cfg80211: move enum reg_set_by to nl80211.h
[linux-2.6/verdex.git] / net / wireless / reg.c
blob68fde6d33dc36c1f0c48c41435df059802bc27dc
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53 MHZ_TO_KHZ(40),
54 MHZ_TO_KHZ(20),
58 * Central wireless core regulatory domains, we only need two,
59 * the current one and a world regulatory domain in case we have no
60 * information to give us an alpha2
62 const struct ieee80211_regdomain *cfg80211_regdomain;
65 * We use this as a place for the rd structure built from the
66 * last parsed country IE to rest until CRDA gets back to us with
67 * what it thinks should apply for the same country
69 static const struct ieee80211_regdomain *country_ie_regdomain;
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
82 struct reg_beacon {
83 struct list_head list;
84 struct ieee80211_channel chan;
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89 .n_reg_rules = 5,
90 .alpha2 = "00",
91 .reg_rules = {
92 /* IEEE 802.11b/g, channels 1..11 */
93 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 /* IEEE 802.11b/g, channels 12..13. No HT40
95 * channel fits here. */
96 REG_RULE(2467-10, 2472+10, 20, 6, 20,
97 NL80211_RRF_PASSIVE_SCAN |
98 NL80211_RRF_NO_IBSS),
99 /* IEEE 802.11 channel 14 - Only JP enables
100 * this and for 802.11b only */
101 REG_RULE(2484-10, 2484+10, 20, 6, 20,
102 NL80211_RRF_PASSIVE_SCAN |
103 NL80211_RRF_NO_IBSS |
104 NL80211_RRF_NO_OFDM),
105 /* IEEE 802.11a, channel 36..48 */
106 REG_RULE(5180-10, 5240+10, 40, 6, 20,
107 NL80211_RRF_PASSIVE_SCAN |
108 NL80211_RRF_NO_IBSS),
110 /* NB: 5260 MHz - 5700 MHz requies DFS */
112 /* IEEE 802.11a, channel 149..165 */
113 REG_RULE(5745-10, 5825+10, 40, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS),
119 static const struct ieee80211_regdomain *cfg80211_world_regdom =
120 &world_regdom;
122 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
123 static char *ieee80211_regdom = "US";
124 module_param(ieee80211_regdom, charp, 0444);
125 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
128 * We assume 40 MHz bandwidth for the old regulatory work.
129 * We make emphasis we are using the exact same frequencies
130 * as before
133 static const struct ieee80211_regdomain us_regdom = {
134 .n_reg_rules = 6,
135 .alpha2 = "US",
136 .reg_rules = {
137 /* IEEE 802.11b/g, channels 1..11 */
138 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
139 /* IEEE 802.11a, channel 36 */
140 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
141 /* IEEE 802.11a, channel 40 */
142 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
143 /* IEEE 802.11a, channel 44 */
144 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
145 /* IEEE 802.11a, channels 48..64 */
146 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
147 /* IEEE 802.11a, channels 149..165, outdoor */
148 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
152 static const struct ieee80211_regdomain jp_regdom = {
153 .n_reg_rules = 3,
154 .alpha2 = "JP",
155 .reg_rules = {
156 /* IEEE 802.11b/g, channels 1..14 */
157 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
158 /* IEEE 802.11a, channels 34..48 */
159 REG_RULE(5170-10, 5240+10, 40, 6, 20,
160 NL80211_RRF_PASSIVE_SCAN),
161 /* IEEE 802.11a, channels 52..64 */
162 REG_RULE(5260-10, 5320+10, 40, 6, 20,
163 NL80211_RRF_NO_IBSS |
164 NL80211_RRF_DFS),
168 static const struct ieee80211_regdomain eu_regdom = {
169 .n_reg_rules = 6,
171 * This alpha2 is bogus, we leave it here just for stupid
172 * backward compatibility
174 .alpha2 = "EU",
175 .reg_rules = {
176 /* IEEE 802.11b/g, channels 1..13 */
177 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
178 /* IEEE 802.11a, channel 36 */
179 REG_RULE(5180-10, 5180+10, 40, 6, 23,
180 NL80211_RRF_PASSIVE_SCAN),
181 /* IEEE 802.11a, channel 40 */
182 REG_RULE(5200-10, 5200+10, 40, 6, 23,
183 NL80211_RRF_PASSIVE_SCAN),
184 /* IEEE 802.11a, channel 44 */
185 REG_RULE(5220-10, 5220+10, 40, 6, 23,
186 NL80211_RRF_PASSIVE_SCAN),
187 /* IEEE 802.11a, channels 48..64 */
188 REG_RULE(5240-10, 5320+10, 40, 6, 20,
189 NL80211_RRF_NO_IBSS |
190 NL80211_RRF_DFS),
191 /* IEEE 802.11a, channels 100..140 */
192 REG_RULE(5500-10, 5700+10, 40, 6, 30,
193 NL80211_RRF_NO_IBSS |
194 NL80211_RRF_DFS),
198 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
200 if (alpha2[0] == 'U' && alpha2[1] == 'S')
201 return &us_regdom;
202 if (alpha2[0] == 'J' && alpha2[1] == 'P')
203 return &jp_regdom;
204 if (alpha2[0] == 'E' && alpha2[1] == 'U')
205 return &eu_regdom;
206 /* Default, as per the old rules */
207 return &us_regdom;
210 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
212 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
213 return true;
214 return false;
216 #else
217 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
219 return false;
221 #endif
223 static void reset_regdomains(void)
225 /* avoid freeing static information or freeing something twice */
226 if (cfg80211_regdomain == cfg80211_world_regdom)
227 cfg80211_regdomain = NULL;
228 if (cfg80211_world_regdom == &world_regdom)
229 cfg80211_world_regdom = NULL;
230 if (cfg80211_regdomain == &world_regdom)
231 cfg80211_regdomain = NULL;
232 if (is_old_static_regdom(cfg80211_regdomain))
233 cfg80211_regdomain = NULL;
235 kfree(cfg80211_regdomain);
236 kfree(cfg80211_world_regdom);
238 cfg80211_world_regdom = &world_regdom;
239 cfg80211_regdomain = NULL;
243 * Dynamic world regulatory domain requested by the wireless
244 * core upon initialization
246 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
248 BUG_ON(!last_request);
250 reset_regdomains();
252 cfg80211_world_regdom = rd;
253 cfg80211_regdomain = rd;
256 bool is_world_regdom(const char *alpha2)
258 if (!alpha2)
259 return false;
260 if (alpha2[0] == '0' && alpha2[1] == '0')
261 return true;
262 return false;
265 static bool is_alpha2_set(const char *alpha2)
267 if (!alpha2)
268 return false;
269 if (alpha2[0] != 0 && alpha2[1] != 0)
270 return true;
271 return false;
274 static bool is_alpha_upper(char letter)
276 /* ASCII A - Z */
277 if (letter >= 65 && letter <= 90)
278 return true;
279 return false;
282 static bool is_unknown_alpha2(const char *alpha2)
284 if (!alpha2)
285 return false;
287 * Special case where regulatory domain was built by driver
288 * but a specific alpha2 cannot be determined
290 if (alpha2[0] == '9' && alpha2[1] == '9')
291 return true;
292 return false;
295 static bool is_intersected_alpha2(const char *alpha2)
297 if (!alpha2)
298 return false;
300 * Special case where regulatory domain is the
301 * result of an intersection between two regulatory domain
302 * structures
304 if (alpha2[0] == '9' && alpha2[1] == '8')
305 return true;
306 return false;
309 static bool is_an_alpha2(const char *alpha2)
311 if (!alpha2)
312 return false;
313 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
314 return true;
315 return false;
318 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
320 if (!alpha2_x || !alpha2_y)
321 return false;
322 if (alpha2_x[0] == alpha2_y[0] &&
323 alpha2_x[1] == alpha2_y[1])
324 return true;
325 return false;
328 static bool regdom_changes(const char *alpha2)
330 assert_cfg80211_lock();
332 if (!cfg80211_regdomain)
333 return true;
334 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
335 return false;
336 return true;
340 * country_ie_integrity_changes - tells us if the country IE has changed
341 * @checksum: checksum of country IE of fields we are interested in
343 * If the country IE has not changed you can ignore it safely. This is
344 * useful to determine if two devices are seeing two different country IEs
345 * even on the same alpha2. Note that this will return false if no IE has
346 * been set on the wireless core yet.
