[IA64] remove obsolete no_irq_type
[linux-2.6/verdex.git] / drivers / md / dm.c
blob3fd8b1e65483da53070f0fe633e82843ac1a5ba0
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
28 static const char *_name = DM_NAME;
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
33 static DEFINE_SPINLOCK(_minor_lock);
35 * For bio-based dm.
36 * One of these is allocated per bio.
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
58 * For request-based dm.
59 * One of these is allocated per request.
61 struct dm_rq_target_io {
62 struct mapped_device *md;
63 struct dm_target *ti;
64 struct request *orig, clone;
65 int error;
66 union map_info info;
70 * For request-based dm.
71 * One of these is allocated per bio.
73 struct dm_rq_clone_bio_info {
74 struct bio *orig;
75 struct request *rq;
78 union map_info *dm_get_mapinfo(struct bio *bio)
80 if (bio && bio->bi_private)
81 return &((struct dm_target_io *)bio->bi_private)->info;
82 return NULL;
85 #define MINOR_ALLOCED ((void *)-1)
88 * Bits for the md->flags field.
90 #define DMF_BLOCK_IO_FOR_SUSPEND 0
91 #define DMF_SUSPENDED 1
92 #define DMF_FROZEN 2
93 #define DMF_FREEING 3
94 #define DMF_DELETING 4
95 #define DMF_NOFLUSH_SUSPENDING 5
96 #define DMF_QUEUE_IO_TO_THREAD 6
99 * Work processed by per-device workqueue.
101 struct mapped_device {
102 struct rw_semaphore io_lock;
103 struct mutex suspend_lock;
104 rwlock_t map_lock;
105 atomic_t holders;
106 atomic_t open_count;
108 unsigned long flags;
110 struct request_queue *queue;
111 struct gendisk *disk;
112 char name[16];
114 void *interface_ptr;
117 * A list of ios that arrived while we were suspended.
119 atomic_t pending;
120 wait_queue_head_t wait;
121 struct work_struct work;
122 struct bio_list deferred;
123 spinlock_t deferred_lock;
126 * An error from the barrier request currently being processed.
128 int barrier_error;
131 * Processing queue (flush/barriers)
133 struct workqueue_struct *wq;
136 * The current mapping.
138 struct dm_table *map;
141 * io objects are allocated from here.
143 mempool_t *io_pool;
144 mempool_t *tio_pool;
146 struct bio_set *bs;
149 * Event handling.
151 atomic_t event_nr;
152 wait_queue_head_t eventq;
153 atomic_t uevent_seq;
154 struct list_head uevent_list;
155 spinlock_t uevent_lock; /* Protect access to uevent_list */
158 * freeze/thaw support require holding onto a super block
160 struct super_block *frozen_sb;
161 struct block_device *suspended_bdev;
163 /* forced geometry settings */
164 struct hd_geometry geometry;
166 /* sysfs handle */
167 struct kobject kobj;
170 #define MIN_IOS 256
171 static struct kmem_cache *_io_cache;
172 static struct kmem_cache *_tio_cache;
173 static struct kmem_cache *_rq_tio_cache;
174 static struct kmem_cache *_rq_bio_info_cache;
176 static int __init local_init(void)
178 int r = -ENOMEM;
180 /* allocate a slab for the dm_ios */
181 _io_cache = KMEM_CACHE(dm_io, 0);
182 if (!_io_cache)
183 return r;
185 /* allocate a slab for the target ios */
186 _tio_cache = KMEM_CACHE(dm_target_io, 0);
187 if (!_tio_cache)
188 goto out_free_io_cache;
190 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
191 if (!_rq_tio_cache)
192 goto out_free_tio_cache;
194 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
195 if (!_rq_bio_info_cache)
196 goto out_free_rq_tio_cache;
198 r = dm_uevent_init();
199 if (r)
200 goto out_free_rq_bio_info_cache;
202 _major = major;
203 r = register_blkdev(_major, _name);
204 if (r < 0)
205 goto out_uevent_exit;
207 if (!_major)
208 _major = r;
210 return 0;
212 out_uevent_exit:
213 dm_uevent_exit();
214 out_free_rq_bio_info_cache:
215 kmem_cache_destroy(_rq_bio_info_cache);
216 out_free_rq_tio_cache:
217 kmem_cache_destroy(_rq_tio_cache);
218 out_free_tio_cache:
219 kmem_cache_destroy(_tio_cache);
220 out_free_io_cache:
221 kmem_cache_destroy(_io_cache);
223 return r;
226 static void local_exit(void)
228 kmem_cache_destroy(_rq_bio_info_cache);
229 kmem_cache_destroy(_rq_tio_cache);
230 kmem_cache_destroy(_tio_cache);
231 kmem_cache_destroy(_io_cache);
232 unregister_blkdev(_major, _name);
233 dm_uevent_exit();
235 _major = 0;
237 DMINFO("cleaned up");
240 static int (*_inits[])(void) __initdata = {
241 local_init,
242 dm_target_init,
243 dm_linear_init,
244 dm_stripe_init,
245 dm_kcopyd_init,
246 dm_interface_init,
249 static void (*_exits[])(void) = {
250 local_exit,
251 dm_target_exit,
252 dm_linear_exit,
253 dm_stripe_exit,
254 dm_kcopyd_exit,
255 dm_interface_exit,
258 static int __init dm_init(void)
260 const int count = ARRAY_SIZE(_inits);
262 int r, i;
264 for (i = 0; i < count; i++) {
265 r = _inits[i]();
266 if (r)
267 goto bad;
270 return 0;
272 bad:
273 while (i--)
274 _exits[i]();
276 return r;
279 static void __exit dm_exit(void)
281 int i = ARRAY_SIZE(_exits);
283 while (i--)
284 _exits[i]();
288 * Block device functions
290 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
292 struct mapped_device *md;
294 spin_lock(&_minor_lock);
296 md = bdev->bd_disk->private_data;
297 if (!md)
298 goto out;
300 if (test_bit(DMF_FREEING, &md->flags) ||
301 test_bit(DMF_DELETING, &md->flags)) {
302 md = NULL;
303 goto out;
306 dm_get(md);
307 atomic_inc(&md->open_count);
309 out:
310 spin_unlock(&_minor_lock);
312 return md ? 0 : -ENXIO;
315 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
317 struct mapped_device *md = disk->private_data;
318 atomic_dec(&md->open_count);
319 dm_put(md);
320 return 0;
323 int dm_open_count(struct mapped_device *md)
325 return atomic_read(&md->open_count);
329 * Guarantees nothing is using the device before it's deleted.
