2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
28 static const char *_name
= DM_NAME
;
30 static unsigned int major
= 0;
31 static unsigned int _major
= 0;
33 static DEFINE_SPINLOCK(_minor_lock
);
36 * One of these is allocated per bio.
39 struct mapped_device
*md
;
43 unsigned long start_time
;
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
58 * For request-based dm.
59 * One of these is allocated per request.
61 struct dm_rq_target_io
{
62 struct mapped_device
*md
;
64 struct request
*orig
, clone
;
70 * For request-based dm.
71 * One of these is allocated per bio.
73 struct dm_rq_clone_bio_info
{
78 union map_info
*dm_get_mapinfo(struct bio
*bio
)
80 if (bio
&& bio
->bi_private
)
81 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
85 #define MINOR_ALLOCED ((void *)-1)
88 * Bits for the md->flags field.
90 #define DMF_BLOCK_IO_FOR_SUSPEND 0
91 #define DMF_SUSPENDED 1
94 #define DMF_DELETING 4
95 #define DMF_NOFLUSH_SUSPENDING 5
96 #define DMF_QUEUE_IO_TO_THREAD 6
99 * Work processed by per-device workqueue.
101 struct mapped_device
{
102 struct rw_semaphore io_lock
;
103 struct mutex suspend_lock
;
110 struct request_queue
*queue
;
111 struct gendisk
*disk
;
117 * A list of ios that arrived while we were suspended.
120 wait_queue_head_t wait
;
121 struct work_struct work
;
122 struct bio_list deferred
;
123 spinlock_t deferred_lock
;
126 * An error from the barrier request currently being processed.
131 * Processing queue (flush/barriers)
133 struct workqueue_struct
*wq
;
136 * The current mapping.
138 struct dm_table
*map
;
141 * io objects are allocated from here.
152 wait_queue_head_t eventq
;
154 struct list_head uevent_list
;
155 spinlock_t uevent_lock
; /* Protect access to uevent_list */
158 * freeze/thaw support require holding onto a super block
160 struct super_block
*frozen_sb
;
161 struct block_device
*suspended_bdev
;
163 /* forced geometry settings */
164 struct hd_geometry geometry
;
171 static struct kmem_cache
*_io_cache
;
172 static struct kmem_cache
*_tio_cache
;
173 static struct kmem_cache
*_rq_tio_cache
;
174 static struct kmem_cache
*_rq_bio_info_cache
;
176 static int __init
local_init(void)
180 /* allocate a slab for the dm_ios */
181 _io_cache
= KMEM_CACHE(dm_io
, 0);
185 /* allocate a slab for the target ios */
186 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
188 goto out_free_io_cache
;
190 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
192 goto out_free_tio_cache
;
194 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
195 if (!_rq_bio_info_cache
)
196 goto out_free_rq_tio_cache
;
198 r
= dm_uevent_init();
200 goto out_free_rq_bio_info_cache
;
203 r
= register_blkdev(_major
, _name
);
205 goto out_uevent_exit
;
214 out_free_rq_bio_info_cache
:
215 kmem_cache_destroy(_rq_bio_info_cache
);
216 out_free_rq_tio_cache
:
217 kmem_cache_destroy(_rq_tio_cache
);
219 kmem_cache_destroy(_tio_cache
);
221 kmem_cache_destroy(_io_cache
);
226 static void local_exit(void)
228 kmem_cache_destroy(_rq_bio_info_cache
);
229 kmem_cache_destroy(_rq_tio_cache
);
230 kmem_cache_destroy(_tio_cache
);
231 kmem_cache_destroy(_io_cache
);
232 unregister_blkdev(_major
, _name
);
237 DMINFO("cleaned up");
240 static int (*_inits
[])(void) __initdata
= {
249 static void (*_exits
[])(void) = {
258 static int __init
dm_init(void)
260 const int count
= ARRAY_SIZE(_inits
);
264 for (i
= 0; i
< count
; i
++) {
279 static void __exit
dm_exit(void)
281 int i
= ARRAY_SIZE(_exits
);
288 * Block device functions
290 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
292 struct mapped_device
*md
;
294 spin_lock(&_minor_lock
);
296 md
= bdev
->bd_disk
->private_data
;
300 if (test_bit(DMF_FREEING
, &md
->flags
) ||
301 test_bit(DMF_DELETING
, &md
->flags
)) {
307 atomic_inc(&md
->open_count
);
310 spin_unlock(&_minor_lock
);
312 return md
? 0 : -ENXIO
;
315 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
317 struct mapped_device
*md
= disk
->private_data
;
318 atomic_dec(&md
->open_count
);
323 int dm_open_count(struct mapped_device
*md
)
325 return atomic_read(&md
->open_count
);
329 * Guarantees nothing is using the device before it's deleted.
