sfc: Cleanup RX queue information
[linux-2.6/verdex.git] / drivers / net / sfc / efx.c
blobba4369c8a8342d9df90efa2a51a7e81f600bbd15
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "gmii.h"
25 #include "ethtool.h"
26 #include "tx.h"
27 #include "rx.h"
28 #include "efx.h"
29 #include "mdio_10g.h"
30 #include "falcon.h"
31 #include "mac.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct *refill_workqueue;
42 /**************************************************************************
44 * Configurable values
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
54 static int lro = true;
55 module_param(lro, int, 0644);
56 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
67 static unsigned int separate_tx_and_rx_channels = true;
69 /* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
72 static int napi_weight = 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval = 1 * HZ;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset = true;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec = 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec = 150;
113 /* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
118 static unsigned int interrupt_mode;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus;
128 module_param(rss_cpus, uint, 0444);
129 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel *channel);
137 static void efx_remove_port(struct efx_nic *efx);
138 static void efx_fini_napi(struct efx_nic *efx);
139 static void efx_fini_channels(struct efx_nic *efx);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
191 return rx_quota;
194 /* Mark channel as finished processing
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
200 static inline void efx_channel_processed(struct efx_channel *channel)
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
205 channel->work_pending = false;
206 smp_wmb();
208 falcon_eventq_read_ack(channel);
211 /* NAPI poll handler
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
216 static int efx_poll(struct napi_struct *napi, int budget)
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
240 return rx_packets;
243 /* Process the eventq of the specified channel immediately on this CPU
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
249 * Since we are touching interrupts the caller should hold the suspend lock
251 void efx_process_channel_now(struct efx_channel *channel)
253 struct efx_nic *efx = channel->efx;
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
262 if (channel->irq)
263 synchronize_irq(channel->irq);
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
268 /* Poll the channel */
269 efx_process_channel(channel, efx->type->evq_size);
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
279 /* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
284 static int efx_probe_eventq(struct efx_channel *channel)
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
288 return falcon_probe_eventq(channel);
291 /* Prepare channel's event queue */
292 static int efx_init_eventq(struct efx_channel *channel)
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
296 channel->eventq_read_ptr = 0;
298 return falcon_init_eventq(channel);
301 static void efx_fini_eventq(struct efx_channel *channel)
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
305 falcon_fini_eventq(channel);
308 static void efx_remove_eventq(struct efx_channel *channel)
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
312 falcon_remove_eventq(channel);
315 /**************************************************************************
317 * Channel handling
319 *************************************************************************/
321 static int efx_probe_channel(struct efx_channel *channel)
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
345 channel->n_rx_frm_trunc = 0;
347 return 0;
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
360 /* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
364 static int efx_init_channels(struct efx_nic *efx)
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
407 return 0;
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
416 /* This enables event queue processing and packet transmission.
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
421 static void efx_start_channel(struct efx_channel *channel)
423 struct efx_rx_queue *rx_queue;
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
434 channel->work_pending = false;
435 channel->enabled = true;
436 smp_wmb();
438 napi_enable(&channel->napi_str);
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
445 /* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
449 static void efx_stop_channel(struct efx_channel *channel)
451 struct efx_rx_queue *rx_queue;
453 if (!channel->enabled)
454 return;
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458 channel->enabled = false;
459 napi_disable(&channel->napi_str);
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
468 static void efx_fini_channels(struct efx_nic *efx)
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
491 efx_fini_eventq(channel);
495 static void efx_remove_channel(struct efx_channel *channel)
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
508 channel->used_flags = 0;
511 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
516 /**************************************************************************
518 * Port handling
520 **************************************************************************/
522 /* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
526 static void efx_link_status_changed(struct efx_nic *efx)
528 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 * that no events are triggered between unregister_netdev() and the
530 * driver unloading. A more general condition is that NETDEV_CHANGE
531 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 if (!netif_running(efx->net_dev))
533 return;
535 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
536 efx->n_link_state_changes++;
538 if (efx->link_up)
539 netif_carrier_on(efx->net_dev);
540 else
541 netif_carrier_off(efx->net_dev);
544 /* Status message for kernel log */
545 if (efx->link_up) {
546 struct mii_if_info *gmii = &efx->mii;
547 unsigned adv, lpa;
548 /* NONE here means direct XAUI from the controller, with no
549 * MDIO-attached device we can query. */
550 if (efx->phy_type != PHY_TYPE_NONE) {
551 adv = gmii_advertised(gmii);
552 lpa = gmii_lpa(gmii);
553 } else {
554 lpa = GM_LPA_10000 | LPA_DUPLEX;
555 adv = lpa;
557 EFX_INFO(efx, "link up at %dMbps %s-duplex "
558 "(adv %04x lpa %04x) (MTU %d)%s\n",
559 (efx->link_options & GM_LPA_10000 ? 10000 :
560 (efx->link_options & GM_LPA_1000 ? 1000 :
561 (efx->link_options & GM_LPA_100 ? 100 :
562 10))),
563 (efx->link_options & GM_LPA_DUPLEX ?
