x86: traps_xx: modify x86_64 to use _log_lvl variants
[linux-2.6/verdex.git] / arch / x86 / kernel / traps_64.c
blobc664e69620090e63ba19407c5ecb9073cfd72733
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
13 #include <linux/moduleparam.h>
14 #include <linux/interrupt.h>
15 #include <linux/kallsyms.h>
16 #include <linux/spinlock.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/utsname.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/string.h>
25 #include <linux/unwind.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <asm/atomic.h>
44 #include <asm/system.h>
45 #include <asm/unwind.h>
46 #include <asm/desc.h>
47 #include <asm/i387.h>
48 #include <asm/nmi.h>
49 #include <asm/smp.h>
50 #include <asm/io.h>
51 #include <asm/pgalloc.h>
52 #include <asm/proto.h>
53 #include <asm/pda.h>
55 #include <mach_traps.h>
57 asmlinkage void divide_error(void);
58 asmlinkage void debug(void);
59 asmlinkage void nmi(void);
60 asmlinkage void int3(void);
61 asmlinkage void overflow(void);
62 asmlinkage void bounds(void);
63 asmlinkage void invalid_op(void);
64 asmlinkage void device_not_available(void);
65 asmlinkage void double_fault(void);
66 asmlinkage void coprocessor_segment_overrun(void);
67 asmlinkage void invalid_TSS(void);
68 asmlinkage void segment_not_present(void);
69 asmlinkage void stack_segment(void);
70 asmlinkage void general_protection(void);
71 asmlinkage void page_fault(void);
72 asmlinkage void coprocessor_error(void);
73 asmlinkage void simd_coprocessor_error(void);
74 asmlinkage void alignment_check(void);
75 asmlinkage void spurious_interrupt_bug(void);
76 asmlinkage void machine_check(void);
78 int panic_on_unrecovered_nmi;
79 int kstack_depth_to_print = 12;
80 static unsigned int code_bytes = 64;
81 static int ignore_nmis;
82 static int die_counter;
84 static inline void conditional_sti(struct pt_regs *regs)
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_enable();
90 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 inc_preempt_count();
93 if (regs->flags & X86_EFLAGS_IF)
94 local_irq_enable();
97 static inline void preempt_conditional_cli(struct pt_regs *regs)
99 if (regs->flags & X86_EFLAGS_IF)
100 local_irq_disable();
101 /* Make sure to not schedule here because we could be running
102 on an exception stack. */
103 dec_preempt_count();
106 void printk_address(unsigned long address, int reliable)
108 printk(" [<%016lx>] %s%pS\n", address, reliable ? "": "? ", (void *) address);
111 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
112 unsigned *usedp, char **idp)
114 static char ids[][8] = {
115 [DEBUG_STACK - 1] = "#DB",
116 [NMI_STACK - 1] = "NMI",
117 [DOUBLEFAULT_STACK - 1] = "#DF",
118 [STACKFAULT_STACK - 1] = "#SS",
119 [MCE_STACK - 1] = "#MC",
120 #if DEBUG_STKSZ > EXCEPTION_STKSZ
121 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
122 #endif
124 unsigned k;
127 * Iterate over all exception stacks, and figure out whether
128 * 'stack' is in one of them:
130 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
131 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
133 * Is 'stack' above this exception frame's end?
134 * If yes then skip to the next frame.
136 if (stack >= end)
137 continue;
139 * Is 'stack' above this exception frame's start address?
140 * If yes then we found the right frame.
