perf_counter: Implement generalized cache event types
[linux-2.6/verdex.git] / arch / x86 / kernel / cpu / common.c
blobf60409081cb08bf2362a06a27d4e8126f1803c75
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_counter.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <asm/topology.h>
22 #include <asm/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
27 #include <asm/apic.h>
28 #include <asm/desc.h>
29 #include <asm/i387.h>
30 #include <asm/mtrr.h>
31 #include <asm/numa.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/mce.h>
35 #include <asm/msr.h>
36 #include <asm/pat.h>
37 #include <asm/smp.h>
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/uv/uv.h>
41 #endif
43 #include "cpu.h"
45 /* all of these masks are initialized in setup_cpu_local_masks() */
46 cpumask_var_t cpu_initialized_mask;
47 cpumask_var_t cpu_callout_mask;
48 cpumask_var_t cpu_callin_mask;
50 /* representing cpus for which sibling maps can be computed */
51 cpumask_var_t cpu_sibling_setup_mask;
53 /* correctly size the local cpu masks */
54 void __init setup_cpu_local_masks(void)
56 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
57 alloc_bootmem_cpumask_var(&cpu_callin_mask);
58 alloc_bootmem_cpumask_var(&cpu_callout_mask);
59 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
62 static const struct cpu_dev *this_cpu __cpuinitdata;
64 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
65 #ifdef CONFIG_X86_64
67 * We need valid kernel segments for data and code in long mode too
68 * IRET will check the segment types kkeil 2000/10/28
69 * Also sysret mandates a special GDT layout
71 * TLS descriptors are currently at a different place compared to i386.
72 * Hopefully nobody expects them at a fixed place (Wine?)
74 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
75 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
76 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
77 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
78 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
79 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
80 #else
81 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
82 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
83 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
84 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
86 * Segments used for calling PnP BIOS have byte granularity.
87 * They code segments and data segments have fixed 64k limits,
88 * the transfer segment sizes are set at run time.
90 /* 32-bit code */
91 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
92 /* 16-bit code */
93 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
94 /* 16-bit data */
95 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
96 /* 16-bit data */
97 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
98 /* 16-bit data */
99 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
101 * The APM segments have byte granularity and their bases
102 * are set at run time. All have 64k limits.
104 /* 32-bit code */
105 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
106 /* 16-bit code */
107 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
108 /* data */
109 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
111 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
112 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
113 GDT_STACK_CANARY_INIT
114 #endif
115 } };
116 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
118 static int __init x86_xsave_setup(char *s)
120 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
121 return 1;
123 __setup("noxsave", x86_xsave_setup);
125 #ifdef CONFIG_X86_32
126 static int cachesize_override __cpuinitdata = -1;
127 static int disable_x86_serial_nr __cpuinitdata = 1;
129 static int __init cachesize_setup(char *str)
131 get_option(&str, &cachesize_override);
132 return 1;
134 __setup("cachesize=", cachesize_setup);
136 static int __init x86_fxsr_setup(char *s)
138 setup_clear_cpu_cap(X86_FEATURE_FXSR);
139 setup_clear_cpu_cap(X86_FEATURE_XMM);
140 return 1;
142 __setup("nofxsr", x86_fxsr_setup);
144 static int __init x86_sep_setup(char *s)
146 setup_clear_cpu_cap(X86_FEATURE_SEP);
147 return 1;
149 __setup("nosep", x86_sep_setup);
151 /* Standard macro to see if a specific flag is changeable */
152 static inline int flag_is_changeable_p(u32 flag)
154 u32 f1, f2;
157 * Cyrix and IDT cpus allow disabling of CPUID
158 * so the code below may return different results
159 * when it is executed before and after enabling
160 * the CPUID. Add "volatile" to not allow gcc to
161 * optimize the subsequent calls to this function.