564 "full" : "half"),
565 adv, lpa,
566 efx->net_dev->mtu,
567 (efx->promiscuous ? " [PROMISC]" : ""));
568 } else {
569 EFX_INFO(efx, "link down\n");
574 /* This call reinitialises the MAC to pick up new PHY settings. The
575 * caller must hold the mac_lock */
576 static void __efx_reconfigure_port(struct efx_nic *efx)
578 WARN_ON(!mutex_is_locked(&efx->mac_lock));
580 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
581 raw_smp_processor_id());
583 falcon_reconfigure_xmac(efx);
585 /* Inform kernel of loss/gain of carrier */
586 efx_link_status_changed(efx);
589 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
590 * disabled. */
591 void efx_reconfigure_port(struct efx_nic *efx)
593 EFX_ASSERT_RESET_SERIALISED(efx);
595 mutex_lock(&efx->mac_lock);
596 __efx_reconfigure_port(efx);
597 mutex_unlock(&efx->mac_lock);
600 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
601 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
602 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
603 static void efx_reconfigure_work(struct work_struct *data)
605 struct efx_nic *efx = container_of(data, struct efx_nic,
606 reconfigure_work);
608 mutex_lock(&efx->mac_lock);
609 if (efx->port_enabled)
610 __efx_reconfigure_port(efx);
611 mutex_unlock(&efx->mac_lock);
614 static int efx_probe_port(struct efx_nic *efx)
616 int rc;
618 EFX_LOG(efx, "create port\n");
620 /* Connect up MAC/PHY operations table and read MAC address */
621 rc = falcon_probe_port(efx);
622 if (rc)
623 goto err;
625 /* Sanity check MAC address */
626 if (is_valid_ether_addr(efx->mac_address)) {
627 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
628 } else {
629 DECLARE_MAC_BUF(mac);
631 EFX_ERR(efx, "invalid MAC address %s\n",
632 print_mac(mac, efx->mac_address));
633 if (!allow_bad_hwaddr) {
634 rc = -EINVAL;
635 goto err;
637 random_ether_addr(efx->net_dev->dev_addr);
638 EFX_INFO(efx, "using locally-generated MAC %s\n",
639 print_mac(mac, efx->net_dev->dev_addr));
642 return 0;
644 err:
645 efx_remove_port(efx);
646 return rc;
649 static int efx_init_port(struct efx_nic *efx)
651 int rc;
653 EFX_LOG(efx, "init port\n");
655 /* Initialise the MAC and PHY */
656 rc = falcon_init_xmac(efx);
657 if (rc)
658 return rc;
660 efx->port_initialized = true;
662 /* Reconfigure port to program MAC registers */
663 falcon_reconfigure_xmac(efx);
665 return 0;
668 /* Allow efx_reconfigure_port() to be scheduled, and close the window
669 * between efx_stop_port and efx_flush_all whereby a previously scheduled
670 * efx_reconfigure_port() may have been cancelled */
671 static void efx_start_port(struct efx_nic *efx)
673 EFX_LOG(efx, "start port\n");
674 BUG_ON(efx->port_enabled);
676 mutex_lock(&efx->mac_lock);
677 efx->port_enabled = true;
678 __efx_reconfigure_port(efx);
679 mutex_unlock(&efx->mac_lock);
682 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
683 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
684 * efx_reconfigure_work can still be scheduled via NAPI processing
685 * until efx_flush_all() is called */
686 static void efx_stop_port(struct efx_nic *efx)
688 EFX_LOG(efx, "stop port\n");
690 mutex_lock(&efx->mac_lock);
691 efx->port_enabled = false;
692 mutex_unlock(&efx->mac_lock);
694 /* Serialise against efx_set_multicast_list() */
695 if (efx_dev_registered(efx)) {
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
701 static void efx_fini_port(struct efx_nic *efx)
703 EFX_LOG(efx, "shut down port\n");
705 if (!efx->port_initialized)
706 return;
708 falcon_fini_xmac(efx);
709 efx->port_initialized = false;
711 efx->link_up = false;
712 efx_link_status_changed(efx);
715 static void efx_remove_port(struct efx_nic *efx)
717 EFX_LOG(efx, "destroying port\n");
719 falcon_remove_port(efx);
722 /**************************************************************************
724 * NIC handling
726 **************************************************************************/
728 /* This configures the PCI device to enable I/O and DMA. */
729 static int efx_init_io(struct efx_nic *efx)
731 struct pci_dev *pci_dev = efx->pci_dev;
732 dma_addr_t dma_mask = efx->type->max_dma_mask;
733 int rc;
735 EFX_LOG(efx, "initialising I/O\n");
737 rc = pci_enable_device(pci_dev);
738 if (rc) {
739 EFX_ERR(efx, "failed to enable PCI device\n");
740 goto fail1;
743 pci_set_master(pci_dev);
745 /* Set the PCI DMA mask. Try all possibilities from our
746 * genuine mask down to 32 bits, because some architectures
747 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
748 * masks event though they reject 46 bit masks.
750 while (dma_mask > 0x7fffffffUL) {
751 if (pci_dma_supported(pci_dev, dma_mask) &&
752 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
753 break;
754 dma_mask >>= 1;
756 if (rc) {
757 EFX_ERR(efx, "could not find a suitable DMA mask\n");
758 goto fail2;
760 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
761 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
762 if (rc) {
763 /* pci_set_consistent_dma_mask() is not *allowed* to
764 * fail with a mask that pci_set_dma_mask() accepted,
765 * but just in case...
767 EFX_ERR(efx, "failed to set consistent DMA mask\n");
768 goto fail2;
771 efx->membase_phys = pci_resource_start(efx->pci_dev,
772 efx->type->mem_bar);
773 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
774 if (rc) {
775 EFX_ERR(efx, "request for memory BAR failed\n");
776 rc = -EIO;
777 goto fail3;
779 efx->membase = ioremap_nocache(efx->membase_phys,
780 efx->type->mem_map_size);
781 if (!efx->membase) {
782 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
783 efx->type->mem_bar,
784 (unsigned long long)efx->membase_phys,
785 efx->type->mem_map_size);
786 rc = -ENOMEM;
787 goto fail4;
789 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
790 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
791 efx->type->mem_map_size, efx->membase);
793 return 0;
795 fail4:
796 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
797 fail3:
798 efx->membase_phys = 0;
799 fail2:
800 pci_disable_device(efx->pci_dev);
801 fail1:
802 return rc;
805 static void efx_fini_io(struct efx_nic *efx)
807 EFX_LOG(efx, "shutting down I/O\n");
809 if (efx->membase) {
810 iounmap(efx->membase);
811 efx->membase = NULL;
814 if (efx->membase_phys) {
815 pci_release_region(efx->pci_dev, efx->type->mem_bar);
816 efx->membase_phys = 0;
819 pci_disable_device(efx->pci_dev);
822 /* Get number of RX queues wanted. Return number of online CPU
823 * packages in the expectation that an IRQ balancer will spread
824 * interrupts across them. */
825 static int efx_wanted_rx_queues(void)
827 cpumask_t core_mask;
828 int count;
829 int cpu;
831 cpus_clear(core_mask);
832 count = 0;
833 for_each_online_cpu(cpu) {
834 if (!cpu_isset(cpu, core_mask)) {
835 ++count;
836 cpus_or(core_mask, core_mask,
837 topology_core_siblings(cpu));
841 return count;
844 /* Probe the number and type of interrupts we are able to obtain, and
845 * the resulting numbers of channels and RX queues.
847 static void efx_probe_interrupts(struct efx_nic *efx)
849 int max_channels =
850 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
851 int rc, i;
853 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
854 struct msix_entry xentries[EFX_MAX_CHANNELS];
855 int wanted_ints;
857 /* We want one RX queue and interrupt per CPU package
858 * (or as specified by the rss_cpus module parameter).
859 * We will need one channel per interrupt.
