[PATCH] shpchp: reduce debug message verbosity
[linux-2.6/verdex.git] / drivers / net / acenic.c
blobdbecc6bf78519ce09088cad0e0b48d96200a8c07
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/version.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/pci.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/kernel.h>
63 #include <linux/netdevice.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/sockios.h>
72 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
73 #include <linux/if_vlan.h>
74 #endif
76 #ifdef SIOCETHTOOL
77 #include <linux/ethtool.h>
78 #endif
80 #include <net/sock.h>
81 #include <net/ip.h>
83 #include <asm/system.h>
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/byteorder.h>
87 #include <asm/uaccess.h>
90 #define DRV_NAME "acenic"
92 #undef INDEX_DEBUG
94 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
95 #define ACE_IS_TIGON_I(ap) 0
96 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
97 #else
98 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
99 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
100 #endif
102 #ifndef PCI_VENDOR_ID_ALTEON
103 #define PCI_VENDOR_ID_ALTEON 0x12ae
104 #endif
105 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
106 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
107 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
108 #endif
109 #ifndef PCI_DEVICE_ID_3COM_3C985
110 #define PCI_DEVICE_ID_3COM_3C985 0x0001
111 #endif
112 #ifndef PCI_VENDOR_ID_NETGEAR
113 #define PCI_VENDOR_ID_NETGEAR 0x1385
114 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
115 #endif
116 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
117 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
118 #endif
122 * Farallon used the DEC vendor ID by mistake and they seem not
123 * to care - stinky!
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
126 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
127 #endif
128 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
129 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
130 #endif
131 #ifndef PCI_VENDOR_ID_SGI
132 #define PCI_VENDOR_ID_SGI 0x10a9
133 #endif
134 #ifndef PCI_DEVICE_ID_SGI_ACENIC
135 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
136 #endif
138 static struct pci_device_id acenic_pci_tbl[] = {
139 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
150 * Farallon used the DEC vendor ID on their cards incorrectly,
151 * then later Alteon's ID.
153 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
156 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
157 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
158 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
161 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
163 #ifndef SET_NETDEV_DEV
164 #define SET_NETDEV_DEV(net, pdev) do{} while(0)
165 #endif
167 #if LINUX_VERSION_CODE >= 0x2051c
168 #define ace_sync_irq(irq) synchronize_irq(irq)
169 #else
170 #define ace_sync_irq(irq) synchronize_irq()
171 #endif
173 #ifndef offset_in_page
174 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
175 #endif
177 #define ACE_MAX_MOD_PARMS 8
178 #define BOARD_IDX_STATIC 0
179 #define BOARD_IDX_OVERFLOW -1
181 #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
182 defined(NETIF_F_HW_VLAN_RX)
183 #define ACENIC_DO_VLAN 1
184 #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
185 #else
186 #define ACENIC_DO_VLAN 0
187 #define ACE_RCB_VLAN_FLAG 0
188 #endif
190 #include "acenic.h"
193 * These must be defined before the firmware is included.
195 #define MAX_TEXT_LEN 96*1024
196 #define MAX_RODATA_LEN 8*1024
197 #define MAX_DATA_LEN 2*1024
199 #include "acenic_firmware.h"
201 #ifndef tigon2FwReleaseLocal
202 #define tigon2FwReleaseLocal 0
203 #endif
206 * This driver currently supports Tigon I and Tigon II based cards
207 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
208 * GA620. The driver should also work on the SGI, DEC and Farallon
209 * versions of the card, however I have not been able to test that
210 * myself.
212 * This card is really neat, it supports receive hardware checksumming
213 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
214 * firmware. Also the programming interface is quite neat, except for
215 * the parts dealing with the i2c eeprom on the card ;-)
217 * Using jumbo frames:
219 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
220 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
221 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
222 * interface number and <MTU> being the MTU value.
224 * Module parameters:
226 * When compiled as a loadable module, the driver allows for a number
227 * of module parameters to be specified. The driver supports the
228 * following module parameters:
230 * trace=<val> - Firmware trace level. This requires special traced
231 * firmware to replace the firmware supplied with
232 * the driver - for debugging purposes only.