163 asm volatile ("pushfl \n\t"
164 "pushfl \n\t"
165 "popl %0 \n\t"
166 "movl %0, %1 \n\t"
167 "xorl %2, %0 \n\t"
168 "pushl %0 \n\t"
169 "popfl \n\t"
170 "pushfl \n\t"
171 "popl %0 \n\t"
172 "popfl \n\t"
174 : "=&r" (f1), "=&r" (f2)
175 : "ir" (flag));
177 return ((f1^f2) & flag) != 0;
180 /* Probe for the CPUID instruction */
181 static int __cpuinit have_cpuid_p(void)
183 return flag_is_changeable_p(X86_EFLAGS_ID);
186 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
188 unsigned long lo, hi;
190 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
191 return;
193 /* Disable processor serial number: */
195 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
196 lo |= 0x200000;
197 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
199 printk(KERN_NOTICE "CPU serial number disabled.\n");
200 clear_cpu_cap(c, X86_FEATURE_PN);
202 /* Disabling the serial number may affect the cpuid level */
203 c->cpuid_level = cpuid_eax(0);
206 static int __init x86_serial_nr_setup(char *s)
208 disable_x86_serial_nr = 0;
209 return 1;
211 __setup("serialnumber", x86_serial_nr_setup);
212 #else
213 static inline int flag_is_changeable_p(u32 flag)
215 return 1;
217 /* Probe for the CPUID instruction */
218 static inline int have_cpuid_p(void)
220 return 1;
222 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
225 #endif
228 * Some CPU features depend on higher CPUID levels, which may not always
229 * be available due to CPUID level capping or broken virtualization
230 * software. Add those features to this table to auto-disable them.
232 struct cpuid_dependent_feature {
233 u32 feature;
234 u32 level;
237 static const struct cpuid_dependent_feature __cpuinitconst
238 cpuid_dependent_features[] = {
239 { X86_FEATURE_MWAIT, 0x00000005 },
240 { X86_FEATURE_DCA, 0x00000009 },
241 { X86_FEATURE_XSAVE, 0x0000000d },
242 { 0, 0 }
245 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
247 const struct cpuid_dependent_feature *df;
249 for (df = cpuid_dependent_features; df->feature; df++) {
251 if (!cpu_has(c, df->feature))
252 continue;
254 * Note: cpuid_level is set to -1 if unavailable, but
255 * extended_extended_level is set to 0 if unavailable
256 * and the legitimate extended levels are all negative
257 * when signed; hence the weird messing around with
258 * signs here...
260 if (!((s32)df->level < 0 ?
261 (u32)df->level > (u32)c->extended_cpuid_level :
262 (s32)df->level > (s32)c->cpuid_level))
263 continue;
265 clear_cpu_cap(c, df->feature);
266 if (!warn)
267 continue;
269 printk(KERN_WARNING
270 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
271 x86_cap_flags[df->feature], df->level);
276 * Naming convention should be: <Name> [(<Codename>)]
277 * This table only is used unless init_<vendor>() below doesn't set it;
278 * in particular, if CPUID levels 0x80000002..4 are supported, this
279 * isn't used
282 /* Look up CPU names by table lookup. */
283 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
285 const struct cpu_model_info *info;
287 if (c->x86_model >= 16)
288 return NULL; /* Range check */
290 if (!this_cpu)
291 return NULL;
293 info = this_cpu->c_models;
295 while (info && info->family) {
296 if (info->family == c->x86)
297 return info->model_names[c->x86_model];
298 info++;
300 return NULL; /* Not found */
303 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
305 void load_percpu_segment(int cpu)
307 #ifdef CONFIG_X86_32
308 loadsegment(fs, __KERNEL_PERCPU);
309 #else
310 loadsegment(gs, 0);
311 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
312 #endif
313 load_stack_canary_segment();
317 * Current gdt points %fs at the "master" per-cpu area: after this,
318 * it's on the real one.