331 int dm_lock_for_deletion(struct mapped_device *md)
333 int r = 0;
335 spin_lock(&_minor_lock);
337 if (dm_open_count(md))
338 r = -EBUSY;
339 else
340 set_bit(DMF_DELETING, &md->flags);
342 spin_unlock(&_minor_lock);
344 return r;
347 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
349 struct mapped_device *md = bdev->bd_disk->private_data;
351 return dm_get_geometry(md, geo);
354 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
355 unsigned int cmd, unsigned long arg)
357 struct mapped_device *md = bdev->bd_disk->private_data;
358 struct dm_table *map = dm_get_table(md);
359 struct dm_target *tgt;
360 int r = -ENOTTY;
362 if (!map || !dm_table_get_size(map))
363 goto out;
365 /* We only support devices that have a single target */
366 if (dm_table_get_num_targets(map) != 1)
367 goto out;
369 tgt = dm_table_get_target(map, 0);
371 if (dm_suspended(md)) {
372 r = -EAGAIN;
373 goto out;
376 if (tgt->type->ioctl)
377 r = tgt->type->ioctl(tgt, cmd, arg);
379 out:
380 dm_table_put(map);
382 return r;
385 static struct dm_io *alloc_io(struct mapped_device *md)
387 return mempool_alloc(md->io_pool, GFP_NOIO);
390 static void free_io(struct mapped_device *md, struct dm_io *io)
392 mempool_free(io, md->io_pool);
395 static struct dm_target_io *alloc_tio(struct mapped_device *md)
397 return mempool_alloc(md->tio_pool, GFP_NOIO);
400 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
402 mempool_free(tio, md->tio_pool);
405 static void start_io_acct(struct dm_io *io)
407 struct mapped_device *md = io->md;
408 int cpu;
410 io->start_time = jiffies;
412 cpu = part_stat_lock();
413 part_round_stats(cpu, &dm_disk(md)->part0);
414 part_stat_unlock();
415 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
418 static void end_io_acct(struct dm_io *io)
420 struct mapped_device *md = io->md;
421 struct bio *bio = io->bio;
422 unsigned long duration = jiffies - io->start_time;
423 int pending, cpu;
424 int rw = bio_data_dir(bio);
426 cpu = part_stat_lock();
427 part_round_stats(cpu, &dm_disk(md)->part0);
428 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
429 part_stat_unlock();
432 * After this is decremented the bio must not be touched if it is
433 * a barrier.
435 dm_disk(md)->part0.in_flight = pending =
436 atomic_dec_return(&md->pending);
438 /* nudge anyone waiting on suspend queue */
439 if (!pending)
440 wake_up(&md->wait);
444 * Add the bio to the list of deferred io.
446 static void queue_io(struct mapped_device *md, struct bio *bio)
448 down_write(&md->io_lock);
450 spin_lock_irq(&md->deferred_lock);
451 bio_list_add(&md->deferred, bio);
452 spin_unlock_irq(&md->deferred_lock);
454 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
455 queue_work(md->wq, &md->work);
457 up_write(&md->io_lock);
461 * Everyone (including functions in this file), should use this
462 * function to access the md->map field, and make sure they call
463 * dm_table_put() when finished.
465 struct dm_table *dm_get_table(struct mapped_device *md)
467 struct dm_table *t;
469 read_lock(&md->map_lock);
470 t = md->map;
471 if (t)
472 dm_table_get(t);
473 read_unlock(&md->map_lock);
475 return t;
479 * Get the geometry associated with a dm device
481 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
483 *geo = md->geometry;
485 return 0;
489 * Set the geometry of a device.
491 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
493 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
495 if (geo->start > sz) {
496 DMWARN("Start sector is beyond the geometry limits.");
497 return -EINVAL;
500 md->geometry = *geo;
502 return 0;
505 /*-----------------------------------------------------------------
506 * CRUD START:
507 * A more elegant soln is in the works that uses the queue
508 * merge fn, unfortunately there are a couple of changes to
509 * the block layer that I want to make for this. So in the
510 * interests of getting something for people to use I give
511 * you this clearly demarcated crap.