142 if (stack >= end - EXCEPTION_STKSZ) {
144 * Make sure we only iterate through an exception
145 * stack once. If it comes up for the second time
146 * then there's something wrong going on - just
147 * break out and return NULL:
149 if (*usedp & (1U << k))
150 break;
151 *usedp |= 1U << k;
152 *idp = ids[k];
153 return (unsigned long *)end;
156 * If this is a debug stack, and if it has a larger size than
157 * the usual exception stacks, then 'stack' might still
158 * be within the lower portion of the debug stack:
160 #if DEBUG_STKSZ > EXCEPTION_STKSZ
161 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
162 unsigned j = N_EXCEPTION_STACKS - 1;
165 * Black magic. A large debug stack is composed of
166 * multiple exception stack entries, which we
167 * iterate through now. Dont look:
169 do {
170 ++j;
171 end -= EXCEPTION_STKSZ;
172 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
173 } while (stack < end - EXCEPTION_STKSZ);
174 if (*usedp & (1U << j))
175 break;
176 *usedp |= 1U << j;
177 *idp = ids[j];
178 return (unsigned long *)end;
180 #endif
182 return NULL;
186 * x86-64 can have up to three kernel stacks:
187 * process stack
188 * interrupt stack
189 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
192 static inline int valid_stack_ptr(struct thread_info *tinfo,
193 void *p, unsigned int size, void *end)
195 void *t = tinfo;
196 if (end) {
197 if (p < end && p >= (end-THREAD_SIZE))
198 return 1;
199 else
200 return 0;
202 return p > t && p < t + THREAD_SIZE - size;
205 /* The form of the top of the frame on the stack */
206 struct stack_frame {
207 struct stack_frame *next_frame;
208 unsigned long return_address;
211 static inline unsigned long
212 print_context_stack(struct thread_info *tinfo,
213 unsigned long *stack, unsigned long bp,
214 const struct stacktrace_ops *ops, void *data,
215 unsigned long *end)
217 struct stack_frame *frame = (struct stack_frame *)bp;
219 while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
220 unsigned long addr;
222 addr = *stack;
223 if (__kernel_text_address(addr)) {
224 if ((unsigned long) stack == bp + 8) {
225 ops->address(data, addr, 1);
226 frame = frame->next_frame;
227 bp = (unsigned long) frame;
228 } else {
229 ops->address(data, addr, bp == 0);
232 stack++;
234 return bp;
237 void dump_trace(struct task_struct *task, struct pt_regs *regs,
238 unsigned long *stack, unsigned long bp,
239 const struct stacktrace_ops *ops, void *data)
241 const unsigned cpu = get_cpu();
242 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
243 unsigned used = 0;
244 struct thread_info *tinfo;
246 if (!task)
247 task = current;
249 if (!stack) {
250 unsigned long dummy;
251 stack = &dummy;
252 if (task && task != current)
253 stack = (unsigned long *)task->thread.sp;
256 #ifdef CONFIG_FRAME_POINTER
257 if (!bp) {
258 if (task == current) {
259 /* Grab bp right from our regs */
260 asm("movq %%rbp, %0" : "=r" (bp) :);
261 } else {
262 /* bp is the last reg pushed by switch_to */
263 bp = *(unsigned long *) task->thread.sp;
266 #endif
269 * Print function call entries in all stacks, starting at the
270 * current stack address. If the stacks consist of nested
271 * exceptions
273 tinfo = task_thread_info(task);
274 for (;;) {
275 char *id;
276 unsigned long *estack_end;
277 estack_end = in_exception_stack(cpu, (unsigned long)stack,
278 &used, &id);
280 if (estack_end) {
281 if (ops->stack(data, id) < 0)
282 break;
284 bp = print_context_stack(tinfo, stack, bp, ops,
285 data, estack_end);
286 ops->stack(data, "<EOE>");
288 * We link to the next stack via the
289 * second-to-last pointer (index -2 to end) in the
290 * exception stack:
292 stack = (unsigned long *) estack_end[-2];
293 continue;
295 if (irqstack_end) {
296 unsigned long *irqstack;
297 irqstack = irqstack_end -