348 static bool country_ie_integrity_changes(u32 checksum)
350 /* If no IE has been set then the checksum doesn't change */
351 if (unlikely(!last_request->country_ie_checksum))
352 return false;
353 if (unlikely(last_request->country_ie_checksum != checksum))
354 return true;
355 return false;
359 * This lets us keep regulatory code which is updated on a regulatory
360 * basis in userspace.
362 static int call_crda(const char *alpha2)
364 char country_env[9 + 2] = "COUNTRY=";
365 char *envp[] = {
366 country_env,
367 NULL
370 if (!is_world_regdom((char *) alpha2))
371 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
372 alpha2[0], alpha2[1]);
373 else
374 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
375 "regulatory domain\n");
377 country_env[8] = alpha2[0];
378 country_env[9] = alpha2[1];
380 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
383 /* Used by nl80211 before kmalloc'ing our regulatory domain */
384 bool reg_is_valid_request(const char *alpha2)
386 if (!last_request)
387 return false;
389 return alpha2_equal(last_request->alpha2, alpha2);
392 /* Sanity check on a regulatory rule */
393 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
395 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
396 u32 freq_diff;
398 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
399 return false;
401 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
402 return false;
404 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
406 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
407 freq_range->max_bandwidth_khz > freq_diff)
408 return false;
410 return true;
413 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
415 const struct ieee80211_reg_rule *reg_rule = NULL;
416 unsigned int i;
418 if (!rd->n_reg_rules)
419 return false;
421 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
422 return false;
424 for (i = 0; i < rd->n_reg_rules; i++) {
425 reg_rule = &rd->reg_rules[i];
426 if (!is_valid_reg_rule(reg_rule))
427 return false;
430 return true;
433 /* Returns value in KHz */
434 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
435 u32 freq)
437 unsigned int i;
438 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
439 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
440 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
441 if (start_freq_khz >= freq_range->start_freq_khz &&
442 end_freq_khz <= freq_range->end_freq_khz)
443 return supported_bandwidths[i];
445 return 0;
449 * freq_in_rule_band - tells us if a frequency is in a frequency band
450 * @freq_range: frequency rule we want to query
451 * @freq_khz: frequency we are inquiring about
453 * This lets us know if a specific frequency rule is or is not relevant to
454 * a specific frequency's band. Bands are device specific and artificial
455 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
456 * safe for now to assume that a frequency rule should not be part of a
457 * frequency's band if the start freq or end freq are off by more than 2 GHz.
458 * This resolution can be lowered and should be considered as we add
459 * regulatory rule support for other "bands".
461 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
462 u32 freq_khz)
464 #define ONE_GHZ_IN_KHZ 1000000
465 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
466 return true;
467 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468 return true;
469 return false;
470 #undef ONE_GHZ_IN_KHZ
474 * Converts a country IE to a regulatory domain. A regulatory domain
475 * structure has a lot of information which the IE doesn't yet have,
476 * so for the other values we use upper max values as we will intersect
477 * with our userspace regulatory agent to get lower bounds.
479 static struct ieee80211_regdomain *country_ie_2_rd(
480 u8 *country_ie,
481 u8 country_ie_len,
482 u32 *checksum)
484 struct ieee80211_regdomain *rd = NULL;
485 unsigned int i = 0;
486 char alpha2[2];
487 u32 flags = 0;
488 u32 num_rules = 0, size_of_regd = 0;
489 u8 *triplets_start = NULL;
490 u8 len_at_triplet = 0;
491 /* the last channel we have registered in a subband (triplet) */
492 int last_sub_max_channel = 0;
494 *checksum = 0xDEADBEEF;
496 /* Country IE requirements */
497 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
498 country_ie_len & 0x01);
500 alpha2[0] = country_ie[0];
501 alpha2[1] = country_ie[1];
504 * Third octet can be:
505 * 'I' - Indoor
506 * 'O' - Outdoor
508 * anything else we assume is no restrictions
510 if (country_ie[2] == 'I')
511 flags = NL80211_RRF_NO_OUTDOOR;
512 else if (country_ie[2] == 'O')
513 flags = NL80211_RRF_NO_INDOOR;
515 country_ie += 3;
516 country_ie_len -= 3;
518 triplets_start = country_ie;
519 len_at_triplet = country_ie_len;
521 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
524 * We need to build a reg rule for each triplet, but first we must
525 * calculate the number of reg rules we will need. We will need one
526 * for each channel subband
528 while (country_ie_len >= 3) {
529 int end_channel = 0;
530 struct ieee80211_country_ie_triplet *triplet =
531 (struct ieee80211_country_ie_triplet *) country_ie;
532 int cur_sub_max_channel = 0, cur_channel = 0;
534 if (triplet->ext.reg_extension_id >=
535 IEEE80211_COUNTRY_EXTENSION_ID) {
536 country_ie += 3;
537 country_ie_len -= 3;
538 continue;
541 /* 2 GHz */
542 if (triplet->chans.first_channel <= 14)
543 end_channel = triplet->chans.first_channel +
544 triplet->chans.num_channels;
545 else
547 * 5 GHz -- For example in country IEs if the first
548 * channel given is 36 and the number of channels is 4
549 * then the individual channel numbers defined for the
550 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
551 * and not 36, 37, 38, 39.