512 *---------------------------------------------------------------*/
514 static int __noflush_suspending(struct mapped_device *md)
516 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
520 * Decrements the number of outstanding ios that a bio has been
521 * cloned into, completing the original io if necc.
523 static void dec_pending(struct dm_io *io, int error)
525 unsigned long flags;
526 int io_error;
527 struct bio *bio;
528 struct mapped_device *md = io->md;
530 /* Push-back supersedes any I/O errors */
531 if (error && !(io->error > 0 && __noflush_suspending(md)))
532 io->error = error;
534 if (atomic_dec_and_test(&io->io_count)) {
535 if (io->error == DM_ENDIO_REQUEUE) {
537 * Target requested pushing back the I/O.
539 spin_lock_irqsave(&md->deferred_lock, flags);
540 if (__noflush_suspending(md))
541 bio_list_add_head(&md->deferred, io->bio);
542 else
543 /* noflush suspend was interrupted. */
544 io->error = -EIO;
545 spin_unlock_irqrestore(&md->deferred_lock, flags);
548 io_error = io->error;
549 bio = io->bio;
551 if (bio_barrier(bio)) {
553 * There can be just one barrier request so we use
554 * a per-device variable for error reporting.
555 * Note that you can't touch the bio after end_io_acct
557 md->barrier_error = io_error;
558 end_io_acct(io);
559 } else {
560 end_io_acct(io);
562 if (io_error != DM_ENDIO_REQUEUE) {
563 trace_block_bio_complete(md->queue, bio);
565 bio_endio(bio, io_error);
569 free_io(md, io);
573 static void clone_endio(struct bio *bio, int error)
575 int r = 0;
576 struct dm_target_io *tio = bio->bi_private;
577 struct dm_io *io = tio->io;
578 struct mapped_device *md = tio->io->md;
579 dm_endio_fn endio = tio->ti->type->end_io;
581 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
582 error = -EIO;
584 if (endio) {
585 r = endio(tio->ti, bio, error, &tio->info);
586 if (r < 0 || r == DM_ENDIO_REQUEUE)
588 * error and requeue request are handled
589 * in dec_pending().
591 error = r;
592 else if (r == DM_ENDIO_INCOMPLETE)
593 /* The target will handle the io */
594 return;
595 else if (r) {
596 DMWARN("unimplemented target endio return value: %d", r);
597 BUG();
602 * Store md for cleanup instead of tio which is about to get freed.
604 bio->bi_private = md->bs;
606 free_tio(md, tio);
607 bio_put(bio);
608 dec_pending(io, error);
611 static sector_t max_io_len(struct mapped_device *md,
612 sector_t sector, struct dm_target *ti)
614 sector_t offset = sector - ti->begin;
615 sector_t len = ti->len - offset;
618 * Does the target need to split even further ?
620 if (ti->split_io) {
621 sector_t boundary;
622 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
623 - offset;
624 if (len > boundary)
625 len = boundary;
628 return len;
631 static void __map_bio(struct dm_target *ti, struct bio *clone,
632 struct dm_target_io *tio)
634 int r;
635 sector_t sector;
636 struct mapped_device *md;
639 * Sanity checks.
641 BUG_ON(!clone->bi_size);
643 clone->bi_end_io = clone_endio;
644 clone->bi_private = tio;
647 * Map the clone. If r == 0 we don't need to do
648 * anything, the target has assumed ownership of
649 * this io.
651 atomic_inc(&tio->io->io_count);
652 sector = clone->bi_sector;
653 r = ti->type->map(ti, clone, &tio->info);
654 if (r == DM_MAPIO_REMAPPED) {
655 /* the bio has been remapped so dispatch it */
657 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
658 tio->io->bio->bi_bdev->bd_dev, sector);
660 generic_make_request(clone);
661 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
662 /* error the io and bail out, or requeue it if needed */
663 md = tio->io->md;
664 dec_pending(tio->io, r);
666 * Store bio_set for cleanup.
668 clone->bi_private = md->bs;
669 bio_put(clone);
670 free_tio(md, tio);
671 } else if (r) {
672 DMWARN("unimplemented target map return value: %d", r);
673 BUG();
677 struct clone_info {
678 struct mapped_device *md;
679 struct dm_table *map;
680 struct bio *bio;
681 struct dm_io *io;
682 sector_t sector;
683 sector_t sector_count;
684 unsigned short idx;
687 static void dm_bio_destructor(struct bio *bio)
689 struct bio_set *bs = bio->bi_private;
691 bio_free(bio, bs);
695 * Creates a little bio that is just does part of a bvec.
697 static struct bio *split_bvec(struct bio *bio, sector_t sector,
698 unsigned short idx, unsigned int offset,
699 unsigned int len, struct bio_set *bs)
701 struct bio *clone;
702 struct bio_vec *bv = bio->bi_io_vec + idx;
704 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
705 clone->bi_destructor = dm_bio_destructor;
706 *clone->bi_io_vec = *bv;
708 clone->bi_sector = sector;
709 clone->bi_bdev = bio->bi_bdev;
710 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
711 clone->bi_vcnt = 1;
712 clone->bi_size = to_bytes(len);
713 clone->bi_io_vec->bv_offset = offset;
714 clone->bi_io_vec->bv_len = clone->bi_size;
715 clone->bi_flags |= 1 << BIO_CLONED;
717 if (bio_integrity(bio)) {
718 bio_integrity_clone(clone, bio, GFP_NOIO);
719 bio_integrity_trim(clone,
720 bio_sector_offset(bio, idx, offset), len);
723 return clone;
727 * Creates a bio that consists of range of complete bvecs.
