drm: remove unused #include <linux/version.h>'s
[linux-2.6/verdex.git] / drivers / gpu / drm / ttm / ttm_tt.c
blob75dc8bd245920695d77e5f6fd92d5f9d3b150e5c
1 /**************************************************************************
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "ttm/ttm_module.h"
38 #include "ttm/ttm_bo_driver.h"
39 #include "ttm/ttm_placement.h"
41 static int ttm_tt_swapin(struct ttm_tt *ttm);
43 #if defined(CONFIG_X86)
44 static void ttm_tt_clflush_page(struct page *page)
46 uint8_t *page_virtual;
47 unsigned int i;
49 if (unlikely(page == NULL))
50 return;
52 page_virtual = kmap_atomic(page, KM_USER0);
54 for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
55 clflush(page_virtual + i);
57 kunmap_atomic(page_virtual, KM_USER0);
60 static void ttm_tt_cache_flush_clflush(struct page *pages[],
61 unsigned long num_pages)
63 unsigned long i;
65 mb();
66 for (i = 0; i < num_pages; ++i)
67 ttm_tt_clflush_page(*pages++);
68 mb();
70 #elif !defined(__powerpc__)
71 static void ttm_tt_ipi_handler(void *null)
75 #endif
77 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
80 #if defined(CONFIG_X86)
81 if (cpu_has_clflush) {
82 ttm_tt_cache_flush_clflush(pages, num_pages);
83 return;
85 #elif defined(__powerpc__)
86 unsigned long i;
88 for (i = 0; i < num_pages; ++i) {
89 if (pages[i]) {
90 unsigned long start = (unsigned long)page_address(pages[i]);
91 flush_dcache_range(start, start + PAGE_SIZE);
94 #else
95 if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
96 printk(KERN_ERR TTM_PFX
97 "Timed out waiting for drm cache flush.\n");
98 #endif
102 * Allocates storage for pointers to the pages that back the ttm.
104 * Uses kmalloc if possible. Otherwise falls back to vmalloc.
106 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
108 unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
109 ttm->pages = NULL;
111 if (size <= PAGE_SIZE)
112 ttm->pages = kzalloc(size, GFP_KERNEL);
114 if (!ttm->pages) {
115 ttm->pages = vmalloc_user(size);
116 if (ttm->pages)
117 ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
121 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
123 if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
124 vfree(ttm->pages);
125 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
126 } else {
127 kfree(ttm->pages);
129 ttm->pages = NULL;
132 static struct page *ttm_tt_alloc_page(unsigned page_flags)
134 if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
135 return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
137 return alloc_page(GFP_HIGHUSER);
140 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
142 int write;
143 int dirty;
144 struct page *page;
145 int i;
146 struct ttm_backend *be = ttm->be;
148 BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
149 write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
150 dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
152 if (be)
153 be->func->clear(be);
155 for (i = 0; i < ttm->num_pages; ++i) {
156 page = ttm->pages[i];
157 if (page == NULL)
158 continue;
160 if (page == ttm->dummy_read_page) {
161 BUG_ON(write);
162 continue;
165 if (write && dirty && !PageReserved(page))
166 set_page_dirty_lock(page);
168 ttm->pages[i] = NULL;
169 ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
170 put_page(page);
172 ttm->state = tt_unpopulated;
173 ttm->first_himem_page = ttm->num_pages;
174 ttm->last_lomem_page = -1;
177 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
179 struct page *p;
180 struct ttm_bo_device *bdev = ttm->bdev;
181 struct ttm_mem_global *mem_glob = bdev->mem_glob;
182 int ret;
184 while (NULL == (p = ttm->pages[index])) {
185 p = ttm_tt_alloc_page(ttm->page_flags);
187 if (!p)
188 return NULL;
190 if (PageHighMem(p)) {
191 ret =
192 ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
193 false, false, true);
194 if (unlikely(ret != 0))
195 goto out_err;
196 ttm->pages[--ttm->first_himem_page] = p;
197 } else {
198 ret =
199 ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
200 false, false, false);
201 if (unlikely(ret != 0))
202 goto out_err;
203 ttm->pages[++ttm->last_lomem_page] = p;
206 return p;
207 out_err:
208 put_page(p);
209 return NULL;
212 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
214 int ret;
216 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
217 ret = ttm_tt_swapin(ttm);
218 if (unlikely(ret != 0))
219 return NULL;
221 return __ttm_tt_get_page(ttm, index);
224 int ttm_tt_populate(struct ttm_tt *ttm)
226 struct page *page;
227 unsigned long i;
228 struct ttm_backend *be;
229 int ret;
231 if (ttm->state != tt_unpopulated)
232 return 0;
234 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
235 ret = ttm_tt_swapin(ttm);
236 if (unlikely(ret != 0))
237 return ret;
240 be = ttm->be;
242 for (i = 0; i < ttm->num_pages; ++i) {
243 page = __ttm_tt_get_page(ttm, i);
244 if (!page)
245 return -ENOMEM;
248 be->func->populate(be, ttm->num_pages, ttm->pages,
249 ttm->dummy_read_page);
250 ttm->state = tt_unbound;
251 return 0;
254 #ifdef CONFIG_X86
255 static inline int ttm_tt_set_page_caching(struct page *p,
256 enum ttm_caching_state c_state)
258 if (PageHighMem(p))
259 return 0;
261 switch (c_state) {
262 case tt_cached:
263 return set_pages_wb(p, 1);
264 case tt_wc:
265 return set_memory_wc((unsigned long) page_address(p), 1);
266 default:
267 return set_pages_uc(p, 1);
270 #else /* CONFIG_X86 */
271 static inline int ttm_tt_set_page_caching(struct page *p,
272 enum ttm_caching_state c_state)
274 return 0;
276 #endif /* CONFIG_X86 */
279 * Change caching policy for the linear kernel map
280 * for range of pages in a ttm.
