2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap
);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
39 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
42 * For the allocated request tables
44 static struct kmem_cache
*request_cachep
;
47 * For queue allocation
49 struct kmem_cache
*blk_requestq_cachep
;
52 * Controlling structure to kblockd
54 static struct workqueue_struct
*kblockd_workqueue
;
56 static void drive_stat_acct(struct request
*rq
, int new_io
)
58 struct hd_struct
*part
;
59 int rw
= rq_data_dir(rq
);
62 if (!blk_do_io_stat(rq
))
65 cpu
= part_stat_lock();
66 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
69 part_stat_inc(cpu
, part
, merges
[rw
]);
71 part_round_stats(cpu
, part
);
72 part_inc_in_flight(part
);
78 void blk_queue_congestion_threshold(struct request_queue
*q
)
82 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
83 if (nr
> q
->nr_requests
)
85 q
->nr_congestion_on
= nr
;
87 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
90 q
->nr_congestion_off
= nr
;
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
97 * Locates the passed device's request queue and returns the address of its
100 * Will return NULL if the request queue cannot be located.
102 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
104 struct backing_dev_info
*ret
= NULL
;
105 struct request_queue
*q
= bdev_get_queue(bdev
);
108 ret
= &q
->backing_dev_info
;
111 EXPORT_SYMBOL(blk_get_backing_dev_info
);
113 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
115 memset(rq
, 0, sizeof(*rq
));
117 INIT_LIST_HEAD(&rq
->queuelist
);
118 INIT_LIST_HEAD(&rq
->timeout_list
);
121 rq
->__sector
= (sector_t
) -1;
122 INIT_HLIST_NODE(&rq
->hash
);
123 RB_CLEAR_NODE(&rq
->rb_node
);
125 rq
->cmd_len
= BLK_MAX_CDB
;
128 rq
->start_time
= jiffies
;
130 EXPORT_SYMBOL(blk_rq_init
);
132 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
133 unsigned int nbytes
, int error
)
135 struct request_queue
*q
= rq
->q
;
137 if (&q
->bar_rq
!= rq
) {
139 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
140 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
143 if (unlikely(nbytes
> bio
->bi_size
)) {
144 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
145 __func__
, nbytes
, bio
->bi_size
);
146 nbytes
= bio
->bi_size
;
149 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
150 set_bit(BIO_QUIET
, &bio
->bi_flags
);
152 bio
->bi_size
-= nbytes
;
153 bio
->bi_sector
+= (nbytes
>> 9);
155 if (bio_integrity(bio
))
156 bio_integrity_advance(bio
, nbytes
);
158 if (bio
->bi_size
== 0)
159 bio_endio(bio
, error
);
163 * Okay, this is the barrier request in progress, just
166 if (error
&& !q
->orderr
)
171 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
175 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
176 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
179 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq
),
181 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
182 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
183 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
185 if (blk_pc_request(rq
)) {
186 printk(KERN_INFO
" cdb: ");
187 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
188 printk("%02x ", rq
->cmd
[bit
]);
192 EXPORT_SYMBOL(blk_dump_rq_flags
);
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
202 void blk_plug_device(struct request_queue
*q
)
204 WARN_ON(!irqs_disabled());
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
210 if (blk_queue_stopped(q
))
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED
, q
)) {
214 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
218 EXPORT_SYMBOL(blk_plug_device
);
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
225 * Like @blk_plug_device(), but grabs the queue lock and disables
228 void blk_plug_device_unlocked(struct request_queue
*q
)
232 spin_lock_irqsave(q
->queue_lock
, flags
);
234 spin_unlock_irqrestore(q
->queue_lock
, flags
);
236 EXPORT_SYMBOL(blk_plug_device_unlocked
);
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
242 int blk_remove_plug(struct request_queue
*q
)
244 WARN_ON(!irqs_disabled());
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED
, q
))
249 del_timer(&q
->unplug_timer
);
252 EXPORT_SYMBOL(blk_remove_plug
);
255 * remove the plug and let it rip..
257 void __generic_unplug_device(struct request_queue
*q
)
259 if (unlikely(blk_queue_stopped(q
)))
261 if (!blk_remove_plug(q
) && !blk_queue_nonrot(q
))
268 * generic_unplug_device - fire a request queue
269 * @q: The &struct request_queue in question
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
278 void generic_unplug_device(struct request_queue
*q
)
280 if (blk_queue_plugged(q
)) {
281 spin_lock_irq(q
->queue_lock
);
282 __generic_unplug_device(q
);
283 spin_unlock_irq(q
->queue_lock
);
286 EXPORT_SYMBOL(generic_unplug_device
);
288 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
291 struct request_queue
*q
= bdi
->unplug_io_data
;
296 void blk_unplug_work(struct work_struct
*work
)
298 struct request_queue
*q
=
299 container_of(work
, struct request_queue
, unplug_work
);
301 trace_block_unplug_io(q
);
305 void blk_unplug_timeout(unsigned long data
)
307 struct request_queue
*q
= (struct request_queue
*)data
;
309 trace_block_unplug_timer(q
);
310 kblockd_schedule_work(q
, &q
->unplug_work
);
313 void blk_unplug(struct request_queue
*q
)
316 * devices don't necessarily have an ->unplug_fn defined
319 trace_block_unplug_io(q
);
323 EXPORT_SYMBOL(blk_unplug
);
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
334 void blk_start_queue(struct request_queue
*q
)
336 WARN_ON(!irqs_disabled());
338 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
341 EXPORT_SYMBOL(blk_start_queue
);
344 * blk_stop_queue - stop a queue
345 * @q: The &struct request_queue in question
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
357 void blk_stop_queue(struct request_queue
*q
)
360 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
362 EXPORT_SYMBOL(blk_stop_queue
);
365 * blk_sync_queue - cancel any pending callbacks on a queue
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
373 * that the callbacks might use. The caller must already have made sure
374 * that its ->make_request_fn will not re-add plugging prior to calling
378 void blk_sync_queue(struct request_queue
*q
)
380 del_timer_sync(&q
->unplug_timer
);
381 del_timer_sync(&q
->timeout
);
382 cancel_work_sync(&q
->unplug_work
);
384 EXPORT_SYMBOL(blk_sync_queue
);
387 * __blk_run_queue - run a single device queue
388 * @q: The queue to run
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
395 void __blk_run_queue(struct request_queue
*q
)
399 if (unlikely(blk_queue_stopped(q
)))
402 if (elv_queue_empty(q
))
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER
, q
)) {
411 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
413 queue_flag_set(QUEUE_FLAG_PLUGGED
, q
);
414 kblockd_schedule_work(q
, &q
->unplug_work
);
417 EXPORT_SYMBOL(__blk_run_queue
);
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
424 * Invoke request handling on this queue, if it has pending work to do.
425 * May be used to restart queueing when a request has completed.