553 * See: http://tinyurl.com/11d-clarification
555 end_channel = triplet->chans.first_channel +
556 (4 * (triplet->chans.num_channels - 1));
558 cur_channel = triplet->chans.first_channel;
559 cur_sub_max_channel = end_channel;
561 /* Basic sanity check */
562 if (cur_sub_max_channel < cur_channel)
563 return NULL;
566 * Do not allow overlapping channels. Also channels
567 * passed in each subband must be monotonically
568 * increasing
570 if (last_sub_max_channel) {
571 if (cur_channel <= last_sub_max_channel)
572 return NULL;
573 if (cur_sub_max_channel <= last_sub_max_channel)
574 return NULL;
578 * When dot11RegulatoryClassesRequired is supported
579 * we can throw ext triplets as part of this soup,
580 * for now we don't care when those change as we
581 * don't support them
583 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
584 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
585 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
587 last_sub_max_channel = cur_sub_max_channel;
589 country_ie += 3;
590 country_ie_len -= 3;
591 num_rules++;
594 * Note: this is not a IEEE requirement but
595 * simply a memory requirement
597 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
598 return NULL;
601 country_ie = triplets_start;
602 country_ie_len = len_at_triplet;
604 size_of_regd = sizeof(struct ieee80211_regdomain) +
605 (num_rules * sizeof(struct ieee80211_reg_rule));
607 rd = kzalloc(size_of_regd, GFP_KERNEL);
608 if (!rd)
609 return NULL;
611 rd->n_reg_rules = num_rules;
612 rd->alpha2[0] = alpha2[0];
613 rd->alpha2[1] = alpha2[1];
615 /* This time around we fill in the rd */
616 while (country_ie_len >= 3) {
617 int end_channel = 0;
618 struct ieee80211_country_ie_triplet *triplet =
619 (struct ieee80211_country_ie_triplet *) country_ie;
620 struct ieee80211_reg_rule *reg_rule = NULL;
621 struct ieee80211_freq_range *freq_range = NULL;
622 struct ieee80211_power_rule *power_rule = NULL;
625 * Must parse if dot11RegulatoryClassesRequired is true,
626 * we don't support this yet
628 if (triplet->ext.reg_extension_id >=
629 IEEE80211_COUNTRY_EXTENSION_ID) {
630 country_ie += 3;
631 country_ie_len -= 3;
632 continue;
635 reg_rule = &rd->reg_rules[i];
636 freq_range = &reg_rule->freq_range;
637 power_rule = &reg_rule->power_rule;
639 reg_rule->flags = flags;
641 /* 2 GHz */
642 if (triplet->chans.first_channel <= 14)
643 end_channel = triplet->chans.first_channel +
644 triplet->chans.num_channels;
645 else
646 end_channel = triplet->chans.first_channel +
647 (4 * (triplet->chans.num_channels - 1));
650 * The +10 is since the regulatory domain expects
651 * the actual band edge, not the center of freq for
652 * its start and end freqs, assuming 20 MHz bandwidth on
653 * the channels passed
655 freq_range->start_freq_khz =
656 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
657 triplet->chans.first_channel) - 10);
658 freq_range->end_freq_khz =
659 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
660 end_channel) + 10);
663 * These are large arbitrary values we use to intersect later.
664 * Increment this if we ever support >= 40 MHz channels
665 * in IEEE 802.11
667 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
668 power_rule->max_antenna_gain = DBI_TO_MBI(100);
669 power_rule->max_eirp = DBM_TO_MBM(100);
671 country_ie += 3;
672 country_ie_len -= 3;
673 i++;
675 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
678 return rd;
683 * Helper for regdom_intersect(), this does the real
684 * mathematical intersection fun
686 static int reg_rules_intersect(
687 const struct ieee80211_reg_rule *rule1,
688 const struct ieee80211_reg_rule *rule2,
689 struct ieee80211_reg_rule *intersected_rule)
691 const struct ieee80211_freq_range *freq_range1, *freq_range2;
692 struct ieee80211_freq_range *freq_range;
693 const struct ieee80211_power_rule *power_rule1, *power_rule2;
694 struct ieee80211_power_rule *power_rule;
695 u32 freq_diff;
697 freq_range1 = &rule1->freq_range;
698 freq_range2 = &rule2->freq_range;
699 freq_range = &intersected_rule->freq_range;
701 power_rule1 = &rule1->power_rule;
702 power_rule2 = &rule2->power_rule;
703 power_rule = &intersected_rule->power_rule;
705 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
706 freq_range2->start_freq_khz);
707 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
708 freq_range2->end_freq_khz);
709 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
710 freq_range2->max_bandwidth_khz);
712 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
713 if (freq_range->max_bandwidth_khz > freq_diff)
714 freq_range->max_bandwidth_khz = freq_diff;
716 power_rule->max_eirp = min(power_rule1->max_eirp,
717 power_rule2->max_eirp);
718 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
719 power_rule2->max_antenna_gain);
721 intersected_rule->flags = (rule1->flags | rule2->flags);
723 if (!is_valid_reg_rule(intersected_rule))
724 return -EINVAL;
726 return 0;
730 * regdom_intersect - do the intersection between two regulatory domains
731 * @rd1: first regulatory domain
732 * @rd2: second regulatory domain
734 * Use this function to get the intersection between two regulatory domains.
735 * Once completed we will mark the alpha2 for the rd as intersected, "98",
736 * as no one single alpha2 can represent this regulatory domain.
738 * Returns a pointer to the regulatory domain structure which will hold the
739 * resulting intersection of rules between rd1 and rd2. We will
740 * kzalloc() this structure for you.
742 static struct ieee80211_regdomain *regdom_intersect(
743 const struct ieee80211_regdomain *rd1,
744 const struct ieee80211_regdomain *rd2)
746 int r, size_of_regd;
747 unsigned int x, y;
748 unsigned int num_rules = 0, rule_idx = 0;
749 const struct ieee80211_reg_rule *rule1, *rule2;
750 struct ieee80211_reg_rule *intersected_rule;
751 struct ieee80211_regdomain *rd;
752 /* This is just a dummy holder to help us count */
753 struct ieee80211_reg_rule irule;
755 /* Uses the stack temporarily for counter arithmetic */
756 intersected_rule = &irule;
758 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
760 if (!rd1 || !rd2)
761 return NULL;
764 * First we get a count of the rules we'll need, then we actually
765 * build them. This is to so we can malloc() and free() a
766 * regdomain once. The reason we use reg_rules_intersect() here
767 * is it will return -EINVAL if the rule computed makes no sense.
768 * All rules that do check out OK are valid.