283 static int ttm_tt_set_caching(struct ttm_tt *ttm,
284 enum ttm_caching_state c_state)
286 int i, j;
287 struct page *cur_page;
288 int ret;
290 if (ttm->caching_state == c_state)
291 return 0;
293 if (c_state != tt_cached) {
294 ret = ttm_tt_populate(ttm);
295 if (unlikely(ret != 0))
296 return ret;
299 if (ttm->caching_state == tt_cached)
300 ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
302 for (i = 0; i < ttm->num_pages; ++i) {
303 cur_page = ttm->pages[i];
304 if (likely(cur_page != NULL)) {
305 ret = ttm_tt_set_page_caching(cur_page, c_state);
306 if (unlikely(ret != 0))
307 goto out_err;
311 ttm->caching_state = c_state;
313 return 0;
315 out_err:
316 for (j = 0; j < i; ++j) {
317 cur_page = ttm->pages[j];
318 if (likely(cur_page != NULL)) {
319 (void)ttm_tt_set_page_caching(cur_page,
320 ttm->caching_state);
324 return ret;
327 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
329 enum ttm_caching_state state;
331 if (placement & TTM_PL_FLAG_WC)
332 state = tt_wc;
333 else if (placement & TTM_PL_FLAG_UNCACHED)
334 state = tt_uncached;
335 else
336 state = tt_cached;
338 return ttm_tt_set_caching(ttm, state);
341 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
343 int i;
344 struct page *cur_page;
345 struct ttm_backend *be = ttm->be;
347 if (be)
348 be->func->clear(be);
349 (void)ttm_tt_set_caching(ttm, tt_cached);
350 for (i = 0; i < ttm->num_pages; ++i) {
351 cur_page = ttm->pages[i];
352 ttm->pages[i] = NULL;
353 if (cur_page) {
354 if (page_count(cur_page) != 1)
355 printk(KERN_ERR TTM_PFX
356 "Erroneous page count. "
357 "Leaking pages.\n");
358 ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
359 PageHighMem(cur_page));
360 __free_page(cur_page);
363 ttm->state = tt_unpopulated;
364 ttm->first_himem_page = ttm->num_pages;
365 ttm->last_lomem_page = -1;
368 void ttm_tt_destroy(struct ttm_tt *ttm)
370 struct ttm_backend *be;
372 if (unlikely(ttm == NULL))
373 return;
375 be = ttm->be;
376 if (likely(be != NULL)) {
377 be->func->destroy(be);
378 ttm->be = NULL;
381 if (likely(ttm->pages != NULL)) {
382 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
383 ttm_tt_free_user_pages(ttm);
384 else
385 ttm_tt_free_alloced_pages(ttm);
387 ttm_tt_free_page_directory(ttm);
390 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
391 ttm->swap_storage)
392 fput(ttm->swap_storage);
394 kfree(ttm);
397 int ttm_tt_set_user(struct ttm_tt *ttm,
398 struct task_struct *tsk,
399 unsigned long start, unsigned long num_pages)
401 struct mm_struct *mm = tsk->mm;
402 int ret;
403 int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
404 struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
406 BUG_ON(num_pages != ttm->num_pages);
407 BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
410 * Account user pages as lowmem pages for now.