427 void blk_run_queue(struct request_queue
*q
)
431 spin_lock_irqsave(q
->queue_lock
, flags
);
433 spin_unlock_irqrestore(q
->queue_lock
, flags
);
435 EXPORT_SYMBOL(blk_run_queue
);
437 void blk_put_queue(struct request_queue
*q
)
439 kobject_put(&q
->kobj
);
442 void blk_cleanup_queue(struct request_queue
*q
)
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
452 mutex_lock(&q
->sysfs_lock
);
453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
454 mutex_unlock(&q
->sysfs_lock
);
457 elevator_exit(q
->elevator
);
461 EXPORT_SYMBOL(blk_cleanup_queue
);
463 static int blk_init_free_list(struct request_queue
*q
)
465 struct request_list
*rl
= &q
->rq
;
467 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
468 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
470 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
471 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
473 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
474 mempool_free_slab
, request_cachep
, q
->node
);
482 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
484 return blk_alloc_queue_node(gfp_mask
, -1);
486 EXPORT_SYMBOL(blk_alloc_queue
);
488 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
490 struct request_queue
*q
;
493 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
494 gfp_mask
| __GFP_ZERO
, node_id
);
498 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
499 q
->backing_dev_info
.unplug_io_data
= q
;
500 q
->backing_dev_info
.ra_pages
=
501 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
502 q
->backing_dev_info
.state
= 0;
503 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
505 err
= bdi_init(&q
->backing_dev_info
);
507 kmem_cache_free(blk_requestq_cachep
, q
);
511 init_timer(&q
->unplug_timer
);
512 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
513 INIT_LIST_HEAD(&q
->timeout_list
);
514 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
516 kobject_init(&q
->kobj
, &blk_queue_ktype
);
518 mutex_init(&q
->sysfs_lock
);
519 spin_lock_init(&q
->__queue_lock
);
523 EXPORT_SYMBOL(blk_alloc_queue_node
);
526 * blk_init_queue - prepare a request queue for use with a block device
527 * @rfn: The function to be called to process requests that have been
528 * placed on the queue.
529 * @lock: Request queue spin lock
532 * If a block device wishes to use the standard request handling procedures,
533 * which sorts requests and coalesces adjacent requests, then it must
534 * call blk_init_queue(). The function @rfn will be called when there
535 * are requests on the queue that need to be processed. If the device
536 * supports plugging, then @rfn may not be called immediately when requests
537 * are available on the queue, but may be called at some time later instead.
538 * Plugged queues are generally unplugged when a buffer belonging to one
539 * of the requests on the queue is needed, or due to memory pressure.
541 * @rfn is not required, or even expected, to remove all requests off the
542 * queue, but only as many as it can handle at a time. If it does leave
543 * requests on the queue, it is responsible for arranging that the requests
544 * get dealt with eventually.
546 * The queue spin lock must be held while manipulating the requests on the
547 * request queue; this lock will be taken also from interrupt context, so irq
548 * disabling is needed for it.
550 * Function returns a pointer to the initialized request queue, or %NULL if
554 * blk_init_queue() must be paired with a blk_cleanup_queue() call
555 * when the block device is deactivated (such as at module unload).
558 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
560 return blk_init_queue_node(rfn
, lock
, -1);
562 EXPORT_SYMBOL(blk_init_queue
);
564 struct request_queue
*
565 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
567 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
573 if (blk_init_free_list(q
)) {
574 kmem_cache_free(blk_requestq_cachep
, q
);
579 q
->prep_rq_fn
= NULL
;
580 q
->unplug_fn
= generic_unplug_device
;
581 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
582 q
->queue_lock
= lock
;
585 * This also sets hw/phys segments, boundary and size
587 blk_queue_make_request(q
, __make_request
);
589 q
->sg_reserved_size
= INT_MAX
;
594 if (!elevator_init(q
, NULL
)) {
595 blk_queue_congestion_threshold(q
);
602 EXPORT_SYMBOL(blk_init_queue_node
);
604 int blk_get_queue(struct request_queue
*q
)
606 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
607 kobject_get(&q
->kobj
);
614 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
616 if (rq
->cmd_flags
& REQ_ELVPRIV
)
617 elv_put_request(q
, rq
);
618 mempool_free(rq
, q
->rq
.rq_pool
);
621 static struct request
*
622 blk_alloc_request(struct request_queue
*q
, int flags
, int priv
, gfp_t gfp_mask
)
624 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
631 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
634 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
635 mempool_free(rq
, q
->rq
.rq_pool
);
638 rq
->cmd_flags
|= REQ_ELVPRIV
;
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
648 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
658 return ioc
->nr_batch_requests
== q
->nr_batching
||
659 (ioc
->nr_batch_requests
> 0
660 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
669 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
671 if (!ioc
|| ioc_batching(q
, ioc
))
674 ioc
->nr_batch_requests
= q
->nr_batching
;
675 ioc
->last_waited
= jiffies
;
678 static void __freed_request(struct request_queue
*q
, int sync
)
680 struct request_list
*rl
= &q
->rq
;
682 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
683 blk_clear_queue_congested(q
, sync
);
685 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
686 if (waitqueue_active(&rl
->wait
[sync
]))
687 wake_up(&rl
->wait
[sync
]);
689 blk_clear_queue_full(q
, sync
);
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
697 static void freed_request(struct request_queue
*q
, int sync
, int priv
)
699 struct request_list
*rl
= &q
->rq
;
705 __freed_request(q
, sync
);
707 if (unlikely(rl
->starved
[sync
^ 1]))
708 __freed_request(q
, sync
^ 1);
712 * Get a free request, queue_lock must be held.
713 * Returns NULL on failure, with queue_lock held.
714 * Returns !NULL on success, with queue_lock *not held*.
716 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
717 struct bio
*bio
, gfp_t gfp_mask
)
719 struct request
*rq
= NULL
;
720 struct request_list
*rl
= &q
->rq
;
721 struct io_context
*ioc
= NULL
;
722 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
725 may_queue
= elv_may_queue(q
, rw_flags
);
726 if (may_queue
== ELV_MQUEUE_NO
)
729 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
730 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
731 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
733 * The queue will fill after this allocation, so set
734 * it as full, and mark this process as "batching".
735 * This process will be allowed to complete a batch of
736 * requests, others will be blocked.