771 for (x = 0; x < rd1->n_reg_rules; x++) {
772 rule1 = &rd1->reg_rules[x];
773 for (y = 0; y < rd2->n_reg_rules; y++) {
774 rule2 = &rd2->reg_rules[y];
775 if (!reg_rules_intersect(rule1, rule2,
776 intersected_rule))
777 num_rules++;
778 memset(intersected_rule, 0,
779 sizeof(struct ieee80211_reg_rule));
783 if (!num_rules)
784 return NULL;
786 size_of_regd = sizeof(struct ieee80211_regdomain) +
787 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
789 rd = kzalloc(size_of_regd, GFP_KERNEL);
790 if (!rd)
791 return NULL;
793 for (x = 0; x < rd1->n_reg_rules; x++) {
794 rule1 = &rd1->reg_rules[x];
795 for (y = 0; y < rd2->n_reg_rules; y++) {
796 rule2 = &rd2->reg_rules[y];
798 * This time around instead of using the stack lets
799 * write to the target rule directly saving ourselves
800 * a memcpy()
802 intersected_rule = &rd->reg_rules[rule_idx];
803 r = reg_rules_intersect(rule1, rule2,
804 intersected_rule);
806 * No need to memset here the intersected rule here as
807 * we're not using the stack anymore
809 if (r)
810 continue;
811 rule_idx++;
815 if (rule_idx != num_rules) {
816 kfree(rd);
817 return NULL;
820 rd->n_reg_rules = num_rules;
821 rd->alpha2[0] = '9';
822 rd->alpha2[1] = '8';
824 return rd;
828 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
829 * want to just have the channel structure use these
831 static u32 map_regdom_flags(u32 rd_flags)
833 u32 channel_flags = 0;
834 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
835 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
836 if (rd_flags & NL80211_RRF_NO_IBSS)
837 channel_flags |= IEEE80211_CHAN_NO_IBSS;
838 if (rd_flags & NL80211_RRF_DFS)
839 channel_flags |= IEEE80211_CHAN_RADAR;
840 return channel_flags;
843 static int freq_reg_info_regd(struct wiphy *wiphy,
844 u32 center_freq,
845 u32 *bandwidth,
846 const struct ieee80211_reg_rule **reg_rule,
847 const struct ieee80211_regdomain *custom_regd)
849 int i;
850 bool band_rule_found = false;
851 const struct ieee80211_regdomain *regd;
852 u32 max_bandwidth = 0;
854 regd = custom_regd ? custom_regd : cfg80211_regdomain;
857 * Follow the driver's regulatory domain, if present, unless a country
858 * IE has been processed or a user wants to help complaince further
860 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
861 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
862 wiphy->regd)
863 regd = wiphy->regd;
865 if (!regd)
866 return -EINVAL;
868 for (i = 0; i < regd->n_reg_rules; i++) {
869 const struct ieee80211_reg_rule *rr;
870 const struct ieee80211_freq_range *fr = NULL;
871 const struct ieee80211_power_rule *pr = NULL;
873 rr = &regd->reg_rules[i];
874 fr = &rr->freq_range;
875 pr = &rr->power_rule;
878 * We only need to know if one frequency rule was
879 * was in center_freq's band, that's enough, so lets
880 * not overwrite it once found
882 if (!band_rule_found)
883 band_rule_found = freq_in_rule_band(fr, center_freq);
885 max_bandwidth = freq_max_bandwidth(fr, center_freq);
887 if (max_bandwidth && *bandwidth <= max_bandwidth) {
888 *reg_rule = rr;
889 *bandwidth = max_bandwidth;
890 break;
894 if (!band_rule_found)
895 return -ERANGE;
897 return !max_bandwidth;
899 EXPORT_SYMBOL(freq_reg_info);
901 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
902 const struct ieee80211_reg_rule **reg_rule)
904 return freq_reg_info_regd(wiphy, center_freq,
905 bandwidth, reg_rule, NULL);
908 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
909 unsigned int chan_idx)
911 int r;
912 u32 flags;
913 u32 max_bandwidth = 0;
914 const struct ieee80211_reg_rule *reg_rule = NULL;
915 const struct ieee80211_power_rule *power_rule = NULL;
916 struct ieee80211_supported_band *sband;
917 struct ieee80211_channel *chan;
918 struct wiphy *request_wiphy = NULL;
920 assert_cfg80211_lock();
922 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
924 sband = wiphy->bands[band];
925 BUG_ON(chan_idx >= sband->n_channels);
926 chan = &sband->channels[chan_idx];
928 flags = chan->orig_flags;
930 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
931 &max_bandwidth, &reg_rule);
933 if (r) {
935 * This means no regulatory rule was found in the country IE
936 * with a frequency range on the center_freq's band, since
937 * IEEE-802.11 allows for a country IE to have a subset of the
938 * regulatory information provided in a country we ignore
939 * disabling the channel unless at least one reg rule was
940 * found on the center_freq's band. For details see this
941 * clarification:
943 * http://tinyurl.com/11d-clarification
945 if (r == -ERANGE &&
946 last_request->initiator ==
947 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
948 #ifdef CONFIG_CFG80211_REG_DEBUG
949 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
950 "intact on %s - no rule found in band on "
951 "Country IE\n",
952 chan->center_freq, wiphy_name(wiphy));
953 #endif
954 } else {
956 * In this case we know the country IE has at least one reg rule
957 * for the band so we respect its band definitions
959 #ifdef CONFIG_CFG80211_REG_DEBUG
960 if (last_request->initiator ==
961 NL80211_REGDOM_SET_BY_COUNTRY_IE)
962 printk(KERN_DEBUG "cfg80211: Disabling "
963 "channel %d MHz on %s due to "
964 "Country IE\n",
965 chan->center_freq, wiphy_name(wiphy));
966 #endif
967 flags |= IEEE80211_CHAN_DISABLED;
968 chan->flags = flags;
970 return;
973 power_rule = &reg_rule->power_rule;
975 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
976 request_wiphy && request_wiphy == wiphy &&
977 request_wiphy->strict_regulatory) {
979 * This gaurantees the driver's requested regulatory domain
980 * will always be used as a base for further regulatory
981 * settings
983 chan->flags = chan->orig_flags =
984 map_regdom_flags(reg_rule->flags);
985 chan->max_antenna_gain = chan->orig_mag =
986 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
987 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
988 chan->max_power = chan->orig_mpwr =
989 (int) MBM_TO_DBM(power_rule->max_eirp);
990 return;
993 chan->flags = flags | map_regdom_flags(reg_rule->flags);
994 chan->max_antenna_gain = min(chan->orig_mag,
995 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
996 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
997 if (chan->orig_mpwr)
998 chan->max_power = min(chan->orig_mpwr,
999 (int) MBM_TO_DBM(power_rule->max_eirp));
1000 else
1001 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1004 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1006 unsigned int i;
1007 struct ieee80211_supported_band *sband;
1009 BUG_ON(!wiphy->bands[band]);
1010 sband = wiphy->bands[band];
1012 for (i = 0; i < sband->n_channels; i++)
1013 handle_channel(wiphy, band, i);
1016 static bool ignore_reg_update(struct wiphy *wiphy,
1017 enum nl80211_reg_initiator initiator)
1019 if (!last_request)
1020 return true;
1021 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1022 wiphy->custom_regulatory)
1023 return true;
1025 * wiphy->regd will be set once the device has its own
1026 * desired regulatory domain set
1028 if (wiphy->strict_regulatory && !wiphy->regd &&
1029 !is_world_regdom(last_request->alpha2))
1030 return true;
1031 return false;
1034 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1036 struct cfg80211_registered_device *drv;
1038 list_for_each_entry(drv, &cfg80211_drv_list, list)
1039 wiphy_update_regulatory(&drv->wiphy, initiator);
1042 static void handle_reg_beacon(struct wiphy *wiphy,
1043 unsigned int chan_idx,
1044 struct reg_beacon *reg_beacon)
1046 #ifdef CONFIG_CFG80211_REG_DEBUG
1047 #define REG_DEBUG_BEACON_FLAG(desc) \
1048 printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1049 "frequency: %d MHz (Ch %d) on %s\n", \
1050 reg_beacon->chan.center_freq, \
1051 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1052 wiphy_name(wiphy));
1053 #else
1054 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1055 #endif
1056 struct ieee80211_supported_band *sband;
1057 struct ieee80211_channel *chan;
1059 assert_cfg80211_lock();
1061 sband = wiphy->bands[reg_beacon->chan.band];
1062 chan = &sband->channels[chan_idx];
1064 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1065 return;
1067 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1068 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1069 REG_DEBUG_BEACON_FLAG("active scanning");
1072 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1073 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1074 REG_DEBUG_BEACON_FLAG("beaconing");
1077 chan->beacon_found = true;
1078 #undef REG_DEBUG_BEACON_FLAG
1082 * Called when a scan on a wiphy finds a beacon on
1083 * new channel
1085 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1086 struct reg_beacon *reg_beacon)
1088 unsigned int i;
1089 struct ieee80211_supported_band *sband;
1091 assert_cfg80211_lock();
1093 if (!wiphy->bands[reg_beacon->chan.band])
