chelsio: tabulate the update of the statistic counters
[linux-2.6/verdex.git] / drivers / net / chelsio / sge.c
blobf94d63971642c518cd4676b2e9eee2786f8b90d2
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
65 #define SGE_CMDQ_N 2
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_COPY_THRES 256
75 #define SGE_RX_SM_BUF_SIZE 1536
76 #define SGE_TX_DESC_MAX_PLEN 16384
78 # define SGE_RX_DROP_THRES 2
80 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
83 * Period of the TX buffer reclaim timer. This timer does not need to run
84 * frequently as TX buffers are usually reclaimed by new TX packets.
86 #define TX_RECLAIM_PERIOD (HZ / 4)
88 #define M_CMD_LEN 0x7fffffff
89 #define V_CMD_LEN(v) (v)
90 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
91 #define V_CMD_GEN1(v) ((v) << 31)
92 #define V_CMD_GEN2(v) (v)
93 #define F_CMD_DATAVALID (1 << 1)
94 #define F_CMD_SOP (1 << 2)
95 #define V_CMD_EOP(v) ((v) << 3)
98 * Command queue, receive buffer list, and response queue descriptors.
100 #if defined(__BIG_ENDIAN_BITFIELD)
101 struct cmdQ_e {
102 u32 addr_lo;
103 u32 len_gen;
104 u32 flags;
105 u32 addr_hi;
108 struct freelQ_e {
109 u32 addr_lo;
110 u32 len_gen;
111 u32 gen2;
112 u32 addr_hi;
115 struct respQ_e {
116 u32 Qsleeping : 4;
117 u32 Cmdq1CreditReturn : 5;
118 u32 Cmdq1DmaComplete : 5;
119 u32 Cmdq0CreditReturn : 5;
120 u32 Cmdq0DmaComplete : 5;
121 u32 FreelistQid : 2;
122 u32 CreditValid : 1;
123 u32 DataValid : 1;
124 u32 Offload : 1;
125 u32 Eop : 1;
126 u32 Sop : 1;
127 u32 GenerationBit : 1;
128 u32 BufferLength;
130 #elif defined(__LITTLE_ENDIAN_BITFIELD)
131 struct cmdQ_e {
132 u32 len_gen;
133 u32 addr_lo;
134 u32 addr_hi;
135 u32 flags;
138 struct freelQ_e {
139 u32 len_gen;
140 u32 addr_lo;
141 u32 addr_hi;
142 u32 gen2;
145 struct respQ_e {
146 u32 BufferLength;
147 u32 GenerationBit : 1;
148 u32 Sop : 1;
149 u32 Eop : 1;
150 u32 Offload : 1;
151 u32 DataValid : 1;
152 u32 CreditValid : 1;
153 u32 FreelistQid : 2;
154 u32 Cmdq0DmaComplete : 5;
155 u32 Cmdq0CreditReturn : 5;
156 u32 Cmdq1DmaComplete : 5;
157 u32 Cmdq1CreditReturn : 5;
158 u32 Qsleeping : 4;
160 #endif
163 * SW Context Command and Freelist Queue Descriptors
165 struct cmdQ_ce {
166 struct sk_buff *skb;
167 DECLARE_PCI_UNMAP_ADDR(dma_addr);
168 DECLARE_PCI_UNMAP_LEN(dma_len);
171 struct freelQ_ce {
172 struct sk_buff *skb;
173 DECLARE_PCI_UNMAP_ADDR(dma_addr);
174 DECLARE_PCI_UNMAP_LEN(dma_len);
178 * SW command, freelist and response rings
180 struct cmdQ {
181 unsigned long status; /* HW DMA fetch status */
182 unsigned int in_use; /* # of in-use command descriptors */
183 unsigned int size; /* # of descriptors */
184 unsigned int processed; /* total # of descs HW has processed */
185 unsigned int cleaned; /* total # of descs SW has reclaimed */
186 unsigned int stop_thres; /* SW TX queue suspend threshold */
187 u16 pidx; /* producer index (SW) */
188 u16 cidx; /* consumer index (HW) */
189 u8 genbit; /* current generation (=valid) bit */
190 u8 sop; /* is next entry start of packet? */
191 struct cmdQ_e *entries; /* HW command descriptor Q */
192 struct cmdQ_ce *centries; /* SW command context descriptor Q */
193 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
194 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
197 struct freelQ {
198 unsigned int credits; /* # of available RX buffers */
199 unsigned int size; /* free list capacity */
200 u16 pidx; /* producer index (SW) */
201 u16 cidx; /* consumer index (HW) */
202 u16 rx_buffer_size; /* Buffer size on this free list */
203 u16 dma_offset; /* DMA offset to align IP headers */
204 u16 recycleq_idx; /* skb recycle q to use */
205 u8 genbit; /* current generation (=valid) bit */
206 struct freelQ_e *entries; /* HW freelist descriptor Q */
207 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
208 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
211 struct respQ {
212 unsigned int credits; /* credits to be returned to SGE */
213 unsigned int size; /* # of response Q descriptors */
214 u16 cidx; /* consumer index (SW) */
215 u8 genbit; /* current generation(=valid) bit */
216 struct respQ_e *entries; /* HW response descriptor Q */
217 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
220 /* Bit flags for cmdQ.status */
221 enum {
222 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
223 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
226 /* T204 TX SW scheduler */
228 /* Per T204 TX port */
229 struct sched_port {
230 unsigned int avail; /* available bits - quota */
231 unsigned int drain_bits_per_1024ns; /* drain rate */
232 unsigned int speed; /* drain rate, mbps */
233 unsigned int mtu; /* mtu size */
234 struct sk_buff_head skbq; /* pending skbs */
237 /* Per T204 device */
238 struct sched {
239 ktime_t last_updated; /* last time quotas were computed */
240 unsigned int max_avail; /* max bits to be sent to any port */
241 unsigned int port; /* port index (round robin ports) */
242 unsigned int num; /* num skbs in per port queues */
243 struct sched_port p[MAX_NPORTS];
244 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
246 static void restart_sched(unsigned long);
250 * Main SGE data structure
252 * Interrupts are handled by a single CPU and it is likely that on a MP system
253 * the application is migrated to another CPU. In that scenario, we try to
254 * seperate the RX(in irq context) and TX state in order to decrease memory
255 * contention.
257 struct sge {
258 struct adapter *adapter; /* adapter backpointer */
259 struct net_device *netdev; /* netdevice backpointer */
260 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
261 struct respQ respQ; /* response Q */
262 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
263 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
264 unsigned int jumbo_fl; /* jumbo freelist Q index */
265 unsigned int intrtimer_nres; /* no-resource interrupt timer */
266 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
267 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
268 struct timer_list espibug_timer;
269 unsigned long espibug_timeout;
270 struct sk_buff *espibug_skb[MAX_NPORTS];
271 u32 sge_control; /* shadow value of sge control reg */
272 struct sge_intr_counts stats;
273 struct sge_port_stats *port_stats[MAX_NPORTS];
274 struct sched *tx_sched;
275 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
279 * stop tasklet and free all pending skb's
281 static void tx_sched_stop(struct sge *sge)
283 struct sched *s = sge->tx_sched;
284 int i;
286 tasklet_kill(&s->sched_tsk);
288 for (i = 0; i < MAX_NPORTS; i++)
289 __skb_queue_purge(&s->p[s->port].skbq);
293 * t1_sched_update_parms() is called when the MTU or link speed changes. It
294 * re-computes scheduler parameters to scope with the change.