298 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
300 if (stack >= irqstack && stack < irqstack_end) {
301 if (ops->stack(data, "IRQ") < 0)
302 break;
303 bp = print_context_stack(tinfo, stack, bp,
304 ops, data, irqstack_end);
306 * We link to the next stack (which would be
307 * the process stack normally) the last
308 * pointer (index -1 to end) in the IRQ stack:
310 stack = (unsigned long *) (irqstack_end[-1]);
311 irqstack_end = NULL;
312 ops->stack(data, "EOI");
313 continue;
316 break;
320 * This handles the process stack:
322 bp = print_context_stack(tinfo, stack, bp, ops, data, NULL);
323 put_cpu();
325 EXPORT_SYMBOL(dump_trace);
327 static void
328 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
330 print_symbol(msg, symbol);
331 printk("\n");
334 static void print_trace_warning(void *data, char *msg)
336 printk("%s\n", msg);
339 static int print_trace_stack(void *data, char *name)
341 printk(" <%s> ", name);
342 return 0;
345 static void print_trace_address(void *data, unsigned long addr, int reliable)
347 touch_nmi_watchdog();
348 printk_address(addr, reliable);
351 static const struct stacktrace_ops print_trace_ops = {
352 .warning = print_trace_warning,
353 .warning_symbol = print_trace_warning_symbol,
354 .stack = print_trace_stack,
355 .address = print_trace_address,
358 static void
359 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
360 unsigned long *stack, unsigned long bp, char *log_lvl)
362 printk("\nCall Trace:\n");
363 dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
364 printk("\n");
367 void show_trace(struct task_struct *task, struct pt_regs *regs,
368 unsigned long *stack, unsigned long bp)
370 show_trace_log_lvl(task, regs, stack, bp, "");
373 static void
374 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
375 unsigned long *sp, unsigned long bp, char *log_lvl)
377 unsigned long *stack;
378 int i;
379 const int cpu = smp_processor_id();
380 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
381 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
383 // debugging aid: "show_stack(NULL, NULL);" prints the
384 // back trace for this cpu.
386 if (sp == NULL) {
387 if (task)
388 sp = (unsigned long *)task->thread.sp;
389 else
390 sp = (unsigned long *)&sp;
393 stack = sp;
394 for (i = 0; i < kstack_depth_to_print; i++) {
395 if (stack >= irqstack && stack <= irqstack_end) {
396 if (stack == irqstack_end) {
397 stack = (unsigned long *) (irqstack_end[-1]);
398 printk(" <EOI> ");
400 } else {
401 if (((long) stack & (THREAD_SIZE-1)) == 0)
402 break;
404 if (i && ((i % 4) == 0))
405 printk("\n");
406 printk(" %016lx", *stack++);
407 touch_nmi_watchdog();
409 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
412 void show_stack(struct task_struct *task, unsigned long *sp)
414 show_stack_log_lvl(task, NULL, sp, 0, "");
418 * The architecture-independent dump_stack generator
420 void dump_stack(void)
422 unsigned long bp = 0;
423 unsigned long stack;
425 #ifdef CONFIG_FRAME_POINTER
426 if (!bp)
427 asm("movq %%rbp, %0" : "=r" (bp):);
428 #endif
430 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
431 current->pid, current->comm, print_tainted(),
432 init_utsname()->release,
433 (int)strcspn(init_utsname()->version, " "),
434 init_utsname()->version);
435 show_trace(NULL, NULL, &stack, bp);
438 EXPORT_SYMBOL(dump_stack);
440 void show_registers(struct pt_regs *regs)
442 int i;
443 unsigned long sp;
444 const int cpu = smp_processor_id();
445 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
447 sp = regs->sp;
448 printk("CPU %d ", cpu);
449 __show_regs(regs);
450 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
451 cur->comm, cur->pid, task_thread_info(cur), cur);
454 * When in-kernel, we also print out the stack and code at the
455 * time of the fault..