320 void switch_to_new_gdt(int cpu)
322 struct desc_ptr gdt_descr;
324 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
325 gdt_descr.size = GDT_SIZE - 1;
326 load_gdt(&gdt_descr);
327 /* Reload the per-cpu base */
329 load_percpu_segment(cpu);
332 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
334 static void __cpuinit default_init(struct cpuinfo_x86 *c)
336 #ifdef CONFIG_X86_64
337 display_cacheinfo(c);
338 #else
339 /* Not much we can do here... */
340 /* Check if at least it has cpuid */
341 if (c->cpuid_level == -1) {
342 /* No cpuid. It must be an ancient CPU */
343 if (c->x86 == 4)
344 strcpy(c->x86_model_id, "486");
345 else if (c->x86 == 3)
346 strcpy(c->x86_model_id, "386");
348 #endif
351 static const struct cpu_dev __cpuinitconst default_cpu = {
352 .c_init = default_init,
353 .c_vendor = "Unknown",
354 .c_x86_vendor = X86_VENDOR_UNKNOWN,
357 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
359 unsigned int *v;
360 char *p, *q;
362 if (c->extended_cpuid_level < 0x80000004)
363 return;
365 v = (unsigned int *)c->x86_model_id;
366 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
367 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
368 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
369 c->x86_model_id[48] = 0;
372 * Intel chips right-justify this string for some dumb reason;
373 * undo that brain damage:
375 p = q = &c->x86_model_id[0];
376 while (*p == ' ')
377 p++;
378 if (p != q) {
379 while (*p)
380 *q++ = *p++;
381 while (q <= &c->x86_model_id[48])
382 *q++ = '\0'; /* Zero-pad the rest */
386 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
388 unsigned int n, dummy, ebx, ecx, edx, l2size;
390 n = c->extended_cpuid_level;
392 if (n >= 0x80000005) {
393 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
394 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
395 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
396 c->x86_cache_size = (ecx>>24) + (edx>>24);
397 #ifdef CONFIG_X86_64
398 /* On K8 L1 TLB is inclusive, so don't count it */
399 c->x86_tlbsize = 0;
400 #endif
403 if (n < 0x80000006) /* Some chips just has a large L1. */
404 return;
406 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
407 l2size = ecx >> 16;
409 #ifdef CONFIG_X86_64
410 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
411 #else
412 /* do processor-specific cache resizing */
413 if (this_cpu->c_size_cache)
414 l2size = this_cpu->c_size_cache(c, l2size);
416 /* Allow user to override all this if necessary. */
417 if (cachesize_override != -1)
418 l2size = cachesize_override;
420 if (l2size == 0)
421 return; /* Again, no L2 cache is possible */
422 #endif
424 c->x86_cache_size = l2size;
426 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
427 l2size, ecx & 0xFF);
430 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
432 #ifdef CONFIG_X86_HT
433 u32 eax, ebx, ecx, edx;
434 int index_msb, core_bits;
436 if (!cpu_has(c, X86_FEATURE_HT))
437 return;
439 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
440 goto out;
442 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
443 return;
445 cpuid(1, &eax, &ebx, &ecx, &edx);
447 smp_num_siblings = (ebx & 0xff0000) >> 16;
449 if (smp_num_siblings == 1) {
450 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
451 goto out;
454 if (smp_num_siblings <= 1)
455 goto out;
457 if (smp_num_siblings > nr_cpu_ids) {
458 pr_warning("CPU: Unsupported number of siblings %d",
459 smp_num_siblings);
460 smp_num_siblings = 1;
461 return;
464 index_msb = get_count_order(smp_num_siblings);
465 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
467 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
469 index_msb = get_count_order(smp_num_siblings);