738 if (!blk_queue_full(q
, is_sync
)) {
739 ioc_set_batching(q
, ioc
);
740 blk_set_queue_full(q
, is_sync
);
742 if (may_queue
!= ELV_MQUEUE_MUST
743 && !ioc_batching(q
, ioc
)) {
745 * The queue is full and the allocating
746 * process is not a "batcher", and not
747 * exempted by the IO scheduler
753 blk_set_queue_congested(q
, is_sync
);
757 * Only allow batching queuers to allocate up to 50% over the defined
758 * limit of requests, otherwise we could have thousands of requests
759 * allocated with any setting of ->nr_requests
761 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
764 rl
->count
[is_sync
]++;
765 rl
->starved
[is_sync
] = 0;
767 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
771 if (blk_queue_io_stat(q
))
772 rw_flags
|= REQ_IO_STAT
;
773 spin_unlock_irq(q
->queue_lock
);
775 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
784 spin_lock_irq(q
->queue_lock
);
785 freed_request(q
, is_sync
, priv
);
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
795 if (unlikely(rl
->count
[is_sync
] == 0))
796 rl
->starved
[is_sync
] = 1;
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
807 if (ioc_batching(q
, ioc
))
808 ioc
->nr_batch_requests
--;
810 trace_block_getrq(q
, bio
, rw_flags
& 1);
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
819 * Called with q->queue_lock held, and returns with it unlocked.
821 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
824 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
827 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
830 struct io_context
*ioc
;
831 struct request_list
*rl
= &q
->rq
;
833 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
834 TASK_UNINTERRUPTIBLE
);
836 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
838 __generic_unplug_device(q
);
839 spin_unlock_irq(q
->queue_lock
);
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
848 ioc
= current_io_context(GFP_NOIO
, q
->node
);
849 ioc_set_batching(q
, ioc
);
851 spin_lock_irq(q
->queue_lock
);
852 finish_wait(&rl
->wait
[is_sync
], &wait
);
854 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
860 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
864 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
866 spin_lock_irq(q
->queue_lock
);
867 if (gfp_mask
& __GFP_WAIT
) {
868 rq
= get_request_wait(q
, rw
, NULL
);
870 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
872 spin_unlock_irq(q
->queue_lock
);
874 /* q->queue_lock is unlocked at this point */
878 EXPORT_SYMBOL(blk_get_request
);
881 * blk_make_request - given a bio, allocate a corresponding struct request.
882 * @q: target request queue
883 * @bio: The bio describing the memory mappings that will be submitted for IO.
884 * It may be a chained-bio properly constructed by block/bio layer.
885 * @gfp_mask: gfp flags to be used for memory allocation
887 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
888 * type commands. Where the struct request needs to be farther initialized by
889 * the caller. It is passed a &struct bio, which describes the memory info of
892 * The caller of blk_make_request must make sure that bi_io_vec
893 * are set to describe the memory buffers. That bio_data_dir() will return
894 * the needed direction of the request. (And all bio's in the passed bio-chain
895 * are properly set accordingly)
897 * If called under none-sleepable conditions, mapped bio buffers must not
898 * need bouncing, by calling the appropriate masked or flagged allocator,
899 * suitable for the target device. Otherwise the call to blk_queue_bounce will
902 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
903 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
904 * anything but the first bio in the chain. Otherwise you risk waiting for IO
905 * completion of a bio that hasn't been submitted yet, thus resulting in a
906 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
907 * of bio_alloc(), as that avoids the mempool deadlock.
908 * If possible a big IO should be split into smaller parts when allocation
909 * fails. Partial allocation should not be an error, or you risk a live-lock.
911 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
914 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
917 return ERR_PTR(-ENOMEM
);
920 struct bio
*bounce_bio
= bio
;
923 blk_queue_bounce(q
, &bounce_bio
);
924 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
933 EXPORT_SYMBOL(blk_make_request
);
936 * blk_requeue_request - put a request back on queue
937 * @q: request queue where request should be inserted
938 * @rq: request to be inserted
941 * Drivers often keep queueing requests until the hardware cannot accept
942 * more, when that condition happens we need to put the request back
943 * on the queue. Must be called with queue lock held.
945 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
947 blk_delete_timer(rq
);
948 blk_clear_rq_complete(rq
);
949 trace_block_rq_requeue(q
, rq
);
951 if (blk_rq_tagged(rq
))
952 blk_queue_end_tag(q
, rq
);
954 BUG_ON(blk_queued_rq(rq
));
956 elv_requeue_request(q
, rq
);
958 EXPORT_SYMBOL(blk_requeue_request
);
961 * blk_insert_request - insert a special request into a request queue
962 * @q: request queue where request should be inserted
963 * @rq: request to be inserted
964 * @at_head: insert request at head or tail of queue
965 * @data: private data
968 * Many block devices need to execute commands asynchronously, so they don't
969 * block the whole kernel from preemption during request execution. This is
970 * accomplished normally by inserting aritficial requests tagged as
971 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
972 * be scheduled for actual execution by the request queue.
974 * We have the option of inserting the head or the tail of the queue.
975 * Typically we use the tail for new ioctls and so forth. We use the head
976 * of the queue for things like a QUEUE_FULL message from a device, or a
977 * host that is unable to accept a particular command.
979 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
980 int at_head
, void *data
)
982 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
986 * tell I/O scheduler that this isn't a regular read/write (ie it
987 * must not attempt merges on this) and that it acts as a soft
990 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
994 spin_lock_irqsave(q
->queue_lock
, flags
);
997 * If command is tagged, release the tag
999 if (blk_rq_tagged(rq
))
1000 blk_queue_end_tag(q
, rq
);
1002 drive_stat_acct(rq
, 1);
1003 __elv_add_request(q
, rq
, where
, 0);
1005 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1007 EXPORT_SYMBOL(blk_insert_request
);
1010 * add-request adds a request to the linked list.
1011 * queue lock is held and interrupts disabled, as we muck with the
1012 * request queue list.
1014 static inline void add_request(struct request_queue
*q
, struct request
*req
)
1016 drive_stat_acct(req
, 1);
1019 * elevator indicated where it wants this request to be
1020 * inserted at elevator_merge time
1022 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
1025 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
1028 if (now
== part
->stamp
)
1031 if (part
->in_flight
) {
1032 __part_stat_add(cpu
, part
, time_in_queue
,
1033 part
->in_flight
* (now
- part
->stamp
));
1034 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1040 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1041 * @cpu: cpu number for stats access
1042 * @part: target partition
1044 * The average IO queue length and utilisation statistics are maintained
1045 * by observing the current state of the queue length and the amount of
1046 * time it has been in this state for.
1048 * Normally, that accounting is done on IO completion, but that can result
1049 * in more than a second's worth of IO being accounted for within any one
1050 * second, leading to >100% utilisation. To deal with that, we call this
1051 * function to do a round-off before returning the results when reading
1052 * /proc/diskstats. This accounts immediately for all queue usage up to
1053 * the current jiffies and restarts the counters again.