234 * link=<val> - Link state. Normally you want to use the default link
235 * parameters set by the driver. This can be used to
236 * override these in case your switch doesn't negotiate
237 * the link properly. Valid values are:
238 * 0x0001 - Force half duplex link.
239 * 0x0002 - Do not negotiate line speed with the other end.
240 * 0x0010 - 10Mbit/sec link.
241 * 0x0020 - 100Mbit/sec link.
242 * 0x0040 - 1000Mbit/sec link.
243 * 0x0100 - Do not negotiate flow control.
244 * 0x0200 - Enable RX flow control Y
245 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
246 * Default value is 0x0270, ie. enable link+flow
247 * control negotiation. Negotiating the highest
248 * possible link speed with RX flow control enabled.
250 * When disabling link speed negotiation, only one link
251 * speed is allowed to be specified!
253 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
254 * to wait for more packets to arive before
255 * interrupting the host, from the time the first
256 * packet arrives.
258 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
259 * to wait for more packets to arive in the transmit ring,
260 * before interrupting the host, after transmitting the
261 * first packet in the ring.
263 * max_tx_desc=<val> - maximum number of transmit descriptors
264 * (packets) transmitted before interrupting the host.
266 * max_rx_desc=<val> - maximum number of receive descriptors
267 * (packets) received before interrupting the host.
269 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
270 * increments of the NIC's on board memory to be used for
271 * transmit and receive buffers. For the 1MB NIC app. 800KB
272 * is available, on the 1/2MB NIC app. 300KB is available.
273 * 68KB will always be available as a minimum for both
274 * directions. The default value is a 50/50 split.
275 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
276 * operations, default (1) is to always disable this as
277 * that is what Alteon does on NT. I have not been able
278 * to measure any real performance differences with
279 * this on my systems. Set <val>=0 if you want to
280 * enable these operations.
282 * If you use more than one NIC, specify the parameters for the
283 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
284 * run tracing on NIC #2 but not on NIC #1 and #3.
286 * TODO:
288 * - Proper multicast support.
289 * - NIC dump support.
290 * - More tuning parameters.
292 * The mini ring is not used under Linux and I am not sure it makes sense
293 * to actually use it.
295 * New interrupt handler strategy:
297 * The old interrupt handler worked using the traditional method of
298 * replacing an skbuff with a new one when a packet arrives. However
299 * the rx rings do not need to contain a static number of buffer
300 * descriptors, thus it makes sense to move the memory allocation out
301 * of the main interrupt handler and do it in a bottom half handler
302 * and only allocate new buffers when the number of buffers in the
303 * ring is below a certain threshold. In order to avoid starving the
304 * NIC under heavy load it is however necessary to force allocation
305 * when hitting a minimum threshold. The strategy for alloction is as
306 * follows:
308 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
309 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
310 * the buffers in the interrupt handler
311 * RX_RING_THRES - maximum number of buffers in the rx ring
312 * RX_MINI_THRES - maximum number of buffers in the mini ring
313 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
315 * One advantagous side effect of this allocation approach is that the
316 * entire rx processing can be done without holding any spin lock
317 * since the rx rings and registers are totally independent of the tx
318 * ring and its registers. This of course includes the kmalloc's of
319 * new skb's. Thus start_xmit can run in parallel with rx processing
320 * and the memory allocation on SMP systems.
322 * Note that running the skb reallocation in a bottom half opens up
323 * another can of races which needs to be handled properly. In
324 * particular it can happen that the interrupt handler tries to run
325 * the reallocation while the bottom half is either running on another
326 * CPU or was interrupted on the same CPU. To get around this the
327 * driver uses bitops to prevent the reallocation routines from being
328 * reentered.
330 * TX handling can also be done without holding any spin lock, wheee
331 * this is fun! since tx_ret_csm is only written to by the interrupt
332 * handler. The case to be aware of is when shutting down the device
333 * and cleaning up where it is necessary to make sure that
334 * start_xmit() is not running while this is happening. Well DaveM
335 * informs me that this case is already protected against ... bye bye
336 * Mr. Spin Lock, it was nice to know you.
338 * TX interrupts are now partly disabled so the NIC will only generate
339 * TX interrupts for the number of coal ticks, not for the number of
340 * TX packets in the queue. This should reduce the number of TX only,
341 * ie. when no RX processing is done, interrupts seen.