861 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
862 efx->n_rx_queues = min(wanted_ints, max_channels);
864 for (i = 0; i < efx->n_rx_queues; i++)
865 xentries[i].entry = i;
866 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
867 if (rc > 0) {
868 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
869 efx->n_rx_queues = rc;
870 rc = pci_enable_msix(efx->pci_dev, xentries,
871 efx->n_rx_queues);
874 if (rc == 0) {
875 for (i = 0; i < efx->n_rx_queues; i++)
876 efx->channel[i].irq = xentries[i].vector;
877 } else {
878 /* Fall back to single channel MSI */
879 efx->interrupt_mode = EFX_INT_MODE_MSI;
880 EFX_ERR(efx, "could not enable MSI-X\n");
884 /* Try single interrupt MSI */
885 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
886 efx->n_rx_queues = 1;
887 rc = pci_enable_msi(efx->pci_dev);
888 if (rc == 0) {
889 efx->channel[0].irq = efx->pci_dev->irq;
890 } else {
891 EFX_ERR(efx, "could not enable MSI\n");
892 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
896 /* Assume legacy interrupts */
897 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
898 efx->n_rx_queues = 1;
899 efx->legacy_irq = efx->pci_dev->irq;
903 static void efx_remove_interrupts(struct efx_nic *efx)
905 struct efx_channel *channel;
907 /* Remove MSI/MSI-X interrupts */
908 efx_for_each_channel(channel, efx)
909 channel->irq = 0;
910 pci_disable_msi(efx->pci_dev);
911 pci_disable_msix(efx->pci_dev);
913 /* Remove legacy interrupt */
914 efx->legacy_irq = 0;
917 static void efx_set_channels(struct efx_nic *efx)
919 struct efx_tx_queue *tx_queue;
920 struct efx_rx_queue *rx_queue;
922 efx_for_each_tx_queue(tx_queue, efx) {
923 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
924 tx_queue->channel = &efx->channel[1];
925 else
926 tx_queue->channel = &efx->channel[0];
927 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
930 efx_for_each_rx_queue(rx_queue, efx) {
931 rx_queue->channel = &efx->channel[rx_queue->queue];
932 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
936 static int efx_probe_nic(struct efx_nic *efx)
938 int rc;
940 EFX_LOG(efx, "creating NIC\n");
942 /* Carry out hardware-type specific initialisation */
943 rc = falcon_probe_nic(efx);
944 if (rc)
945 return rc;
947 /* Determine the number of channels and RX queues by trying to hook
948 * in MSI-X interrupts. */
949 efx_probe_interrupts(efx);
951 efx_set_channels(efx);
953 /* Initialise the interrupt moderation settings */
954 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
956 return 0;
959 static void efx_remove_nic(struct efx_nic *efx)
961 EFX_LOG(efx, "destroying NIC\n");
963 efx_remove_interrupts(efx);
964 falcon_remove_nic(efx);
967 /**************************************************************************
969 * NIC startup/shutdown
971 *************************************************************************/
973 static int efx_probe_all(struct efx_nic *efx)
975 struct efx_channel *channel;
976 int rc;
978 /* Create NIC */
979 rc = efx_probe_nic(efx);
980 if (rc) {
981 EFX_ERR(efx, "failed to create NIC\n");
982 goto fail1;
985 /* Create port */
986 rc = efx_probe_port(efx);
987 if (rc) {
988 EFX_ERR(efx, "failed to create port\n");
989 goto fail2;
992 /* Create channels */
993 efx_for_each_channel(channel, efx) {
994 rc = efx_probe_channel(channel);
995 if (rc) {
996 EFX_ERR(efx, "failed to create channel %d\n",
997 channel->channel);
998 goto fail3;
1002 return 0;
1004 fail3:
1005 efx_for_each_channel(channel, efx)
1006 efx_remove_channel(channel);
1007 efx_remove_port(efx);
1008 fail2:
1009 efx_remove_nic(efx);
1010 fail1:
1011 return rc;
1014 /* Called after previous invocation(s) of efx_stop_all, restarts the
1015 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1016 * and ensures that the port is scheduled to be reconfigured.
1017 * This function is safe to call multiple times when the NIC is in any
1018 * state. */
1019 static void efx_start_all(struct efx_nic *efx)
1021 struct efx_channel *channel;
1023 EFX_ASSERT_RESET_SERIALISED(efx);
1025 /* Check that it is appropriate to restart the interface. All
1026 * of these flags are safe to read under just the rtnl lock */
1027 if (efx->port_enabled)
1028 return;
1029 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1030 return;
1031 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1032 return;
1034 /* Mark the port as enabled so port reconfigurations can start, then
1035 * restart the transmit interface early so the watchdog timer stops */
1036 efx_start_port(efx);
1037 efx_wake_queue(efx);
1039 efx_for_each_channel(channel, efx)
1040 efx_start_channel(channel);
1042 falcon_enable_interrupts(efx);
1044 /* Start hardware monitor if we're in RUNNING */
1045 if (efx->state == STATE_RUNNING)
1046 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1047 efx_monitor_interval);
1050 /* Flush all delayed work. Should only be called when no more delayed work
1051 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1052 * since we're holding the rtnl_lock at this point. */
1053 static void efx_flush_all(struct efx_nic *efx)
1055 struct efx_rx_queue *rx_queue;
1057 /* Make sure the hardware monitor is stopped */
1058 cancel_delayed_work_sync(&efx->monitor_work);
1060 /* Ensure that all RX slow refills are complete. */
1061 efx_for_each_rx_queue(rx_queue, efx)
1062 cancel_delayed_work_sync(&rx_queue->work);
1064 /* Stop scheduled port reconfigurations */
1065 cancel_work_sync(&efx->reconfigure_work);
1069 /* Quiesce hardware and software without bringing the link down.