1055 void part_round_stats(int cpu
, struct hd_struct
*part
)
1057 unsigned long now
= jiffies
;
1060 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1061 part_round_stats_single(cpu
, part
, now
);
1063 EXPORT_SYMBOL_GPL(part_round_stats
);
1066 * queue lock must be held
1068 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1072 if (unlikely(--req
->ref_count
))
1075 elv_completed_request(q
, req
);
1077 /* this is a bio leak */
1078 WARN_ON(req
->bio
!= NULL
);
1081 * Request may not have originated from ll_rw_blk. if not,
1082 * it didn't come out of our reserved rq pools
1084 if (req
->cmd_flags
& REQ_ALLOCED
) {
1085 int is_sync
= rq_is_sync(req
) != 0;
1086 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1088 BUG_ON(!list_empty(&req
->queuelist
));
1089 BUG_ON(!hlist_unhashed(&req
->hash
));
1091 blk_free_request(q
, req
);
1092 freed_request(q
, is_sync
, priv
);
1095 EXPORT_SYMBOL_GPL(__blk_put_request
);
1097 void blk_put_request(struct request
*req
)
1099 unsigned long flags
;
1100 struct request_queue
*q
= req
->q
;
1102 spin_lock_irqsave(q
->queue_lock
, flags
);
1103 __blk_put_request(q
, req
);
1104 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1106 EXPORT_SYMBOL(blk_put_request
);
1108 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1110 req
->cpu
= bio
->bi_comp_cpu
;
1111 req
->cmd_type
= REQ_TYPE_FS
;
1114 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1116 if (bio_rw_ahead(bio
))
1117 req
->cmd_flags
|= (REQ_FAILFAST_DEV
| REQ_FAILFAST_TRANSPORT
|
1118 REQ_FAILFAST_DRIVER
);
1119 if (bio_failfast_dev(bio
))
1120 req
->cmd_flags
|= REQ_FAILFAST_DEV
;
1121 if (bio_failfast_transport(bio
))
1122 req
->cmd_flags
|= REQ_FAILFAST_TRANSPORT
;
1123 if (bio_failfast_driver(bio
))
1124 req
->cmd_flags
|= REQ_FAILFAST_DRIVER
;
1126 if (unlikely(bio_discard(bio
))) {
1127 req
->cmd_flags
|= REQ_DISCARD
;
1128 if (bio_barrier(bio
))
1129 req
->cmd_flags
|= REQ_SOFTBARRIER
;
1130 req
->q
->prepare_discard_fn(req
->q
, req
);
1131 } else if (unlikely(bio_barrier(bio
)))
1132 req
->cmd_flags
|= REQ_HARDBARRIER
;
1135 req
->cmd_flags
|= REQ_RW_SYNC
;
1136 if (bio_rw_meta(bio
))
1137 req
->cmd_flags
|= REQ_RW_META
;
1138 if (bio_noidle(bio
))
1139 req
->cmd_flags
|= REQ_NOIDLE
;
1142 req
->__sector
= bio
->bi_sector
;
1143 req
->ioprio
= bio_prio(bio
);
1144 blk_rq_bio_prep(req
->q
, req
, bio
);
1148 * Only disabling plugging for non-rotational devices if it does tagging
1149 * as well, otherwise we do need the proper merging
1151 static inline bool queue_should_plug(struct request_queue
*q
)
1153 return !(blk_queue_nonrot(q
) && blk_queue_tagged(q
));
1156 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1158 struct request
*req
;
1160 unsigned int bytes
= bio
->bi_size
;
1161 const unsigned short prio
= bio_prio(bio
);
1162 const int sync
= bio_sync(bio
);
1163 const int unplug
= bio_unplug(bio
);
1166 if (bio_barrier(bio
) && bio_has_data(bio
) &&
1167 (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1168 bio_endio(bio
, -EOPNOTSUPP
);
1172 * low level driver can indicate that it wants pages above a
1173 * certain limit bounced to low memory (ie for highmem, or even
1174 * ISA dma in theory)
1176 blk_queue_bounce(q
, &bio
);
1178 spin_lock_irq(q
->queue_lock
);
1180 if (unlikely(bio_barrier(bio
)) || elv_queue_empty(q
))
1183 el_ret
= elv_merge(q
, &req
, bio
);
1185 case ELEVATOR_BACK_MERGE
:
1186 BUG_ON(!rq_mergeable(req
));
1188 if (!ll_back_merge_fn(q
, req
, bio
))
1191 trace_block_bio_backmerge(q
, bio
);
1193 req
->biotail
->bi_next
= bio
;
1195 req
->__data_len
+= bytes
;
1196 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1197 if (!blk_rq_cpu_valid(req
))
1198 req
->cpu
= bio
->bi_comp_cpu
;
1199 drive_stat_acct(req
, 0);
1200 if (!attempt_back_merge(q
, req
))
1201 elv_merged_request(q
, req
, el_ret
);
1204 case ELEVATOR_FRONT_MERGE
:
1205 BUG_ON(!rq_mergeable(req
));
1207 if (!ll_front_merge_fn(q
, req
, bio
))
1210 trace_block_bio_frontmerge(q
, bio
);
1212 bio
->bi_next
= req
->bio
;
1216 * may not be valid. if the low level driver said
1217 * it didn't need a bounce buffer then it better
1218 * not touch req->buffer either...
1220 req
->buffer
= bio_data(bio
);
1221 req
->__sector
= bio
->bi_sector
;
1222 req
->__data_len
+= bytes
;
1223 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1224 if (!blk_rq_cpu_valid(req
))
1225 req
->cpu
= bio
->bi_comp_cpu
;
1226 drive_stat_acct(req
, 0);
1227 if (!attempt_front_merge(q
, req
))
1228 elv_merged_request(q
, req
, el_ret
);
1231 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1238 * This sync check and mask will be re-done in init_request_from_bio(),
1239 * but we need to set it earlier to expose the sync flag to the
1240 * rq allocator and io schedulers.
1242 rw_flags
= bio_data_dir(bio
);
1244 rw_flags
|= REQ_RW_SYNC
;
1247 * Grab a free request. This is might sleep but can not fail.
1248 * Returns with the queue unlocked.
1250 req
= get_request_wait(q
, rw_flags
, bio
);
1253 * After dropping the lock and possibly sleeping here, our request
1254 * may now be mergeable after it had proven unmergeable (above).
1255 * We don't worry about that case for efficiency. It won't happen
1256 * often, and the elevators are able to handle it.
