 14 byte MAC header is removed
3145 skb_reserve(skb, NET_IP_ALIGN);
3147 skb->dev = netdev;
3149 buffer_info->skb = skb;
3150 buffer_info->length = adapter->rx_buffer_len;
3151 buffer_info->dma = pci_map_single(pdev,
3152 skb->data,
3153 adapter->rx_buffer_len,
3154 PCI_DMA_FROMDEVICE);
3156 /* Fix for errata 23, can't cross 64kB boundary */
3157 if (!e1000_check_64k_bound(adapter,
3158 (void *)(unsigned long)buffer_info->dma,
3159 adapter->rx_buffer_len)) {
3160 DPRINTK(RX_ERR, ERR,
3161 "dma align check failed: %u bytes at %p\n",
3162 adapter->rx_buffer_len,
3163 (void *)(unsigned long)buffer_info->dma);
3164 dev_kfree_skb(skb);
3165 buffer_info->skb = NULL;
3167 pci_unmap_single(pdev, buffer_info->dma,
3168 adapter->rx_buffer_len,
3169 PCI_DMA_FROMDEVICE);
3171 break; /* while !buffer_info->skb */
3173 rx_desc = E1000_RX_DESC(*rx_ring, i);
3174 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3176 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3177 /* Force memory writes to complete before letting h/w
3178 * know there are new descriptors to fetch. (Only
3179 * applicable for weak-ordered memory model archs,
3180 * such as IA-64). */
3181 wmb();
3182 E1000_WRITE_REG(&adapter->hw, RDT, i);
3185 if(unlikely(++i == rx_ring->count)) i = 0;
3186 buffer_info = &rx_ring->buffer_info[i];
3189 rx_ring->next_to_use = i;
3193 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3194 * @adapter: address of board private structure
3197 static void
3198 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3200 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3201 struct net_device *netdev = adapter->netdev;
3202 struct pci_dev *pdev = adapter->pdev;
3203 union e1000_rx_desc_packet_split *rx_desc;
3204 struct e1000_buffer *buffer_info;
3205 struct e1000_ps_page *ps_page;
3206 struct e1000_ps_page_dma *ps_page_dma;
3207 struct sk_buff *skb;
3208 unsigned int i, j;
3210 i = rx_ring->next_to_use;
3211 buffer_info = &rx_ring->buffer_info[i];
3212 ps_page = &rx_ring->ps_page[i];
3213 ps_page_dma = &rx_ring->ps_page_dma[i];
3215 while(!buffer_info->skb) {
3216 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3218 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3219 if(unlikely(!ps_page->ps_page[j])) {
3220 ps_page->ps_page[j] =
3221 alloc_page(GFP_ATOMIC);
3222 if(unlikely(!ps_page->ps_page[j]))
3223 goto no_buffers;
3224 ps_page_dma->ps_page_dma[j] =
3225 pci_map_page(pdev,
3226 ps_page->ps_page[j],
3227 0, PAGE_SIZE,
3228 PCI_DMA_FROMDEVICE);
3230 /* Refresh the desc even if buffer_addrs didn't
3231 * change because each write-back erases this info.
3233 rx_desc->read.buffer_addr[j+1] =
3234 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3237 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3239 if(unlikely(!skb))
3240 break;
3242 /* Make buffer alignment 2 beyond a 16 byte boundary
3243 * this will result in a 16 byte aligned IP header after
3244 * the 14 byte MAC header is removed
3246 skb_reserve(skb, NET_IP_ALIGN);
3248 skb->dev = netdev;
3250 buffer_info->skb = skb;
3251 buffer_info->length = adapter->rx_ps_bsize0;
3252 buffer_info->dma = pci_map_single(pdev, skb->data,
3253 adapter->rx_ps_bsize0,
3254 PCI_DMA_FROMDEVICE);
3256 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3258 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3259 /* Force memory writes to complete before letting h/w
3260 * know there are new descriptors to fetch. (Only
3261 * applicable for weak-ordered memory model archs,
3262 * such as IA-64). */
3263 wmb();
3264 /* Hardware increments by 16 bytes, but packet split
3265 * descriptors are 32 bytes...so we increment tail
3266 * twice as much.