471 core_bits = get_count_order(c->x86_max_cores);
473 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
474 ((1 << core_bits) - 1);
476 out:
477 if ((c->x86_max_cores * smp_num_siblings) > 1) {
478 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
479 c->phys_proc_id);
480 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
481 c->cpu_core_id);
483 #endif
486 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
488 char *v = c->x86_vendor_id;
489 static int printed;
490 int i;
492 for (i = 0; i < X86_VENDOR_NUM; i++) {
493 if (!cpu_devs[i])
494 break;
496 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
497 (cpu_devs[i]->c_ident[1] &&
498 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
500 this_cpu = cpu_devs[i];
501 c->x86_vendor = this_cpu->c_x86_vendor;
502 return;
506 if (!printed) {
507 printed++;
508 printk(KERN_ERR
509 "CPU: vendor_id '%s' unknown, using generic init.\n", v);
511 printk(KERN_ERR "CPU: Your system may be unstable.\n");
514 c->x86_vendor = X86_VENDOR_UNKNOWN;
515 this_cpu = &default_cpu;
518 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
520 /* Get vendor name */
521 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
522 (unsigned int *)&c->x86_vendor_id[0],
523 (unsigned int *)&c->x86_vendor_id[8],
524 (unsigned int *)&c->x86_vendor_id[4]);
526 c->x86 = 4;
527 /* Intel-defined flags: level 0x00000001 */
528 if (c->cpuid_level >= 0x00000001) {
529 u32 junk, tfms, cap0, misc;
531 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
532 c->x86 = (tfms >> 8) & 0xf;
533 c->x86_model = (tfms >> 4) & 0xf;
534 c->x86_mask = tfms & 0xf;
536 if (c->x86 == 0xf)
537 c->x86 += (tfms >> 20) & 0xff;
538 if (c->x86 >= 0x6)
539 c->x86_model += ((tfms >> 16) & 0xf) << 4;
541 if (cap0 & (1<<19)) {
542 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
543 c->x86_cache_alignment = c->x86_clflush_size;
548 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
550 u32 tfms, xlvl;
551 u32 ebx;
553 /* Intel-defined flags: level 0x00000001 */
554 if (c->cpuid_level >= 0x00000001) {
555 u32 capability, excap;
557 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
558 c->x86_capability[0] = capability;
559 c->x86_capability[4] = excap;
562 /* AMD-defined flags: level 0x80000001 */
563 xlvl = cpuid_eax(0x80000000);
564 c->extended_cpuid_level = xlvl;
566 if ((xlvl & 0xffff0000) == 0x80000000) {
567 if (xlvl >= 0x80000001) {
568 c->x86_capability[1] = cpuid_edx(0x80000001);
569 c->x86_capability[6] = cpuid_ecx(0x80000001);
573 if (c->extended_cpuid_level >= 0x80000008) {
574 u32 eax = cpuid_eax(0x80000008);
576 c->x86_virt_bits = (eax >> 8) & 0xff;
577 c->x86_phys_bits = eax & 0xff;
579 #ifdef CONFIG_X86_32
580 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
581 c->x86_phys_bits = 36;
582 #endif
584 if (c->extended_cpuid_level >= 0x80000007)
585 c->x86_power = cpuid_edx(0x80000007);
589 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
591 #ifdef CONFIG_X86_32
592 int i;
595 * First of all, decide if this is a 486 or higher
596 * It's a 486 if we can modify the AC flag
598 if (flag_is_changeable_p(X86_EFLAGS_AC))
599 c->x86 = 4;
600 else
601 c->x86 = 3;
603 for (i = 0; i < X86_VENDOR_NUM; i++)
604 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
605 c->x86_vendor_id[0] = 0;
606 cpu_devs[i]->c_identify(c);
607 if (c->x86_vendor_id[0]) {
608 get_cpu_vendor(c);
609 break;
612 #endif
616 * Do minimum CPU detection early.
617 * Fields really needed: vendor, cpuid_level, family, model, mask,
618 * cache alignment.
619 * The others are not touched to avoid unwanted side effects.
621 * WARNING: this function is only called on the BP. Don't add code here
622 * that is supposed to run on all CPUs.