457 if (!user_mode(regs)) {
458 unsigned int code_prologue = code_bytes * 43 / 64;
459 unsigned int code_len = code_bytes;
460 unsigned char c;
461 u8 *ip;
463 printk("Stack: ");
464 show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
465 regs->bp, "");
466 printk("\n");
468 printk(KERN_EMERG "Code: ");
470 ip = (u8 *)regs->ip - code_prologue;
471 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
472 /* try starting at RIP */
473 ip = (u8 *)regs->ip;
474 code_len = code_len - code_prologue + 1;
476 for (i = 0; i < code_len; i++, ip++) {
477 if (ip < (u8 *)PAGE_OFFSET ||
478 probe_kernel_address(ip, c)) {
479 printk(" Bad RIP value.");
480 break;
482 if (ip == (u8 *)regs->ip)
483 printk("<%02x> ", c);
484 else
485 printk("%02x ", c);
488 printk("\n");
491 int is_valid_bugaddr(unsigned long ip)
493 unsigned short ud2;
495 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
496 return 0;
498 return ud2 == 0x0b0f;
501 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
502 static int die_owner = -1;
503 static unsigned int die_nest_count;
505 unsigned __kprobes long oops_begin(void)
507 int cpu;
508 unsigned long flags;
510 oops_enter();
512 /* racy, but better than risking deadlock. */
513 raw_local_irq_save(flags);
514 cpu = smp_processor_id();
515 if (!__raw_spin_trylock(&die_lock)) {
516 if (cpu == die_owner)
517 /* nested oops. should stop eventually */;
518 else
519 __raw_spin_lock(&die_lock);
521 die_nest_count++;
522 die_owner = cpu;
523 console_verbose();
524 bust_spinlocks(1);
525 return flags;
528 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
530 die_owner = -1;
531 bust_spinlocks(0);
532 die_nest_count--;
533 if (!die_nest_count)
534 /* Nest count reaches zero, release the lock. */
535 __raw_spin_unlock(&die_lock);
536 raw_local_irq_restore(flags);
537 if (!regs) {
538 oops_exit();
539 return;
541 if (panic_on_oops)
542 panic("Fatal exception");
543 oops_exit();
544 do_exit(signr);
547 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
549 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff, ++die_counter);
550 #ifdef CONFIG_PREEMPT
551 printk("PREEMPT ");
552 #endif
553 #ifdef CONFIG_SMP
554 printk("SMP ");
555 #endif
556 #ifdef CONFIG_DEBUG_PAGEALLOC
557 printk("DEBUG_PAGEALLOC");
558 #endif
559 printk("\n");
560 if (notify_die(DIE_OOPS, str, regs, err,
561 current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
562 return 1;
564 show_registers(regs);
565 add_taint(TAINT_DIE);
566 /* Executive summary in case the oops scrolled away */
567 printk(KERN_ALERT "RIP ");
568 printk_address(regs->ip, 1);
569 printk(" RSP <%016lx>\n", regs->sp);
570 if (kexec_should_crash(current))
571 crash_kexec(regs);
572 return 0;
575 void die(const char *str, struct pt_regs *regs, long err)
577 unsigned long flags = oops_begin();
579 if (!user_mode(regs))
580 report_bug(regs->ip, regs);
582 if (__die(str, regs, err))
583 regs = NULL;
584 oops_end(flags, regs, SIGSEGV);
587 notrace __kprobes void
588 die_nmi(char *str, struct pt_regs *regs, int do_panic)
590 unsigned long flags;
592 if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
593 return;
595 flags = oops_begin();
597 * We are in trouble anyway, lets at least try
598 * to get a message out.
600 printk(KERN_EMERG "%s", str);
601 printk(" on CPU%d, ip %08lx, registers:\n",
602 smp_processor_id(), regs->ip);
603 show_registers(regs);
604 if (kexec_should_crash(current))
605 crash_kexec(regs);
606 if (do_panic || panic_on_oops)
607 panic("Non maskable interrupt");
608 oops_end(flags, NULL, SIGBUS);
609 nmi_exit();
610 local_irq_enable();
611 do_exit(SIGBUS);
614 static void __kprobes
615 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
616 long error_code, siginfo_t *info)
618 struct task_struct *tsk = current;
620 if (!user_mode(regs))
621 goto kernel_trap;
624 * We want error_code and trap_no set for userspace faults and
625 * kernelspace faults which result in die(), but not
626 * kernelspace faults which are fixed up. die() gives the
627 * process no chance to handle the signal and notice the
628 * kernel fault information, so that won't result in polluting
629 * the information about previously queued, but not yet
630 * delivered, faults. See also do_general_protection below.