3268 E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3271 if(unlikely(++i == rx_ring->count)) i = 0;
3272 buffer_info = &rx_ring->buffer_info[i];
3273 ps_page = &rx_ring->ps_page[i];
3274 ps_page_dma = &rx_ring->ps_page_dma[i];
3277 no_buffers:
3278 rx_ring->next_to_use = i;
3282 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3283 * @adapter:
3286 static void
3287 e1000_smartspeed(struct e1000_adapter *adapter)
3289 uint16_t phy_status;
3290 uint16_t phy_ctrl;
3292 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3293 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3294 return;
3296 if(adapter->smartspeed == 0) {
3297 /* If Master/Slave config fault is asserted twice,
3298 * we assume back-to-back */
3299 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3300 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3301 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3302 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3303 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3304 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3305 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3306 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3307 phy_ctrl);
3308 adapter->smartspeed++;
3309 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3310 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3311 &phy_ctrl)) {
3312 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3313 MII_CR_RESTART_AUTO_NEG);
3314 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3315 phy_ctrl);
3318 return;
3319 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3320 /* If still no link, perhaps using 2/3 pair cable */
3321 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3322 phy_ctrl |= CR_1000T_MS_ENABLE;
3323 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3324 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3325 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3326 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3327 MII_CR_RESTART_AUTO_NEG);
3328 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3331 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3332 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3333 adapter->smartspeed = 0;
3337 * e1000_ioctl -
3338 * @netdev:
3339 * @ifreq:
3340 * @cmd:
3343 static int
3344 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3346 switch (cmd) {
3347 case SIOCGMIIPHY:
3348 case SIOCGMIIREG:
3349 case SIOCSMIIREG:
3350 return e1000_mii_ioctl(netdev, ifr, cmd);
3351 default:
3352 return -EOPNOTSUPP;
3357 * e1000_mii_ioctl -
3358 * @netdev:
3359 * @ifreq:
3360 * @cmd:
3363 static int
3364 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3366 struct e1000_adapter *adapter = netdev_priv(netdev);
3367 struct mii_ioctl_data *data = if_mii(ifr);
3368 int retval;
3369 uint16_t mii_reg;
3370 uint16_t spddplx;
3371 unsigned long flags;
3373 if(adapter->hw.media_type != e1000_media_type_copper)
3374 return -EOPNOTSUPP;
3376 switch (cmd) {
3377 case SIOCGMIIPHY:
3378 data->phy_id = adapter->hw.phy_addr;
3379 break;
3380 case SIOCGMIIREG:
3381 if(!capable(CAP_NET_ADMIN))
3382 return -EPERM;
3383 spin_lock_irqsave(&adapter->stats_lock, flags);
3384 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3385 &data->val_out)) {
3386 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3387 return -EIO;
3389 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3390 break;
3391 case SIOCSMIIREG:
3392 if(!capable(CAP_NET_ADMIN))
3393 return -EPERM;
3394 if(data->reg_num & ~(0x1F))
3395 return -EFAULT;
3396 mii_reg = data->val_in;
3397 spin_lock_irqsave(&adapter->stats_lock, flags);
3398 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3399 mii_reg)) {
3400 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3401 return -EIO;
3403 if(adapter->hw.phy_type == e1000_phy_m88) {
3404 switch (data->reg_num) {
3405 case PHY_CTRL:
3406 if(mii_reg & MII_CR_POWER_DOWN)
3407 break;
3408 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3409 adapter->hw.autoneg = 1;
3410 adapter->hw.autoneg_advertised = 0x2F;
3411 } else {
3412 if (mii_reg & 0x40)
3413 spddplx = SPEED_1000;
3414 else if (mii_reg & 0x2000)
3415 spddplx = SPEED_100;
3416 else
3417 spddplx = SPEED_10;
3418 spddplx += (mii_reg & 0x100)
3419 ? FULL_DUPLEX :
3420 HALF_DUPLEX;
3421 retval = e1000_set_spd_dplx(adapter,
3422 spddplx);
3423 if(retval) {
3424 spin_unlock_irqrestore(
3425 &adapter->stats_lock,
3426 flags);
3427 return retval;
3430 if(netif_running(adapter->netdev)) {
3431 e1000_down(adapter);
3432 e1000_up(adapter);
3433 } else
3434 e1000_reset(adapter);
3435 break;
3436 case M88E1000_PHY_SPEC_CTRL:
3437 case M88E1000_EXT_PHY_SPEC_CTRL:
3438 if(e1000_phy_reset(&adapter->hw)) {
3439 spin_unlock_irqrestore(
3440 &adapter->stats_lock, flags);
3441 return -EIO;
3443 break;