331 int dm_lock_for_deletion(struct mapped_device
*md
)
335 spin_lock(&_minor_lock
);
337 if (dm_open_count(md
))
340 set_bit(DMF_DELETING
, &md
->flags
);
342 spin_unlock(&_minor_lock
);
347 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
349 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
351 return dm_get_geometry(md
, geo
);
354 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
355 unsigned int cmd
, unsigned long arg
)
357 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
358 struct dm_table
*map
= dm_get_table(md
);
359 struct dm_target
*tgt
;
362 if (!map
|| !dm_table_get_size(map
))
365 /* We only support devices that have a single target */
366 if (dm_table_get_num_targets(map
) != 1)
369 tgt
= dm_table_get_target(map
, 0);
371 if (dm_suspended(md
)) {
376 if (tgt
->type
->ioctl
)
377 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
385 static struct dm_io
*alloc_io(struct mapped_device
*md
)
387 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
390 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
392 mempool_free(io
, md
->io_pool
);
395 static struct dm_target_io
*alloc_tio(struct mapped_device
*md
)
397 return mempool_alloc(md
->tio_pool
, GFP_NOIO
);
400 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
402 mempool_free(tio
, md
->tio_pool
);
405 static void start_io_acct(struct dm_io
*io
)
407 struct mapped_device
*md
= io
->md
;
410 io
->start_time
= jiffies
;
412 cpu
= part_stat_lock();
413 part_round_stats(cpu
, &dm_disk(md
)->part0
);
415 dm_disk(md
)->part0
.in_flight
= atomic_inc_return(&md
->pending
);
418 static void end_io_acct(struct dm_io
*io
)
420 struct mapped_device
*md
= io
->md
;
421 struct bio
*bio
= io
->bio
;
422 unsigned long duration
= jiffies
- io
->start_time
;
424 int rw
= bio_data_dir(bio
);
426 cpu
= part_stat_lock();
427 part_round_stats(cpu
, &dm_disk(md
)->part0
);
428 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
432 * After this is decremented the bio must not be touched if it is
435 dm_disk(md
)->part0
.in_flight
= pending
=
436 atomic_dec_return(&md
->pending
);
438 /* nudge anyone waiting on suspend queue */
444 * Add the bio to the list of deferred io.
446 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
448 down_write(&md
->io_lock
);
450 spin_lock_irq(&md
->deferred_lock
);
451 bio_list_add(&md
->deferred
, bio
);
452 spin_unlock_irq(&md
->deferred_lock
);
454 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
))
455 queue_work(md
->wq
, &md
->work
);
457 up_write(&md
->io_lock
);
461 * Everyone (including functions in this file), should use this
462 * function to access the md->map field, and make sure they call
463 * dm_table_put() when finished.
465 struct dm_table
*dm_get_table(struct mapped_device
*md
)
469 read_lock(&md
->map_lock
);
473 read_unlock(&md
->map_lock
);
479 * Get the geometry associated with a dm device
481 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
489 * Set the geometry of a device.
491 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
493 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
495 if (geo
->start
> sz
) {
496 DMWARN("Start sector is beyond the geometry limits.");
505 /*-----------------------------------------------------------------
507 * A more elegant soln is in the works that uses the queue
508 * merge fn, unfortunately there are a couple of changes to
509 * the block layer that I want to make for this. So in the
510 * interests of getting something for people to use I give
511 * you this clearly demarcated crap.
512 *---------------------------------------------------------------*/
514 static int __noflush_suspending(struct mapped_device
*md
)
516 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
520 * Decrements the number of outstanding ios that a bio has been
521 * cloned into, completing the original io if necc.
523 static void dec_pending(struct dm_io
*io
, int error
)
528 struct mapped_device
*md
= io
->md
;
530 /* Push-back supersedes any I/O errors */
531 if (error
&& !(io
->error
> 0 && __noflush_suspending(md
)))
534 if (atomic_dec_and_test(&io
->io_count
)) {
535 if (io
->error
== DM_ENDIO_REQUEUE
) {
537 * Target requested pushing back the I/O.