1258 init_request_from_bio(req
, bio
);
1260 spin_lock_irq(q
->queue_lock
);
1261 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
) ||
1262 bio_flagged(bio
, BIO_CPU_AFFINE
))
1263 req
->cpu
= blk_cpu_to_group(smp_processor_id());
1264 if (queue_should_plug(q
) && elv_queue_empty(q
))
1266 add_request(q
, req
);
1268 if (unplug
|| !queue_should_plug(q
))
1269 __generic_unplug_device(q
);
1270 spin_unlock_irq(q
->queue_lock
);
1275 * If bio->bi_dev is a partition, remap the location
1277 static inline void blk_partition_remap(struct bio
*bio
)
1279 struct block_device
*bdev
= bio
->bi_bdev
;
1281 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1282 struct hd_struct
*p
= bdev
->bd_part
;
1284 bio
->bi_sector
+= p
->start_sect
;
1285 bio
->bi_bdev
= bdev
->bd_contains
;
1287 trace_block_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1289 bio
->bi_sector
- p
->start_sect
);
1293 static void handle_bad_sector(struct bio
*bio
)
1295 char b
[BDEVNAME_SIZE
];
1297 printk(KERN_INFO
"attempt to access beyond end of device\n");
1298 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1299 bdevname(bio
->bi_bdev
, b
),
1301 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1302 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1304 set_bit(BIO_EOF
, &bio
->bi_flags
);
1307 #ifdef CONFIG_FAIL_MAKE_REQUEST
1309 static DECLARE_FAULT_ATTR(fail_make_request
);
1311 static int __init
setup_fail_make_request(char *str
)
1313 return setup_fault_attr(&fail_make_request
, str
);
1315 __setup("fail_make_request=", setup_fail_make_request
);
1317 static int should_fail_request(struct bio
*bio
)
1319 struct hd_struct
*part
= bio
->bi_bdev
->bd_part
;
1321 if (part_to_disk(part
)->part0
.make_it_fail
|| part
->make_it_fail
)
1322 return should_fail(&fail_make_request
, bio
->bi_size
);
1327 static int __init
fail_make_request_debugfs(void)
1329 return init_fault_attr_dentries(&fail_make_request
,
1330 "fail_make_request");
1333 late_initcall(fail_make_request_debugfs
);
1335 #else /* CONFIG_FAIL_MAKE_REQUEST */
1337 static inline int should_fail_request(struct bio
*bio
)
1342 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1345 * Check whether this bio extends beyond the end of the device.
1347 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1354 /* Test device or partition size, when known. */
1355 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1357 sector_t sector
= bio
->bi_sector
;
1359 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1361 * This may well happen - the kernel calls bread()
1362 * without checking the size of the device, e.g., when
1363 * mounting a device.
1365 handle_bad_sector(bio
);
1374 * generic_make_request - hand a buffer to its device driver for I/O
1375 * @bio: The bio describing the location in memory and on the device.
1377 * generic_make_request() is used to make I/O requests of block
1378 * devices. It is passed a &struct bio, which describes the I/O that needs
1381 * generic_make_request() does not return any status. The
1382 * success/failure status of the request, along with notification of
1383 * completion, is delivered asynchronously through the bio->bi_end_io
1384 * function described (one day) else where.
1386 * The caller of generic_make_request must make sure that bi_io_vec
1387 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1388 * set to describe the device address, and the
1389 * bi_end_io and optionally bi_private are set to describe how
1390 * completion notification should be signaled.
1392 * generic_make_request and the drivers it calls may use bi_next if this
1393 * bio happens to be merged with someone else, and may change bi_dev and
1394 * bi_sector for remaps as it sees fit. So the values of these fields
1395 * should NOT be depended on after the call to generic_make_request.
1397 static inline void __generic_make_request(struct bio
*bio
)
1399 struct request_queue
*q
;
1400 sector_t old_sector
;
1401 int ret
, nr_sectors
= bio_sectors(bio
);
1407 if (bio_check_eod(bio
, nr_sectors
))
1411 * Resolve the mapping until finished. (drivers are
1412 * still free to implement/resolve their own stacking
1413 * by explicitly returning 0)
1415 * NOTE: we don't repeat the blk_size check for each new device.
1416 * Stacking drivers are expected to know what they are doing.
1421 char b
[BDEVNAME_SIZE
];
1423 q
= bdev_get_queue(bio
->bi_bdev
);
1426 "generic_make_request: Trying to access "
1427 "nonexistent block-device %s (%Lu)\n",
1428 bdevname(bio
->bi_bdev
, b
),
1429 (long long) bio
->bi_sector
);
1433 if (unlikely(nr_sectors
> queue_max_hw_sectors(q
))) {
1434 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1435 bdevname(bio
->bi_bdev
, b
),
1437 queue_max_hw_sectors(q
));
1441 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1444 if (should_fail_request(bio
))
1448 * If this device has partitions, remap block n
1449 * of partition p to block n+start(p) of the disk.
1451 blk_partition_remap(bio
);
1453 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1456 if (old_sector
!= -1)
1457 trace_block_remap(q
, bio
, old_dev
, old_sector
);
1459 trace_block_bio_queue(q
, bio
);
1461 old_sector
= bio
->bi_sector
;
1462 old_dev
= bio
->bi_bdev
->bd_dev
;
1464 if (bio_check_eod(bio
, nr_sectors
))
1467 if (bio_discard(bio
) && !q
->prepare_discard_fn
) {
1472 ret
= q
->make_request_fn(q
, bio
);
1478 bio_endio(bio
, err
);
1482 * We only want one ->make_request_fn to be active at a time,
1483 * else stack usage with stacked devices could be a problem.
1484 * So use current->bio_{list,tail} to keep a list of requests
1485 * submited by a make_request_fn function.
1486 * current->bio_tail is also used as a flag to say if
1487 * generic_make_request is currently active in this task or not.
1488 * If it is NULL, then no make_request is active. If it is non-NULL,
1489 * then a make_request is active, and new requests should be added
1492 void generic_make_request(struct bio
*bio
)
1494 if (current
->bio_tail
) {
1495 /* make_request is active */
1496 *(current
->bio_tail
) = bio
;
1497 bio
->bi_next
= NULL
;
1498 current
->bio_tail
= &bio
->bi_next
;
1501 /* following loop may be a bit non-obvious, and so deserves some
1503 * Before entering the loop, bio->bi_next is NULL (as all callers
1504 * ensure that) so we have a list with a single bio.
1505 * We pretend that we have just taken it off a longer list, so
1506 * we assign bio_list to the next (which is NULL) and bio_tail
1507 * to &bio_list, thus initialising the bio_list of new bios to be
1508 * added. __generic_make_request may indeed add some more bios
1509 * through a recursive call to generic_make_request. If it
1510 * did, we find a non-NULL value in bio_list and re-enter the loop
1511 * from the top. In this case we really did just take the bio
1512 * of the top of the list (no pretending) and so fixup bio_list and
1513 * bio_tail or bi_next, and call into __generic_make_request again.
1515 * The loop was structured like this to make only one call to
1516 * __generic_make_request (which is important as it is large and
1517 * inlined) and to keep the structure simple.
1519 BUG_ON(bio
->bi_next
);
1521 current
->bio_list
= bio
->bi_next
;
1522 if (bio
->bi_next
== NULL
)
1523 current
->bio_tail
= ¤t
->bio_list
;
1525 bio
->bi_next
= NULL
;
1526 __generic_make_request(bio
);
1527 bio
= current
->bio_list
;
1529 current
->bio_tail
= NULL
; /* deactivate */
1531 EXPORT_SYMBOL(generic_make_request
);
1534 * submit_bio - submit a bio to the block device layer for I/O
1535 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1536 * @bio: The &struct bio which describes the I/O
1538 * submit_bio() is very similar in purpose to generic_make_request(), and
1539 * uses that function to do most of the work. Both are fairly rough
1540 * interfaces; @bio must be presetup and ready for I/O.