345 * Threshold values for RX buffer allocation - the low water marks for
346 * when to start refilling the rings are set to 75% of the ring
347 * sizes. It seems to make sense to refill the rings entirely from the
348 * intrrupt handler once it gets below the panic threshold, that way
349 * we don't risk that the refilling is moved to another CPU when the
350 * one running the interrupt handler just got the slab code hot in its
351 * cache.
353 #define RX_RING_SIZE 72
354 #define RX_MINI_SIZE 64
355 #define RX_JUMBO_SIZE 48
357 #define RX_PANIC_STD_THRES 16
358 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
359 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
360 #define RX_PANIC_MINI_THRES 12
361 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
362 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
363 #define RX_PANIC_JUMBO_THRES 6
364 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
365 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
369 * Size of the mini ring entries, basically these just should be big
370 * enough to take TCP ACKs
372 #define ACE_MINI_SIZE 100
374 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
375 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
376 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
379 * There seems to be a magic difference in the effect between 995 and 996
380 * but little difference between 900 and 995 ... no idea why.
382 * There is now a default set of tuning parameters which is set, depending
383 * on whether or not the user enables Jumbo frames. It's assumed that if
384 * Jumbo frames are enabled, the user wants optimal tuning for that case.
386 #define DEF_TX_COAL 400 /* 996 */
387 #define DEF_TX_MAX_DESC 60 /* was 40 */
388 #define DEF_RX_COAL 120 /* 1000 */
389 #define DEF_RX_MAX_DESC 25
390 #define DEF_TX_RATIO 21 /* 24 */
392 #define DEF_JUMBO_TX_COAL 20
393 #define DEF_JUMBO_TX_MAX_DESC 60
394 #define DEF_JUMBO_RX_COAL 30
395 #define DEF_JUMBO_RX_MAX_DESC 6
396 #define DEF_JUMBO_TX_RATIO 21
398 #if tigon2FwReleaseLocal < 20001118
400 * Standard firmware and early modifications duplicate
401 * IRQ load without this flag (coal timer is never reset).
402 * Note that with this flag tx_coal should be less than
403 * time to xmit full tx ring.
404 * 400usec is not so bad for tx ring size of 128.
406 #define TX_COAL_INTS_ONLY 1 /* worth it */
407 #else
409 * With modified firmware, this is not necessary, but still useful.
411 #define TX_COAL_INTS_ONLY 1
412 #endif
414 #define DEF_TRACE 0
415 #define DEF_STAT (2 * TICKS_PER_SEC)
418 static int link[ACE_MAX_MOD_PARMS];
419 static int trace[ACE_MAX_MOD_PARMS];
420 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
421 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
422 static int max_tx_desc[ACE_MAX_MOD_PARMS];
423 static int max_rx_desc[ACE_MAX_MOD_PARMS];
424 static int tx_ratio[ACE_MAX_MOD_PARMS];
425 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
427 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
428 MODULE_LICENSE("GPL");
429 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
431 module_param_array(link, int, NULL, 0);
432 module_param_array(trace, int, NULL, 0);
433 module_param_array(tx_coal_tick, int, NULL, 0);
434 module_param_array(max_tx_desc, int, NULL, 0);
435 module_param_array(rx_coal_tick, int, NULL, 0);
436 module_param_array(max_rx_desc, int, NULL, 0);
437 module_param_array(tx_ratio, int, NULL, 0);
438 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
439 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
440 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
441 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
442 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
443 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
444 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
447 static char version[] __devinitdata =
448 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
449 " http://home.cern.ch/~jes/gige/acenic.html\n";
451 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
452 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
453 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
455 static struct ethtool_ops ace_ethtool_ops = {
456 .get_settings = ace_get_settings,
457 .set_settings = ace_set_settings,
458 .get_drvinfo = ace_get_drvinfo,