296 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
297 unsigned int mtu, unsigned int speed)
299 struct sched *s = sge->tx_sched;
300 struct sched_port *p = &s->p[port];
301 unsigned int max_avail_segs;
303 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
304 if (speed)
305 p->speed = speed;
306 if (mtu)
307 p->mtu = mtu;
309 if (speed || mtu) {
310 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
311 do_div(drain, (p->mtu + 50) * 1000);
312 p->drain_bits_per_1024ns = (unsigned int) drain;
314 if (p->speed < 1000)
315 p->drain_bits_per_1024ns =
316 90 * p->drain_bits_per_1024ns / 100;
319 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
320 p->drain_bits_per_1024ns -= 16;
321 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
322 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
323 } else {
324 s->max_avail = 16384;
325 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
328 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
329 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
330 p->speed, s->max_avail, max_avail_segs,
331 p->drain_bits_per_1024ns);
333 return max_avail_segs * (p->mtu - 40);
337 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
338 * data that can be pushed per port.
340 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
342 struct sched *s = sge->tx_sched;
343 unsigned int i;
345 s->max_avail = val;
346 for (i = 0; i < MAX_NPORTS; i++)
347 t1_sched_update_parms(sge, i, 0, 0);
351 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
352 * is draining.
354 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
355 unsigned int val)
357 struct sched *s = sge->tx_sched;
358 struct sched_port *p = &s->p[port];
359 p->drain_bits_per_1024ns = val * 1024 / 1000;
360 t1_sched_update_parms(sge, port, 0, 0);
365 * get_clock() implements a ns clock (see ktime_get)
367 static inline ktime_t get_clock(void)
369 struct timespec ts;
371 ktime_get_ts(&ts);
372 return timespec_to_ktime(ts);
376 * tx_sched_init() allocates resources and does basic initialization.
378 static int tx_sched_init(struct sge *sge)
380 struct sched *s;
381 int i;
383 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
384 if (!s)
385 return -ENOMEM;
387 pr_debug("tx_sched_init\n");
388 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
389 sge->tx_sched = s;
391 for (i = 0; i < MAX_NPORTS; i++) {
392 skb_queue_head_init(&s->p[i].skbq);
393 t1_sched_update_parms(sge, i, 1500, 1000);
396 return 0;
400 * sched_update_avail() computes the delta since the last time it was called
401 * and updates the per port quota (number of bits that can be sent to the any
402 * port).
404 static inline int sched_update_avail(struct sge *sge)
406 struct sched *s = sge->tx_sched;
407 ktime_t now = get_clock();
408 unsigned int i;
409 long long delta_time_ns;
411 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
413 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
414 if (delta_time_ns < 15000)
415 return 0;
417 for (i = 0; i < MAX_NPORTS; i++) {
418 struct sched_port *p = &s->p[i];
419 unsigned int delta_avail;
421 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
422 p->avail = min(p->avail + delta_avail, s->max_avail);
425 s->last_updated = now;
427 return 1;
431 * sched_skb() is called from two different places. In the tx path, any
432 * packet generating load on an output port will call sched_skb()
433 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
434 * context (skb == NULL).
435 * The scheduler only returns a skb (which will then be sent) if the
436 * length of the skb is <= the current quota of the output port.
438 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
439 unsigned int credits)
441 struct sched *s = sge->tx_sched;
442 struct sk_buff_head *skbq;
443 unsigned int i, len, update = 1;
445 pr_debug("sched_skb %p\n", skb);
446 if (!skb) {
447 if (!s->num)
448 return NULL;
449 } else {
450 skbq = &s->p[skb->dev->if_port].skbq;
451 __skb_queue_tail(skbq, skb);
452 s->num++;
453 skb = NULL;
456 if (credits < MAX_SKB_FRAGS + 1)
457 goto out;
459 again:
460 for (i = 0; i < MAX_NPORTS; i++) {
461 s->port = ++s->port & (MAX_NPORTS - 1);
462 skbq = &s->p[s->port].skbq;
464 skb = skb_peek(skbq);
466 if (!skb)
467 continue;
469 len = skb->len;
470 if (len <= s->p[s->port].avail) {
471 s->p[s->port].avail -= len;
472 s->num--;
473 __skb_unlink(skb, skbq);
474 goto out;
476 skb = NULL;
479 if (update-- && sched_update_avail(sge))
480 goto again;
482 out:
483 /* If there are more pending skbs, we use the hardware to schedule us
484 * again.
486 if (s->num && !skb) {
487 struct cmdQ *q = &sge->cmdQ[0];
488 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
489 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
490 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
491 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
494 pr_debug("sched_skb ret %p\n", skb);
496 return skb;
500 * PIO to indicate that memory mapped Q contains valid descriptor(s).
502 static inline void doorbell_pio(struct adapter *adapter, u32 val)
504 wmb();
505 writel(val, adapter->regs + A_SG_DOORBELL);
509 * Frees all RX buffers on the freelist Q. The caller must make sure that
510 * the SGE is turned off before calling this function.
512 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
514 unsigned int cidx = q->cidx;
516 while (q->credits--) {
517 struct freelQ_ce *ce = &q->centries[cidx];
519 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
520 pci_unmap_len(ce, dma_len),
521 PCI_DMA_FROMDEVICE);
522 dev_kfree_skb(ce->skb);
523 ce->skb = NULL;
524 if (++cidx == q->size)
525 cidx = 0;
530 * Free RX free list and response queue resources.
532 static void free_rx_resources(struct sge *sge)
534 struct pci_dev *pdev = sge->adapter->pdev;
535 unsigned int size, i;
537 if (sge->respQ.entries) {
538 size = sizeof(struct respQ_e) * sge->respQ.size;
539 pci_free_consistent(pdev, size, sge->respQ.entries,
540 sge->respQ.dma_addr);
543 for (i = 0; i < SGE_FREELQ_N; i++) {
544 struct freelQ *q = &sge->freelQ[i];
546 if (q->centries) {
547 free_freelQ_buffers(pdev, q);
548 kfree(q->centries);
550 if (q->entries) {
551 size = sizeof(struct freelQ_e) * q->size;
552 pci_free_consistent(pdev, size, q->entries,
553 q->dma_addr);
559 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
560 * response queue.
562 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
564 struct pci_dev *pdev = sge->adapter->pdev;
565 unsigned int size, i;
567 for (i = 0; i < SGE_FREELQ_N; i++) {
568 struct freelQ *q = &sge->freelQ[i];
570 q->genbit = 1;
571 q->size = p->freelQ_size[i];
572 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
573 size = sizeof(struct freelQ_e) * q->size;
574 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
575 if (!q->entries)
576 goto err_no_mem;
578 size = sizeof(struct freelQ_ce) * q->size;
579 q->centries = kzalloc(size, GFP_KERNEL);
580 if (!q->centries)
581 goto err_no_mem;
585 * Calculate the buffer sizes for the two free lists. FL0 accommodates
586 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
587 * including all the sk_buff overhead.
589 * Note: For T2 FL0 and FL1 are reversed.
591 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
592 sizeof(struct cpl_rx_data) +
593 sge->freelQ[!sge->jumbo_fl].dma_offset;
595 size = (16 * 1024) -
596 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
598 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
601 * Setup which skb recycle Q should be used when recycling buffers from
602 * each free list.