1094 return;
1096 sband = wiphy->bands[reg_beacon->chan.band];
1098 for (i = 0; i < sband->n_channels; i++)
1099 handle_reg_beacon(wiphy, i, reg_beacon);
1103 * Called upon reg changes or a new wiphy is added
1105 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1107 unsigned int i;
1108 struct ieee80211_supported_band *sband;
1109 struct reg_beacon *reg_beacon;
1111 assert_cfg80211_lock();
1113 if (list_empty(&reg_beacon_list))
1114 return;
1116 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1117 if (!wiphy->bands[reg_beacon->chan.band])
1118 continue;
1119 sband = wiphy->bands[reg_beacon->chan.band];
1120 for (i = 0; i < sband->n_channels; i++)
1121 handle_reg_beacon(wiphy, i, reg_beacon);
1125 static bool reg_is_world_roaming(struct wiphy *wiphy)
1127 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1128 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1129 return true;
1130 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1131 wiphy->custom_regulatory)
1132 return true;
1133 return false;
1136 /* Reap the advantages of previously found beacons */
1137 static void reg_process_beacons(struct wiphy *wiphy)
1139 if (!reg_is_world_roaming(wiphy))
1140 return;
1141 wiphy_update_beacon_reg(wiphy);
1144 void wiphy_update_regulatory(struct wiphy *wiphy,
1145 enum nl80211_reg_initiator initiator)
1147 enum ieee80211_band band;
1149 if (ignore_reg_update(wiphy, initiator))
1150 goto out;
1151 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1152 if (wiphy->bands[band])
1153 handle_band(wiphy, band);
1155 out:
1156 reg_process_beacons(wiphy);
1157 if (wiphy->reg_notifier)
1158 wiphy->reg_notifier(wiphy, last_request);
1161 static void handle_channel_custom(struct wiphy *wiphy,
1162 enum ieee80211_band band,
1163 unsigned int chan_idx,
1164 const struct ieee80211_regdomain *regd)
1166 int r;
1167 u32 max_bandwidth = 0;
1168 const struct ieee80211_reg_rule *reg_rule = NULL;
1169 const struct ieee80211_power_rule *power_rule = NULL;
1170 struct ieee80211_supported_band *sband;
1171 struct ieee80211_channel *chan;
1173 sband = wiphy->bands[band];
1174 BUG_ON(chan_idx >= sband->n_channels);
1175 chan = &sband->channels[chan_idx];
1177 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1178 &max_bandwidth, &reg_rule, regd);
1180 if (r) {
1181 chan->flags = IEEE80211_CHAN_DISABLED;
1182 return;
1185 power_rule = &reg_rule->power_rule;
1187 chan->flags |= map_regdom_flags(reg_rule->flags);
1188 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1189 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1190 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1193 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1194 const struct ieee80211_regdomain *regd)
1196 unsigned int i;
1197 struct ieee80211_supported_band *sband;
1199 BUG_ON(!wiphy->bands[band]);
1200 sband = wiphy->bands[band];
1202 for (i = 0; i < sband->n_channels; i++)
1203 handle_channel_custom(wiphy, band, i, regd);
1206 /* Used by drivers prior to wiphy registration */
1207 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1208 const struct ieee80211_regdomain *regd)
1210 enum ieee80211_band band;
1211 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1212 if (wiphy->bands[band])
1213 handle_band_custom(wiphy, band, regd);
1216 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1218 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1219 const struct ieee80211_regdomain *src_regd)
1221 struct ieee80211_regdomain *regd;
1222 int size_of_regd = 0;
1223 unsigned int i;
1225 size_of_regd = sizeof(struct ieee80211_regdomain) +
1226 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1228 regd = kzalloc(size_of_regd, GFP_KERNEL);
1229 if (!regd)
1230 return -ENOMEM;
1232 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1234 for (i = 0; i < src_regd->n_reg_rules; i++)
1235 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1236 sizeof(struct ieee80211_reg_rule));
1238 *dst_regd = regd;
1239 return 0;
1243 * Return value which can be used by ignore_request() to indicate
1244 * it has been determined we should intersect two regulatory domains
1246 #define REG_INTERSECT 1
1248 /* This has the logic which determines when a new request
1249 * should be ignored. */
1250 static int ignore_request(struct wiphy *wiphy,
1251 struct regulatory_request *pending_request)
1253 struct wiphy *last_wiphy = NULL;
1255 assert_cfg80211_lock();
1257 /* All initial requests are respected */
1258 if (!last_request)
1259 return 0;
1261 switch (pending_request->initiator) {
1262 case NL80211_REGDOM_SET_BY_CORE:
1263 return -EINVAL;
1264 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1266 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1268 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1269 return -EINVAL;
1270 if (last_request->initiator ==
1271 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1272 if (last_wiphy != wiphy) {
1274 * Two cards with two APs claiming different
1275 * different Country IE alpha2s. We could
1276 * intersect them, but that seems unlikely
1277 * to be correct. Reject second one for now.
1279 if (regdom_changes(pending_request->alpha2))
1280 return -EOPNOTSUPP;
1281 return -EALREADY;
1284 * Two consecutive Country IE hints on the same wiphy.
1285 * This should be picked up early by the driver/stack
1287 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1288 return 0;
1289 return -EALREADY;
1291 return REG_INTERSECT;
1292 case NL80211_REGDOM_SET_BY_DRIVER:
1293 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1294 if (is_old_static_regdom(cfg80211_regdomain))
1295 return 0;
1296 if (regdom_changes(pending_request->alpha2))
1297 return 0;
1298 return -EALREADY;
1302 * This would happen if you unplug and plug your card
1303 * back in or if you add a new device for which the previously
1304 * loaded card also agrees on the regulatory domain.
1306 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1307 !regdom_changes(pending_request->alpha2))
1308 return -EALREADY;
1310 return REG_INTERSECT;
1311 case NL80211_REGDOM_SET_BY_USER:
1312 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1313 return REG_INTERSECT;
1315 * If the user knows better the user should set the regdom
1316 * to their country before the IE is picked up
1318 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1319 last_request->intersect)
1320 return -EOPNOTSUPP;
1322 * Process user requests only after previous user/driver/core
1323 * requests have been processed
1325 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1326 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1327 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1328 if (regdom_changes(last_request->alpha2))
1329 return -EAGAIN;
1332 if (!is_old_static_regdom(cfg80211_regdomain) &&
1333 !regdom_changes(pending_request->alpha2))
1334 return -EALREADY;
1336 return 0;
1339 return -EINVAL;
1343 * __regulatory_hint - hint to the wireless core a regulatory domain
1344 * @wiphy: if the hint comes from country information from an AP, this
1345 * is required to be set to the wiphy that received the information
1346 * @pending_request: the regulatory request currently being processed
1348 * The Wireless subsystem can use this function to hint to the wireless core
1349 * what it believes should be the current regulatory domain.
1351 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1352 * already been set or other standard error codes.
1354 * Caller must hold &cfg80211_mutex
1356 static int __regulatory_hint(struct wiphy *wiphy,
1357 struct regulatory_request *pending_request)
1359 bool intersect = false;
1360 int r = 0;
1362 assert_cfg80211_lock();
1364 r = ignore_request(wiphy, pending_request);
1366 if (r == REG_INTERSECT) {
1367 if (pending_request->initiator ==
1368 NL80211_REGDOM_SET_BY_DRIVER) {
1369 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1370 if (r) {
1371 kfree(pending_request);
1372 return r;
1375 intersect = true;
1376 } else if (r) {
1378 * If the regulatory domain being requested by the
1379 * driver has already been set just copy it to the
1380 * wiphy
1382 if (r == -EALREADY &&
1383 pending_request->initiator ==
1384 NL80211_REGDOM_SET_BY_DRIVER) {
1385 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1386 if (r) {
1387 kfree(pending_request);
1388 return r;
1390 r = -EALREADY;
1391 goto new_request;
1393 kfree(pending_request);
1394 return r;
1397 new_request:
1398 kfree(last_request);
1400 last_request = pending_request;
1401 last_request->intersect = intersect;
1403 pending_request = NULL;
1405 /* When r == REG_INTERSECT we do need to call CRDA */
1406 if (r < 0)
1407 return r;
1410 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1411 * AND if CRDA is NOT present nothing will happen, if someone
1412 * wants to bother with 11d with OLD_REG you can add a timer.