1543 void submit_bio(int rw
, struct bio
*bio
)
1545 int count
= bio_sectors(bio
);
1550 * If it's a regular read/write or a barrier with data attached,
1551 * go through the normal accounting stuff before submission.
1553 if (bio_has_data(bio
)) {
1555 count_vm_events(PGPGOUT
, count
);
1557 task_io_account_read(bio
->bi_size
);
1558 count_vm_events(PGPGIN
, count
);
1561 if (unlikely(block_dump
)) {
1562 char b
[BDEVNAME_SIZE
];
1563 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1564 current
->comm
, task_pid_nr(current
),
1565 (rw
& WRITE
) ? "WRITE" : "READ",
1566 (unsigned long long)bio
->bi_sector
,
1567 bdevname(bio
->bi_bdev
, b
));
1571 generic_make_request(bio
);
1573 EXPORT_SYMBOL(submit_bio
);
1576 * blk_rq_check_limits - Helper function to check a request for the queue limit
1578 * @rq: the request being checked
1581 * @rq may have been made based on weaker limitations of upper-level queues
1582 * in request stacking drivers, and it may violate the limitation of @q.
1583 * Since the block layer and the underlying device driver trust @rq
1584 * after it is inserted to @q, it should be checked against @q before
1585 * the insertion using this generic function.
1587 * This function should also be useful for request stacking drivers
1588 * in some cases below, so export this fuction.
1589 * Request stacking drivers like request-based dm may change the queue
1590 * limits while requests are in the queue (e.g. dm's table swapping).
1591 * Such request stacking drivers should check those requests agaist
1592 * the new queue limits again when they dispatch those requests,
1593 * although such checkings are also done against the old queue limits
1594 * when submitting requests.
1596 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1598 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1599 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1600 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1605 * queue's settings related to segment counting like q->bounce_pfn
1606 * may differ from that of other stacking queues.
1607 * Recalculate it to check the request correctly on this queue's
1610 blk_recalc_rq_segments(rq
);
1611 if (rq
->nr_phys_segments
> queue_max_phys_segments(q
) ||
1612 rq
->nr_phys_segments
> queue_max_hw_segments(q
)) {
1613 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1619 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1623 * @q: the queue to submit the request
1624 * @rq: the request being queued
1626 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1628 unsigned long flags
;
1630 if (blk_rq_check_limits(q
, rq
))
1633 #ifdef CONFIG_FAIL_MAKE_REQUEST
1634 if (rq
->rq_disk
&& rq
->rq_disk
->part0
.make_it_fail
&&
1635 should_fail(&fail_make_request
, blk_rq_bytes(rq
)))
1639 spin_lock_irqsave(q
->queue_lock
, flags
);
1642 * Submitting request must be dequeued before calling this function
1643 * because it will be linked to another request_queue
1645 BUG_ON(blk_queued_rq(rq
));
1647 drive_stat_acct(rq
, 1);
1648 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1650 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1654 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1656 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1658 if (blk_do_io_stat(req
)) {
1659 const int rw
= rq_data_dir(req
);
1660 struct hd_struct
*part
;
1663 cpu
= part_stat_lock();
1664 part
= disk_map_sector_rcu(req
->rq_disk
, blk_rq_pos(req
));
1665 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1670 static void blk_account_io_done(struct request
*req
)
1673 * Account IO completion. bar_rq isn't accounted as a normal
1674 * IO on queueing nor completion. Accounting the containing
1675 * request is enough.
1677 if (blk_do_io_stat(req
) && req
!= &req
->q
->bar_rq
) {
1678 unsigned long duration
= jiffies
- req
->start_time
;
1679 const int rw
= rq_data_dir(req
);
1680 struct hd_struct
*part
;
1683 cpu
= part_stat_lock();
1684 part
= disk_map_sector_rcu(req
->rq_disk
, blk_rq_pos(req
));
1686 part_stat_inc(cpu
, part
, ios
[rw
]);
1687 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1688 part_round_stats(cpu
, part
);
1689 part_dec_in_flight(part
);
1696 * blk_peek_request - peek at the top of a request queue
1697 * @q: request queue to peek at
1700 * Return the request at the top of @q. The returned request
1701 * should be started using blk_start_request() before LLD starts
1705 * Pointer to the request at the top of @q if available. Null
1709 * queue_lock must be held.
1711 struct request
*blk_peek_request(struct request_queue
*q
)
1716 while ((rq
= __elv_next_request(q
)) != NULL
) {
1717 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1719 * This is the first time the device driver
1720 * sees this request (possibly after
1721 * requeueing). Notify IO scheduler.
1723 if (blk_sorted_rq(rq
))
1724 elv_activate_rq(q
, rq
);
1727 * just mark as started even if we don't start
1728 * it, a request that has been delayed should
1729 * not be passed by new incoming requests
1731 rq
->cmd_flags
|= REQ_STARTED
;
1732 trace_block_rq_issue(q
, rq
);
1735 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1736 q
->end_sector
= rq_end_sector(rq
);
1737 q
->boundary_rq
= NULL
;
1740 if (rq
->cmd_flags
& REQ_DONTPREP
)
1743 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1745 * make sure space for the drain appears we
1746 * know we can do this because max_hw_segments
1747 * has been adjusted to be one fewer than the
1750 rq
->nr_phys_segments
++;
1756 ret
= q
->prep_rq_fn(q
, rq
);
1757 if (ret
== BLKPREP_OK
) {
1759 } else if (ret
== BLKPREP_DEFER
) {
1761 * the request may have been (partially) prepped.
1762 * we need to keep this request in the front to
1763 * avoid resource deadlock. REQ_STARTED will
1764 * prevent other fs requests from passing this one.
1766 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1767 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1769 * remove the space for the drain we added
1770 * so that we don't add it again
1772 --rq
->nr_phys_segments
;
1777 } else if (ret
== BLKPREP_KILL
) {
1778 rq
->cmd_flags
|= REQ_QUIET
;
1780 * Mark this request as started so we don't trigger
1781 * any debug logic in the end I/O path.
1783 blk_start_request(rq
);
1784 __blk_end_request_all(rq
, -EIO
);
1786 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1793 EXPORT_SYMBOL(blk_peek_request
);
1795 void blk_dequeue_request(struct request
*rq
)
1797 struct request_queue
*q
= rq
->q
;
1799 BUG_ON(list_empty(&rq
->queuelist
));
1800 BUG_ON(ELV_ON_HASH(rq
));
1802 list_del_init(&rq
->queuelist
);
1805 * the time frame between a request being removed from the lists
1806 * and to it is freed is accounted as io that is in progress at
1809 if (blk_account_rq(rq
))
1810 q
->in_flight
[rq_is_sync(rq
)]++;
1814 * blk_start_request - start request processing on the driver
1815 * @req: request to dequeue
1818 * Dequeue @req and start timeout timer on it. This hands off the
1819 * request to the driver.