604 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
605 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
607 sge->respQ.genbit = 1;
608 sge->respQ.size = SGE_RESPQ_E_N;
609 sge->respQ.credits = 0;
610 size = sizeof(struct respQ_e) * sge->respQ.size;
611 sge->respQ.entries =
612 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
613 if (!sge->respQ.entries)
614 goto err_no_mem;
615 return 0;
617 err_no_mem:
618 free_rx_resources(sge);
619 return -ENOMEM;
623 * Reclaims n TX descriptors and frees the buffers associated with them.
625 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
627 struct cmdQ_ce *ce;
628 struct pci_dev *pdev = sge->adapter->pdev;
629 unsigned int cidx = q->cidx;
631 q->in_use -= n;
632 ce = &q->centries[cidx];
633 while (n--) {
634 if (likely(pci_unmap_len(ce, dma_len))) {
635 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
636 pci_unmap_len(ce, dma_len),
637 PCI_DMA_TODEVICE);
638 if (q->sop)
639 q->sop = 0;
641 if (ce->skb) {
642 dev_kfree_skb_any(ce->skb);
643 q->sop = 1;
645 ce++;
646 if (++cidx == q->size) {
647 cidx = 0;
648 ce = q->centries;
651 q->cidx = cidx;
655 * Free TX resources.
657 * Assumes that SGE is stopped and all interrupts are disabled.
659 static void free_tx_resources(struct sge *sge)
661 struct pci_dev *pdev = sge->adapter->pdev;
662 unsigned int size, i;
664 for (i = 0; i < SGE_CMDQ_N; i++) {
665 struct cmdQ *q = &sge->cmdQ[i];
667 if (q->centries) {
668 if (q->in_use)
669 free_cmdQ_buffers(sge, q, q->in_use);
670 kfree(q->centries);
672 if (q->entries) {
673 size = sizeof(struct cmdQ_e) * q->size;
674 pci_free_consistent(pdev, size, q->entries,
675 q->dma_addr);
681 * Allocates basic TX resources, consisting of memory mapped command Qs.
683 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
685 struct pci_dev *pdev = sge->adapter->pdev;
686 unsigned int size, i;
688 for (i = 0; i < SGE_CMDQ_N; i++) {
689 struct cmdQ *q = &sge->cmdQ[i];
691 q->genbit = 1;
692 q->sop = 1;
693 q->size = p->cmdQ_size[i];
694 q->in_use = 0;
695 q->status = 0;
696 q->processed = q->cleaned = 0;
697 q->stop_thres = 0;
698 spin_lock_init(&q->lock);
699 size = sizeof(struct cmdQ_e) * q->size;
700 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
701 if (!q->entries)
702 goto err_no_mem;
704 size = sizeof(struct cmdQ_ce) * q->size;
705 q->centries = kzalloc(size, GFP_KERNEL);
706 if (!q->centries)
707 goto err_no_mem;
711 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
712 * only. For queue 0 set the stop threshold so we can handle one more
713 * packet from each port, plus reserve an additional 24 entries for
714 * Ethernet packets only. Queue 1 never suspends nor do we reserve
715 * space for Ethernet packets.
717 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
718 (MAX_SKB_FRAGS + 1);
719 return 0;
721 err_no_mem:
722 free_tx_resources(sge);
723 return -ENOMEM;
726 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
727 u32 size, int base_reg_lo,
728 int base_reg_hi, int size_reg)
730 writel((u32)addr, adapter->regs + base_reg_lo);
731 writel(addr >> 32, adapter->regs + base_reg_hi);
732 writel(size, adapter->regs + size_reg);
736 * Enable/disable VLAN acceleration.
738 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
740 struct sge *sge = adapter->sge;
742 sge->sge_control &= ~F_VLAN_XTRACT;
743 if (on_off)
744 sge->sge_control |= F_VLAN_XTRACT;
745 if (adapter->open_device_map) {
746 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
747 readl(adapter->regs + A_SG_CONTROL); /* flush */
752 * Programs the various SGE registers. However, the engine is not yet enabled,
753 * but sge->sge_control is setup and ready to go.
755 static void configure_sge(struct sge *sge, struct sge_params *p)
757 struct adapter *ap = sge->adapter;
759 writel(0, ap->regs + A_SG_CONTROL);
760 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
761 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
762 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
763 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
764 setup_ring_params(ap, sge->freelQ[0].dma_addr,
765 sge->freelQ[0].size, A_SG_FL0BASELWR,
766 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
767 setup_ring_params(ap, sge->freelQ[1].dma_addr,
768 sge->freelQ[1].size, A_SG_FL1BASELWR,
769 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
771 /* The threshold comparison uses <. */
772 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
774 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
775 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
776 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
778 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
779 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
780 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
781 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
783 #if defined(__BIG_ENDIAN_BITFIELD)
784 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
785 #endif
787 /* Initialize no-resource timer */
788 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
790 t1_sge_set_coalesce_params(sge, p);
794 * Return the payload capacity of the jumbo free-list buffers.
796 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
798 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
799 sge->freelQ[sge->jumbo_fl].dma_offset -
800 sizeof(struct cpl_rx_data);
804 * Frees all SGE related resources and the sge structure itself
806 void t1_sge_destroy(struct sge *sge)
808 int i;
810 for_each_port(sge->adapter, i)
811 free_percpu(sge->port_stats[i]);
813 kfree(sge->tx_sched);
814 free_tx_resources(sge);
815 free_rx_resources(sge);
816 kfree(sge);
820 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
821 * context Q) until the Q is full or alloc_skb fails.
823 * It is possible that the generation bits already match, indicating that the
824 * buffer is already valid and nothing needs to be done. This happens when we
825 * copied a received buffer into a new sk_buff during the interrupt processing.
827 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
828 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
829 * aligned.
831 static void refill_free_list(struct sge *sge, struct freelQ *q)
833 struct pci_dev *pdev = sge->adapter->pdev;
834 struct freelQ_ce *ce = &q->centries[q->pidx];
835 struct freelQ_e *e = &q->entries[q->pidx];
836 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
838 while (q->credits < q->size) {
839 struct sk_buff *skb;
840 dma_addr_t mapping;
842 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
843 if (!skb)
844 break;
846 skb_reserve(skb, q->dma_offset);
847 mapping = pci_map_single(pdev, skb->data, dma_len,
848 PCI_DMA_FROMDEVICE);
849 ce->skb = skb;
850 pci_unmap_addr_set(ce, dma_addr, mapping);
851 pci_unmap_len_set(ce, dma_len, dma_len);
852 e->addr_lo = (u32)mapping;
853 e->addr_hi = (u64)mapping >> 32;
854 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
855 wmb();
856 e->gen2 = V_CMD_GEN2(q->genbit);
858 e++;
859 ce++;
860 if (++q->pidx == q->size) {
861 q->pidx = 0;
862 q->genbit ^= 1;
863 ce = q->centries;
864 e = q->entries;
866 q->credits++;
871 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
872 * of both rings, we go into 'few interrupt mode' in order to give the system
873 * time to free up resources.