624 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
626 #ifdef CONFIG_X86_64
627 c->x86_clflush_size = 64;
628 c->x86_phys_bits = 36;
629 c->x86_virt_bits = 48;
630 #else
631 c->x86_clflush_size = 32;
632 c->x86_phys_bits = 32;
633 c->x86_virt_bits = 32;
634 #endif
635 c->x86_cache_alignment = c->x86_clflush_size;
637 memset(&c->x86_capability, 0, sizeof c->x86_capability);
638 c->extended_cpuid_level = 0;
640 if (!have_cpuid_p())
641 identify_cpu_without_cpuid(c);
643 /* cyrix could have cpuid enabled via c_identify()*/
644 if (!have_cpuid_p())
645 return;
647 cpu_detect(c);
649 get_cpu_vendor(c);
651 get_cpu_cap(c);
653 if (this_cpu->c_early_init)
654 this_cpu->c_early_init(c);
656 #ifdef CONFIG_SMP
657 c->cpu_index = boot_cpu_id;
658 #endif
659 filter_cpuid_features(c, false);
662 void __init early_cpu_init(void)
664 const struct cpu_dev *const *cdev;
665 int count = 0;
667 printk(KERN_INFO "KERNEL supported cpus:\n");
668 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
669 const struct cpu_dev *cpudev = *cdev;
670 unsigned int j;
672 if (count >= X86_VENDOR_NUM)
673 break;
674 cpu_devs[count] = cpudev;
675 count++;
677 for (j = 0; j < 2; j++) {
678 if (!cpudev->c_ident[j])
679 continue;
680 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
681 cpudev->c_ident[j]);
685 early_identify_cpu(&boot_cpu_data);
689 * The NOPL instruction is supposed to exist on all CPUs with
690 * family >= 6; unfortunately, that's not true in practice because
691 * of early VIA chips and (more importantly) broken virtualizers that
692 * are not easy to detect. In the latter case it doesn't even *fail*
693 * reliably, so probing for it doesn't even work. Disable it completely
694 * unless we can find a reliable way to detect all the broken cases.
696 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
698 clear_cpu_cap(c, X86_FEATURE_NOPL);
701 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
703 c->extended_cpuid_level = 0;
705 if (!have_cpuid_p())
706 identify_cpu_without_cpuid(c);
708 /* cyrix could have cpuid enabled via c_identify()*/
709 if (!have_cpuid_p())
710 return;
712 cpu_detect(c);
714 get_cpu_vendor(c);
716 get_cpu_cap(c);
718 if (c->cpuid_level >= 0x00000001) {
719 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
720 #ifdef CONFIG_X86_32
721 # ifdef CONFIG_X86_HT
722 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
723 # else
724 c->apicid = c->initial_apicid;
725 # endif
726 #endif
728 #ifdef CONFIG_X86_HT
729 c->phys_proc_id = c->initial_apicid;
730 #endif
733 get_model_name(c); /* Default name */
735 init_scattered_cpuid_features(c);
736 detect_nopl(c);
740 * This does the hard work of actually picking apart the CPU stuff...
742 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
744 int i;
746 c->loops_per_jiffy = loops_per_jiffy;
747 c->x86_cache_size = -1;
748 c->x86_vendor = X86_VENDOR_UNKNOWN;
749 c->x86_model = c->x86_mask = 0; /* So far unknown... */
750 c->x86_vendor_id[0] = '\0'; /* Unset */
751 c->x86_model_id[0] = '\0'; /* Unset */
752 c->x86_max_cores = 1;
753 c->x86_coreid_bits = 0;
754 #ifdef CONFIG_X86_64
755 c->x86_clflush_size = 64;
756 c->x86_phys_bits = 36;
757 c->x86_virt_bits = 48;
758 #else
759 c->cpuid_level = -1; /* CPUID not detected */
760 c->x86_clflush_size = 32;
761 c->x86_phys_bits = 32;
762 c->x86_virt_bits = 32;
763 #endif
764 c->x86_cache_alignment = c->x86_clflush_size;
765 memset(&c->x86_capability, 0, sizeof c->x86_capability);
767 generic_identify(c);
769 if (this_cpu->c_identify)
770 this_cpu->c_identify(c);
772 #ifdef CONFIG_X86_64
773 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
774 #endif
777 * Vendor-specific initialization. In this section we
778 * canonicalize the feature flags, meaning if there are
779 * features a certain CPU supports which CPUID doesn't
780 * tell us, CPUID claiming incorrect flags, or other bugs,
781 * we handle them here.