1413 * If after x amount of time nothing happens you can call:
1415 * return set_regdom(country_ie_regdomain);
1417 * to intersect with the static rd
1419 return call_crda(last_request->alpha2);
1422 /* This currently only processes user and driver regulatory hints */
1423 static void reg_process_hint(struct regulatory_request *reg_request)
1425 int r = 0;
1426 struct wiphy *wiphy = NULL;
1428 BUG_ON(!reg_request->alpha2);
1430 mutex_lock(&cfg80211_mutex);
1432 if (wiphy_idx_valid(reg_request->wiphy_idx))
1433 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1435 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1436 !wiphy) {
1437 kfree(reg_request);
1438 goto out;
1441 r = __regulatory_hint(wiphy, reg_request);
1442 /* This is required so that the orig_* parameters are saved */
1443 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1444 wiphy_update_regulatory(wiphy, reg_request->initiator);
1445 out:
1446 mutex_unlock(&cfg80211_mutex);
1449 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1450 static void reg_process_pending_hints(void)
1452 struct regulatory_request *reg_request;
1454 spin_lock(&reg_requests_lock);
1455 while (!list_empty(&reg_requests_list)) {
1456 reg_request = list_first_entry(&reg_requests_list,
1457 struct regulatory_request,
1458 list);
1459 list_del_init(&reg_request->list);
1461 spin_unlock(&reg_requests_lock);
1462 reg_process_hint(reg_request);
1463 spin_lock(&reg_requests_lock);
1465 spin_unlock(&reg_requests_lock);
1468 /* Processes beacon hints -- this has nothing to do with country IEs */
1469 static void reg_process_pending_beacon_hints(void)
1471 struct cfg80211_registered_device *drv;
1472 struct reg_beacon *pending_beacon, *tmp;
1474 mutex_lock(&cfg80211_mutex);
1476 /* This goes through the _pending_ beacon list */
1477 spin_lock_bh(&reg_pending_beacons_lock);
1479 if (list_empty(&reg_pending_beacons)) {
1480 spin_unlock_bh(&reg_pending_beacons_lock);
1481 goto out;
1484 list_for_each_entry_safe(pending_beacon, tmp,
1485 &reg_pending_beacons, list) {
1487 list_del_init(&pending_beacon->list);
1489 /* Applies the beacon hint to current wiphys */
1490 list_for_each_entry(drv, &cfg80211_drv_list, list)
1491 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1493 /* Remembers the beacon hint for new wiphys or reg changes */
1494 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1497 spin_unlock_bh(&reg_pending_beacons_lock);
1498 out:
1499 mutex_unlock(&cfg80211_mutex);
1502 static void reg_todo(struct work_struct *work)
1504 reg_process_pending_hints();
1505 reg_process_pending_beacon_hints();
1508 static DECLARE_WORK(reg_work, reg_todo);
1510 static void queue_regulatory_request(struct regulatory_request *request)
1512 spin_lock(&reg_requests_lock);
1513 list_add_tail(&request->list, &reg_requests_list);
1514 spin_unlock(&reg_requests_lock);
1516 schedule_work(&reg_work);
1519 /* Core regulatory hint -- happens once during cfg80211_init() */
1520 static int regulatory_hint_core(const char *alpha2)
1522 struct regulatory_request *request;
1524 BUG_ON(last_request);
1526 request = kzalloc(sizeof(struct regulatory_request),
1527 GFP_KERNEL);
1528 if (!request)
1529 return -ENOMEM;
1531 request->alpha2[0] = alpha2[0];
1532 request->alpha2[1] = alpha2[1];
1533 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1535 queue_regulatory_request(request);
1537 return 0;
1540 /* User hints */
1541 int regulatory_hint_user(const char *alpha2)
1543 struct regulatory_request *request;
1545 BUG_ON(!alpha2);
1547 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1548 if (!request)
1549 return -ENOMEM;
1551 request->wiphy_idx = WIPHY_IDX_STALE;
1552 request->alpha2[0] = alpha2[0];
1553 request->alpha2[1] = alpha2[1];
1554 request->initiator = NL80211_REGDOM_SET_BY_USER,
1556 queue_regulatory_request(request);
1558 return 0;
1561 /* Driver hints */
1562 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1564 struct regulatory_request *request;
1566 BUG_ON(!alpha2);
1567 BUG_ON(!wiphy);
1569 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1570 if (!request)
1571 return -ENOMEM;
1573 request->wiphy_idx = get_wiphy_idx(wiphy);
1575 /* Must have registered wiphy first */
1576 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1578 request->alpha2[0] = alpha2[0];
1579 request->alpha2[1] = alpha2[1];
1580 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1582 queue_regulatory_request(request);
1584 return 0;
1586 EXPORT_SYMBOL(regulatory_hint);
1588 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1589 u32 country_ie_checksum)
1591 struct wiphy *request_wiphy;
1593 assert_cfg80211_lock();
1595 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1597 if (!request_wiphy)
1598 return false;
1600 if (likely(request_wiphy != wiphy))
1601 return !country_ie_integrity_changes(country_ie_checksum);
1603 * We should not have let these through at this point, they
1604 * should have been picked up earlier by the first alpha2 check
1605 * on the device
1607 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1608 return true;
1609 return false;
1612 void regulatory_hint_11d(struct wiphy *wiphy,
1613 u8 *country_ie,
1614 u8 country_ie_len)
1616 struct ieee80211_regdomain *rd = NULL;
1617 char alpha2[2];
1618 u32 checksum = 0;
1619 enum environment_cap env = ENVIRON_ANY;
1620 struct regulatory_request *request;
1622 mutex_lock(&cfg80211_mutex);
1624 if (unlikely(!last_request)) {
1625 mutex_unlock(&cfg80211_mutex);
1626 return;
1629 /* IE len must be evenly divisible by 2 */
1630 if (country_ie_len & 0x01)
1631 goto out;
1633 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1634 goto out;
1637 * Pending country IE processing, this can happen after we
1638 * call CRDA and wait for a response if a beacon was received before
1639 * we were able to process the last regulatory_hint_11d() call
1641 if (country_ie_regdomain)
1642 goto out;
1644 alpha2[0] = country_ie[0];
1645 alpha2[1] = country_ie[1];
1647 if (country_ie[2] == 'I')
1648 env = ENVIRON_INDOOR;
1649 else if (country_ie[2] == 'O')
1650 env = ENVIRON_OUTDOOR;
1653 * We will run this for *every* beacon processed for the BSSID, so
1654 * we optimize an early check to exit out early if we don't have to
1655 * do anything
1657 if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1658 struct cfg80211_registered_device *drv_last_ie;
1660 drv_last_ie =
1661 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1664 * Lets keep this simple -- we trust the first AP
1665 * after we intersect with CRDA
1667 if (likely(&drv_last_ie->wiphy == wiphy)) {
1669 * Ignore IEs coming in on this wiphy with
1670 * the same alpha2 and environment cap
1672 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1673 alpha2) &&
1674 env == drv_last_ie->env)) {
1675 goto out;
1678 * the wiphy moved on to another BSSID or the AP
1679 * was reconfigured. XXX: We need to deal with the
1680 * case where the user suspends and goes to goes
1681 * to another country, and then gets IEs from an
1682 * AP with different settings
1684 goto out;
1685 } else {
1687 * Ignore IEs coming in on two separate wiphys with
1688 * the same alpha2 and environment cap
1690 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1691 alpha2) &&
1692 env == drv_last_ie->env)) {
1693 goto out;
1695 /* We could potentially intersect though */
1696 goto out;
1700 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1701 if (!rd)
1702 goto out;
1705 * This will not happen right now but we leave it here for the
1706 * the future when we want to add suspend/resume support and having
1707 * the user move to another country after doing so, or having the user
1708 * move to another AP. Right now we just trust the first AP.