875 static void freelQs_empty(struct sge *sge)
877 struct adapter *adapter = sge->adapter;
878 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
879 u32 irqholdoff_reg;
881 refill_free_list(sge, &sge->freelQ[0]);
882 refill_free_list(sge, &sge->freelQ[1]);
884 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
885 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
886 irq_reg |= F_FL_EXHAUSTED;
887 irqholdoff_reg = sge->fixed_intrtimer;
888 } else {
889 /* Clear the F_FL_EXHAUSTED interrupts for now */
890 irq_reg &= ~F_FL_EXHAUSTED;
891 irqholdoff_reg = sge->intrtimer_nres;
893 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
894 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
896 /* We reenable the Qs to force a freelist GTS interrupt later */
897 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
900 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
901 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
903 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
906 * Disable SGE Interrupts
908 void t1_sge_intr_disable(struct sge *sge)
910 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
912 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
913 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
917 * Enable SGE interrupts.
919 void t1_sge_intr_enable(struct sge *sge)
921 u32 en = SGE_INT_ENABLE;
922 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
924 if (sge->adapter->flags & TSO_CAPABLE)
925 en &= ~F_PACKET_TOO_BIG;
926 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
927 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
931 * Clear SGE interrupts.
933 void t1_sge_intr_clear(struct sge *sge)
935 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
936 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
940 * SGE 'Error' interrupt handler
942 int t1_sge_intr_error_handler(struct sge *sge)
944 struct adapter *adapter = sge->adapter;
945 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
947 if (adapter->flags & TSO_CAPABLE)
948 cause &= ~F_PACKET_TOO_BIG;
949 if (cause & F_RESPQ_EXHAUSTED)
950 sge->stats.respQ_empty++;
951 if (cause & F_RESPQ_OVERFLOW) {
952 sge->stats.respQ_overflow++;
953 CH_ALERT("%s: SGE response queue overflow\n",
954 adapter->name);
956 if (cause & F_FL_EXHAUSTED) {
957 sge->stats.freelistQ_empty++;
958 freelQs_empty(sge);
960 if (cause & F_PACKET_TOO_BIG) {
961 sge->stats.pkt_too_big++;
962 CH_ALERT("%s: SGE max packet size exceeded\n",
963 adapter->name);
965 if (cause & F_PACKET_MISMATCH) {
966 sge->stats.pkt_mismatch++;
967 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
969 if (cause & SGE_INT_FATAL)
970 t1_fatal_err(adapter);
972 writel(cause, adapter->regs + A_SG_INT_CAUSE);
973 return 0;
976 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
978 return &sge->stats;
981 void t1_sge_get_port_stats(const struct sge *sge, int port,
982 struct sge_port_stats *ss)
984 int cpu;
986 memset(ss, 0, sizeof(*ss));
987 for_each_possible_cpu(cpu) {
988 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
990 ss->rx_packets += st->rx_packets;
991 ss->rx_cso_good += st->rx_cso_good;
992 ss->tx_packets += st->tx_packets;
993 ss->tx_cso += st->tx_cso;
994 ss->tx_tso += st->tx_tso;
995 ss->vlan_xtract += st->vlan_xtract;
996 ss->vlan_insert += st->vlan_insert;
1001 * recycle_fl_buf - recycle a free list buffer
1002 * @fl: the free list
1003 * @idx: index of buffer to recycle
1005 * Recycles the specified buffer on the given free list by adding it at
1006 * the next available slot on the list.
1008 static void recycle_fl_buf(struct freelQ *fl, int idx)
1010 struct freelQ_e *from = &fl->entries[idx];
1011 struct freelQ_e *to = &fl->entries[fl->pidx];
1013 fl->centries[fl->pidx] = fl->centries[idx];
1014 to->addr_lo = from->addr_lo;
1015 to->addr_hi = from->addr_hi;
1016 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017 wmb();
1018 to->gen2 = V_CMD_GEN2(fl->genbit);
1019 fl->credits++;
1021 if (++fl->pidx == fl->size) {
1022 fl->pidx = 0;
1023 fl->genbit ^= 1;
1028 * get_packet - return the next ingress packet buffer
1029 * @pdev: the PCI device that received the packet
1030 * @fl: the SGE free list holding the packet
1031 * @len: the actual packet length, excluding any SGE padding
1032 * @dma_pad: padding at beginning of buffer left by SGE DMA
1033 * @skb_pad: padding to be used if the packet is copied
1034 * @copy_thres: length threshold under which a packet should be copied
1035 * @drop_thres: # of remaining buffers before we start dropping packets
1037 * Get the next packet from a free list and complete setup of the
1038 * sk_buff. If the packet is small we make a copy and recycle the
1039 * original buffer, otherwise we use the original buffer itself. If a
1040 * positive drop threshold is supplied packets are dropped and their
1041 * buffers recycled if (a) the number of remaining buffers is under the
1042 * threshold and the packet is too big to copy, or (b) the packet should
1043 * be copied but there is no memory for the copy.
1045 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1046 struct freelQ *fl, unsigned int len,
1047 int dma_pad, int skb_pad,
1048 unsigned int copy_thres,
1049 unsigned int drop_thres)
1051 struct sk_buff *skb;
1052 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1054 if (len < copy_thres) {
1055 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
1056 if (likely(skb != NULL)) {
1057 skb_reserve(skb, skb_pad);
1058 skb_put(skb, len);
1059 pci_dma_sync_single_for_cpu(pdev,
1060 pci_unmap_addr(ce, dma_addr),
1061 pci_unmap_len(ce, dma_len),
1062 PCI_DMA_FROMDEVICE);
1063 memcpy(skb->data, ce->skb->data + dma_pad, len);
1064 pci_dma_sync_single_for_device(pdev,
1065 pci_unmap_addr(ce, dma_addr),
1066 pci_unmap_len(ce, dma_len),
1067 PCI_DMA_FROMDEVICE);
1068 } else if (!drop_thres)
1069 goto use_orig_buf;
1071 recycle_fl_buf(fl, fl->cidx);
1072 return skb;
1075 if (fl->credits < drop_thres) {
1076 recycle_fl_buf(fl, fl->cidx);
1077 return NULL;
1080 use_orig_buf:
1081 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1082 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1083 skb = ce->skb;
1084 skb_reserve(skb, dma_pad);
1085 skb_put(skb, len);
1086 return skb;
1090 * unexpected_offload - handle an unexpected offload packet
1091 * @adapter: the adapter
1092 * @fl: the free list that received the packet
1094 * Called when we receive an unexpected offload packet (e.g., the TOE
1095 * function is disabled or the card is a NIC). Prints a message and
1096 * recycles the buffer.
1098 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101 struct sk_buff *skb = ce->skb;
1103 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1106 adapter->name, *skb->data);
1107 recycle_fl_buf(fl, fl->cidx);
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1120 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1122 unsigned int count = 0;
1124 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126 unsigned int i, len = skb->len - skb->data_len;
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1131 for (i = 0; nfrags--; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 len = frag->size;
1134 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 count++;
1136 len -= SGE_TX_DESC_MAX_PLEN;
1140 return count;
1144 * Write a cmdQ entry.
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1149 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150 unsigned int len, unsigned int gen,
1151 unsigned int eop)
1153 if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154 BUG();
1155 e->addr_lo = (u32)mapping;
1156 e->addr_hi = (u64)mapping >> 32;
1157 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1162 * See comment for previous function.