632 tsk->thread.error_code = error_code;
633 tsk->thread.trap_no = trapnr;
635 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
636 printk_ratelimit()) {
637 printk(KERN_INFO
638 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
639 tsk->comm, tsk->pid, str,
640 regs->ip, regs->sp, error_code);
641 print_vma_addr(" in ", regs->ip);
642 printk("\n");
645 if (info)
646 force_sig_info(signr, info, tsk);
647 else
648 force_sig(signr, tsk);
649 return;
651 kernel_trap:
652 if (!fixup_exception(regs)) {
653 tsk->thread.error_code = error_code;
654 tsk->thread.trap_no = trapnr;
655 die(str, regs, error_code);
657 return;
660 #define DO_ERROR(trapnr, signr, str, name) \
661 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
663 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
664 == NOTIFY_STOP) \
665 return; \
666 conditional_sti(regs); \
667 do_trap(trapnr, signr, str, regs, error_code, NULL); \
670 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
671 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
673 siginfo_t info; \
674 info.si_signo = signr; \
675 info.si_errno = 0; \
676 info.si_code = sicode; \
677 info.si_addr = (void __user *)siaddr; \
678 trace_hardirqs_fixup(); \
679 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
680 == NOTIFY_STOP) \
681 return; \
682 conditional_sti(regs); \
683 do_trap(trapnr, signr, str, regs, error_code, &info); \
686 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
687 DO_ERROR(4, SIGSEGV, "overflow", overflow)
688 DO_ERROR(5, SIGSEGV, "bounds", bounds)
689 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
690 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
691 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
692 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
693 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
695 /* Runs on IST stack */
696 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
698 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
699 12, SIGBUS) == NOTIFY_STOP)
700 return;
701 preempt_conditional_sti(regs);
702 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
703 preempt_conditional_cli(regs);
706 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
708 static const char str[] = "double fault";
709 struct task_struct *tsk = current;
711 /* Return not checked because double check cannot be ignored */
712 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
714 tsk->thread.error_code = error_code;
715 tsk->thread.trap_no = 8;
717 /* This is always a kernel trap and never fixable (and thus must
718 never return). */
719 for (;;)
720 die(str, regs, error_code);
723 asmlinkage void __kprobes
724 do_general_protection(struct pt_regs *regs, long error_code)
726 struct task_struct *tsk;
728 conditional_sti(regs);
730 tsk = current;
731 if (!user_mode(regs))
732 goto gp_in_kernel;
734 tsk->thread.error_code = error_code;
735 tsk->thread.trap_no = 13;
737 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
738 printk_ratelimit()) {
739 printk(KERN_INFO
740 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
741 tsk->comm, tsk->pid,
742 regs->ip, regs->sp, error_code);
743 print_vma_addr(" in ", regs->ip);
744 printk("\n");
747 force_sig(SIGSEGV, tsk);
748 return;
750 gp_in_kernel:
751 if (fixup_exception(regs))
752 return;
754 tsk->thread.error_code = error_code;
755 tsk->thread.trap_no = 13;
756 if (notify_die(DIE_GPF, "general protection fault", regs,
757 error_code, 13, SIGSEGV) == NOTIFY_STOP)
758 return;
759 die("general protection fault", regs, error_code);
762 static notrace __kprobes void
763 mem_parity_error(unsigned char reason, struct pt_regs *regs)
765 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
766 reason);
767 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
769 #if defined(CONFIG_EDAC)
770 if (edac_handler_set()) {
771 edac_atomic_assert_error();
772 return;
774 #endif
776 if (panic_on_unrecovered_nmi)
777 panic("NMI: Not continuing");
779 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
781 /* Clear and disable the memory parity error line. */
782 reason = (reason & 0xf) | 4;
783 outb(reason, 0x61);
786 static notrace __kprobes void
787 io_check_error(unsigned char reason, struct pt_regs *regs)
789 printk("NMI: IOCK error (debug interrupt?)\n");
790 show_registers(regs);
792 /* Re-enable the IOCK line, wait for a few seconds */
793 reason = (reason & 0xf) | 8;
794 outb(reason, 0x61);
795 mdelay(2000);
796 reason &= ~8;
797 outb(reason, 0x61);
800 static notrace __kprobes void
801 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
803 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
804 return;
805 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
806 reason);
807 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
809 if (panic_on_unrecovered_nmi)
810 panic("NMI: Not continuing");
812 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
815 /* Runs on IST stack. This code must keep interrupts off all the time.