783 * At the end of this section, c->x86_capability better
784 * indicate the features this CPU genuinely supports!
786 if (this_cpu->c_init)
787 this_cpu->c_init(c);
789 /* Disable the PN if appropriate */
790 squash_the_stupid_serial_number(c);
793 * The vendor-specific functions might have changed features.
794 * Now we do "generic changes."
797 /* Filter out anything that depends on CPUID levels we don't have */
798 filter_cpuid_features(c, true);
800 /* If the model name is still unset, do table lookup. */
801 if (!c->x86_model_id[0]) {
802 const char *p;
803 p = table_lookup_model(c);
804 if (p)
805 strcpy(c->x86_model_id, p);
806 else
807 /* Last resort... */
808 sprintf(c->x86_model_id, "%02x/%02x",
809 c->x86, c->x86_model);
812 #ifdef CONFIG_X86_64
813 detect_ht(c);
814 #endif
816 init_hypervisor(c);
818 * On SMP, boot_cpu_data holds the common feature set between
819 * all CPUs; so make sure that we indicate which features are
820 * common between the CPUs. The first time this routine gets
821 * executed, c == &boot_cpu_data.
823 if (c != &boot_cpu_data) {
824 /* AND the already accumulated flags with these */
825 for (i = 0; i < NCAPINTS; i++)
826 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
829 /* Clear all flags overriden by options */
830 for (i = 0; i < NCAPINTS; i++)
831 c->x86_capability[i] &= ~cleared_cpu_caps[i];
833 #ifdef CONFIG_X86_MCE
834 /* Init Machine Check Exception if available. */
835 mcheck_init(c);
836 #endif
838 select_idle_routine(c);
840 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
841 numa_add_cpu(smp_processor_id());
842 #endif
845 #ifdef CONFIG_X86_64
846 static void vgetcpu_set_mode(void)
848 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
849 vgetcpu_mode = VGETCPU_RDTSCP;
850 else
851 vgetcpu_mode = VGETCPU_LSL;
853 #endif
855 void __init identify_boot_cpu(void)
857 identify_cpu(&boot_cpu_data);
858 init_c1e_mask();
859 #ifdef CONFIG_X86_32
860 sysenter_setup();
861 enable_sep_cpu();
862 #else
863 vgetcpu_set_mode();
864 #endif
865 init_hw_perf_counters();
868 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
870 BUG_ON(c == &boot_cpu_data);
871 identify_cpu(c);
872 #ifdef CONFIG_X86_32
873 enable_sep_cpu();
874 #endif
875 mtrr_ap_init();
878 struct msr_range {
879 unsigned min;
880 unsigned max;
883 static const struct msr_range msr_range_array[] __cpuinitconst = {
884 { 0x00000000, 0x00000418},
885 { 0xc0000000, 0xc000040b},
886 { 0xc0010000, 0xc0010142},
887 { 0xc0011000, 0xc001103b},
890 static void __cpuinit print_cpu_msr(void)
892 unsigned index_min, index_max;
893 unsigned index;
894 u64 val;
895 int i;
897 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
898 index_min = msr_range_array[i].min;
899 index_max = msr_range_array[i].max;
901 for (index = index_min; index < index_max; index++) {
902 if (rdmsrl_amd_safe(index, &val))
903 continue;
904 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
909 static int show_msr __cpuinitdata;
911 static __init int setup_show_msr(char *arg)
913 int num;
915 get_option(&arg, &num);
917 if (num > 0)
918 show_msr = num;
919 return 1;
921 __setup("show_msr=", setup_show_msr);
923 static __init int setup_noclflush(char *arg)
925 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
926 return 1;
928 __setup("noclflush", setup_noclflush);
930 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
932 const char *vendor = NULL;
934 if (c->x86_vendor < X86_VENDOR_NUM) {
935 vendor = this_cpu->c_vendor;
936 } else {