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1167 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_e **e,
1169 struct cmdQ_ce **ce,
1170 unsigned int *gen,
1171 dma_addr_t *desc_mapping,
1172 unsigned int *desc_len,
1173 unsigned int nfrags,
1174 struct cmdQ *q)
1176 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177 struct cmdQ_e *e1 = *e;
1178 struct cmdQ_ce *ce1 = *ce;
1180 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183 *gen, nfrags == 0 && *desc_len == 0);
1184 ce1->skb = NULL;
1185 pci_unmap_len_set(ce1, dma_len, 0);
1186 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187 if (*desc_len) {
1188 ce1++;
1189 e1++;
1190 if (++pidx == q->size) {
1191 pidx = 0;
1192 *gen ^= 1;
1193 ce1 = q->centries;
1194 e1 = q->entries;
1198 *e = e1;
1199 *ce = ce1;
1201 return pidx;
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
1208 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209 unsigned int pidx, unsigned int gen,
1210 struct cmdQ *q)
1212 dma_addr_t mapping, desc_mapping;
1213 struct cmdQ_e *e, *e1;
1214 struct cmdQ_ce *ce;
1215 unsigned int i, flags, first_desc_len, desc_len,
1216 nfrags = skb_shinfo(skb)->nr_frags;
1218 e = e1 = &q->entries[pidx];
1219 ce = &q->centries[pidx];
1221 mapping = pci_map_single(adapter->pdev, skb->data,
1222 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1224 desc_mapping = mapping;
1225 desc_len = skb->len - skb->data_len;
1227 flags = F_CMD_DATAVALID | F_CMD_SOP |
1228 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 V_CMD_GEN2(gen);
1230 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231 desc_len : SGE_TX_DESC_MAX_PLEN;
1232 e->addr_lo = (u32)desc_mapping;
1233 e->addr_hi = (u64)desc_mapping >> 32;
1234 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 ce->skb = NULL;
1236 pci_unmap_len_set(ce, dma_len, 0);
1238 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239 desc_len > SGE_TX_DESC_MAX_PLEN) {
1240 desc_mapping += first_desc_len;
1241 desc_len -= first_desc_len;
1242 e1++;
1243 ce++;
1244 if (++pidx == q->size) {
1245 pidx = 0;
1246 gen ^= 1;
1247 e1 = q->entries;
1248 ce = q->centries;
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1254 if (likely(desc_len))
1255 write_tx_desc(e1, desc_mapping, desc_len, gen,
1256 nfrags == 0);
1259 ce->skb = NULL;
1260 pci_unmap_addr_set(ce, dma_addr, mapping);
1261 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1263 for (i = 0; nfrags--; i++) {
1264 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1265 e1++;
1266 ce++;
1267 if (++pidx == q->size) {
1268 pidx = 0;
1269 gen ^= 1;
1270 e1 = q->entries;
1271 ce = q->centries;
1274 mapping = pci_map_page(adapter->pdev, frag->page,
1275 frag->page_offset, frag->size,
1276 PCI_DMA_TODEVICE);
1277 desc_mapping = mapping;
1278 desc_len = frag->size;
1280 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281 &desc_mapping, &desc_len,
1282 nfrags, q);
1283 if (likely(desc_len))
1284 write_tx_desc(e1, desc_mapping, desc_len, gen,
1285 nfrags == 0);
1286 ce->skb = NULL;
1287 pci_unmap_addr_set(ce, dma_addr, mapping);
1288 pci_unmap_len_set(ce, dma_len, frag->size);
1290 ce->skb = skb;
1291 wmb();
1292 e->flags = flags;
1296 * Clean up completed Tx buffers.
1298 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300 unsigned int reclaim = q->processed - q->cleaned;
1302 if (reclaim) {
1303 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304 q->processed, q->cleaned);
1305 free_cmdQ_buffers(sge, q, reclaim);
1306 q->cleaned += reclaim;
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1314 static void restart_sched(unsigned long arg)
1316 struct sge *sge = (struct sge *) arg;
1317 struct adapter *adapter = sge->adapter;
1318 struct cmdQ *q = &sge->cmdQ[0];
1319 struct sk_buff *skb;
1320 unsigned int credits, queued_skb = 0;
1322 spin_lock(&q->lock);
1323 reclaim_completed_tx(sge, q);
1325 credits = q->size - q->in_use;
1326 pr_debug("restart_sched credits=%d\n", credits);
1327 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328 unsigned int genbit, pidx, count;
1329 count = 1 + skb_shinfo(skb)->nr_frags;
1330 count += compute_large_page_tx_descs(skb);
1331 q->in_use += count;
1332 genbit = q->genbit;
1333 pidx = q->pidx;
1334 q->pidx += count;
1335 if (q->pidx >= q->size) {
1336 q->pidx -= q->size;
1337 q->genbit ^= 1;
1339 write_tx_descs(adapter, skb, pidx, genbit, q);
1340 credits = q->size - q->in_use;
1341 queued_skb = 1;
1344 if (queued_skb) {
1345 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1351 spin_unlock(&q->lock);
1355 * sge_rx - process an ingress ethernet packet
1356 * @sge: the sge structure
1357 * @fl: the free list that contains the packet buffer
1358 * @len: the packet length
1360 * Process an ingress ethernet pakcet and deliver it to the stack.
1362 static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1364 struct sk_buff *skb;
1365 struct cpl_rx_pkt *p;
1366 struct adapter *adapter = sge->adapter;
1367 struct sge_port_stats *st;
1369 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
1370 sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
1371 SGE_RX_DROP_THRES);
1372 if (unlikely(!skb)) {
1373 sge->stats.rx_drops++;
1374 return 0;
1377 p = (struct cpl_rx_pkt *)skb->data;
1378 skb_pull(skb, sizeof(*p));
1379 if (p->iff >= adapter->params.nports) {
1380 kfree_skb(skb);
1381 return 0;
1384 skb->dev = adapter->port[p->iff].dev;
1385 skb->dev->last_rx = jiffies;
1386 st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1387 st->rx_packets++;
1389 skb->protocol = eth_type_trans(skb, skb->dev);
1390 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1391 skb->protocol == htons(ETH_P_IP) &&
1392 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1393 ++st->rx_cso_good;
1394 skb->ip_summed = CHECKSUM_UNNECESSARY;
1395 } else
1396 skb->ip_summed = CHECKSUM_NONE;
1398 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1399 st->vlan_xtract++;
1400 #ifdef CONFIG_CHELSIO_T1_NAPI
1401 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1402 ntohs(p->vlan));
1403 #else
1404 vlan_hwaccel_rx(skb, adapter->vlan_grp,
1405 ntohs(p->vlan));
1406 #endif
1407 } else {
1408 #ifdef CONFIG_CHELSIO_T1_NAPI
1409 netif_receive_skb(skb);
1410 #else
1411 netif_rx(skb);
1412 #endif
1414 return 0;
1418 * Returns true if a command queue has enough available descriptors that
1419 * we can resume Tx operation after temporarily disabling its packet queue.
1421 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1423 unsigned int r = q->processed - q->cleaned;
1425 return q->in_use - r < (q->size >> 1);
1429 * Called when sufficient space has become available in the SGE command queues
1430 * after the Tx packet schedulers have been suspended to restart the Tx path.