1710 * If we hit this before we add this support we want to be informed of
1711 * it as it would indicate a mistake in the current design
1713 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1714 goto free_rd_out;
1716 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1717 if (!request)
1718 goto free_rd_out;
1721 * We keep this around for when CRDA comes back with a response so
1722 * we can intersect with that
1724 country_ie_regdomain = rd;
1726 request->wiphy_idx = get_wiphy_idx(wiphy);
1727 request->alpha2[0] = rd->alpha2[0];
1728 request->alpha2[1] = rd->alpha2[1];
1729 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1730 request->country_ie_checksum = checksum;
1731 request->country_ie_env = env;
1733 mutex_unlock(&cfg80211_mutex);
1735 queue_regulatory_request(request);
1737 return;
1739 free_rd_out:
1740 kfree(rd);
1741 out:
1742 mutex_unlock(&cfg80211_mutex);
1744 EXPORT_SYMBOL(regulatory_hint_11d);
1746 static bool freq_is_chan_12_13_14(u16 freq)
1748 if (freq == ieee80211_channel_to_frequency(12) ||
1749 freq == ieee80211_channel_to_frequency(13) ||
1750 freq == ieee80211_channel_to_frequency(14))
1751 return true;
1752 return false;
1755 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1756 struct ieee80211_channel *beacon_chan,
1757 gfp_t gfp)
1759 struct reg_beacon *reg_beacon;
1761 if (likely((beacon_chan->beacon_found ||
1762 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1763 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1764 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1765 return 0;
1767 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1768 if (!reg_beacon)
1769 return -ENOMEM;
1771 #ifdef CONFIG_CFG80211_REG_DEBUG
1772 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1773 "frequency: %d MHz (Ch %d) on %s\n",
1774 beacon_chan->center_freq,
1775 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1776 wiphy_name(wiphy));
1777 #endif
1778 memcpy(&reg_beacon->chan, beacon_chan,
1779 sizeof(struct ieee80211_channel));
1783 * Since we can be called from BH or and non-BH context
1784 * we must use spin_lock_bh()
1786 spin_lock_bh(&reg_pending_beacons_lock);
1787 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1788 spin_unlock_bh(&reg_pending_beacons_lock);
1790 schedule_work(&reg_work);
1792 return 0;
1795 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1797 unsigned int i;
1798 const struct ieee80211_reg_rule *reg_rule = NULL;
1799 const struct ieee80211_freq_range *freq_range = NULL;
1800 const struct ieee80211_power_rule *power_rule = NULL;
1802 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1803 "(max_antenna_gain, max_eirp)\n");
1805 for (i = 0; i < rd->n_reg_rules; i++) {
1806 reg_rule = &rd->reg_rules[i];
1807 freq_range = &reg_rule->freq_range;
1808 power_rule = &reg_rule->power_rule;
1811 * There may not be documentation for max antenna gain
1812 * in certain regions
1814 if (power_rule->max_antenna_gain)
1815 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1816 "(%d mBi, %d mBm)\n",
1817 freq_range->start_freq_khz,
1818 freq_range->end_freq_khz,
1819 freq_range->max_bandwidth_khz,
1820 power_rule->max_antenna_gain,
1821 power_rule->max_eirp);
1822 else
1823 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1824 "(N/A, %d mBm)\n",
1825 freq_range->start_freq_khz,
1826 freq_range->end_freq_khz,
1827 freq_range->max_bandwidth_khz,
1828 power_rule->max_eirp);
1832 static void print_regdomain(const struct ieee80211_regdomain *rd)
1835 if (is_intersected_alpha2(rd->alpha2)) {
1837 if (last_request->initiator ==
1838 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1839 struct cfg80211_registered_device *drv;
1840 drv = cfg80211_drv_by_wiphy_idx(
1841 last_request->wiphy_idx);
1842 if (drv) {
1843 printk(KERN_INFO "cfg80211: Current regulatory "
1844 "domain updated by AP to: %c%c\n",
1845 drv->country_ie_alpha2[0],
1846 drv->country_ie_alpha2[1]);
1847 } else
1848 printk(KERN_INFO "cfg80211: Current regulatory "
1849 "domain intersected: \n");
1850 } else
1851 printk(KERN_INFO "cfg80211: Current regulatory "
1852 "domain intersected: \n");
1853 } else if (is_world_regdom(rd->alpha2))
1854 printk(KERN_INFO "cfg80211: World regulatory "
1855 "domain updated:\n");
1856 else {
1857 if (is_unknown_alpha2(rd->alpha2))
1858 printk(KERN_INFO "cfg80211: Regulatory domain "
1859 "changed to driver built-in settings "
1860 "(unknown country)\n");
1861 else
1862 printk(KERN_INFO "cfg80211: Regulatory domain "
1863 "changed to country: %c%c\n",
1864 rd->alpha2[0], rd->alpha2[1]);
1866 print_rd_rules(rd);
1869 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1871 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1872 rd->alpha2[0], rd->alpha2[1]);
1873 print_rd_rules(rd);
1876 #ifdef CONFIG_CFG80211_REG_DEBUG
1877 static void reg_country_ie_process_debug(
1878 const struct ieee80211_regdomain *rd,
1879 const struct ieee80211_regdomain *country_ie_regdomain,
1880 const struct ieee80211_regdomain *intersected_rd)
1882 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1883 print_regdomain_info(country_ie_regdomain);
1884 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1885 print_regdomain_info(rd);
1886 if (intersected_rd) {
1887 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1888 "and get:\n");
1889 print_regdomain_info(intersected_rd);
1890 return;
1892 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1894 #else
1895 static inline void reg_country_ie_process_debug(
1896 const struct ieee80211_regdomain *rd,
1897 const struct ieee80211_regdomain *country_ie_regdomain,
1898 const struct ieee80211_regdomain *intersected_rd)
1901 #endif
1903 /* Takes ownership of rd only if it doesn't fail */
1904 static int __set_regdom(const struct ieee80211_regdomain *rd)
1906 const struct ieee80211_regdomain *intersected_rd = NULL;
1907 struct cfg80211_registered_device *drv = NULL;
1908 struct wiphy *request_wiphy;
1909 /* Some basic sanity checks first */
1911 if (is_world_regdom(rd->alpha2)) {
1912 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1913 return -EINVAL;
1914 update_world_regdomain(rd);
1915 return 0;
1918 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1919 !is_unknown_alpha2(rd->alpha2))
1920 return -EINVAL;
1922 if (!last_request)
1923 return -EINVAL;
1926 * Lets only bother proceeding on the same alpha2 if the current
1927 * rd is non static (it means CRDA was present and was used last)
1928 * and the pending request came in from a country IE
1930 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1932 * If someone else asked us to change the rd lets only bother
1933 * checking if the alpha2 changes if CRDA was already called
1935 if (!is_old_static_regdom(cfg80211_regdomain) &&
1936 !regdom_changes(rd->alpha2))
1937 return -EINVAL;
1941 * Now lets set the regulatory domain, update all driver channels
1942 * and finally inform them of what we have done, in case they want
1943 * to review or adjust their own settings based on their own
1944 * internal EEPROM data
1947 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1948 return -EINVAL;
1950 if (!is_valid_rd(rd)) {
1951 printk(KERN_ERR "cfg80211: Invalid "
1952 "regulatory domain detected:\n");
1953 print_regdomain_info(rd);
1954 return -EINVAL;
1957 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1959 if (!last_request->intersect) {
1960 int r;
1962 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1963 reset_regdomains();
1964 cfg80211_regdomain = rd;
1965 return 0;
1969 * For a driver hint, lets copy the regulatory domain the
1970 * driver wanted to the wiphy to deal with conflicts
1973 BUG_ON(request_wiphy->regd);
1975 r = reg_copy_regd(&request_wiphy->regd, rd);
1976 if (r)
1977 return r;
1979 reset_regdomains();
1980 cfg80211_regdomain = rd;
1981 return 0;
1984 /* Intersection requires a bit more work */
1986 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1988 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1989 if (!intersected_rd)
1990 return -EINVAL;
1993 * We can trash what CRDA provided now.