1070 * Safe to call multiple times, when the nic and interface is in any
1071 * state. The caller is guaranteed to subsequently be in a position
1072 * to modify any hardware and software state they see fit without
1073 * taking locks. */
1074 static void efx_stop_all(struct efx_nic *efx)
1076 struct efx_channel *channel;
1078 EFX_ASSERT_RESET_SERIALISED(efx);
1080 /* port_enabled can be read safely under the rtnl lock */
1081 if (!efx->port_enabled)
1082 return;
1084 /* Disable interrupts and wait for ISR to complete */
1085 falcon_disable_interrupts(efx);
1086 if (efx->legacy_irq)
1087 synchronize_irq(efx->legacy_irq);
1088 efx_for_each_channel(channel, efx) {
1089 if (channel->irq)
1090 synchronize_irq(channel->irq);
1093 /* Stop all NAPI processing and synchronous rx refills */
1094 efx_for_each_channel(channel, efx)
1095 efx_stop_channel(channel);
1097 /* Stop all asynchronous port reconfigurations. Since all
1098 * event processing has already been stopped, there is no
1099 * window to loose phy events */
1100 efx_stop_port(efx);
1102 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1103 efx_flush_all(efx);
1105 /* Isolate the MAC from the TX and RX engines, so that queue
1106 * flushes will complete in a timely fashion. */
1107 falcon_deconfigure_mac_wrapper(efx);
1108 falcon_drain_tx_fifo(efx);
1110 /* Stop the kernel transmit interface late, so the watchdog
1111 * timer isn't ticking over the flush */
1112 efx_stop_queue(efx);
1113 if (efx_dev_registered(efx)) {
1114 netif_tx_lock_bh(efx->net_dev);
1115 netif_tx_unlock_bh(efx->net_dev);
1119 static void efx_remove_all(struct efx_nic *efx)
1121 struct efx_channel *channel;
1123 efx_for_each_channel(channel, efx)
1124 efx_remove_channel(channel);
1125 efx_remove_port(efx);
1126 efx_remove_nic(efx);
1129 /* A convinience function to safely flush all the queues */
1130 int efx_flush_queues(struct efx_nic *efx)
1132 int rc;
1134 EFX_ASSERT_RESET_SERIALISED(efx);
1136 efx_stop_all(efx);
1138 efx_fini_channels(efx);
1139 rc = efx_init_channels(efx);
1140 if (rc) {
1141 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1142 return rc;
1145 efx_start_all(efx);
1147 return 0;
1150 /**************************************************************************
1152 * Interrupt moderation
1154 **************************************************************************/
1156 /* Set interrupt moderation parameters */
1157 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1159 struct efx_tx_queue *tx_queue;
1160 struct efx_rx_queue *rx_queue;
1162 EFX_ASSERT_RESET_SERIALISED(efx);
1164 efx_for_each_tx_queue(tx_queue, efx)
1165 tx_queue->channel->irq_moderation = tx_usecs;
1167 efx_for_each_rx_queue(rx_queue, efx)
1168 rx_queue->channel->irq_moderation = rx_usecs;
1171 /**************************************************************************
1173 * Hardware monitor
1175 **************************************************************************/
1177 /* Run periodically off the general workqueue. Serialised against
1178 * efx_reconfigure_port via the mac_lock */
1179 static void efx_monitor(struct work_struct *data)
1181 struct efx_nic *efx = container_of(data, struct efx_nic,
1182 monitor_work.work);
1183 int rc = 0;
1185 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1186 raw_smp_processor_id());
1189 /* If the mac_lock is already held then it is likely a port
1190 * reconfiguration is already in place, which will likely do
1191 * most of the work of check_hw() anyway. */
1192 if (!mutex_trylock(&efx->mac_lock)) {
1193 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1194 efx_monitor_interval);
1195 return;
1198 if (efx->port_enabled)
1199 rc = falcon_check_xmac(efx);
1200 mutex_unlock(&efx->mac_lock);
1202 if (rc) {
1203 if (monitor_reset) {
1204 EFX_ERR(efx, "hardware monitor detected a fault: "
1205 "triggering reset\n");
1206 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1207 } else {
1208 EFX_ERR(efx, "hardware monitor detected a fault, "
1209 "skipping reset\n");
1213 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1214 efx_monitor_interval);
1217 /**************************************************************************
1219 * ioctls
1221 *************************************************************************/
1223 /* Net device ioctl
1224 * Context: process, rtnl_lock() held.
1226 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1228 struct efx_nic *efx = netdev_priv(net_dev);
1230 EFX_ASSERT_RESET_SERIALISED(efx);
1232 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1235 /**************************************************************************
1237 * NAPI interface
1239 **************************************************************************/
1241 static int efx_init_napi(struct efx_nic *efx)
1243 struct efx_channel *channel;
1244 int rc;
1246 efx_for_each_channel(channel, efx) {
1247 channel->napi_dev = efx->net_dev;
1248 rc = efx_lro_init(&channel->lro_mgr, efx);
1249 if (rc)
1250 goto err;
1252 return 0;
1253 err:
1254 efx_fini_napi(efx);
1255 return rc;
1258 static void efx_fini_napi(struct efx_nic *efx)
1260 struct efx_channel *channel;
1262 efx_for_each_channel(channel, efx) {
1263 efx_lro_fini(&channel->lro_mgr);
1264 channel->napi_dev = NULL;
1268 /**************************************************************************
1270 * Kernel netpoll interface
1272 *************************************************************************/
1274 #ifdef CONFIG_NET_POLL_CONTROLLER
1276 /* Although in the common case interrupts will be disabled, this is not
1277 * guaranteed. However, all our work happens inside the NAPI callback,
1278 * so no locking is required.
1280 static void efx_netpoll(struct net_device *net_dev)
1282 struct efx_nic *efx = netdev_priv(net_dev);
1283 struct efx_channel *channel;
1285 efx_for_each_channel(channel, efx)
1286 efx_schedule_channel(channel);
1289 #endif
1291 /**************************************************************************
1293 * Kernel net device interface
1295 *************************************************************************/
1297 /* Context: process, rtnl_lock() held. */
1298 static int efx_net_open(struct net_device *net_dev)
1300 struct efx_nic *efx = netdev_priv(net_dev);
1301 EFX_ASSERT_RESET_SERIALISED(efx);
1303 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1304 raw_smp_processor_id());
1306 efx_start_all(efx);
1307 return 0;
1310 /* Context: process, rtnl_lock() held.
1311 * Note that the kernel will ignore our return code; this method
1312 * should really be a void.
1314 static int efx_net_stop(struct net_device *net_dev)
1316 struct efx_nic *efx = netdev_priv(net_dev);
1317 int rc;
1319 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1320 raw_smp_processor_id());
1322 /* Stop the device and flush all the channels */
1323 efx_stop_all(efx);
1324 efx_fini_channels(efx);
1325 rc = efx_init_channels(efx);
1326 if (rc)
1327 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1329 return 0;
1332 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1333 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1335 struct efx_nic *efx = netdev_priv(net_dev);
1336 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1337 struct net_device_stats *stats = &net_dev->stats;
1339 /* Update stats if possible, but do not wait if another thread
1340 * is updating them (or resetting the NIC); slightly stale
1341 * stats are acceptable.