413 ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
414 false, false, false);
415 if (unlikely(ret != 0))
416 return ret;
418 down_read(&mm->mmap_sem);
419 ret = get_user_pages(tsk, mm, start, num_pages,
420 write, 0, ttm->pages, NULL);
421 up_read(&mm->mmap_sem);
423 if (ret != num_pages && write) {
424 ttm_tt_free_user_pages(ttm);
425 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
426 return -ENOMEM;
429 ttm->tsk = tsk;
430 ttm->start = start;
431 ttm->state = tt_unbound;
433 return 0;
436 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
437 uint32_t page_flags, struct page *dummy_read_page)
439 struct ttm_bo_driver *bo_driver = bdev->driver;
440 struct ttm_tt *ttm;
442 if (!bo_driver)
443 return NULL;
445 ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
446 if (!ttm)
447 return NULL;
449 ttm->bdev = bdev;
451 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
452 ttm->first_himem_page = ttm->num_pages;
453 ttm->last_lomem_page = -1;
454 ttm->caching_state = tt_cached;
455 ttm->page_flags = page_flags;
457 ttm->dummy_read_page = dummy_read_page;
459 ttm_tt_alloc_page_directory(ttm);
460 if (!ttm->pages) {
461 ttm_tt_destroy(ttm);
462 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
463 return NULL;
465 ttm->be = bo_driver->create_ttm_backend_entry(bdev);
466 if (!ttm->be) {
467 ttm_tt_destroy(ttm);
468 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
469 return NULL;
471 ttm->state = tt_unpopulated;
472 return ttm;
475 void ttm_tt_unbind(struct ttm_tt *ttm)
477 int ret;
478 struct ttm_backend *be = ttm->be;
480 if (ttm->state == tt_bound) {
481 ret = be->func->unbind(be);
482 BUG_ON(ret);
483 ttm->state = tt_unbound;
487 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
489 int ret = 0;
490 struct ttm_backend *be;
492 if (!ttm)
493 return -EINVAL;
495 if (ttm->state == tt_bound)
496 return 0;
498 be = ttm->be;
500 ret = ttm_tt_populate(ttm);
501 if (ret)
502 return ret;
504 ret = be->func->bind(be, bo_mem);
505 if (ret) {
506 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
507 return ret;
510 ttm->state = tt_bound;
512 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
513 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
514 return 0;
516 EXPORT_SYMBOL(ttm_tt_bind);
518 static int ttm_tt_swapin(struct ttm_tt *ttm)
520 struct address_space *swap_space;
521 struct file *swap_storage;
522 struct page *from_page;
523 struct page *to_page;
524 void *from_virtual;
525 void *to_virtual;
526 int i;
527 int ret;
529 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
530 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
531 ttm->num_pages);
532 if (unlikely(ret != 0))
533 return ret;
535 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
536 return 0;
539 swap_storage = ttm->swap_storage;
540 BUG_ON(swap_storage == NULL);
542 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
544 for (i = 0; i < ttm->num_pages; ++i) {
545 from_page = read_mapping_page(swap_space, i, NULL);
546 if (IS_ERR(from_page))
547 goto out_err;
548 to_page = __ttm_tt_get_page(ttm, i);
549 if (unlikely(to_page == NULL))
550 goto out_err;
552 preempt_disable();
553 from_virtual = kmap_atomic(from_page, KM_USER0);
554 to_virtual = kmap_atomic(to_page, KM_USER1);
555 memcpy(to_virtual, from_virtual, PAGE_SIZE);
556 kunmap_atomic(to_virtual, KM_USER1);
557 kunmap_atomic(from_virtual, KM_USER0);
558 preempt_enable();
559 page_cache_release(from_page);
562 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
563 fput(swap_storage);
564 ttm->swap_storage = NULL;
565 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
567 return 0;
568 out_err:
569 ttm_tt_free_alloced_pages(ttm);
570 return -ENOMEM;
573 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
575 struct address_space *swap_space;
576 struct file *swap_storage;
577 struct page *from_page;
578 struct page *to_page;
579 void *from_virtual;
580 void *to_virtual;
581 int i;
583 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
584 BUG_ON(ttm->caching_state != tt_cached);
587 * For user buffers, just unpin the pages, as there should be
588 * vma references.
591 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
592 ttm_tt_free_user_pages(ttm);
593 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
594 ttm->swap_storage = NULL;
595 return 0;
598 if (!persistant_swap_storage) {
599 swap_storage = shmem_file_setup("ttm swap",
600 ttm->num_pages << PAGE_SHIFT,
602 if (unlikely(IS_ERR(swap_storage))) {
603 printk(KERN_ERR "Failed allocating swap storage.\n");
604 return -ENOMEM;
606 } else
607 swap_storage = persistant_swap_storage;
609 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
611 for (i = 0; i < ttm->num_pages; ++i) {
612 from_page = ttm->pages[i];
613 if (unlikely(from_page == NULL))
614 continue;
615 to_page = read_mapping_page(swap_space, i, NULL);
616 if (unlikely(to_page == NULL))
617 goto out_err;
619 preempt_disable();
620 from_virtual = kmap_atomic(from_page, KM_USER0);
621 to_virtual = kmap_atomic(to_page, KM_USER1);
622 memcpy(to_virtual, from_virtual, PAGE_SIZE);
623 kunmap_atomic(to_virtual, KM_USER1);
624 kunmap_atomic(from_virtual, KM_USER0);
625 preempt_enable();
626 set_page_dirty(to_page);
627 mark_page_accessed(to_page);
628 page_cache_release(to_page);
631 ttm_tt_free_alloced_pages(ttm);
632 ttm->swap_storage = swap_storage;
633 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
634 if (persistant_swap_storage)
635 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
637 return 0;
638 out_err:
639 if (!persistant_swap_storage)
640 fput(swap_storage);
642 return -ENOMEM;