3445 } else {
3446 switch (data->reg_num) {
3447 case PHY_CTRL:
3448 if(mii_reg & MII_CR_POWER_DOWN)
3449 break;
3450 if(netif_running(adapter->netdev)) {
3451 e1000_down(adapter);
3452 e1000_up(adapter);
3453 } else
3454 e1000_reset(adapter);
3455 break;
3458 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3459 break;
3460 default:
3461 return -EOPNOTSUPP;
3463 return E1000_SUCCESS;
3466 void
3467 e1000_pci_set_mwi(struct e1000_hw *hw)
3469 struct e1000_adapter *adapter = hw->back;
3470 int ret_val = pci_set_mwi(adapter->pdev);
3472 if(ret_val)
3473 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
3476 void
3477 e1000_pci_clear_mwi(struct e1000_hw *hw)
3479 struct e1000_adapter *adapter = hw->back;
3481 pci_clear_mwi(adapter->pdev);
3484 void
3485 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3487 struct e1000_adapter *adapter = hw->back;
3489 pci_read_config_word(adapter->pdev, reg, value);
3492 void
3493 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3495 struct e1000_adapter *adapter = hw->back;
3497 pci_write_config_word(adapter->pdev, reg, *value);
3500 uint32_t
3501 e1000_io_read(struct e1000_hw *hw, unsigned long port)
3503 return inl(port);
3506 void
3507 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3509 outl(value, port);
3512 static void
3513 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3515 struct e1000_adapter *adapter = netdev_priv(netdev);
3516 uint32_t ctrl, rctl;
3518 e1000_irq_disable(adapter);
3519 adapter->vlgrp = grp;
3521 if(grp) {
3522 /* enable VLAN tag insert/strip */
3523 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3524 ctrl |= E1000_CTRL_VME;
3525 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3527 /* enable VLAN receive filtering */
3528 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3529 rctl |= E1000_RCTL_VFE;
3530 rctl &= ~E1000_RCTL_CFIEN;
3531 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3532 e1000_update_mng_vlan(adapter);
3533 } else {
3534 /* disable VLAN tag insert/strip */
3535 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3536 ctrl &= ~E1000_CTRL_VME;
3537 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3539 /* disable VLAN filtering */
3540 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3541 rctl &= ~E1000_RCTL_VFE;
3542 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3543 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3544 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3545 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3549 e1000_irq_enable(adapter);
3552 static void
3553 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3555 struct e1000_adapter *adapter = netdev_priv(netdev);
3556 uint32_t vfta, index;
3557 if((adapter->hw.mng_cookie.status &
3558 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3559 (vid == adapter->mng_vlan_id))
3560 return;
3561 /* add VID to filter table */
3562 index = (vid >> 5) & 0x7F;
3563 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3564 vfta |= (1 << (vid & 0x1F));
3565 e1000_write_vfta(&adapter->hw, index, vfta);
3568 static void
3569 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3571 struct e1000_adapter *adapter = netdev_priv(netdev);
3572 uint32_t vfta, index;
3574 e1000_irq_disable(adapter);
3576 if(adapter->vlgrp)
3577 adapter->vlgrp->vlan_devices[vid] = NULL;
3579 e1000_irq_enable(adapter);
3581 if((adapter->hw.mng_cookie.status &
3582 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3583 (vid == adapter->mng_vlan_id))
3584 return;
3585 /* remove VID from filter table */
3586 index = (vid >> 5) & 0x7F;
3587 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3588 vfta &= ~(1 << (vid & 0x1F));
3589 e1000_write_vfta(&adapter->hw, index, vfta);
3592 static void
3593 e1000_restore_vlan(struct e1000_adapter *adapter)
3595 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3597 if(adapter->vlgrp) {
3598 uint16_t vid;
3599 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3600 if(!adapter->vlgrp->vlan_devices[vid])
3601 continue;
3602 e1000_vlan_rx_add_vid(adapter->netdev, vid);
3608 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3610 adapter->hw.autoneg = 0;
3612 /* Fiber NICs only allow 1000 gbps Full duplex */
3613 if((adapter->hw.media_type == e1000_media_type_fiber) &&
3614 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3615 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3616 return -EINVAL;
3619 switch(spddplx) {
3620 case SPEED_10 + DUPLEX_HALF:
3621 adapter->hw.forced_speed_duplex = e1000_10_half;
3622 break;
3623 case SPEED_10 + DUPLEX_FULL:
3624 adapter->hw.forced_speed_duplex = e1000_10_full;
3625 break;
3626 case SPEED_100 + DUPLEX_HALF:
3627 adapter->hw.forced_speed_duplex = e1000_100_half;
3628 break;
3629 case SPEED_100 + DUPLEX_FULL:
3630 adapter->hw.forced_speed_duplex = e1000_100_full;