729 static struct bio *clone_bio(struct bio *bio, sector_t sector,
730 unsigned short idx, unsigned short bv_count,
731 unsigned int len, struct bio_set *bs)
733 struct bio *clone;
735 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
736 __bio_clone(clone, bio);
737 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
738 clone->bi_destructor = dm_bio_destructor;
739 clone->bi_sector = sector;
740 clone->bi_idx = idx;
741 clone->bi_vcnt = idx + bv_count;
742 clone->bi_size = to_bytes(len);
743 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
745 if (bio_integrity(bio)) {
746 bio_integrity_clone(clone, bio, GFP_NOIO);
748 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
749 bio_integrity_trim(clone,
750 bio_sector_offset(bio, idx, 0), len);
753 return clone;
756 static int __clone_and_map(struct clone_info *ci)
758 struct bio *clone, *bio = ci->bio;
759 struct dm_target *ti;
760 sector_t len = 0, max;
761 struct dm_target_io *tio;
763 ti = dm_table_find_target(ci->map, ci->sector);
764 if (!dm_target_is_valid(ti))
765 return -EIO;
767 max = max_io_len(ci->md, ci->sector, ti);
770 * Allocate a target io object.
772 tio = alloc_tio(ci->md);
773 tio->io = ci->io;
774 tio->ti = ti;
775 memset(&tio->info, 0, sizeof(tio->info));
777 if (ci->sector_count <= max) {
779 * Optimise for the simple case where we can do all of
780 * the remaining io with a single clone.
782 clone = clone_bio(bio, ci->sector, ci->idx,
783 bio->bi_vcnt - ci->idx, ci->sector_count,
784 ci->md->bs);
785 __map_bio(ti, clone, tio);
786 ci->sector_count = 0;
788 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
790 * There are some bvecs that don't span targets.
791 * Do as many of these as possible.
793 int i;
794 sector_t remaining = max;
795 sector_t bv_len;
797 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
798 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
800 if (bv_len > remaining)
801 break;
803 remaining -= bv_len;
804 len += bv_len;
807 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
808 ci->md->bs);
809 __map_bio(ti, clone, tio);
811 ci->sector += len;
812 ci->sector_count -= len;
813 ci->idx = i;
815 } else {
817 * Handle a bvec that must be split between two or more targets.
819 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
820 sector_t remaining = to_sector(bv->bv_len);
821 unsigned int offset = 0;
823 do {
824 if (offset) {
825 ti = dm_table_find_target(ci->map, ci->sector);
826 if (!dm_target_is_valid(ti))
827 return -EIO;
829 max = max_io_len(ci->md, ci->sector, ti);
831 tio = alloc_tio(ci->md);
832 tio->io = ci->io;
833 tio->ti = ti;
834 memset(&tio->info, 0, sizeof(tio->info));
837 len = min(remaining, max);
839 clone = split_bvec(bio, ci->sector, ci->idx,
840 bv->bv_offset + offset, len,
841 ci->md->bs);
843 __map_bio(ti, clone, tio);
845 ci->sector += len;
846 ci->sector_count -= len;
847 offset += to_bytes(len);
848 } while (remaining -= len);
850 ci->idx++;
853 return 0;
857 * Split the bio into several clones and submit it to targets.
859 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
861 struct clone_info ci;
862 int error = 0;
864 ci.map = dm_get_table(md);
865 if (unlikely(!ci.map)) {
866 if (!bio_barrier(bio))
867 bio_io_error(bio);
868 else
869 md->barrier_error = -EIO;
870 return;
873 ci.md = md;
874 ci.bio = bio;
875 ci.io = alloc_io(md);
876 ci.io->error = 0;
877 atomic_set(&ci.io->io_count, 1);
878 ci.io->bio = bio;
879 ci.io->md = md;
880 ci.sector = bio->bi_sector;
881 ci.sector_count = bio_sectors(bio);
882 ci.idx = bio->bi_idx;
884 start_io_acct(ci.io);
885 while (ci.sector_count && !error)
886 error = __clone_and_map(&ci);
888 /* drop the extra reference count */
889 dec_pending(ci.io, error);
890 dm_table_put(ci.map);
892 /*-----------------------------------------------------------------
893 * CRUD END
894 *---------------------------------------------------------------*/
896 static int dm_merge_bvec(struct request_queue *q,
897 struct bvec_merge_data *bvm,
898 struct bio_vec *biovec)
900 struct mapped_device *md = q->queuedata;
901 struct dm_table *map = dm_get_table(md);
902 struct dm_target *ti;
903 sector_t max_sectors;
904 int max_size = 0;
906 if (unlikely(!map))
907 goto out;
909 ti = dm_table_find_target(map, bvm->bi_sector);
910 if (!dm_target_is_valid(ti))
911 goto out_table;
914 * Find maximum amount of I/O that won't need splitting
916 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
917 (sector_t) BIO_MAX_SECTORS);
918 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
919 if (max_size < 0)
920 max_size = 0;
923 * merge_bvec_fn() returns number of bytes
924 * it can accept at this offset
925 * max is precomputed maximal io size
927 if (max_size && ti->type->merge)
928 max_size = ti->type->merge(ti, bvm, biovec, max_size);
930 out_table:
931 dm_table_put(map);
933 out:
935 * Always allow an entire first page
937 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
938 max_size = biovec->bv_len;
940 return max_size;
944 * The request function that just remaps the bio built up by
945 * dm_merge_bvec.