539 spin_lock_irqsave(&md
->deferred_lock
, flags
);
540 if (__noflush_suspending(md
))
541 bio_list_add_head(&md
->deferred
, io
->bio
);
543 /* noflush suspend was interrupted. */
545 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
548 io_error
= io
->error
;
551 if (bio_barrier(bio
)) {
553 * There can be just one barrier request so we use
554 * a per-device variable for error reporting.
555 * Note that you can't touch the bio after end_io_acct
557 md
->barrier_error
= io_error
;
562 if (io_error
!= DM_ENDIO_REQUEUE
) {
563 trace_block_bio_complete(md
->queue
, bio
);
565 bio_endio(bio
, io_error
);
573 static void clone_endio(struct bio
*bio
, int error
)
576 struct dm_target_io
*tio
= bio
->bi_private
;
577 struct dm_io
*io
= tio
->io
;
578 struct mapped_device
*md
= tio
->io
->md
;
579 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
581 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
585 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
586 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
588 * error and requeue request are handled
592 else if (r
== DM_ENDIO_INCOMPLETE
)
593 /* The target will handle the io */
596 DMWARN("unimplemented target endio return value: %d", r
);
602 * Store md for cleanup instead of tio which is about to get freed.
604 bio
->bi_private
= md
->bs
;
608 dec_pending(io
, error
);
611 static sector_t
max_io_len(struct mapped_device
*md
,
612 sector_t sector
, struct dm_target
*ti
)
614 sector_t offset
= sector
- ti
->begin
;
615 sector_t len
= ti
->len
- offset
;
618 * Does the target need to split even further ?
622 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
631 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
632 struct dm_target_io
*tio
)
636 struct mapped_device
*md
;
641 BUG_ON(!clone
->bi_size
);
643 clone
->bi_end_io
= clone_endio
;
644 clone
->bi_private
= tio
;
647 * Map the clone. If r == 0 we don't need to do
648 * anything, the target has assumed ownership of
651 atomic_inc(&tio
->io
->io_count
);
652 sector
= clone
->bi_sector
;
653 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
654 if (r
== DM_MAPIO_REMAPPED
) {
655 /* the bio has been remapped so dispatch it */
657 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
658 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
660 generic_make_request(clone
);
661 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
662 /* error the io and bail out, or requeue it if needed */
664 dec_pending(tio
->io
, r
);
666 * Store bio_set for cleanup.
668 clone
->bi_private
= md
->bs
;
672 DMWARN("unimplemented target map return value: %d", r
);
678 struct mapped_device
*md
;
679 struct dm_table
*map
;
683 sector_t sector_count
;
687 static void dm_bio_destructor(struct bio
*bio
)
689 struct bio_set
*bs
= bio
->bi_private
;
695 * Creates a little bio that is just does part of a bvec.
697 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
698 unsigned short idx
, unsigned int offset
,
699 unsigned int len
, struct bio_set
*bs
)
702 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
704 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
705 clone
->bi_destructor
= dm_bio_destructor
;
706 *clone
->bi_io_vec
= *bv
;
708 clone
->bi_sector
= sector
;
709 clone
->bi_bdev
= bio
->bi_bdev
;
710 clone
->bi_rw
= bio
->bi_rw
& ~(1 << BIO_RW_BARRIER
);
712 clone
->bi_size
= to_bytes(len
);
713 clone
->bi_io_vec
->bv_offset
= offset
;
714 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
715 clone
->bi_flags
|= 1 << BIO_CLONED
;
717 if (bio_integrity(bio
)) {
718 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
719 bio_integrity_trim(clone
,
720 bio_sector_offset(bio
, idx
, offset
), len
);
727 * Creates a bio that consists of range of complete bvecs.
729 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
730 unsigned short idx
, unsigned short bv_count
,
731 unsigned int len
, struct bio_set
*bs
)
735 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
736 __bio_clone(clone
, bio
);
737 clone
->bi_rw
&= ~(1 << BIO_RW_BARRIER
);
738 clone
->bi_destructor
= dm_bio_destructor
;
739 clone
->bi_sector
= sector
;
741 clone
->bi_vcnt
= idx
+ bv_count
;
742 clone
->bi_size
= to_bytes(len
);
743 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
745 if (bio_integrity(bio
)) {
746 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
748 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
749 bio_integrity_trim(clone
,
750 bio_sector_offset(bio
, idx
, 0), len
);
756 static int __clone_and_map(struct clone_info
*ci
)
758 struct bio
*clone
, *bio
= ci
->bio
;
759 struct dm_target
*ti
;
760 sector_t len
= 0, max
;
761 struct dm_target_io
*tio
;
763 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
764 if (!dm_target_is_valid(ti
))
767 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
770 * Allocate a target io object.