1821 * Block internal functions which don't want to start timer should
1822 * call blk_dequeue_request().
1825 * queue_lock must be held.
1827 void blk_start_request(struct request
*req
)
1829 blk_dequeue_request(req
);
1832 * We are now handing the request to the hardware, initialize
1833 * resid_len to full count and add the timeout handler.
1835 req
->resid_len
= blk_rq_bytes(req
);
1836 if (unlikely(blk_bidi_rq(req
)))
1837 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
1841 EXPORT_SYMBOL(blk_start_request
);
1844 * blk_fetch_request - fetch a request from a request queue
1845 * @q: request queue to fetch a request from
1848 * Return the request at the top of @q. The request is started on
1849 * return and LLD can start processing it immediately.
1852 * Pointer to the request at the top of @q if available. Null
1856 * queue_lock must be held.
1858 struct request
*blk_fetch_request(struct request_queue
*q
)
1862 rq
= blk_peek_request(q
);
1864 blk_start_request(rq
);
1867 EXPORT_SYMBOL(blk_fetch_request
);
1870 * blk_update_request - Special helper function for request stacking drivers
1871 * @req: the request being processed
1872 * @error: %0 for success, < %0 for error
1873 * @nr_bytes: number of bytes to complete @req
1876 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1877 * the request structure even if @req doesn't have leftover.
1878 * If @req has leftover, sets it up for the next range of segments.
1880 * This special helper function is only for request stacking drivers
1881 * (e.g. request-based dm) so that they can handle partial completion.
1882 * Actual device drivers should use blk_end_request instead.
1884 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1885 * %false return from this function.
1888 * %false - this request doesn't have any more data
1889 * %true - this request has more data
1891 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
1893 int total_bytes
, bio_nbytes
, next_idx
= 0;
1899 trace_block_rq_complete(req
->q
, req
);
1902 * For fs requests, rq is just carrier of independent bio's
1903 * and each partial completion should be handled separately.
1904 * Reset per-request error on each partial completion.
1906 * TODO: tj: This is too subtle. It would be better to let
1907 * low level drivers do what they see fit.
1909 if (blk_fs_request(req
))
1912 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1913 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1914 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1915 (unsigned long long)blk_rq_pos(req
));
1918 blk_account_io_completion(req
, nr_bytes
);
1920 total_bytes
= bio_nbytes
= 0;
1921 while ((bio
= req
->bio
) != NULL
) {
1924 if (nr_bytes
>= bio
->bi_size
) {
1925 req
->bio
= bio
->bi_next
;
1926 nbytes
= bio
->bi_size
;
1927 req_bio_endio(req
, bio
, nbytes
, error
);
1931 int idx
= bio
->bi_idx
+ next_idx
;
1933 if (unlikely(idx
>= bio
->bi_vcnt
)) {
1934 blk_dump_rq_flags(req
, "__end_that");
1935 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1936 __func__
, idx
, bio
->bi_vcnt
);
1940 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1941 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1944 * not a complete bvec done
1946 if (unlikely(nbytes
> nr_bytes
)) {
1947 bio_nbytes
+= nr_bytes
;
1948 total_bytes
+= nr_bytes
;
1953 * advance to the next vector
1956 bio_nbytes
+= nbytes
;
1959 total_bytes
+= nbytes
;
1965 * end more in this run, or just return 'not-done'
1967 if (unlikely(nr_bytes
<= 0))
1977 * Reset counters so that the request stacking driver
1978 * can find how many bytes remain in the request
1981 req
->__data_len
= 0;
1986 * if the request wasn't completed, update state
1989 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1990 bio
->bi_idx
+= next_idx
;
1991 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1992 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1995 req
->__data_len
-= total_bytes
;
1996 req
->buffer
= bio_data(req
->bio
);
1998 /* update sector only for requests with clear definition of sector */
1999 if (blk_fs_request(req
) || blk_discard_rq(req
))
2000 req
->__sector
+= total_bytes
>> 9;
2003 * If total number of sectors is less than the first segment
2004 * size, something has gone terribly wrong.
2006 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2007 printk(KERN_ERR
"blk: request botched\n");
2008 req
->__data_len
= blk_rq_cur_bytes(req
);
2011 /* recalculate the number of segments */
2012 blk_recalc_rq_segments(req
);
2016 EXPORT_SYMBOL_GPL(blk_update_request
);
2018 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2019 unsigned int nr_bytes
,
2020 unsigned int bidi_bytes
)
2022 if (blk_update_request(rq
, error
, nr_bytes
))
2025 /* Bidi request must be completed as a whole */
2026 if (unlikely(blk_bidi_rq(rq
)) &&
2027 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2030 add_disk_randomness(rq
->rq_disk
);
2036 * queue lock must be held
2038 static void blk_finish_request(struct request
*req
, int error
)
2040 if (blk_rq_tagged(req
))
2041 blk_queue_end_tag(req
->q
, req
);
2043 BUG_ON(blk_queued_rq(req
));
2045 if (unlikely(laptop_mode
) && blk_fs_request(req
))
2046 laptop_io_completion();
2048 blk_delete_timer(req
);
2050 blk_account_io_done(req
);
2053 req
->end_io(req
, error
);
2055 if (blk_bidi_rq(req
))
2056 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2058 __blk_put_request(req
->q
, req
);
2063 * blk_end_bidi_request - Complete a bidi request
2064 * @rq: the request to complete
2065 * @error: %0 for success, < %0 for error
2066 * @nr_bytes: number of bytes to complete @rq
2067 * @bidi_bytes: number of bytes to complete @rq->next_rq
2070 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2071 * Drivers that supports bidi can safely call this member for any
2072 * type of request, bidi or uni. In the later case @bidi_bytes is
2076 * %false - we are done with this request
2077 * %true - still buffers pending for this request
2079 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2080 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2082 struct request_queue
*q
= rq
->q
;
2083 unsigned long flags
;
2085 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2088 spin_lock_irqsave(q
->queue_lock
, flags
);
2089 blk_finish_request(rq
, error
);
2090 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2096 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2097 * @rq: the request to complete
2098 * @error: %0 for success, < %0 for error
2099 * @nr_bytes: number of bytes to complete @rq
2100 * @bidi_bytes: number of bytes to complete @rq->next_rq
2103 * Identical to blk_end_bidi_request() except that queue lock is
2104 * assumed to be locked on entry and remains so on return.