947 static int dm_request(struct request_queue *q, struct bio *bio)
949 int rw = bio_data_dir(bio);
950 struct mapped_device *md = q->queuedata;
951 int cpu;
953 down_read(&md->io_lock);
955 cpu = part_stat_lock();
956 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
957 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
958 part_stat_unlock();
961 * If we're suspended or the thread is processing barriers
962 * we have to queue this io for later.
964 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
965 unlikely(bio_barrier(bio))) {
966 up_read(&md->io_lock);
968 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
969 bio_rw(bio) == READA) {
970 bio_io_error(bio);
971 return 0;
974 queue_io(md, bio);
976 return 0;
979 __split_and_process_bio(md, bio);
980 up_read(&md->io_lock);
981 return 0;
984 static void dm_unplug_all(struct request_queue *q)
986 struct mapped_device *md = q->queuedata;
987 struct dm_table *map = dm_get_table(md);
989 if (map) {
990 dm_table_unplug_all(map);
991 dm_table_put(map);
995 static int dm_any_congested(void *congested_data, int bdi_bits)
997 int r = bdi_bits;
998 struct mapped_device *md = congested_data;
999 struct dm_table *map;
1001 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1002 map = dm_get_table(md);
1003 if (map) {
1004 r = dm_table_any_congested(map, bdi_bits);
1005 dm_table_put(map);
1009 return r;
1012 /*-----------------------------------------------------------------
1013 * An IDR is used to keep track of allocated minor numbers.
1014 *---------------------------------------------------------------*/
1015 static DEFINE_IDR(_minor_idr);
1017 static void free_minor(int minor)
1019 spin_lock(&_minor_lock);
1020 idr_remove(&_minor_idr, minor);
1021 spin_unlock(&_minor_lock);
1025 * See if the device with a specific minor # is free.
1027 static int specific_minor(int minor)
1029 int r, m;
1031 if (minor >= (1 << MINORBITS))
1032 return -EINVAL;
1034 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1035 if (!r)
1036 return -ENOMEM;
1038 spin_lock(&_minor_lock);
1040 if (idr_find(&_minor_idr, minor)) {
1041 r = -EBUSY;
1042 goto out;
1045 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1046 if (r)
1047 goto out;
1049 if (m != minor) {
1050 idr_remove(&_minor_idr, m);
1051 r = -EBUSY;
1052 goto out;
1055 out:
1056 spin_unlock(&_minor_lock);
1057 return r;
1060 static int next_free_minor(int *minor)
1062 int r, m;
1064 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1065 if (!r)
1066 return -ENOMEM;
1068 spin_lock(&_minor_lock);
1070 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1071 if (r)
1072 goto out;
1074 if (m >= (1 << MINORBITS)) {
1075 idr_remove(&_minor_idr, m);
1076 r = -ENOSPC;
1077 goto out;
1080 *minor = m;
1082 out:
1083 spin_unlock(&_minor_lock);
1084 return r;
1087 static struct block_device_operations dm_blk_dops;
1089 static void dm_wq_work(struct work_struct *work);
1092 * Allocate and initialise a blank device with a given minor.
1094 static struct mapped_device *alloc_dev(int minor)
1096 int r;
1097 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1098 void *old_md;
1100 if (!md) {
1101 DMWARN("unable to allocate device, out of memory.");
1102 return NULL;
1105 if (!try_module_get(THIS_MODULE))
1106 goto bad_module_get;
1108 /* get a minor number for the dev */
1109 if (minor == DM_ANY_MINOR)
1110 r = next_free_minor(&minor);
1111 else
1112 r = specific_minor(minor);
1113 if (r < 0)
1114 goto bad_minor;
1116 init_rwsem(&md->io_lock);
1117 mutex_init(&md->suspend_lock);
1118 spin_lock_init(&md->deferred_lock);
1119 rwlock_init(&md->map_lock);
1120 atomic_set(&md->holders, 1);
1121 atomic_set(&md->open_count, 0);
1122 atomic_set(&md->event_nr, 0);
1123 atomic_set(&md->uevent_seq, 0);
1124 INIT_LIST_HEAD(&md->uevent_list);
1125 spin_lock_init(&md->uevent_lock);
1127 md->queue = blk_alloc_queue(GFP_KERNEL);
1128 if (!md->queue)
1129 goto bad_queue;
1131 md->queue->queuedata = md;
1132 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1133 md->queue->backing_dev_info.congested_data = md;
1134 blk_queue_make_request(md->queue, dm_request);