937 if (c->cpuid_level >= 0)
938 vendor = c->x86_vendor_id;
941 if (vendor && !strstr(c->x86_model_id, vendor))
942 printk(KERN_CONT "%s ", vendor);
944 if (c->x86_model_id[0])
945 printk(KERN_CONT "%s", c->x86_model_id);
946 else
947 printk(KERN_CONT "%d86", c->x86);
949 if (c->x86_mask || c->cpuid_level >= 0)
950 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
951 else
952 printk(KERN_CONT "\n");
954 #ifdef CONFIG_SMP
955 if (c->cpu_index < show_msr)
956 print_cpu_msr();
957 #else
958 if (show_msr)
959 print_cpu_msr();
960 #endif
963 static __init int setup_disablecpuid(char *arg)
965 int bit;
967 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
968 setup_clear_cpu_cap(bit);
969 else
970 return 0;
972 return 1;
974 __setup("clearcpuid=", setup_disablecpuid);
976 #ifdef CONFIG_X86_64
977 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
979 DEFINE_PER_CPU_FIRST(union irq_stack_union,
980 irq_stack_union) __aligned(PAGE_SIZE);
982 DEFINE_PER_CPU(char *, irq_stack_ptr) =
983 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
985 DEFINE_PER_CPU(unsigned long, kernel_stack) =
986 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
987 EXPORT_PER_CPU_SYMBOL(kernel_stack);
989 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
992 * Special IST stacks which the CPU switches to when it calls
993 * an IST-marked descriptor entry. Up to 7 stacks (hardware
994 * limit), all of them are 4K, except the debug stack which
995 * is 8K.
997 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
998 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
999 [DEBUG_STACK - 1] = DEBUG_STKSZ
1002 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1003 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
1004 __aligned(PAGE_SIZE);
1006 /* May not be marked __init: used by software suspend */
1007 void syscall_init(void)
1010 * LSTAR and STAR live in a bit strange symbiosis.
1011 * They both write to the same internal register. STAR allows to
1012 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1014 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1015 wrmsrl(MSR_LSTAR, system_call);
1016 wrmsrl(MSR_CSTAR, ignore_sysret);
1018 #ifdef CONFIG_IA32_EMULATION
1019 syscall32_cpu_init();
1020 #endif
1022 /* Flags to clear on syscall */
1023 wrmsrl(MSR_SYSCALL_MASK,
1024 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1027 unsigned long kernel_eflags;
1030 * Copies of the original ist values from the tss are only accessed during
1031 * debugging, no special alignment required.
1033 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1035 #else /* CONFIG_X86_64 */
1037 #ifdef CONFIG_CC_STACKPROTECTOR
1038 DEFINE_PER_CPU(unsigned long, stack_canary);
1039 #endif
1041 /* Make sure %fs and %gs are initialized properly in idle threads */
1042 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1044 memset(regs, 0, sizeof(struct pt_regs));
1045 regs->fs = __KERNEL_PERCPU;
1046 regs->gs = __KERNEL_STACK_CANARY;
1048 return regs;
1050 #endif /* CONFIG_X86_64 */
1053 * Clear all 6 debug registers:
1055 static void clear_all_debug_regs(void)
1057 int i;
1059 for (i = 0; i < 8; i++) {
1060 /* Ignore db4, db5 */
1061 if ((i == 4) || (i == 5))
1062 continue;
1064 set_debugreg(0, i);
1069 * cpu_init() initializes state that is per-CPU. Some data is already
1070 * initialized (naturally) in the bootstrap process, such as the GDT
1071 * and IDT. We reload them nevertheless, this function acts as a
1072 * 'CPU state barrier', nothing should get across.