1343 if (!spin_trylock(&efx->stats_lock))
1344 return stats;
1345 if (efx->state == STATE_RUNNING) {
1346 falcon_update_stats_xmac(efx);
1347 falcon_update_nic_stats(efx);
1349 spin_unlock(&efx->stats_lock);
1351 stats->rx_packets = mac_stats->rx_packets;
1352 stats->tx_packets = mac_stats->tx_packets;
1353 stats->rx_bytes = mac_stats->rx_bytes;
1354 stats->tx_bytes = mac_stats->tx_bytes;
1355 stats->multicast = mac_stats->rx_multicast;
1356 stats->collisions = mac_stats->tx_collision;
1357 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1358 mac_stats->rx_length_error);
1359 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1360 stats->rx_crc_errors = mac_stats->rx_bad;
1361 stats->rx_frame_errors = mac_stats->rx_align_error;
1362 stats->rx_fifo_errors = mac_stats->rx_overflow;
1363 stats->rx_missed_errors = mac_stats->rx_missed;
1364 stats->tx_window_errors = mac_stats->tx_late_collision;
1366 stats->rx_errors = (stats->rx_length_errors +
1367 stats->rx_over_errors +
1368 stats->rx_crc_errors +
1369 stats->rx_frame_errors +
1370 stats->rx_fifo_errors +
1371 stats->rx_missed_errors +
1372 mac_stats->rx_symbol_error);
1373 stats->tx_errors = (stats->tx_window_errors +
1374 mac_stats->tx_bad);
1376 return stats;
1379 /* Context: netif_tx_lock held, BHs disabled. */
1380 static void efx_watchdog(struct net_device *net_dev)
1382 struct efx_nic *efx = netdev_priv(net_dev);
1384 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1385 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1386 monitor_reset ? "resetting channels" : "skipping reset");
1388 if (monitor_reset)
1389 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1393 /* Context: process, rtnl_lock() held. */
1394 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1396 struct efx_nic *efx = netdev_priv(net_dev);
1397 int rc = 0;
1399 EFX_ASSERT_RESET_SERIALISED(efx);
1401 if (new_mtu > EFX_MAX_MTU)
1402 return -EINVAL;
1404 efx_stop_all(efx);
1406 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1408 efx_fini_channels(efx);
1409 net_dev->mtu = new_mtu;
1410 rc = efx_init_channels(efx);
1411 if (rc)
1412 goto fail;
1414 efx_start_all(efx);
1415 return rc;
1417 fail:
1418 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1419 return rc;
1422 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1424 struct efx_nic *efx = netdev_priv(net_dev);
1425 struct sockaddr *addr = data;
1426 char *new_addr = addr->sa_data;
1428 EFX_ASSERT_RESET_SERIALISED(efx);
1430 if (!is_valid_ether_addr(new_addr)) {
1431 DECLARE_MAC_BUF(mac);
1432 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1433 print_mac(mac, new_addr));
1434 return -EINVAL;
1437 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1439 /* Reconfigure the MAC */
1440 efx_reconfigure_port(efx);
1442 return 0;
1445 /* Context: netif_tx_lock held, BHs disabled. */
1446 static void efx_set_multicast_list(struct net_device *net_dev)
1448 struct efx_nic *efx = netdev_priv(net_dev);
1449 struct dev_mc_list *mc_list = net_dev->mc_list;
1450 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1451 bool promiscuous;
1452 u32 crc;
1453 int bit;
1454 int i;
1456 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1457 promiscuous = !!(net_dev->flags & IFF_PROMISC);
1458 if (efx->promiscuous != promiscuous) {
1459 efx->promiscuous = promiscuous;
1460 /* Close the window between efx_stop_port() and efx_flush_all()
1461 * by only queuing work when the port is enabled. */
1462 if (efx->port_enabled)
1463 queue_work(efx->workqueue, &efx->reconfigure_work);
1466 /* Build multicast hash table */
1467 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1468 memset(mc_hash, 0xff, sizeof(*mc_hash));
1469 } else {
1470 memset(mc_hash, 0x00, sizeof(*mc_hash));
1471 for (i = 0; i < net_dev->mc_count; i++) {
1472 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1473 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1474 set_bit_le(bit, mc_hash->byte);
1475 mc_list = mc_list->next;
1479 /* Create and activate new global multicast hash table */
1480 falcon_set_multicast_hash(efx);
1483 static int efx_netdev_event(struct notifier_block *this,
1484 unsigned long event, void *ptr)
1486 struct net_device *net_dev = ptr;
1488 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1489 struct efx_nic *efx = netdev_priv(net_dev);
1491 strcpy(efx->name, net_dev->name);
1494 return NOTIFY_DONE;
1497 static struct notifier_block efx_netdev_notifier = {
1498 .notifier_call = efx_netdev_event,
1501 static int efx_register_netdev(struct efx_nic *efx)
1503 struct net_device *net_dev = efx->net_dev;
1504 int rc;
1506 net_dev->watchdog_timeo = 5 * HZ;
1507 net_dev->irq = efx->pci_dev->irq;
1508 net_dev->open = efx_net_open;
1509 net_dev->stop = efx_net_stop;
1510 net_dev->get_stats = efx_net_stats;
1511 net_dev->tx_timeout = &efx_watchdog;
1512 net_dev->hard_start_xmit = efx_hard_start_xmit;
1513 net_dev->do_ioctl = efx_ioctl;
1514 net_dev->change_mtu = efx_change_mtu;
1515 net_dev->set_mac_address = efx_set_mac_address;
1516 net_dev->set_multicast_list = efx_set_multicast_list;
1517 #ifdef CONFIG_NET_POLL_CONTROLLER
1518 net_dev->poll_controller = efx_netpoll;
1519 #endif
1520 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1521 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1523 /* Always start with carrier off; PHY events will detect the link */
1524 netif_carrier_off(efx->net_dev);
1526 /* Clear MAC statistics */
1527 falcon_update_stats_xmac(efx);
1528 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1530 rc = register_netdev(net_dev);
1531 if (rc) {
1532 EFX_ERR(efx, "could not register net dev\n");
1533 return rc;
1535 strcpy(efx->name, net_dev->name);
1537 return 0;
1540 static void efx_unregister_netdev(struct efx_nic *efx)
1542 struct efx_tx_queue *tx_queue;
1544 if (!efx->net_dev)
1545 return;
1547 BUG_ON(netdev_priv(efx->net_dev) != efx);
1549 /* Free up any skbs still remaining. This has to happen before
1550 * we try to unregister the netdev as running their destructors
1551 * may be needed to get the device ref. count to 0. */
1552 efx_for_each_tx_queue(tx_queue, efx)
1553 efx_release_tx_buffers(tx_queue);
1555 if (efx_dev_registered(efx)) {
1556 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1557 unregister_netdev(efx->net_dev);
1561 /**************************************************************************
1563 * Device reset and suspend
1565 **************************************************************************/
1567 /* The final hardware and software finalisation before reset. */
1568 static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1570 int rc;
1572 EFX_ASSERT_RESET_SERIALISED(efx);
1574 rc = falcon_xmac_get_settings(efx, ecmd);
1575 if (rc) {
1576 EFX_ERR(efx, "could not back up PHY settings\n");
1577 goto fail;
1580 efx_fini_channels(efx);
1581 return 0;
1583 fail:
1584 return rc;
1587 /* The first part of software initialisation after a hardware reset
1588 * This function does not handle serialisation with the kernel, it
1589 * assumes the caller has done this */
1590 static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1592 int rc;
1594 rc = efx_init_channels(efx);
1595 if (rc)
1596 goto fail1;
1598 /* Restore MAC and PHY settings. */
1599 rc = falcon_xmac_set_settings(efx, ecmd);
1600 if (rc) {
1601 EFX_ERR(efx, "could not restore PHY settings\n");
1602 goto fail2;
1605 return 0;
1607 fail2:
1608 efx_fini_channels(efx);
1609 fail1:
1610 return rc;
1613 /* Reset the NIC as transparently as possible. Do not reset the PHY
1614 * Note that the reset may fail, in which case the card will be left
1615 * in a most-probably-unusable state.