1135 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1136 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1137 md->queue->unplug_fn = dm_unplug_all;
1138 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1140 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1141 if (!md->io_pool)
1142 goto bad_io_pool;
1144 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1145 if (!md->tio_pool)
1146 goto bad_tio_pool;
1148 md->bs = bioset_create(16, 0);
1149 if (!md->bs)
1150 goto bad_no_bioset;
1152 md->disk = alloc_disk(1);
1153 if (!md->disk)
1154 goto bad_disk;
1156 atomic_set(&md->pending, 0);
1157 init_waitqueue_head(&md->wait);
1158 INIT_WORK(&md->work, dm_wq_work);
1159 init_waitqueue_head(&md->eventq);
1161 md->disk->major = _major;
1162 md->disk->first_minor = minor;
1163 md->disk->fops = &dm_blk_dops;
1164 md->disk->queue = md->queue;
1165 md->disk->private_data = md;
1166 sprintf(md->disk->disk_name, "dm-%d", minor);
1167 add_disk(md->disk);
1168 format_dev_t(md->name, MKDEV(_major, minor));
1170 md->wq = create_singlethread_workqueue("kdmflush");
1171 if (!md->wq)
1172 goto bad_thread;
1174 /* Populate the mapping, nobody knows we exist yet */
1175 spin_lock(&_minor_lock);
1176 old_md = idr_replace(&_minor_idr, md, minor);
1177 spin_unlock(&_minor_lock);
1179 BUG_ON(old_md != MINOR_ALLOCED);
1181 return md;
1183 bad_thread:
1184 put_disk(md->disk);
1185 bad_disk:
1186 bioset_free(md->bs);
1187 bad_no_bioset:
1188 mempool_destroy(md->tio_pool);
1189 bad_tio_pool:
1190 mempool_destroy(md->io_pool);
1191 bad_io_pool:
1192 blk_cleanup_queue(md->queue);
1193 bad_queue:
1194 free_minor(minor);
1195 bad_minor:
1196 module_put(THIS_MODULE);
1197 bad_module_get:
1198 kfree(md);
1199 return NULL;
1202 static void unlock_fs(struct mapped_device *md);
1204 static void free_dev(struct mapped_device *md)
1206 int minor = MINOR(disk_devt(md->disk));
1208 if (md->suspended_bdev) {
1209 unlock_fs(md);
1210 bdput(md->suspended_bdev);
1212 destroy_workqueue(md->wq);
1213 mempool_destroy(md->tio_pool);
1214 mempool_destroy(md->io_pool);
1215 bioset_free(md->bs);
1216 blk_integrity_unregister(md->disk);
1217 del_gendisk(md->disk);
1218 free_minor(minor);
1220 spin_lock(&_minor_lock);
1221 md->disk->private_data = NULL;
1222 spin_unlock(&_minor_lock);
1224 put_disk(md->disk);
1225 blk_cleanup_queue(md->queue);
1226 module_put(THIS_MODULE);
1227 kfree(md);
1231 * Bind a table to the device.
1233 static void event_callback(void *context)
1235 unsigned long flags;
1236 LIST_HEAD(uevents);
1237 struct mapped_device *md = (struct mapped_device *) context;
1239 spin_lock_irqsave(&md->uevent_lock, flags);
1240 list_splice_init(&md->uevent_list, &uevents);
1241 spin_unlock_irqrestore(&md->uevent_lock, flags);
1243 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1245 atomic_inc(&md->event_nr);
1246 wake_up(&md->eventq);
1249 static void __set_size(struct mapped_device *md, sector_t size)
1251 set_capacity(md->disk, size);
1253 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1254 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1255 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1258 static int __bind(struct mapped_device *md, struct dm_table *t)
1260 struct request_queue *q = md->queue;
1261 sector_t size;
1263 size = dm_table_get_size(t);
1266 * Wipe any geometry if the size of the table changed.
1268 if (size != get_capacity(md->disk))
1269 memset(&md->geometry, 0, sizeof(md->geometry));
1271 if (md->suspended_bdev)
1272 __set_size(md, size);
1274 if (!size) {
1275 dm_table_destroy(t);
1276 return 0;
1279 dm_table_event_callback(t, event_callback, md);
1281 write_lock(&md->map_lock);
1282 md->map = t;
1283 dm_table_set_restrictions(t, q);
1284 write_unlock(&md->map_lock);
1286 return 0;
1289 static void __unbind(struct mapped_device *md)
1291 struct dm_table *map = md->map;
1293 if (!map)
1294 return;
1296 dm_table_event_callback(map, NULL, NULL);
1297 write_lock(&md->map_lock);
1298 md->map = NULL;
1299 write_unlock(&md->map_lock);
1300 dm_table_destroy(map);
1304 * Constructor for a new device.