1073 * A lot of state is already set up in PDA init for 64 bit
1075 #ifdef CONFIG_X86_64
1077 void __cpuinit cpu_init(void)
1079 struct orig_ist *orig_ist;
1080 struct task_struct *me;
1081 struct tss_struct *t;
1082 unsigned long v;
1083 int cpu;
1084 int i;
1086 cpu = stack_smp_processor_id();
1087 t = &per_cpu(init_tss, cpu);
1088 orig_ist = &per_cpu(orig_ist, cpu);
1090 #ifdef CONFIG_NUMA
1091 if (cpu != 0 && percpu_read(node_number) == 0 &&
1092 cpu_to_node(cpu) != NUMA_NO_NODE)
1093 percpu_write(node_number, cpu_to_node(cpu));
1094 #endif
1096 me = current;
1098 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1099 panic("CPU#%d already initialized!\n", cpu);
1101 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1103 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1106 * Initialize the per-CPU GDT with the boot GDT,
1107 * and set up the GDT descriptor:
1110 switch_to_new_gdt(cpu);
1111 loadsegment(fs, 0);
1113 load_idt((const struct desc_ptr *)&idt_descr);
1115 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1116 syscall_init();
1118 wrmsrl(MSR_FS_BASE, 0);
1119 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1120 barrier();
1122 check_efer();
1123 if (cpu != 0)
1124 enable_x2apic();
1127 * set up and load the per-CPU TSS
1129 if (!orig_ist->ist[0]) {
1130 char *estacks = per_cpu(exception_stacks, cpu);
1132 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1133 estacks += exception_stack_sizes[v];
1134 orig_ist->ist[v] = t->x86_tss.ist[v] =
1135 (unsigned long)estacks;
1139 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1142 * <= is required because the CPU will access up to
1143 * 8 bits beyond the end of the IO permission bitmap.
1145 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1146 t->io_bitmap[i] = ~0UL;
1148 atomic_inc(&init_mm.mm_count);
1149 me->active_mm = &init_mm;
1150 BUG_ON(me->mm);
1151 enter_lazy_tlb(&init_mm, me);
1153 load_sp0(t, &current->thread);
1154 set_tss_desc(cpu, t);
1155 load_TR_desc();
1156 load_LDT(&init_mm.context);
1158 #ifdef CONFIG_KGDB
1160 * If the kgdb is connected no debug regs should be altered. This
1161 * is only applicable when KGDB and a KGDB I/O module are built
1162 * into the kernel and you are using early debugging with
1163 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1165 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1166 arch_kgdb_ops.correct_hw_break();
1167 else
1168 #endif
1169 clear_all_debug_regs();
1171 fpu_init();
1173 raw_local_save_flags(kernel_eflags);
1175 if (is_uv_system())
1176 uv_cpu_init();
1179 #else
1181 void __cpuinit cpu_init(void)
1183 int cpu = smp_processor_id();
1184 struct task_struct *curr = current;
1185 struct tss_struct *t = &per_cpu(init_tss, cpu);
1186 struct thread_struct *thread = &curr->thread;
1188 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1189 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1190 for (;;)
1191 local_irq_enable();
1194 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1196 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1197 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1199 load_idt(&idt_descr);
1200 switch_to_new_gdt(cpu);
1203 * Set up and load the per-CPU TSS and LDT
1205 atomic_inc(&init_mm.mm_count);
1206 curr->active_mm = &init_mm;
1207 BUG_ON(curr->mm);
1208 enter_lazy_tlb(&init_mm, curr);
1210 load_sp0(t, thread);
1211 set_tss_desc(cpu, t);
1212 load_TR_desc();
1213 load_LDT(&init_mm.context);
1215 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1217 #ifdef CONFIG_DOUBLEFAULT
1218 /* Set up doublefault TSS pointer in the GDT */
1219 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1220 #endif
1222 clear_all_debug_regs();
1225 * Force FPU initialization:
1227 if (cpu_has_xsave)
1228 current_thread_info()->status = TS_XSAVE;
1229 else
1230 current_thread_info()->status = 0;
1231 clear_used_math();
1232 mxcsr_feature_mask_init();
1235 * Boot processor to setup the FP and extended state context info.
1237 if (smp_processor_id() == boot_cpu_id)
1238 init_thread_xstate();
1240 xsave_init();
1242 #endif