772 tio
= alloc_tio(ci
->md
);
775 memset(&tio
->info
, 0, sizeof(tio
->info
));
777 if (ci
->sector_count
<= max
) {
779 * Optimise for the simple case where we can do all of
780 * the remaining io with a single clone.
782 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
783 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
785 __map_bio(ti
, clone
, tio
);
786 ci
->sector_count
= 0;
788 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
790 * There are some bvecs that don't span targets.
791 * Do as many of these as possible.
794 sector_t remaining
= max
;
797 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
798 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
800 if (bv_len
> remaining
)
807 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
809 __map_bio(ti
, clone
, tio
);
812 ci
->sector_count
-= len
;
817 * Handle a bvec that must be split between two or more targets.
819 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
820 sector_t remaining
= to_sector(bv
->bv_len
);
821 unsigned int offset
= 0;
825 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
826 if (!dm_target_is_valid(ti
))
829 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
831 tio
= alloc_tio(ci
->md
);
834 memset(&tio
->info
, 0, sizeof(tio
->info
));
837 len
= min(remaining
, max
);
839 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
840 bv
->bv_offset
+ offset
, len
,
843 __map_bio(ti
, clone
, tio
);
846 ci
->sector_count
-= len
;
847 offset
+= to_bytes(len
);
848 } while (remaining
-= len
);
857 * Split the bio into several clones and submit it to targets.
859 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
861 struct clone_info ci
;
864 ci
.map
= dm_get_table(md
);
865 if (unlikely(!ci
.map
)) {
866 if (!bio_barrier(bio
))
869 md
->barrier_error
= -EIO
;
875 ci
.io
= alloc_io(md
);
877 atomic_set(&ci
.io
->io_count
, 1);
880 ci
.sector
= bio
->bi_sector
;
881 ci
.sector_count
= bio_sectors(bio
);
882 ci
.idx
= bio
->bi_idx
;
884 start_io_acct(ci
.io
);
885 while (ci
.sector_count
&& !error
)
886 error
= __clone_and_map(&ci
);
888 /* drop the extra reference count */
889 dec_pending(ci
.io
, error
);
890 dm_table_put(ci
.map
);
892 /*-----------------------------------------------------------------
894 *---------------------------------------------------------------*/
896 static int dm_merge_bvec(struct request_queue
*q
,
897 struct bvec_merge_data
*bvm
,
898 struct bio_vec
*biovec
)
900 struct mapped_device
*md
= q
->queuedata
;
901 struct dm_table
*map
= dm_get_table(md
);
902 struct dm_target
*ti
;
903 sector_t max_sectors
;
909 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
910 if (!dm_target_is_valid(ti
))
914 * Find maximum amount of I/O that won't need splitting
916 max_sectors
= min(max_io_len(md
, bvm
->bi_sector
, ti
),
917 (sector_t
) BIO_MAX_SECTORS
);
918 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
923 * merge_bvec_fn() returns number of bytes
924 * it can accept at this offset
925 * max is precomputed maximal io size
927 if (max_size
&& ti
->type
->merge
)
928 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
935 * Always allow an entire first page
937 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
938 max_size
= biovec
->bv_len
;
944 * The request function that just remaps the bio built up by
947 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
949 int rw
= bio_data_dir(bio
);
950 struct mapped_device
*md
= q
->queuedata
;
953 down_read(&md
->io_lock
);
955 cpu
= part_stat_lock();
956 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
957 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
961 * If we're suspended or the thread is processing barriers
962 * we have to queue this io for later.
964 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
)) ||
965 unlikely(bio_barrier(bio
))) {
966 up_read(&md
->io_lock
);
968 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) &&
969 bio_rw(bio
) == READA
) {
979 __split_and_process_bio(md
, bio
);
980 up_read(&md
->io_lock
);
984 static void dm_unplug_all(struct request_queue
*q
)
986 struct mapped_device
*md
= q
->queuedata
;
987 struct dm_table
*map
= dm_get_table(md
);
990 dm_table_unplug_all(map
);
995 static int dm_any_congested(void *congested_data
, int bdi_bits
)
998 struct mapped_device
*md
= congested_data
;
999 struct dm_table
*map
;
1001 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1002 map
= dm_get_table(md
);
1004 r
= dm_table_any_congested(map
, bdi_bits
);
1012 /*-----------------------------------------------------------------
1013 * An IDR is used to keep track of allocated minor numbers.