816 Nested NMIs are prevented by the CPU. */
817 asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs)
819 unsigned char reason = 0;
820 int cpu;
822 cpu = smp_processor_id();
824 /* Only the BSP gets external NMIs from the system. */
825 if (!cpu)
826 reason = get_nmi_reason();
828 if (!(reason & 0xc0)) {
829 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
830 == NOTIFY_STOP)
831 return;
833 * Ok, so this is none of the documented NMI sources,
834 * so it must be the NMI watchdog.
836 if (nmi_watchdog_tick(regs, reason))
837 return;
838 if (!do_nmi_callback(regs, cpu))
839 unknown_nmi_error(reason, regs);
841 return;
843 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
844 return;
846 /* AK: following checks seem to be broken on modern chipsets. FIXME */
847 if (reason & 0x80)
848 mem_parity_error(reason, regs);
849 if (reason & 0x40)
850 io_check_error(reason, regs);
853 asmlinkage notrace __kprobes void
854 do_nmi(struct pt_regs *regs, long error_code)
856 nmi_enter();
858 add_pda(__nmi_count, 1);
860 if (!ignore_nmis)
861 default_do_nmi(regs);
863 nmi_exit();
866 void stop_nmi(void)
868 acpi_nmi_disable();
869 ignore_nmis++;
872 void restart_nmi(void)
874 ignore_nmis--;
875 acpi_nmi_enable();
878 /* runs on IST stack. */
879 asmlinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
881 trace_hardirqs_fixup();
883 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
884 == NOTIFY_STOP)
885 return;
887 preempt_conditional_sti(regs);
888 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
889 preempt_conditional_cli(regs);
892 /* Help handler running on IST stack to switch back to user stack
893 for scheduling or signal handling. The actual stack switch is done in
894 entry.S */
895 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
897 struct pt_regs *regs = eregs;
898 /* Did already sync */
899 if (eregs == (struct pt_regs *)eregs->sp)
901 /* Exception from user space */
902 else if (user_mode(eregs))
903 regs = task_pt_regs(current);
904 /* Exception from kernel and interrupts are enabled. Move to
905 kernel process stack. */
906 else if (eregs->flags & X86_EFLAGS_IF)
907 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
908 if (eregs != regs)
909 *regs = *eregs;
910 return regs;
913 /* runs on IST stack. */
914 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
915 unsigned long error_code)
917 struct task_struct *tsk = current;
918 unsigned long condition;
919 siginfo_t info;
921 trace_hardirqs_fixup();
923 get_debugreg(condition, 6);
926 * The processor cleared BTF, so don't mark that we need it set.
928 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
929 tsk->thread.debugctlmsr = 0;
931 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
932 SIGTRAP) == NOTIFY_STOP)
933 return;
935 preempt_conditional_sti(regs);
937 /* Mask out spurious debug traps due to lazy DR7 setting */
938 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
939 if (!tsk->thread.debugreg7)
940 goto clear_dr7;
943 tsk->thread.debugreg6 = condition;
946 * Single-stepping through TF: make sure we ignore any events in
947 * kernel space (but re-enable TF when returning to user mode).