1432 static void restart_tx_queues(struct sge *sge)
1434 struct adapter *adap = sge->adapter;
1435 int i;
1437 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1438 return;
1440 for_each_port(adap, i) {
1441 struct net_device *nd = adap->port[i].dev;
1443 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1444 netif_running(nd)) {
1445 sge->stats.cmdQ_restarted[2]++;
1446 netif_wake_queue(nd);
1452 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1453 * information.
1455 static unsigned int update_tx_info(struct adapter *adapter,
1456 unsigned int flags,
1457 unsigned int pr0)
1459 struct sge *sge = adapter->sge;
1460 struct cmdQ *cmdq = &sge->cmdQ[0];
1462 cmdq->processed += pr0;
1463 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1464 freelQs_empty(sge);
1465 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1467 if (flags & F_CMDQ0_ENABLE) {
1468 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1470 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1471 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1472 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1473 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1475 if (sge->tx_sched)
1476 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1478 flags &= ~F_CMDQ0_ENABLE;
1481 if (unlikely(sge->stopped_tx_queues != 0))
1482 restart_tx_queues(sge);
1484 return flags;
1488 * Process SGE responses, up to the supplied budget. Returns the number of
1489 * responses processed. A negative budget is effectively unlimited.
1491 static int process_responses(struct adapter *adapter, int budget)
1493 struct sge *sge = adapter->sge;
1494 struct respQ *q = &sge->respQ;
1495 struct respQ_e *e = &q->entries[q->cidx];
1496 int budget_left = budget;
1497 unsigned int flags = 0;
1498 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1501 while (likely(budget_left && e->GenerationBit == q->genbit)) {
1502 flags |= e->Qsleeping;
1504 cmdq_processed[0] += e->Cmdq0CreditReturn;
1505 cmdq_processed[1] += e->Cmdq1CreditReturn;
1507 /* We batch updates to the TX side to avoid cacheline
1508 * ping-pong of TX state information on MP where the sender
1509 * might run on a different CPU than this function...
1511 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1512 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1513 cmdq_processed[0] = 0;
1515 if (unlikely(cmdq_processed[1] > 16)) {
1516 sge->cmdQ[1].processed += cmdq_processed[1];
1517 cmdq_processed[1] = 0;
1519 if (likely(e->DataValid)) {
1520 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1522 BUG_ON(!e->Sop || !e->Eop);
1523 if (unlikely(e->Offload))
1524 unexpected_offload(adapter, fl);
1525 else
1526 sge_rx(sge, fl, e->BufferLength);
1529 * Note: this depends on each packet consuming a
1530 * single free-list buffer; cf. the BUG above.
1532 if (++fl->cidx == fl->size)
1533 fl->cidx = 0;
1534 if (unlikely(--fl->credits <
1535 fl->size - SGE_FREEL_REFILL_THRESH))
1536 refill_free_list(sge, fl);
1537 } else
1538 sge->stats.pure_rsps++;
1540 e++;
1541 if (unlikely(++q->cidx == q->size)) {
1542 q->cidx = 0;
1543 q->genbit ^= 1;
1544 e = q->entries;
1546 prefetch(e);
1548 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1549 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1550 q->credits = 0;
1552 --budget_left;
1555 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1556 sge->cmdQ[1].processed += cmdq_processed[1];
1558 budget -= budget_left;
1559 return budget;
1562 #ifdef CONFIG_CHELSIO_T1_NAPI
1564 * A simpler version of process_responses() that handles only pure (i.e.,
1565 * non data-carrying) responses. Such respones are too light-weight to justify
1566 * calling a softirq when using NAPI, so we handle them specially in hard
1567 * interrupt context. The function is called with a pointer to a response,
1568 * which the caller must ensure is a valid pure response. Returns 1 if it
1569 * encounters a valid data-carrying response, 0 otherwise.
1571 static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
1573 struct sge *sge = adapter->sge;
1574 struct respQ *q = &sge->respQ;
1575 unsigned int flags = 0;
1576 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1578 do {
1579 flags |= e->Qsleeping;
1581 cmdq_processed[0] += e->Cmdq0CreditReturn;
1582 cmdq_processed[1] += e->Cmdq1CreditReturn;
1584 e++;
1585 if (unlikely(++q->cidx == q->size)) {
1586 q->cidx = 0;
1587 q->genbit ^= 1;
1588 e = q->entries;
1590 prefetch(e);
1592 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1593 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1594 q->credits = 0;
1596 sge->stats.pure_rsps++;
1597 } while (e->GenerationBit == q->genbit && !e->DataValid);
1599 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1600 sge->cmdQ[1].processed += cmdq_processed[1];
1602 return e->GenerationBit == q->genbit;
1606 * Handler for new data events when using NAPI. This does not need any locking
1607 * or protection from interrupts as data interrupts are off at this point and
1608 * other adapter interrupts do not interfere.
1610 int t1_poll(struct net_device *dev, int *budget)
1612 struct adapter *adapter = dev->priv;
1613 int effective_budget = min(*budget, dev->quota);
1614 int work_done = process_responses(adapter, effective_budget);
1616 *budget -= work_done;
1617 dev->quota -= work_done;
1619 if (work_done >= effective_budget)
1620 return 1;
1622 spin_lock_irq(&adapter->async_lock);
1623 __netif_rx_complete(dev);
1624 writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1625 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1626 adapter->regs + A_PL_ENABLE);
1627 spin_unlock_irq(&adapter->async_lock);
1629 return 0;
1633 * NAPI version of the main interrupt handler.
1635 irqreturn_t t1_interrupt(int irq, void *data)
1637 struct adapter *adapter = data;
1638 struct net_device *dev = adapter->sge->netdev;
1639 struct sge *sge = adapter->sge;
1640 u32 cause;
1641 int handled = 0;
1643 cause = readl(adapter->regs + A_PL_CAUSE);
1644 if (cause == 0 || cause == ~0)
1645 return IRQ_NONE;
1647 spin_lock(&adapter->async_lock);
1648 if (cause & F_PL_INTR_SGE_DATA) {
1649 struct respQ *q = &adapter->sge->respQ;
1650 struct respQ_e *e = &q->entries[q->cidx];
1652 handled = 1;
1653 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1655 if (e->GenerationBit == q->genbit &&
1656 __netif_rx_schedule_prep(dev)) {
1657 if (e->DataValid || process_pure_responses(adapter, e)) {
1658 /* mask off data IRQ */
1659 writel(adapter->slow_intr_mask,
1660 adapter->regs + A_PL_ENABLE);
1661 __netif_rx_schedule(sge->netdev);
1662 goto unlock;
1664 /* no data, no NAPI needed */
1665 netif_poll_enable(dev);
1668 writel(q->cidx, adapter->regs + A_SG_SLEEPING);
1669 } else
1670 handled = t1_slow_intr_handler(adapter);
1672 if (!handled)
1673 sge->stats.unhandled_irqs++;
1674 unlock:
1675 spin_unlock(&adapter->async_lock);
1676 return IRQ_RETVAL(handled != 0);
1679 #else
1681 * Main interrupt handler, optimized assuming that we took a 'DATA'
1682 * interrupt.
1684 * 1. Clear the interrupt
1685 * 2. Loop while we find valid descriptors and process them; accumulate
1686 * information that can be processed after the loop
1687 * 3. Tell the SGE at which index we stopped processing descriptors
1688 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1689 * outstanding TX buffers waiting, replenish RX buffers, potentially
1690 * reenable upper layers if they were turned off due to lack of TX
1691 * resources which are available again.