1014 *---------------------------------------------------------------*/
1015 static DEFINE_IDR(_minor_idr
);
1017 static void free_minor(int minor
)
1019 spin_lock(&_minor_lock
);
1020 idr_remove(&_minor_idr
, minor
);
1021 spin_unlock(&_minor_lock
);
1025 * See if the device with a specific minor # is free.
1027 static int specific_minor(int minor
)
1031 if (minor
>= (1 << MINORBITS
))
1034 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1038 spin_lock(&_minor_lock
);
1040 if (idr_find(&_minor_idr
, minor
)) {
1045 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1050 idr_remove(&_minor_idr
, m
);
1056 spin_unlock(&_minor_lock
);
1060 static int next_free_minor(int *minor
)
1064 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1068 spin_lock(&_minor_lock
);
1070 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1074 if (m
>= (1 << MINORBITS
)) {
1075 idr_remove(&_minor_idr
, m
);
1083 spin_unlock(&_minor_lock
);
1087 static struct block_device_operations dm_blk_dops
;
1089 static void dm_wq_work(struct work_struct
*work
);
1092 * Allocate and initialise a blank device with a given minor.
1094 static struct mapped_device
*alloc_dev(int minor
)
1097 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1101 DMWARN("unable to allocate device, out of memory.");
1105 if (!try_module_get(THIS_MODULE
))
1106 goto bad_module_get
;
1108 /* get a minor number for the dev */
1109 if (minor
== DM_ANY_MINOR
)
1110 r
= next_free_minor(&minor
);
1112 r
= specific_minor(minor
);
1116 init_rwsem(&md
->io_lock
);
1117 mutex_init(&md
->suspend_lock
);
1118 spin_lock_init(&md
->deferred_lock
);
1119 rwlock_init(&md
->map_lock
);
1120 atomic_set(&md
->holders
, 1);
1121 atomic_set(&md
->open_count
, 0);
1122 atomic_set(&md
->event_nr
, 0);
1123 atomic_set(&md
->uevent_seq
, 0);
1124 INIT_LIST_HEAD(&md
->uevent_list
);
1125 spin_lock_init(&md
->uevent_lock
);
1127 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1131 md
->queue
->queuedata
= md
;
1132 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1133 md
->queue
->backing_dev_info
.congested_data
= md
;
1134 blk_queue_make_request(md
->queue
, dm_request
);
1135 blk_queue_ordered(md
->queue
, QUEUE_ORDERED_DRAIN
, NULL
);
1136 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1137 md
->queue
->unplug_fn
= dm_unplug_all
;
1138 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1140 md
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _io_cache
);
1144 md
->tio_pool
= mempool_create_slab_pool(MIN_IOS
, _tio_cache
);
1148 md
->bs
= bioset_create(16, 0);
1152 md
->disk
= alloc_disk(1);
1156 atomic_set(&md
->pending
, 0);
1157 init_waitqueue_head(&md
->wait
);
1158 INIT_WORK(&md
->work
, dm_wq_work
);
1159 init_waitqueue_head(&md
->eventq
);
1161 md
->disk
->major
= _major
;
1162 md
->disk
->first_minor
= minor
;
1163 md
->disk
->fops
= &dm_blk_dops
;
1164 md
->disk
->queue
= md
->queue
;
1165 md
->disk
->private_data
= md
;
1166 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1168 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1170 md
->wq
= create_singlethread_workqueue("kdmflush");
1174 /* Populate the mapping, nobody knows we exist yet */
1175 spin_lock(&_minor_lock
);
1176 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1177 spin_unlock(&_minor_lock
);
1179 BUG_ON(old_md
!= MINOR_ALLOCED
);
1186 bioset_free(md
->bs
);
1188 mempool_destroy(md
->tio_pool
);
1190 mempool_destroy(md
->io_pool
);
1192 blk_cleanup_queue(md
->queue
);
1196 module_put(THIS_MODULE
);
1202 static void unlock_fs(struct mapped_device
*md
);
1204 static void free_dev(struct mapped_device
*md
)
1206 int minor
= MINOR(disk_devt(md
->disk
));
1208 if (md
->suspended_bdev
) {
1210 bdput(md
->suspended_bdev
);
1212 destroy_workqueue(md
->wq
);
1213 mempool_destroy(md
->tio_pool
);
1214 mempool_destroy(md
->io_pool
);
1215 bioset_free(md
->bs
);
1216 blk_integrity_unregister(md
->disk
);
1217 del_gendisk(md
->disk
);
1220 spin_lock(&_minor_lock
);
1221 md
->disk
->private_data
= NULL
;
1222 spin_unlock(&_minor_lock
);
1225 blk_cleanup_queue(md
->queue
);
1226 module_put(THIS_MODULE
);
1231 * Bind a table to the device.