1994 * However if a driver requested this specific regulatory
1995 * domain we keep it for its private use
1997 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1998 request_wiphy->regd = rd;
1999 else
2000 kfree(rd);
2002 rd = NULL;
2004 reset_regdomains();
2005 cfg80211_regdomain = intersected_rd;
2007 return 0;
2011 * Country IE requests are handled a bit differently, we intersect
2012 * the country IE rd with what CRDA believes that country should have
2015 BUG_ON(!country_ie_regdomain);
2017 if (rd != country_ie_regdomain) {
2019 * Intersect what CRDA returned and our what we
2020 * had built from the Country IE received
2023 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2025 reg_country_ie_process_debug(rd, country_ie_regdomain,
2026 intersected_rd);
2028 kfree(country_ie_regdomain);
2029 country_ie_regdomain = NULL;
2030 } else {
2032 * This would happen when CRDA was not present and
2033 * OLD_REGULATORY was enabled. We intersect our Country
2034 * IE rd and what was set on cfg80211 originally
2036 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2039 if (!intersected_rd)
2040 return -EINVAL;
2042 drv = wiphy_to_dev(request_wiphy);
2044 drv->country_ie_alpha2[0] = rd->alpha2[0];
2045 drv->country_ie_alpha2[1] = rd->alpha2[1];
2046 drv->env = last_request->country_ie_env;
2048 BUG_ON(intersected_rd == rd);
2050 kfree(rd);
2051 rd = NULL;
2053 reset_regdomains();
2054 cfg80211_regdomain = intersected_rd;
2056 return 0;
2061 * Use this call to set the current regulatory domain. Conflicts with
2062 * multiple drivers can be ironed out later. Caller must've already
2063 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2065 int set_regdom(const struct ieee80211_regdomain *rd)
2067 int r;
2069 assert_cfg80211_lock();
2071 /* Note that this doesn't update the wiphys, this is done below */
2072 r = __set_regdom(rd);
2073 if (r) {
2074 kfree(rd);
2075 return r;
2078 /* This would make this whole thing pointless */
2079 if (!last_request->intersect)
2080 BUG_ON(rd != cfg80211_regdomain);
2082 /* update all wiphys now with the new established regulatory domain */
2083 update_all_wiphy_regulatory(last_request->initiator);
2085 print_regdomain(cfg80211_regdomain);
2087 return r;
2090 /* Caller must hold cfg80211_mutex */
2091 void reg_device_remove(struct wiphy *wiphy)
2093 struct wiphy *request_wiphy;
2095 assert_cfg80211_lock();
2097 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2099 kfree(wiphy->regd);
2100 if (!last_request || !request_wiphy)
2101 return;
2102 if (request_wiphy != wiphy)
2103 return;
2104 last_request->wiphy_idx = WIPHY_IDX_STALE;
2105 last_request->country_ie_env = ENVIRON_ANY;
2108 int regulatory_init(void)
2110 int err = 0;
2112 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2113 if (IS_ERR(reg_pdev))
2114 return PTR_ERR(reg_pdev);
2116 spin_lock_init(&reg_requests_lock);
2117 spin_lock_init(&reg_pending_beacons_lock);
2119 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2120 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2122 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2123 print_regdomain_info(cfg80211_regdomain);
2125 * The old code still requests for a new regdomain and if
2126 * you have CRDA you get it updated, otherwise you get
2127 * stuck with the static values. We ignore "EU" code as
2128 * that is not a valid ISO / IEC 3166 alpha2
2130 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2131 err = regulatory_hint_core(ieee80211_regdom);
2132 #else
2133 cfg80211_regdomain = cfg80211_world_regdom;
2135 err = regulatory_hint_core("00");
2136 #endif
2137 if (err) {
2138 if (err == -ENOMEM)
2139 return err;
2141 * N.B. kobject_uevent_env() can fail mainly for when we're out
2142 * memory which is handled and propagated appropriately above
2143 * but it can also fail during a netlink_broadcast() or during
2144 * early boot for call_usermodehelper(). For now treat these
2145 * errors as non-fatal.
2147 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2148 "to call CRDA during init");
2149 #ifdef CONFIG_CFG80211_REG_DEBUG
2150 /* We want to find out exactly why when debugging */
2151 WARN_ON(err);
2152 #endif
2155 return 0;
2158 void regulatory_exit(void)
2160 struct regulatory_request *reg_request, *tmp;
2161 struct reg_beacon *reg_beacon, *btmp;
2163 cancel_work_sync(&reg_work);
2165 mutex_lock(&cfg80211_mutex);
2167 reset_regdomains();
2169 kfree(country_ie_regdomain);
2170 country_ie_regdomain = NULL;
2172 kfree(last_request);
2174 platform_device_unregister(reg_pdev);
2176 spin_lock_bh(&reg_pending_beacons_lock);
2177 if (!list_empty(&reg_pending_beacons)) {
2178 list_for_each_entry_safe(reg_beacon, btmp,
2179 &reg_pending_beacons, list) {
2180 list_del(&reg_beacon->list);
2181 kfree(reg_beacon);
2184 spin_unlock_bh(&reg_pending_beacons_lock);
2186 if (!list_empty(&reg_beacon_list)) {
2187 list_for_each_entry_safe(reg_beacon, btmp,
2188 &reg_beacon_list, list) {
2189 list_del(&reg_beacon->list);
2190 kfree(reg_beacon);
2194 spin_lock(&reg_requests_lock);
2195 if (!list_empty(&reg_requests_list)) {
2196 list_for_each_entry_safe(reg_request, tmp,
2197 &reg_requests_list, list) {
2198 list_del(&reg_request->list);
2199 kfree(reg_request);
2202 spin_unlock(&reg_requests_lock);
2204 mutex_unlock(&cfg80211_mutex);