3631 break;
3632 case SPEED_1000 + DUPLEX_FULL:
3633 adapter->hw.autoneg = 1;
3634 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3635 break;
3636 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3637 default:
3638 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3639 return -EINVAL;
3641 return 0;
3644 static int
3645 e1000_suspend(struct pci_dev *pdev, uint32_t state)
3647 struct net_device *netdev = pci_get_drvdata(pdev);
3648 struct e1000_adapter *adapter = netdev_priv(netdev);
3649 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
3650 uint32_t wufc = adapter->wol;
3652 netif_device_detach(netdev);
3654 if(netif_running(netdev))
3655 e1000_down(adapter);
3657 status = E1000_READ_REG(&adapter->hw, STATUS);
3658 if(status & E1000_STATUS_LU)
3659 wufc &= ~E1000_WUFC_LNKC;
3661 if(wufc) {
3662 e1000_setup_rctl(adapter);
3663 e1000_set_multi(netdev);
3665 /* turn on all-multi mode if wake on multicast is enabled */
3666 if(adapter->wol & E1000_WUFC_MC) {
3667 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3668 rctl |= E1000_RCTL_MPE;
3669 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3672 if(adapter->hw.mac_type >= e1000_82540) {
3673 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3674 /* advertise wake from D3Cold */
3675 #define E1000_CTRL_ADVD3WUC 0x00100000
3676 /* phy power management enable */
3677 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3678 ctrl |= E1000_CTRL_ADVD3WUC |
3679 E1000_CTRL_EN_PHY_PWR_MGMT;
3680 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3683 if(adapter->hw.media_type == e1000_media_type_fiber ||
3684 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3685 /* keep the laser running in D3 */
3686 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3687 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3688 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3691 /* Allow time for pending master requests to run */
3692 e1000_disable_pciex_master(&adapter->hw);
3694 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3695 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3696 pci_enable_wake(pdev, 3, 1);
3697 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3698 } else {
3699 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3700 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3701 pci_enable_wake(pdev, 3, 0);
3702 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3705 pci_save_state(pdev);
3707 if(adapter->hw.mac_type >= e1000_82540 &&
3708 adapter->hw.media_type == e1000_media_type_copper) {
3709 manc = E1000_READ_REG(&adapter->hw, MANC);
3710 if(manc & E1000_MANC_SMBUS_EN) {
3711 manc |= E1000_MANC_ARP_EN;
3712 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3713 pci_enable_wake(pdev, 3, 1);
3714 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3718 switch(adapter->hw.mac_type) {
3719 case e1000_82573:
3720 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3721 E1000_WRITE_REG(&adapter->hw, SWSM,
3722 swsm & ~E1000_SWSM_DRV_LOAD);
3723 break;
3724 default:
3725 break;
3728 pci_disable_device(pdev);
3730 state = (state > 0) ? 3 : 0;
3731 pci_set_power_state(pdev, state);
3733 return 0;
3736 #ifdef CONFIG_PM
3737 static int
3738 e1000_resume(struct pci_dev *pdev)
3740 struct net_device *netdev = pci_get_drvdata(pdev);
3741 struct e1000_adapter *adapter = netdev_priv(netdev);
3742 uint32_t manc, ret_val, swsm;
3744 pci_set_power_state(pdev, 0);
3745 pci_restore_state(pdev);
3746 ret_val = pci_enable_device(pdev);
3747 pci_set_master(pdev);
3749 pci_enable_wake(pdev, 3, 0);
3750 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3752 e1000_reset(adapter);
3753 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3755 if(netif_running(netdev))
3756 e1000_up(adapter);
3758 netif_device_attach(netdev);
3760 if(adapter->hw.mac_type >= e1000_82540 &&
3761 adapter->hw.media_type == e1000_media_type_copper) {
3762 manc = E1000_READ_REG(&adapter->hw, MANC);
3763 manc &= ~(E1000_MANC_ARP_EN);
3764 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3767 switch(adapter->hw.mac_type) {
3768 case e1000_82573:
3769 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3770 E1000_WRITE_REG(&adapter->hw, SWSM,
3771 swsm | E1000_SWSM_DRV_LOAD);
3772 break;
3773 default:
3774 break;
3777 return 0;
3779 #endif
3780 #ifdef CONFIG_NET_POLL_CONTROLLER
3782 * Polling 'interrupt' - used by things like netconsole to send skbs
3783 * without having to re-enable interrupts. It's not called while
3784 * the interrupt routine is executing.
3786 static void
3787 e1000_netpoll(struct net_device *netdev)
3789 struct e1000_adapter *adapter = netdev_priv(netdev);
3790 disable_irq(adapter->pdev->irq);
3791 e1000_intr(adapter->pdev->irq, netdev, NULL);
3792 enable_irq(adapter->pdev->irq);
3794 #endif
3796 /* e1000_main.c */