949 if (condition & DR_STEP) {
950 if (!user_mode(regs))
951 goto clear_TF_reenable;
954 /* Ok, finally something we can handle */
955 tsk->thread.trap_no = 1;
956 tsk->thread.error_code = error_code;
957 info.si_signo = SIGTRAP;
958 info.si_errno = 0;
959 info.si_code = TRAP_BRKPT;
960 info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
961 force_sig_info(SIGTRAP, &info, tsk);
963 clear_dr7:
964 set_debugreg(0, 7);
965 preempt_conditional_cli(regs);
966 return;
968 clear_TF_reenable:
969 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
970 regs->flags &= ~X86_EFLAGS_TF;
971 preempt_conditional_cli(regs);
972 return;
975 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
977 if (fixup_exception(regs))
978 return 1;
980 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
981 /* Illegal floating point operation in the kernel */
982 current->thread.trap_no = trapnr;
983 die(str, regs, 0);
984 return 0;
988 * Note that we play around with the 'TS' bit in an attempt to get
989 * the correct behaviour even in the presence of the asynchronous
990 * IRQ13 behaviour
992 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
994 void __user *ip = (void __user *)(regs->ip);
995 struct task_struct *task;
996 siginfo_t info;
997 unsigned short cwd, swd;
999 conditional_sti(regs);
1000 if (!user_mode(regs) &&
1001 kernel_math_error(regs, "kernel x87 math error", 16))
1002 return;
1005 * Save the info for the exception handler and clear the error.
1007 task = current;
1008 save_init_fpu(task);
1009 task->thread.trap_no = 16;
1010 task->thread.error_code = 0;
1011 info.si_signo = SIGFPE;
1012 info.si_errno = 0;
1013 info.si_code = __SI_FAULT;
1014 info.si_addr = ip;
1016 * (~cwd & swd) will mask out exceptions that are not set to unmasked
1017 * status. 0x3f is the exception bits in these regs, 0x200 is the
1018 * C1 reg you need in case of a stack fault, 0x040 is the stack
1019 * fault bit. We should only be taking one exception at a time,
1020 * so if this combination doesn't produce any single exception,
1021 * then we have a bad program that isn't synchronizing its FPU usage
1022 * and it will suffer the consequences since we won't be able to
1023 * fully reproduce the context of the exception
1025 cwd = get_fpu_cwd(task);
1026 swd = get_fpu_swd(task);
1027 switch (swd & ~cwd & 0x3f) {
1028 case 0x000: /* No unmasked exception */
1029 default: /* Multiple exceptions */
1030 break;
1031 case 0x001: /* Invalid Op */
1033 * swd & 0x240 == 0x040: Stack Underflow
1034 * swd & 0x240 == 0x240: Stack Overflow
1035 * User must clear the SF bit (0x40) if set
1037 info.si_code = FPE_FLTINV;
1038 break;
1039 case 0x002: /* Denormalize */
1040 case 0x010: /* Underflow */
1041 info.si_code = FPE_FLTUND;
1042 break;
1043 case 0x004: /* Zero Divide */
1044 info.si_code = FPE_FLTDIV;
1045 break;
1046 case 0x008: /* Overflow */
1047 info.si_code = FPE_FLTOVF;
1048 break;
1049 case 0x020: /* Precision */
1050 info.si_code = FPE_FLTRES;
1051 break;
1053 force_sig_info(SIGFPE, &info, task);
1056 asmlinkage void bad_intr(void)
1058 printk("bad interrupt");
1061 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1063 void __user *ip = (void __user *)(regs->ip);
1064 struct task_struct *task;
1065 siginfo_t info;
1066 unsigned short mxcsr;
1068 conditional_sti(regs);
1069 if (!user_mode(regs) &&
1070 kernel_math_error(regs, "kernel simd math error", 19))
1071 return;
1074 * Save the info for the exception handler and clear the error.