1306 int dm_create(int minor, struct mapped_device **result)
1308 struct mapped_device *md;
1310 md = alloc_dev(minor);
1311 if (!md)
1312 return -ENXIO;
1314 dm_sysfs_init(md);
1316 *result = md;
1317 return 0;
1320 static struct mapped_device *dm_find_md(dev_t dev)
1322 struct mapped_device *md;
1323 unsigned minor = MINOR(dev);
1325 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1326 return NULL;
1328 spin_lock(&_minor_lock);
1330 md = idr_find(&_minor_idr, minor);
1331 if (md && (md == MINOR_ALLOCED ||
1332 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1333 test_bit(DMF_FREEING, &md->flags))) {
1334 md = NULL;
1335 goto out;
1338 out:
1339 spin_unlock(&_minor_lock);
1341 return md;
1344 struct mapped_device *dm_get_md(dev_t dev)
1346 struct mapped_device *md = dm_find_md(dev);
1348 if (md)
1349 dm_get(md);
1351 return md;
1354 void *dm_get_mdptr(struct mapped_device *md)
1356 return md->interface_ptr;
1359 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1361 md->interface_ptr = ptr;
1364 void dm_get(struct mapped_device *md)
1366 atomic_inc(&md->holders);
1369 const char *dm_device_name(struct mapped_device *md)
1371 return md->name;
1373 EXPORT_SYMBOL_GPL(dm_device_name);
1375 void dm_put(struct mapped_device *md)
1377 struct dm_table *map;
1379 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1381 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1382 map = dm_get_table(md);
1383 idr_replace(&_minor_idr, MINOR_ALLOCED,
1384 MINOR(disk_devt(dm_disk(md))));
1385 set_bit(DMF_FREEING, &md->flags);
1386 spin_unlock(&_minor_lock);
1387 if (!dm_suspended(md)) {
1388 dm_table_presuspend_targets(map);
1389 dm_table_postsuspend_targets(map);
1391 dm_sysfs_exit(md);
1392 dm_table_put(map);
1393 __unbind(md);
1394 free_dev(md);
1397 EXPORT_SYMBOL_GPL(dm_put);
1399 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1401 int r = 0;
1402 DECLARE_WAITQUEUE(wait, current);
1404 dm_unplug_all(md->queue);
1406 add_wait_queue(&md->wait, &wait);
1408 while (1) {
1409 set_current_state(interruptible);
1411 smp_mb();
1412 if (!atomic_read(&md->pending))
1413 break;
1415 if (interruptible == TASK_INTERRUPTIBLE &&
1416 signal_pending(current)) {
1417 r = -EINTR;
1418 break;
1421 io_schedule();
1423 set_current_state(TASK_RUNNING);
1425 remove_wait_queue(&md->wait, &wait);
1427 return r;
1430 static int dm_flush(struct mapped_device *md)
1432 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1433 return 0;
1436 static void process_barrier(struct mapped_device *md, struct bio *bio)
1438 int error = dm_flush(md);
1440 if (unlikely(error)) {
1441 bio_endio(bio, error);
1442 return;
1444 if (bio_empty_barrier(bio)) {
1445 bio_endio(bio, 0);
1446 return;
1449 __split_and_process_bio(md, bio);
1451 error = dm_flush(md);
1453 if (!error && md->barrier_error)
1454 error = md->barrier_error;
1456 if (md->barrier_error != DM_ENDIO_REQUEUE)
1457 bio_endio(bio, error);
1461 * Process the deferred bios
1463 static void dm_wq_work(struct work_struct *work)
1465 struct mapped_device *md = container_of(work, struct mapped_device,
1466 work);
1467 struct bio *c;
1469 down_write(&md->io_lock);
1471 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1472 spin_lock_irq(&md->deferred_lock);
1473 c = bio_list_pop(&md->deferred);
1474 spin_unlock_irq(&md->deferred_lock);
1476 if (!c) {
1477 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1478 break;
1481 up_write(&md->io_lock);
1483 if (bio_barrier(c))
1484 process_barrier(md, c);
1485 else
1486 __split_and_process_bio(md, c);
1488 down_write(&md->io_lock);
1491 up_write(&md->io_lock);
1494 static void dm_queue_flush(struct mapped_device *md)
1496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1497 smp_mb__after_clear_bit();
1498 queue_work(md->wq, &md->work);
1502 * Swap in a new table (destroying old one).
1504 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1506 int r = -EINVAL;
1508 mutex_lock(&md->suspend_lock);
1510 /* device must be suspended */
1511 if (!dm_suspended(md))
1512 goto out;
1514 /* without bdev, the device size cannot be changed */
1515 if (!md->suspended_bdev)
1516 if (get_capacity(md->disk) != dm_table_get_size(table))
1517 goto out;
1519 __unbind(md);
1520 r = __bind(md, table);
1522 out:
1523 mutex_unlock(&md->suspend_lock);
1524 return r;
1528 * Functions to lock and unlock any filesystem running on the
1529 * device.
1531 static int lock_fs(struct mapped_device *md)
1533 int r;
1535 WARN_ON(md->frozen_sb);
1537 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1538 if (IS_ERR(md->frozen_sb)) {
1539 r = PTR_ERR(md->frozen_sb);
1540 md->frozen_sb = NULL;
1541 return r;
1544 set_bit(DMF_FROZEN, &md->flags);
1546 /* don't bdput right now, we don't want the bdev
1547 * to go away while it is locked.
1549 return 0;
1552 static void unlock_fs(struct mapped_device *md)
1554 if (!test_bit(DMF_FROZEN, &md->flags))
1555 return;
1557 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1558 md->frozen_sb = NULL;
1559 clear_bit(DMF_FROZEN, &md->flags);
1563 * We need to be able to change a mapping table under a mounted
1564 * filesystem. For example we might want to move some data in
1565 * the background. Before the table can be swapped with
1566 * dm_bind_table, dm_suspend must be called to flush any in
1567 * flight bios and ensure that any further io gets deferred.
1569 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1571 struct dm_table *map = NULL;
1572 int r = 0;
1573 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1574 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1576 mutex_lock(&md->suspend_lock);
1578 if (dm_suspended(md)) {
1579 r = -EINVAL;
1580 goto out_unlock;
1583 map = dm_get_table(md);
1586 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1587 * This flag is cleared before dm_suspend returns.
1589 if (noflush)
1590 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1592 /* This does not get reverted if there's an error later. */
1593 dm_table_presuspend_targets(map);
1595 /* bdget() can stall if the pending I/Os are not flushed */
1596 if (!noflush) {
1597 md->suspended_bdev = bdget_disk(md->disk, 0);
1598 if (!md->suspended_bdev) {
1599 DMWARN("bdget failed in dm_suspend");
1600 r = -ENOMEM;
1601 goto out;
1605 * Flush I/O to the device. noflush supersedes do_lockfs,
1606 * because lock_fs() needs to flush I/Os.