1617 * This function will sleep. You cannot reset from within an atomic
1618 * state; use efx_schedule_reset() instead.
1620 * Grabs the rtnl_lock.
1622 static int efx_reset(struct efx_nic *efx)
1624 struct ethtool_cmd ecmd;
1625 enum reset_type method = efx->reset_pending;
1626 int rc;
1628 /* Serialise with kernel interfaces */
1629 rtnl_lock();
1631 /* If we're not RUNNING then don't reset. Leave the reset_pending
1632 * flag set so that efx_pci_probe_main will be retried */
1633 if (efx->state != STATE_RUNNING) {
1634 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1635 goto unlock_rtnl;
1638 efx->state = STATE_RESETTING;
1639 EFX_INFO(efx, "resetting (%d)\n", method);
1641 /* The net_dev->get_stats handler is quite slow, and will fail
1642 * if a fetch is pending over reset. Serialise against it. */
1643 spin_lock(&efx->stats_lock);
1644 spin_unlock(&efx->stats_lock);
1646 efx_stop_all(efx);
1647 mutex_lock(&efx->mac_lock);
1649 rc = efx_reset_down(efx, &ecmd);
1650 if (rc)
1651 goto fail1;
1653 rc = falcon_reset_hw(efx, method);
1654 if (rc) {
1655 EFX_ERR(efx, "failed to reset hardware\n");
1656 goto fail2;
1659 /* Allow resets to be rescheduled. */
1660 efx->reset_pending = RESET_TYPE_NONE;
1662 /* Reinitialise bus-mastering, which may have been turned off before
1663 * the reset was scheduled. This is still appropriate, even in the
1664 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1665 * can respond to requests. */
1666 pci_set_master(efx->pci_dev);
1668 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1669 * case so the driver can talk to external SRAM */
1670 rc = falcon_init_nic(efx);
1671 if (rc) {
1672 EFX_ERR(efx, "failed to initialise NIC\n");
1673 goto fail3;
1676 /* Leave device stopped if necessary */
1677 if (method == RESET_TYPE_DISABLE) {
1678 /* Reinitialise the device anyway so the driver unload sequence
1679 * can talk to the external SRAM */
1680 falcon_init_nic(efx);
1681 rc = -EIO;
1682 goto fail4;
1685 rc = efx_reset_up(efx, &ecmd);
1686 if (rc)
1687 goto fail5;
1689 mutex_unlock(&efx->mac_lock);
1690 EFX_LOG(efx, "reset complete\n");
1692 efx->state = STATE_RUNNING;
1693 efx_start_all(efx);
1695 unlock_rtnl:
1696 rtnl_unlock();
1697 return 0;
1699 fail5:
1700 fail4:
1701 fail3:
1702 fail2:
1703 fail1:
1704 EFX_ERR(efx, "has been disabled\n");
1705 efx->state = STATE_DISABLED;
1707 mutex_unlock(&efx->mac_lock);
1708 rtnl_unlock();
1709 efx_unregister_netdev(efx);
1710 efx_fini_port(efx);
1711 return rc;
1714 /* The worker thread exists so that code that cannot sleep can
1715 * schedule a reset for later.
1717 static void efx_reset_work(struct work_struct *data)
1719 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1721 efx_reset(nic);
1724 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1726 enum reset_type method;
1728 if (efx->reset_pending != RESET_TYPE_NONE) {
1729 EFX_INFO(efx, "quenching already scheduled reset\n");
1730 return;
1733 switch (type) {
1734 case RESET_TYPE_INVISIBLE:
1735 case RESET_TYPE_ALL:
1736 case RESET_TYPE_WORLD:
1737 case RESET_TYPE_DISABLE:
1738 method = type;
1739 break;
1740 case RESET_TYPE_RX_RECOVERY:
1741 case RESET_TYPE_RX_DESC_FETCH:
1742 case RESET_TYPE_TX_DESC_FETCH:
1743 case RESET_TYPE_TX_SKIP:
1744 method = RESET_TYPE_INVISIBLE;
1745 break;
1746 default:
1747 method = RESET_TYPE_ALL;
1748 break;
1751 if (method != type)
1752 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1753 else
1754 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1756 efx->reset_pending = method;
1758 queue_work(efx->reset_workqueue, &efx->reset_work);
1761 /**************************************************************************
1763 * List of NICs we support
1765 **************************************************************************/
1767 /* PCI device ID table */
1768 static struct pci_device_id efx_pci_table[] __devinitdata = {
1769 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1770 .driver_data = (unsigned long) &falcon_a_nic_type},
1771 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1772 .driver_data = (unsigned long) &falcon_b_nic_type},
1773 {0} /* end of list */
1776 /**************************************************************************
1778 * Dummy PHY/MAC/Board operations
1780 * Can be used where the MAC does not implement this operation
1781 * Needed so all function pointers are valid and do not have to be tested
1782 * before use
1784 **************************************************************************/
1785 int efx_port_dummy_op_int(struct efx_nic *efx)
1787 return 0;
1789 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1790 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1792 static struct efx_phy_operations efx_dummy_phy_operations = {
1793 .init = efx_port_dummy_op_int,
1794 .reconfigure = efx_port_dummy_op_void,
1795 .check_hw = efx_port_dummy_op_int,
1796 .fini = efx_port_dummy_op_void,
1797 .clear_interrupt = efx_port_dummy_op_void,
1798 .reset_xaui = efx_port_dummy_op_void,
1801 /* Dummy board operations */
1802 static int efx_nic_dummy_op_int(struct efx_nic *nic)
1804 return 0;
1807 static struct efx_board efx_dummy_board_info = {
1808 .init = efx_nic_dummy_op_int,
1809 .init_leds = efx_port_dummy_op_int,
1810 .set_fault_led = efx_port_dummy_op_blink,
1811 .fini = efx_port_dummy_op_void,
1814 /**************************************************************************
1816 * Data housekeeping
1818 **************************************************************************/
1820 /* This zeroes out and then fills in the invariants in a struct
1821 * efx_nic (including all sub-structures).