1692 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1693 * let the slow_intr_handler run and do error handling.
1695 irqreturn_t t1_interrupt(int irq, void *cookie)
1697 int work_done;
1698 struct respQ_e *e;
1699 struct adapter *adapter = cookie;
1700 struct respQ *Q = &adapter->sge->respQ;
1702 spin_lock(&adapter->async_lock);
1703 e = &Q->entries[Q->cidx];
1704 prefetch(e);
1706 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1708 if (likely(e->GenerationBit == Q->genbit))
1709 work_done = process_responses(adapter, -1);
1710 else
1711 work_done = t1_slow_intr_handler(adapter);
1714 * The unconditional clearing of the PL_CAUSE above may have raced
1715 * with DMA completion and the corresponding generation of a response
1716 * to cause us to miss the resulting data interrupt. The next write
1717 * is also unconditional to recover the missed interrupt and render
1718 * this race harmless.
1720 writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1722 if (!work_done)
1723 adapter->sge->stats.unhandled_irqs++;
1724 spin_unlock(&adapter->async_lock);
1725 return IRQ_RETVAL(work_done != 0);
1727 #endif
1730 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1732 * The code figures out how many entries the sk_buff will require in the
1733 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1734 * has complete. Then, it doesn't access the global structure anymore, but
1735 * uses the corresponding fields on the stack. In conjuction with a spinlock
1736 * around that code, we can make the function reentrant without holding the
1737 * lock when we actually enqueue (which might be expensive, especially on
1738 * architectures with IO MMUs).
1740 * This runs with softirqs disabled.
1742 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1743 unsigned int qid, struct net_device *dev)
1745 struct sge *sge = adapter->sge;
1746 struct cmdQ *q = &sge->cmdQ[qid];
1747 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1749 if (!spin_trylock(&q->lock))
1750 return NETDEV_TX_LOCKED;
1752 reclaim_completed_tx(sge, q);
1754 pidx = q->pidx;
1755 credits = q->size - q->in_use;
1756 count = 1 + skb_shinfo(skb)->nr_frags;
1757 count += compute_large_page_tx_descs(skb);
1759 /* Ethernet packet */
1760 if (unlikely(credits < count)) {
1761 if (!netif_queue_stopped(dev)) {
1762 netif_stop_queue(dev);
1763 set_bit(dev->if_port, &sge->stopped_tx_queues);
1764 sge->stats.cmdQ_full[2]++;
1765 CH_ERR("%s: Tx ring full while queue awake!\n",
1766 adapter->name);
1768 spin_unlock(&q->lock);
1769 return NETDEV_TX_BUSY;
1772 if (unlikely(credits - count < q->stop_thres)) {
1773 netif_stop_queue(dev);
1774 set_bit(dev->if_port, &sge->stopped_tx_queues);
1775 sge->stats.cmdQ_full[2]++;
1778 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1779 * through the scheduler.
1781 if (sge->tx_sched && !qid && skb->dev) {
1782 use_sched:
1783 use_sched_skb = 1;
1784 /* Note that the scheduler might return a different skb than
1785 * the one passed in.
1787 skb = sched_skb(sge, skb, credits);
1788 if (!skb) {
1789 spin_unlock(&q->lock);
1790 return NETDEV_TX_OK;
1792 pidx = q->pidx;
1793 count = 1 + skb_shinfo(skb)->nr_frags;
1794 count += compute_large_page_tx_descs(skb);
1797 q->in_use += count;
1798 genbit = q->genbit;
1799 pidx = q->pidx;
1800 q->pidx += count;
1801 if (q->pidx >= q->size) {
1802 q->pidx -= q->size;
1803 q->genbit ^= 1;
1805 spin_unlock(&q->lock);
1807 write_tx_descs(adapter, skb, pidx, genbit, q);
1810 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1811 * the doorbell if the Q is asleep. There is a natural race, where
1812 * the hardware is going to sleep just after we checked, however,
1813 * then the interrupt handler will detect the outstanding TX packet
1814 * and ring the doorbell for us.
1816 if (qid)
1817 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1818 else {
1819 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1820 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1821 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1822 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1826 if (use_sched_skb) {
1827 if (spin_trylock(&q->lock)) {
1828 credits = q->size - q->in_use;
1829 skb = NULL;
1830 goto use_sched;
1833 return NETDEV_TX_OK;
1836 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1839 * eth_hdr_len - return the length of an Ethernet header
1840 * @data: pointer to the start of the Ethernet header
1842 * Returns the length of an Ethernet header, including optional VLAN tag.
1844 static inline int eth_hdr_len(const void *data)
1846 const struct ethhdr *e = data;
1848 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1852 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1854 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1856 struct adapter *adapter = dev->priv;
1857 struct sge *sge = adapter->sge;
1858 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
1859 struct cpl_tx_pkt *cpl;
1860 struct sk_buff *orig_skb = skb;
1861 int ret;
1863 if (skb->protocol == htons(ETH_P_CPL5))
1864 goto send;
1866 if (skb_shinfo(skb)->gso_size) {
1867 int eth_type;
1868 struct cpl_tx_pkt_lso *hdr;
1870 ++st->tx_tso;
1872 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1873 CPL_ETH_II : CPL_ETH_II_VLAN;
1875 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1876 hdr->opcode = CPL_TX_PKT_LSO;
1877 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1878 hdr->ip_hdr_words = skb->nh.iph->ihl;
1879 hdr->tcp_hdr_words = skb->h.th->doff;
1880 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1881 skb_shinfo(skb)->gso_size));
1882 hdr->len = htonl(skb->len - sizeof(*hdr));
1883 cpl = (struct cpl_tx_pkt *)hdr;
1884 } else {
1886 * Packets shorter than ETH_HLEN can break the MAC, drop them
1887 * early. Also, we may get oversized packets because some
1888 * parts of the kernel don't handle our unusual hard_header_len
1889 * right, drop those too.
1891 if (unlikely(skb->len < ETH_HLEN ||
1892 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1893 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1894 skb->len, eth_hdr_len(skb->data), dev->mtu);
1895 dev_kfree_skb_any(skb);
1896 return NETDEV_TX_OK;
1900 * We are using a non-standard hard_header_len and some kernel
1901 * components, such as pktgen, do not handle it right.
1902 * Complain when this happens but try to fix things up.
1904 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1905 pr_debug("%s: headroom %d header_len %d\n", dev->name,
1906 skb_headroom(skb), dev->hard_header_len);
1908 if (net_ratelimit())
1909 printk(KERN_ERR "%s: inadequate headroom in "
1910 "Tx packet\n", dev->name);
1911 skb = skb_realloc_headroom(skb, sizeof(*cpl));
1912 dev_kfree_skb_any(orig_skb);
1913 if (!skb)
1914 return NETDEV_TX_OK;
1917 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1918 skb->ip_summed == CHECKSUM_PARTIAL &&
1919 skb->nh.iph->protocol == IPPROTO_UDP) {
1920 if (unlikely(skb_checksum_help(skb))) {
1921 pr_debug("%s: unable to do udp checksum\n", dev->name);
1922 dev_kfree_skb_any(skb);
1923 return NETDEV_TX_OK;
1927 /* Hmmm, assuming to catch the gratious arp... and we'll use
1928 * it to flush out stuck espi packets...