1608 if (do_lockfs) {
1609 r = lock_fs(md);
1610 if (r)
1611 goto out;
1616 * Here we must make sure that no processes are submitting requests
1617 * to target drivers i.e. no one may be executing
1618 * __split_and_process_bio. This is called from dm_request and
1619 * dm_wq_work.
1621 * To get all processes out of __split_and_process_bio in dm_request,
1622 * we take the write lock. To prevent any process from reentering
1623 * __split_and_process_bio from dm_request, we set
1624 * DMF_QUEUE_IO_TO_THREAD.
1626 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1627 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1628 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1629 * further calls to __split_and_process_bio from dm_wq_work.
1631 down_write(&md->io_lock);
1632 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1633 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1634 up_write(&md->io_lock);
1636 flush_workqueue(md->wq);
1639 * At this point no more requests are entering target request routines.
1640 * We call dm_wait_for_completion to wait for all existing requests
1641 * to finish.
1643 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1645 down_write(&md->io_lock);
1646 if (noflush)
1647 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1648 up_write(&md->io_lock);
1650 /* were we interrupted ? */
1651 if (r < 0) {
1652 dm_queue_flush(md);
1654 unlock_fs(md);
1655 goto out; /* pushback list is already flushed, so skip flush */
1659 * If dm_wait_for_completion returned 0, the device is completely
1660 * quiescent now. There is no request-processing activity. All new
1661 * requests are being added to md->deferred list.
1664 dm_table_postsuspend_targets(map);
1666 set_bit(DMF_SUSPENDED, &md->flags);
1668 out:
1669 if (r && md->suspended_bdev) {
1670 bdput(md->suspended_bdev);
1671 md->suspended_bdev = NULL;
1674 dm_table_put(map);
1676 out_unlock:
1677 mutex_unlock(&md->suspend_lock);
1678 return r;
1681 int dm_resume(struct mapped_device *md)
1683 int r = -EINVAL;
1684 struct dm_table *map = NULL;
1686 mutex_lock(&md->suspend_lock);
1687 if (!dm_suspended(md))
1688 goto out;
1690 map = dm_get_table(md);
1691 if (!map || !dm_table_get_size(map))
1692 goto out;
1694 r = dm_table_resume_targets(map);
1695 if (r)
1696 goto out;
1698 dm_queue_flush(md);
1700 unlock_fs(md);
1702 if (md->suspended_bdev) {
1703 bdput(md->suspended_bdev);
1704 md->suspended_bdev = NULL;
1707 clear_bit(DMF_SUSPENDED, &md->flags);
1709 dm_table_unplug_all(map);
1711 dm_kobject_uevent(md);
1713 r = 0;
1715 out:
1716 dm_table_put(map);
1717 mutex_unlock(&md->suspend_lock);
1719 return r;
1722 /*-----------------------------------------------------------------
1723 * Event notification.
1724 *---------------------------------------------------------------*/
1725 void dm_kobject_uevent(struct mapped_device *md)
1727 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1730 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1732 return atomic_add_return(1, &md->uevent_seq);
1735 uint32_t dm_get_event_nr(struct mapped_device *md)
1737 return atomic_read(&md->event_nr);
1740 int dm_wait_event(struct mapped_device *md, int event_nr)
1742 return wait_event_interruptible(md->eventq,
1743 (event_nr != atomic_read(&md->event_nr)));
1746 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1748 unsigned long flags;
1750 spin_lock_irqsave(&md->uevent_lock, flags);
1751 list_add(elist, &md->uevent_list);
1752 spin_unlock_irqrestore(&md->uevent_lock, flags);
1756 * The gendisk is only valid as long as you have a reference
1757 * count on 'md'.
1759 struct gendisk *dm_disk(struct mapped_device *md)
1761 return md->disk;
1764 struct kobject *dm_kobject(struct mapped_device *md)
1766 return &md->kobj;
1770 * struct mapped_device should not be exported outside of dm.c
1771 * so use this check to verify that kobj is part of md structure
1773 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1775 struct mapped_device *md;
1777 md = container_of(kobj, struct mapped_device, kobj);
1778 if (&md->kobj != kobj)
1779 return NULL;
1781 dm_get(md);
1782 return md;
1785 int dm_suspended(struct mapped_device *md)
1787 return test_bit(DMF_SUSPENDED, &md->flags);
1790 int dm_noflush_suspending(struct dm_target *ti)
1792 struct mapped_device *md = dm_table_get_md(ti->table);
1793 int r = __noflush_suspending(md);
1795 dm_put(md);
1797 return r;
1799 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1801 static struct block_device_operations dm_blk_dops = {
1802 .open = dm_blk_open,
1803 .release = dm_blk_close,
1804 .ioctl = dm_blk_ioctl,
1805 .getgeo = dm_blk_getgeo,
1806 .owner = THIS_MODULE
1809 EXPORT_SYMBOL(dm_get_mapinfo);
1812 * module hooks
1814 module_init(dm_init);
1815 module_exit(dm_exit);
1817 module_param(major, uint, 0);
1818 MODULE_PARM_DESC(major, "The major number of the device mapper");
1819 MODULE_DESCRIPTION(DM_NAME " driver");
1820 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1821 MODULE_LICENSE("GPL");