1823 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1824 struct pci_dev *pci_dev, struct net_device *net_dev)
1826 struct efx_channel *channel;
1827 struct efx_tx_queue *tx_queue;
1828 struct efx_rx_queue *rx_queue;
1829 int i, rc;
1831 /* Initialise common structures */
1832 memset(efx, 0, sizeof(*efx));
1833 spin_lock_init(&efx->biu_lock);
1834 spin_lock_init(&efx->phy_lock);
1835 INIT_WORK(&efx->reset_work, efx_reset_work);
1836 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1837 efx->pci_dev = pci_dev;
1838 efx->state = STATE_INIT;
1839 efx->reset_pending = RESET_TYPE_NONE;
1840 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1841 efx->board_info = efx_dummy_board_info;
1843 efx->net_dev = net_dev;
1844 efx->rx_checksum_enabled = true;
1845 spin_lock_init(&efx->netif_stop_lock);
1846 spin_lock_init(&efx->stats_lock);
1847 mutex_init(&efx->mac_lock);
1848 efx->phy_op = &efx_dummy_phy_operations;
1849 efx->mii.dev = net_dev;
1850 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1851 atomic_set(&efx->netif_stop_count, 1);
1853 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1854 channel = &efx->channel[i];
1855 channel->efx = efx;
1856 channel->channel = i;
1857 channel->evqnum = i;
1858 channel->work_pending = false;
1860 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1861 tx_queue = &efx->tx_queue[i];
1862 tx_queue->efx = efx;
1863 tx_queue->queue = i;
1864 tx_queue->buffer = NULL;
1865 tx_queue->channel = &efx->channel[0]; /* for safety */
1866 tx_queue->tso_headers_free = NULL;
1868 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1869 rx_queue = &efx->rx_queue[i];
1870 rx_queue->efx = efx;
1871 rx_queue->queue = i;
1872 rx_queue->channel = &efx->channel[0]; /* for safety */
1873 rx_queue->buffer = NULL;
1874 spin_lock_init(&rx_queue->add_lock);
1875 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1878 efx->type = type;
1880 /* Sanity-check NIC type */
1881 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1882 (efx->type->txd_ring_mask + 1));
1883 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1884 (efx->type->rxd_ring_mask + 1));
1885 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1886 (efx->type->evq_size - 1));
1887 /* As close as we can get to guaranteeing that we don't overflow */
1888 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1889 (efx->type->txd_ring_mask + 1 +
1890 efx->type->rxd_ring_mask + 1));
1891 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1893 /* Higher numbered interrupt modes are less capable! */
1894 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1895 interrupt_mode);
1897 efx->workqueue = create_singlethread_workqueue("sfc_work");
1898 if (!efx->workqueue) {
1899 rc = -ENOMEM;
1900 goto fail1;
1903 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1904 if (!efx->reset_workqueue) {
1905 rc = -ENOMEM;
1906 goto fail2;
1909 return 0;
1911 fail2:
1912 destroy_workqueue(efx->workqueue);
1913 efx->workqueue = NULL;
1915 fail1:
1916 return rc;
1919 static void efx_fini_struct(struct efx_nic *efx)
1921 if (efx->reset_workqueue) {
1922 destroy_workqueue(efx->reset_workqueue);
1923 efx->reset_workqueue = NULL;
1925 if (efx->workqueue) {
1926 destroy_workqueue(efx->workqueue);
1927 efx->workqueue = NULL;
1931 /**************************************************************************
1933 * PCI interface
1935 **************************************************************************/
1937 /* Main body of final NIC shutdown code
1938 * This is called only at module unload (or hotplug removal).
1940 static void efx_pci_remove_main(struct efx_nic *efx)
1942 EFX_ASSERT_RESET_SERIALISED(efx);
1944 /* Skip everything if we never obtained a valid membase */
1945 if (!efx->membase)
1946 return;
1948 efx_fini_channels(efx);
1949 efx_fini_port(efx);
1951 /* Shutdown the board, then the NIC and board state */
1952 efx->board_info.fini(efx);
1953 falcon_fini_interrupt(efx);
1955 efx_fini_napi(efx);
1956 efx_remove_all(efx);
1959 /* Final NIC shutdown
1960 * This is called only at module unload (or hotplug removal).
1962 static void efx_pci_remove(struct pci_dev *pci_dev)
1964 struct efx_nic *efx;
1966 efx = pci_get_drvdata(pci_dev);
1967 if (!efx)
1968 return;
1970 /* Mark the NIC as fini, then stop the interface */
1971 rtnl_lock();
1972 efx->state = STATE_FINI;
1973 dev_close(efx->net_dev);
1975 /* Allow any queued efx_resets() to complete */
1976 rtnl_unlock();
1978 if (efx->membase == NULL)
1979 goto out;
1981 efx_unregister_netdev(efx);
1983 /* Wait for any scheduled resets to complete. No more will be
1984 * scheduled from this point because efx_stop_all() has been
1985 * called, we are no longer registered with driverlink, and
1986 * the net_device's have been removed. */
1987 flush_workqueue(efx->reset_workqueue);
1989 efx_pci_remove_main(efx);
1991 out:
1992 efx_fini_io(efx);
1993 EFX_LOG(efx, "shutdown successful\n");
1995 pci_set_drvdata(pci_dev, NULL);
1996 efx_fini_struct(efx);
1997 free_netdev(efx->net_dev);
2000 /* Main body of NIC initialisation
2001 * This is called at module load (or hotplug insertion, theoretically).