1930 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1931 if (skb->protocol == htons(ETH_P_ARP) &&
1932 skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
1933 adapter->sge->espibug_skb[dev->if_port] = skb;
1934 /* We want to re-use this skb later. We
1935 * simply bump the reference count and it
1936 * will not be freed...
1938 skb = skb_get(skb);
1942 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1943 cpl->opcode = CPL_TX_PKT;
1944 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1945 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1946 /* the length field isn't used so don't bother setting it */
1948 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1950 cpl->iff = dev->if_port;
1952 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1953 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1954 cpl->vlan_valid = 1;
1955 cpl->vlan = htons(vlan_tx_tag_get(skb));
1956 st->vlan_insert++;
1957 } else
1958 #endif
1959 cpl->vlan_valid = 0;
1961 send:
1962 st->tx_packets++;
1963 dev->trans_start = jiffies;
1964 ret = t1_sge_tx(skb, adapter, 0, dev);
1966 /* If transmit busy, and we reallocated skb's due to headroom limit,
1967 * then silently discard to avoid leak.
1969 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1970 dev_kfree_skb_any(skb);
1971 ret = NETDEV_TX_OK;
1973 return ret;
1977 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1979 static void sge_tx_reclaim_cb(unsigned long data)
1981 int i;
1982 struct sge *sge = (struct sge *)data;
1984 for (i = 0; i < SGE_CMDQ_N; ++i) {
1985 struct cmdQ *q = &sge->cmdQ[i];
1987 if (!spin_trylock(&q->lock))
1988 continue;
1990 reclaim_completed_tx(sge, q);
1991 if (i == 0 && q->in_use) { /* flush pending credits */
1992 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1994 spin_unlock(&q->lock);
1996 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2000 * Propagate changes of the SGE coalescing parameters to the HW.
2002 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
2004 sge->fixed_intrtimer = p->rx_coalesce_usecs *
2005 core_ticks_per_usec(sge->adapter);
2006 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
2007 return 0;
2011 * Allocates both RX and TX resources and configures the SGE. However,
2012 * the hardware is not enabled yet.
2014 int t1_sge_configure(struct sge *sge, struct sge_params *p)
2016 if (alloc_rx_resources(sge, p))
2017 return -ENOMEM;
2018 if (alloc_tx_resources(sge, p)) {
2019 free_rx_resources(sge);
2020 return -ENOMEM;
2022 configure_sge(sge, p);
2025 * Now that we have sized the free lists calculate the payload
2026 * capacity of the large buffers. Other parts of the driver use
2027 * this to set the max offload coalescing size so that RX packets
2028 * do not overflow our large buffers.
2030 p->large_buf_capacity = jumbo_payload_capacity(sge);
2031 return 0;
2035 * Disables the DMA engine.
2037 void t1_sge_stop(struct sge *sge)
2039 int i;
2040 writel(0, sge->adapter->regs + A_SG_CONTROL);
2041 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2043 if (is_T2(sge->adapter))
2044 del_timer_sync(&sge->espibug_timer);
2046 del_timer_sync(&sge->tx_reclaim_timer);
2047 if (sge->tx_sched)
2048 tx_sched_stop(sge);
2050 for (i = 0; i < MAX_NPORTS; i++)
2051 if (sge->espibug_skb[i])
2052 kfree_skb(sge->espibug_skb[i]);
2056 * Enables the DMA engine.
2058 void t1_sge_start(struct sge *sge)
2060 refill_free_list(sge, &sge->freelQ[0]);
2061 refill_free_list(sge, &sge->freelQ[1]);
2063 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2064 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2065 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2067 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2069 if (is_T2(sge->adapter))
2070 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2074 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2076 static void espibug_workaround_t204(unsigned long data)
2078 struct adapter *adapter = (struct adapter *)data;
2079 struct sge *sge = adapter->sge;
2080 unsigned int nports = adapter->params.nports;
2081 u32 seop[MAX_NPORTS];
2083 if (adapter->open_device_map & PORT_MASK) {
2084 int i;
2086 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2087 return;
2089 for (i = 0; i < nports; i++) {
2090 struct sk_buff *skb = sge->espibug_skb[i];
2092 if (!netif_running(adapter->port[i].dev) ||
2093 netif_queue_stopped(adapter->port[i].dev) ||
2094 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2095 continue;
2097 if (!skb->cb[0]) {
2098 u8 ch_mac_addr[ETH_ALEN] = {
2099 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2102 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2103 ch_mac_addr, ETH_ALEN);
2104 memcpy(skb->data + skb->len - 10,
2105 ch_mac_addr, ETH_ALEN);
2106 skb->cb[0] = 0xff;
2109 /* bump the reference count to avoid freeing of
2110 * the skb once the DMA has completed.
2112 skb = skb_get(skb);
2113 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2116 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2119 static void espibug_workaround(unsigned long data)
2121 struct adapter *adapter = (struct adapter *)data;
2122 struct sge *sge = adapter->sge;
2124 if (netif_running(adapter->port[0].dev)) {
2125 struct sk_buff *skb = sge->espibug_skb[0];
2126 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2128 if ((seop & 0xfff0fff) == 0xfff && skb) {
2129 if (!skb->cb[0]) {
2130 u8 ch_mac_addr[ETH_ALEN] =
2131 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2132 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2133 ch_mac_addr, ETH_ALEN);
2134 memcpy(skb->data + skb->len - 10, ch_mac_addr,
2135 ETH_ALEN);
2136 skb->cb[0] = 0xff;
2139 /* bump the reference count to avoid freeing of the
2140 * skb once the DMA has completed.
2142 skb = skb_get(skb);
2143 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2146 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2150 * Creates a t1_sge structure and returns suggested resource parameters.
2152 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2153 struct sge_params *p)
2155 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2156 int i;
2158 if (!sge)
2159 return NULL;
2161 sge->adapter = adapter;
2162 sge->netdev = adapter->port[0].dev;
2163 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2164 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2166 for_each_port(adapter, i) {
2167 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2168 if (!sge->port_stats[i])
2169 goto nomem_port;
2172 init_timer(&sge->tx_reclaim_timer);
2173 sge->tx_reclaim_timer.data = (unsigned long)sge;
2174 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2176 if (is_T2(sge->adapter)) {
2177 init_timer(&sge->espibug_timer);
2179 if (adapter->params.nports > 1) {
2180 tx_sched_init(sge);
2181 sge->espibug_timer.function = espibug_workaround_t204;
2182 } else
2183 sge->espibug_timer.function = espibug_workaround;
2184 sge->espibug_timer.data = (unsigned long)sge->adapter;
2186 sge->espibug_timeout = 1;
2187 /* for T204, every 10ms */
2188 if (adapter->params.nports > 1)
2189 sge->espibug_timeout = HZ/100;
2193 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2194 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2195 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2196 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2197 if (sge->tx_sched) {
2198 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2199 p->rx_coalesce_usecs = 15;
2200 else
2201 p->rx_coalesce_usecs = 50;
2202 } else
2203 p->rx_coalesce_usecs = 50;
2205 p->coalesce_enable = 0;
2206 p->sample_interval_usecs = 0;
2208 return sge;
2209 nomem_port:
2210 while (i >= 0) {
2211 free_percpu(sge->port_stats[i]);
2212 --i;
2214 kfree(sge);
2215 return NULL;