1233 static void event_callback(void *context
)
1235 unsigned long flags
;
1237 struct mapped_device
*md
= (struct mapped_device
*) context
;
1239 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1240 list_splice_init(&md
->uevent_list
, &uevents
);
1241 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1243 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1245 atomic_inc(&md
->event_nr
);
1246 wake_up(&md
->eventq
);
1249 static void __set_size(struct mapped_device
*md
, sector_t size
)
1251 set_capacity(md
->disk
, size
);
1253 mutex_lock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1254 i_size_write(md
->suspended_bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1255 mutex_unlock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1258 static int __bind(struct mapped_device
*md
, struct dm_table
*t
)
1260 struct request_queue
*q
= md
->queue
;
1263 size
= dm_table_get_size(t
);
1266 * Wipe any geometry if the size of the table changed.
1268 if (size
!= get_capacity(md
->disk
))
1269 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1271 if (md
->suspended_bdev
)
1272 __set_size(md
, size
);
1275 dm_table_destroy(t
);
1279 dm_table_event_callback(t
, event_callback
, md
);
1281 write_lock(&md
->map_lock
);
1283 dm_table_set_restrictions(t
, q
);
1284 write_unlock(&md
->map_lock
);
1289 static void __unbind(struct mapped_device
*md
)
1291 struct dm_table
*map
= md
->map
;
1296 dm_table_event_callback(map
, NULL
, NULL
);
1297 write_lock(&md
->map_lock
);
1299 write_unlock(&md
->map_lock
);
1300 dm_table_destroy(map
);
1304 * Constructor for a new device.
1306 int dm_create(int minor
, struct mapped_device
**result
)
1308 struct mapped_device
*md
;
1310 md
= alloc_dev(minor
);
1320 static struct mapped_device
*dm_find_md(dev_t dev
)
1322 struct mapped_device
*md
;
1323 unsigned minor
= MINOR(dev
);
1325 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
1328 spin_lock(&_minor_lock
);
1330 md
= idr_find(&_minor_idr
, minor
);
1331 if (md
&& (md
== MINOR_ALLOCED
||
1332 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
1333 test_bit(DMF_FREEING
, &md
->flags
))) {
1339 spin_unlock(&_minor_lock
);
1344 struct mapped_device
*dm_get_md(dev_t dev
)
1346 struct mapped_device
*md
= dm_find_md(dev
);
1354 void *dm_get_mdptr(struct mapped_device
*md
)
1356 return md
->interface_ptr
;
1359 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
1361 md
->interface_ptr
= ptr
;
1364 void dm_get(struct mapped_device
*md
)
1366 atomic_inc(&md
->holders
);
1369 const char *dm_device_name(struct mapped_device
*md
)
1373 EXPORT_SYMBOL_GPL(dm_device_name
);
1375 void dm_put(struct mapped_device
*md
)
1377 struct dm_table
*map
;
1379 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
1381 if (atomic_dec_and_lock(&md
->holders
, &_minor_lock
)) {
1382 map
= dm_get_table(md
);
1383 idr_replace(&_minor_idr
, MINOR_ALLOCED
,
1384 MINOR(disk_devt(dm_disk(md
))));
1385 set_bit(DMF_FREEING
, &md
->flags
);
1386 spin_unlock(&_minor_lock
);
1387 if (!dm_suspended(md
)) {
1388 dm_table_presuspend_targets(map
);
1389 dm_table_postsuspend_targets(map
);
1397 EXPORT_SYMBOL_GPL(dm_put
);
1399 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
1402 DECLARE_WAITQUEUE(wait
, current
);
1404 dm_unplug_all(md
->queue
);
1406 add_wait_queue(&md
->wait
, &wait
);
1409 set_current_state(interruptible
);
1412 if (!atomic_read(&md
->pending
))
1415 if (interruptible
== TASK_INTERRUPTIBLE
&&
1416 signal_pending(current
)) {
1423 set_current_state(TASK_RUNNING
);
1425 remove_wait_queue(&md
->wait
, &wait
);
1430 static int dm_flush(struct mapped_device