2003 static int efx_pci_probe_main(struct efx_nic *efx)
2005 int rc;
2007 /* Do start-of-day initialisation */
2008 rc = efx_probe_all(efx);
2009 if (rc)
2010 goto fail1;
2012 rc = efx_init_napi(efx);
2013 if (rc)
2014 goto fail2;
2016 /* Initialise the board */
2017 rc = efx->board_info.init(efx);
2018 if (rc) {
2019 EFX_ERR(efx, "failed to initialise board\n");
2020 goto fail3;
2023 rc = falcon_init_nic(efx);
2024 if (rc) {
2025 EFX_ERR(efx, "failed to initialise NIC\n");
2026 goto fail4;
2029 rc = efx_init_port(efx);
2030 if (rc) {
2031 EFX_ERR(efx, "failed to initialise port\n");
2032 goto fail5;
2035 rc = efx_init_channels(efx);
2036 if (rc)
2037 goto fail6;
2039 rc = falcon_init_interrupt(efx);
2040 if (rc)
2041 goto fail7;
2043 return 0;
2045 fail7:
2046 efx_fini_channels(efx);
2047 fail6:
2048 efx_fini_port(efx);
2049 fail5:
2050 fail4:
2051 fail3:
2052 efx_fini_napi(efx);
2053 fail2:
2054 efx_remove_all(efx);
2055 fail1:
2056 return rc;
2059 /* NIC initialisation
2061 * This is called at module load (or hotplug insertion,
2062 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2063 * sets up and registers the network devices with the kernel and hooks
2064 * the interrupt service routine. It does not prepare the device for
2065 * transmission; this is left to the first time one of the network
2066 * interfaces is brought up (i.e. efx_net_open).
2068 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2069 const struct pci_device_id *entry)
2071 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2072 struct net_device *net_dev;
2073 struct efx_nic *efx;
2074 int i, rc;
2076 /* Allocate and initialise a struct net_device and struct efx_nic */
2077 net_dev = alloc_etherdev(sizeof(*efx));
2078 if (!net_dev)
2079 return -ENOMEM;
2080 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2081 NETIF_F_HIGHDMA | NETIF_F_TSO);
2082 if (lro)
2083 net_dev->features |= NETIF_F_LRO;
2084 /* Mask for features that also apply to VLAN devices */
2085 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2086 NETIF_F_HIGHDMA);
2087 efx = netdev_priv(net_dev);
2088 pci_set_drvdata(pci_dev, efx);
2089 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2090 if (rc)
2091 goto fail1;
2093 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2095 /* Set up basic I/O (BAR mappings etc) */
2096 rc = efx_init_io(efx);
2097 if (rc)
2098 goto fail2;
2100 /* No serialisation is required with the reset path because
2101 * we're in STATE_INIT. */
2102 for (i = 0; i < 5; i++) {
2103 rc = efx_pci_probe_main(efx);
2104 if (rc == 0)
2105 break;
2107 /* Serialise against efx_reset(). No more resets will be
2108 * scheduled since efx_stop_all() has been called, and we
2109 * have not and never have been registered with either
2110 * the rtnetlink or driverlink layers. */
2111 flush_workqueue(efx->reset_workqueue);
2113 /* Retry if a recoverably reset event has been scheduled */
2114 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2115 (efx->reset_pending != RESET_TYPE_ALL))
2116 goto fail3;
2118 efx->reset_pending = RESET_TYPE_NONE;
2121 if (rc) {
2122 EFX_ERR(efx, "Could not reset NIC\n");
2123 goto fail4;
2126 /* Switch to the running state before we expose the device to
2127 * the OS. This is to ensure that the initial gathering of
2128 * MAC stats succeeds. */
2129 rtnl_lock();
2130 efx->state = STATE_RUNNING;
2131 rtnl_unlock();
2133 rc = efx_register_netdev(efx);
2134 if (rc)
2135 goto fail5;
2137 EFX_LOG(efx, "initialisation successful\n");
2139 return 0;
2141 fail5:
2142 efx_pci_remove_main(efx);
2143 fail4:
2144 fail3:
2145 efx_fini_io(efx);
2146 fail2:
2147 efx_fini_struct(efx);
2148 fail1:
2149 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2150 free_netdev(net_dev);
2151 return rc;
2154 static struct pci_driver efx_pci_driver = {
2155 .name = EFX_DRIVER_NAME,
2156 .id_table = efx_pci_table,
2157 .probe = efx_pci_probe,
2158 .remove = efx_pci_remove,
2161 /**************************************************************************
2163 * Kernel module interface
2165 *************************************************************************/
2167 module_param(interrupt_mode, uint, 0444);
2168 MODULE_PARM_DESC(interrupt_mode,
2169 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2171 static int __init efx_init_module(void)
2173 int rc;
2175 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2177 rc = register_netdevice_notifier(&efx_netdev_notifier);
2178 if (rc)
2179 goto err_notifier;
2181 refill_workqueue = create_workqueue("sfc_refill");
2182 if (!refill_workqueue) {
2183 rc = -ENOMEM;
2184 goto err_refill;
2187 rc = pci_register_driver(&efx_pci_driver);
2188 if (rc < 0)
2189 goto err_pci;
2191 return 0;
2193 err_pci:
2194 destroy_workqueue(refill_workqueue);
2195 err_refill:
2196 unregister_netdevice_notifier(&efx_netdev_notifier);
2197 err_notifier:
2198 return rc;
2201 static void __exit efx_exit_module(void)
2203 printk(KERN_INFO "Solarflare NET driver unloading\n");
2205 pci_unregister_driver(&efx_pci_driver);
2206 destroy_workqueue(refill_workqueue);
2207 unregister_netdevice_notifier(&efx_netdev_notifier);
2211 module_init(efx_init_module);
2212 module_exit(efx_exit_module);
2214 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2215 "Solarflare Communications");
2216 MODULE_DESCRIPTION("Solarflare Communications network driver");
2217 MODULE_LICENSE("GPL");
2218 MODULE_DEVICE_TABLE(pci, efx_pci_table);