1076 task = current;
1077 save_init_fpu(task);
1078 task->thread.trap_no = 19;
1079 task->thread.error_code = 0;
1080 info.si_signo = SIGFPE;
1081 info.si_errno = 0;
1082 info.si_code = __SI_FAULT;
1083 info.si_addr = ip;
1085 * The SIMD FPU exceptions are handled a little differently, as there
1086 * is only a single status/control register. Thus, to determine which
1087 * unmasked exception was caught we must mask the exception mask bits
1088 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1090 mxcsr = get_fpu_mxcsr(task);
1091 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1092 case 0x000:
1093 default:
1094 break;
1095 case 0x001: /* Invalid Op */
1096 info.si_code = FPE_FLTINV;
1097 break;
1098 case 0x002: /* Denormalize */
1099 case 0x010: /* Underflow */
1100 info.si_code = FPE_FLTUND;
1101 break;
1102 case 0x004: /* Zero Divide */
1103 info.si_code = FPE_FLTDIV;
1104 break;
1105 case 0x008: /* Overflow */
1106 info.si_code = FPE_FLTOVF;
1107 break;
1108 case 0x020: /* Precision */
1109 info.si_code = FPE_FLTRES;
1110 break;
1112 force_sig_info(SIGFPE, &info, task);
1115 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1119 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1123 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1128 * 'math_state_restore()' saves the current math information in the
1129 * old math state array, and gets the new ones from the current task
1131 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1132 * Don't touch unless you *really* know how it works.
1134 asmlinkage void math_state_restore(void)
1136 struct task_struct *me = current;
1138 if (!used_math()) {
1139 local_irq_enable();
1141 * does a slab alloc which can sleep
1143 if (init_fpu(me)) {
1145 * ran out of memory!
1147 do_group_exit(SIGKILL);
1148 return;
1150 local_irq_disable();
1153 clts(); /* Allow maths ops (or we recurse) */
1154 restore_fpu_checking(&me->thread.xstate->fxsave);
1155 task_thread_info(me)->status |= TS_USEDFPU;
1156 me->fpu_counter++;
1158 EXPORT_SYMBOL_GPL(math_state_restore);
1160 void __init trap_init(void)
1162 set_intr_gate(0, &divide_error);
1163 set_intr_gate_ist(1, &debug, DEBUG_STACK);
1164 set_intr_gate_ist(2, &nmi, NMI_STACK);
1165 set_system_gate_ist(3, &int3, DEBUG_STACK); /* int3 can be called from all */
1166 set_system_gate(4, &overflow); /* int4 can be called from all */
1167 set_intr_gate(5, &bounds);
1168 set_intr_gate(6, &invalid_op);
1169 set_intr_gate(7, &device_not_available);
1170 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
1171 set_intr_gate(9, &coprocessor_segment_overrun);
1172 set_intr_gate(10, &invalid_TSS);
1173 set_intr_gate(11, &segment_not_present);
1174 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
1175 set_intr_gate(13, &general_protection);
1176 set_intr_gate(14, &page_fault);
1177 set_intr_gate(15, &spurious_interrupt_bug);
1178 set_intr_gate(16, &coprocessor_error);
1179 set_intr_gate(17, &alignment_check);
1180 #ifdef CONFIG_X86_MCE
1181 set_intr_gate_ist(18, &machine_check, MCE_STACK);
1182 #endif
1183 set_intr_gate(19, &simd_coprocessor_error);
1185 #ifdef CONFIG_IA32_EMULATION
1186 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1187 #endif
1189 * initialize the per thread extended state:
1191 init_thread_xstate();
1193 * Should be a barrier for any external CPU state:
1195 cpu_init();
1198 static int __init oops_setup(char *s)
1200 if (!s)
1201 return -EINVAL;
1202 if (!strcmp(s, "panic"))
1203 panic_on_oops = 1;
1204 return 0;
1206 early_param("oops", oops_setup);
1208 static int __init kstack_setup(char *s)
1210 if (!s)
1211 return -EINVAL;
1212 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1213 return 0;
1215 early_param("kstack", kstack_setup);
1217 static int __init code_bytes_setup(char *s)
1219 code_bytes = simple_strtoul(s, NULL, 0);
1220 if (code_bytes > 8192)
1221 code_bytes = 8192;
1223 return 1;
1225 __setup("code_bytes=", code_bytes_setup);