*md
)
1432 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
1436 static void process_barrier(struct mapped_device
*md
, struct bio
*bio
)
1438 int error
= dm_flush(md
);
1440 if (unlikely(error
)) {
1441 bio_endio(bio
, error
);
1444 if (bio_empty_barrier(bio
)) {
1449 __split_and_process_bio(md
, bio
);
1451 error
= dm_flush(md
);
1453 if (!error
&& md
->barrier_error
)
1454 error
= md
->barrier_error
;
1456 if (md
->barrier_error
!= DM_ENDIO_REQUEUE
)
1457 bio_endio(bio
, error
);
1461 * Process the deferred bios
1463 static void dm_wq_work(struct work_struct
*work
)
1465 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
1469 down_write(&md
->io_lock
);
1471 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1472 spin_lock_irq(&md
->deferred_lock
);
1473 c
= bio_list_pop(&md
->deferred
);
1474 spin_unlock_irq(&md
->deferred_lock
);
1477 clear_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
1481 up_write(&md
->io_lock
);
1484 process_barrier(md
, c
);
1486 __split_and_process_bio(md
, c
);
1488 down_write(&md
->io_lock
);
1491 up_write(&md
->io_lock
);
1494 static void dm_queue_flush(struct mapped_device
*md
)
1496 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
1497 smp_mb__after_clear_bit();
1498 queue_work(md
->wq
, &md
->work
);
1502 * Swap in a new table (destroying old one).
1504 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
1508 mutex_lock(&md
->suspend_lock
);
1510 /* device must be suspended */
1511 if (!dm_suspended(md
))
1514 /* without bdev, the device size cannot be changed */
1515 if (!md
->suspended_bdev
)
1516 if (get_capacity(md
->disk
) != dm_table_get_size(table
))
1520 r
= __bind(md
, table
);
1523 mutex_unlock(&md
->suspend_lock
);
1528 * Functions to lock and unlock any filesystem running on the
1531 static int lock_fs(struct mapped_device
*md
)
1535 WARN_ON(md
->frozen_sb
);
1537 md
->frozen_sb
= freeze_bdev(md
->suspended_bdev
);
1538 if (IS_ERR(md
->frozen_sb
)) {
1539 r
= PTR_ERR(md
->frozen_sb
);
1540 md
->frozen_sb
= NULL
;
1544 set_bit(DMF_FROZEN
, &md
->flags
);
1546 /* don't bdput right now, we don't want the bdev
1547 * to go away while it is locked.
1552 static void unlock_fs(struct mapped_device
*md
)
1554 if (!test_bit(DMF_FROZEN
, &md
->flags
))
1557 thaw_bdev(md
->suspended_bdev
, md
->frozen_sb
);
1558 md
->frozen_sb
= NULL
;
1559 clear_bit(DMF_FROZEN
, &md
->flags
);
1563 * We need to be able to change a mapping table under a mounted
1564 * filesystem. For example we might want to move some data in
1565 * the background. Before the table can be swapped with
1566 * dm_bind_table, dm_suspend must be called to flush any in
1567 * flight bios and ensure that any further io gets deferred.
1569 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
1571 struct dm_table
*map
= NULL
;
1573 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
1574 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
1576 mutex_lock(&md
->suspend_lock
);
1578 if (dm_suspended(md
)) {
1583 map
= dm_get_table(md
);
1586 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1587 * This flag is cleared before dm_suspend returns.
1590 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1592 /* This does not get reverted if there's an error later. */
1593 dm_table_presuspend_targets(map
);
1595 /* bdget() can stall if the pending I/Os are not flushed */
1597 md
->suspended_bdev
= bdget_disk(md
->disk
, 0);
1598 if (!md
->suspended_bdev
) {
1599 DMWARN("bdget failed in dm_suspend");
1605 * Flush I/O to the device. noflush supersedes do_lockfs,
1606 * because lock_fs() needs to flush I/Os.