2107 * %false - we are done with this request
2108 * %true - still buffers pending for this request
2110 static bool __blk_end_bidi_request(struct request
*rq
, int error
,
2111 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2113 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2116 blk_finish_request(rq
, error
);
2122 * blk_end_request - Helper function for drivers to complete the request.
2123 * @rq: the request being processed
2124 * @error: %0 for success, < %0 for error
2125 * @nr_bytes: number of bytes to complete
2128 * Ends I/O on a number of bytes attached to @rq.
2129 * If @rq has leftover, sets it up for the next range of segments.
2132 * %false - we are done with this request
2133 * %true - still buffers pending for this request
2135 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2137 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2139 EXPORT_SYMBOL(blk_end_request
);
2142 * blk_end_request_all - Helper function for drives to finish the request.
2143 * @rq: the request to finish
2144 * @error: %0 for success, < %0 for error
2147 * Completely finish @rq.
2149 void blk_end_request_all(struct request
*rq
, int error
)
2152 unsigned int bidi_bytes
= 0;
2154 if (unlikely(blk_bidi_rq(rq
)))
2155 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2157 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2160 EXPORT_SYMBOL(blk_end_request_all
);
2163 * blk_end_request_cur - Helper function to finish the current request chunk.
2164 * @rq: the request to finish the current chunk for
2165 * @error: %0 for success, < %0 for error
2168 * Complete the current consecutively mapped chunk from @rq.
2171 * %false - we are done with this request
2172 * %true - still buffers pending for this request
2174 bool blk_end_request_cur(struct request
*rq
, int error
)
2176 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2178 EXPORT_SYMBOL(blk_end_request_cur
);
2181 * __blk_end_request - Helper function for drivers to complete the request.
2182 * @rq: the request being processed
2183 * @error: %0 for success, < %0 for error
2184 * @nr_bytes: number of bytes to complete
2187 * Must be called with queue lock held unlike blk_end_request().
2190 * %false - we are done with this request
2191 * %true - still buffers pending for this request
2193 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2195 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2197 EXPORT_SYMBOL(__blk_end_request
);
2200 * __blk_end_request_all - Helper function for drives to finish the request.
2201 * @rq: the request to finish
2202 * @error: %0 for success, < %0 for error
2205 * Completely finish @rq. Must be called with queue lock held.
2207 void __blk_end_request_all(struct request
*rq
, int error
)
2210 unsigned int bidi_bytes
= 0;
2212 if (unlikely(blk_bidi_rq(rq
)))
2213 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2215 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2218 EXPORT_SYMBOL(__blk_end_request_all
);
2221 * __blk_end_request_cur - Helper function to finish the current request chunk.
2222 * @rq: the request to finish the current chunk for
2223 * @error: %0 for success, < %0 for error
2226 * Complete the current consecutively mapped chunk from @rq. Must
2227 * be called with queue lock held.
2230 * %false - we are done with this request
2231 * %true - still buffers pending for this request
2233 bool __blk_end_request_cur(struct request
*rq
, int error
)
2235 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2237 EXPORT_SYMBOL(__blk_end_request_cur
);
2239 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2242 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2243 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2244 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
2246 if (bio_has_data(bio
)) {
2247 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2248 rq
->buffer
= bio_data(bio
);
2250 rq
->__data_len
= bio
->bi_size
;
2251 rq
->bio
= rq
->biotail
= bio
;
2254 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2258 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2259 * @q : the queue of the device being checked
2262 * Check if underlying low-level drivers of a device are busy.
2263 * If the drivers want to export their busy state, they must set own
2264 * exporting function using blk_queue_lld_busy() first.
2266 * Basically, this function is used only by request stacking drivers
2267 * to stop dispatching requests to underlying devices when underlying
2268 * devices are busy. This behavior helps more I/O merging on the queue
2269 * of the request stacking driver and prevents I/O throughput regression
2270 * on burst I/O load.
2273 * 0 - Not busy (The request stacking driver should dispatch request)
2274 * 1 - Busy (The request stacking driver should stop dispatching request)
2276 int blk_lld_busy(struct request_queue
*q
)
2279 return q
->lld_busy_fn(q
);
2283 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2286 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2287 * @rq: the clone request to be cleaned up
2290 * Free all bios in @rq for a cloned request.
2292 void blk_rq_unprep_clone(struct request
*rq
)
2296 while ((bio
= rq
->bio
) != NULL
) {
2297 rq
->bio
= bio
->bi_next
;
2302 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2305 * Copy attributes of the original request to the clone request.
2306 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2308 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2310 dst
->cpu
= src
->cpu
;
2311 dst
->cmd_flags
= (rq_data_dir(src
) | REQ_NOMERGE
);
2312 dst
->cmd_type
= src
->cmd_type
;
2313 dst
->__sector
= blk_rq_pos(src
);
2314 dst
->__data_len
= blk_rq_bytes(src
);
2315 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2316 dst
->ioprio
= src
->ioprio
;
2317 dst
->extra_len
= src
->extra_len
;
2321 * blk_rq_prep_clone - Helper function to setup clone request
2322 * @rq: the request to be setup
2323 * @rq_src: original request to be cloned
2324 * @bs: bio_set that bios for clone are allocated from
2325 * @gfp_mask: memory allocation mask for bio
2326 * @bio_ctr: setup function to be called for each clone bio.
2327 * Returns %0 for success, non %0 for failure.
2328 * @data: private data to be passed to @bio_ctr
2331 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2332 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2333 * are not copied, and copying such parts is the caller's responsibility.
2334 * Also, pages which the original bios are pointing to are not copied
2335 * and the cloned bios just point same pages.
2336 * So cloned bios must be completed before original bios, which means
2337 * the caller must complete @rq before @rq_src.
2339 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2340 struct bio_set
*bs
, gfp_t gfp_mask
,
2341 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2344 struct bio
*bio
, *bio_src
;
2349 blk_rq_init(NULL
, rq
);
2351 __rq_for_each_bio(bio_src
, rq_src
) {
2352 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2356 __bio_clone(bio
, bio_src
);
2358 if (bio_integrity(bio_src
) &&
2359 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2362 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2366 rq
->biotail
->bi_next
= bio
;
2369 rq
->bio
= rq
->biotail
= bio
;
2372 __blk_rq_prep_clone(rq
, rq_src
);
2379 blk_rq_unprep_clone(rq
);
2383 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2385 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2387 return queue_work(kblockd_workqueue
, work
);
2389 EXPORT_SYMBOL(kblockd_schedule_work
);
2391 int __init
blk_dev_init(void)
2393 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2394 sizeof(((struct request
*)0)->cmd_flags
));
2396 kblockd_workqueue
= create_workqueue("kblockd");
2397 if (!kblockd_workqueue
)
2398 panic("Failed to create kblockd\n");
2400 request_cachep
= kmem_cache_create("blkdev_requests",
2401 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2403 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2404 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);