1616 * Here we must make sure that no processes are submitting requests
1617 * to target drivers i.e. no one may be executing
1618 * __split_and_process_bio. This is called from dm_request and
1621 * To get all processes out of __split_and_process_bio in dm_request,
1622 * we take the write lock. To prevent any process from reentering
1623 * __split_and_process_bio from dm_request, we set
1624 * DMF_QUEUE_IO_TO_THREAD.
1626 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1627 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1628 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1629 * further calls to __split_and_process_bio from dm_wq_work.
1631 down_write(&md
->io_lock
);
1632 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
1633 set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
1634 up_write(&md
->io_lock
);
1636 flush_workqueue(md
->wq
);
1639 * At this point no more requests are entering target request routines.
1640 * We call dm_wait_for_completion to wait for all existing requests
1643 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
1645 down_write(&md
->io_lock
);
1647 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1648 up_write(&md
->io_lock
);
1650 /* were we interrupted ? */
1655 goto out
; /* pushback list is already flushed, so skip flush */
1659 * If dm_wait_for_completion returned 0, the device is completely
1660 * quiescent now. There is no request-processing activity. All new
1661 * requests are being added to md->deferred list.
1664 dm_table_postsuspend_targets(map
);
1666 set_bit(DMF_SUSPENDED
, &md
->flags
);
1669 if (r
&& md
->suspended_bdev
) {
1670 bdput(md
->suspended_bdev
);
1671 md
->suspended_bdev
= NULL
;
1677 mutex_unlock(&md
->suspend_lock
);
1681 int dm_resume(struct mapped_device
*md
)
1684 struct dm_table
*map
= NULL
;
1686 mutex_lock(&md
->suspend_lock
);
1687 if (!dm_suspended(md
))
1690 map
= dm_get_table(md
);
1691 if (!map
|| !dm_table_get_size(map
))
1694 r
= dm_table_resume_targets(map
);
1702 if (md
->suspended_bdev
) {
1703 bdput(md
->suspended_bdev
);
1704 md
->suspended_bdev
= NULL
;
1707 clear_bit(DMF_SUSPENDED
, &md
->flags
);
1709 dm_table_unplug_all(map
);
1711 dm_kobject_uevent(md
);
1717 mutex_unlock(&md
->suspend_lock
);
1722 /*-----------------------------------------------------------------
1723 * Event notification.
1724 *---------------------------------------------------------------*/
1725 void dm_kobject_uevent(struct mapped_device
*md
)
1727 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, KOBJ_CHANGE
);
1730 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
1732 return atomic_add_return(1, &md
->uevent_seq
);
1735 uint32_t dm_get_event_nr(struct mapped_device
*md
)
1737 return atomic_read(&md
->event_nr
);
1740 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
1742 return wait_event_interruptible(md
->eventq
,
1743 (event_nr
!= atomic_read(&md
->event_nr
)));
1746 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
1748 unsigned long flags
;
1750 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1751 list_add(elist
, &md
->uevent_list
);
1752 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1756 * The gendisk is only valid as long as you have a reference
1759 struct gendisk
*dm_disk(struct mapped_device
*md
)
1764 struct kobject
*dm_kobject(struct mapped_device
*md
)
1770 * struct mapped_device should not be exported outside of dm.c
1771 * so use this check to verify that kobj is part of md structure
1773 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
1775 struct mapped_device
*md
;
1777 md
= container_of(kobj
, struct mapped_device
, kobj
);
1778 if (&md
->kobj
!= kobj
)
1785 int dm_suspended(struct mapped_device
*md
)
1787 return test_bit(DMF_SUSPENDED
, &md
->flags
);
1790 int dm_noflush_suspending(struct dm_target
*ti
)
1792 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
1793 int r
= __noflush_suspending(md
);
1799 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
1801 static struct block_device_operations dm_blk_dops
= {
1802 .open
= dm_blk_open
,
1803 .release
= dm_blk_close
,
1804 .ioctl
= dm_blk_ioctl
,
1805 .getgeo
= dm_blk_getgeo
,
1806 .owner
= THIS_MODULE
1809 EXPORT_SYMBOL(dm_get_mapinfo
);
1814 module_init(dm_init
);
1815 module_exit(dm_exit
);
1817 module_param(major
, uint
, 0);
1818 MODULE_PARM_DESC(major
, "The major number of the device mapper");
1819 MODULE_DESCRIPTION(DM_NAME
" driver");
1820 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1821 MODULE_LICENSE("GPL");