461 static void ace_watchdog(struct net_device *dev);
463 static int __devinit acenic_probe_one(struct pci_dev *pdev,
464 const struct pci_device_id *id)
466 struct net_device *dev;
467 struct ace_private *ap;
468 static int boards_found;
470 dev = alloc_etherdev(sizeof(struct ace_private));
471 if (dev == NULL) {
472 printk(KERN_ERR "acenic: Unable to allocate "
473 "net_device structure!\n");
474 return -ENOMEM;
477 SET_MODULE_OWNER(dev);
478 SET_NETDEV_DEV(dev, &pdev->dev);
480 ap = dev->priv;
481 ap->pdev = pdev;
482 ap->name = pci_name(pdev);
484 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
485 #if ACENIC_DO_VLAN
486 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
487 dev->vlan_rx_register = ace_vlan_rx_register;
488 dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
489 #endif
490 if (1) {
491 dev->tx_timeout = &ace_watchdog;
492 dev->watchdog_timeo = 5*HZ;
495 dev->open = &ace_open;
496 dev->stop = &ace_close;
497 dev->hard_start_xmit = &ace_start_xmit;
498 dev->get_stats = &ace_get_stats;
499 dev->set_multicast_list = &ace_set_multicast_list;
500 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
501 dev->set_mac_address = &ace_set_mac_addr;
502 dev->change_mtu = &ace_change_mtu;
504 /* we only display this string ONCE */
505 if (!boards_found)
506 printk(version);
508 if (pci_enable_device(pdev))
509 goto fail_free_netdev;
512 * Enable master mode before we start playing with the
513 * pci_command word since pci_set_master() will modify
514 * it.
516 pci_set_master(pdev);
518 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
520 /* OpenFirmware on Mac's does not set this - DOH.. */
521 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
522 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
523 "access - was not enabled by BIOS/Firmware\n",
524 ap->name);
525 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
526 pci_write_config_word(ap->pdev, PCI_COMMAND,
527 ap->pci_command);
528 wmb();
531 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
532 if (ap->pci_latency <= 0x40) {
533 ap->pci_latency = 0x40;
534 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
538 * Remap the regs into kernel space - this is abuse of
539 * dev->base_addr since it was means for I/O port
540 * addresses but who gives a damn.
542 dev->base_addr = pci_resource_start(pdev, 0);
543 ap->regs = ioremap(dev->base_addr, 0x4000);
544 if (!ap->regs) {
545 printk(KERN_ERR "%s: Unable to map I/O register, "
546 "AceNIC %i will be disabled.\n",
547 ap->name, boards_found);
548 goto fail_free_netdev;
551 switch(pdev->vendor) {
552 case PCI_VENDOR_ID_ALTEON:
553 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
554 printk(KERN_INFO "%s: Farallon PN9100-T ",
555 ap->name);
556 } else {
557 printk(KERN_INFO "%s: Alteon AceNIC ",
558 ap->name);
560 break;
561 case PCI_VENDOR_ID_3COM:
562 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
563 break;
564 case PCI_VENDOR_ID_NETGEAR:
565 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
566 break;
567 case PCI_VENDOR_ID_DEC:
568 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
569 printk(KERN_INFO "%s: Farallon PN9000-SX ",
570 ap->name);
571 break;
573 case PCI_VENDOR_ID_SGI:
574 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
575 break;
576 default:
577 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
578 break;
581 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
582 #ifdef __sparc__
583 printk("irq %s\n", __irq_itoa(pdev->irq));
584 #else
585 printk("irq %i\n", pdev->irq);
586 #endif
588 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
589 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
590 printk(KERN_ERR "%s: Driver compiled without Tigon I"
591 " support - NIC disabled\n", dev->name);
592 goto fail_uninit;
594 #endif
596 if (ace_allocate_descriptors(dev))
597 goto fail_free_netdev;
599 #ifdef MODULE
600 if (boards_found >= ACE_MAX_MOD_PARMS)
601 ap->board_idx = BOARD_IDX_OVERFLOW;
602 else
603 ap->board_idx = boards_found;
604 #else
605 ap->board_idx = BOARD_IDX_STATIC;
606 #endif
608 if (ace_init(dev))
609 goto fail_free_netdev;
611 if (register_netdev(dev)) {
612 printk(KERN_ERR "acenic: device registration failed\n");
613 goto fail_uninit;
615 ap->name = dev->name;
617 if (ap->pci_using_dac)
618 dev->features |= NETIF_F_HIGHDMA;
620 pci_set_drvdata(pdev, dev);
622 boards_found++;
623 return 0;
625 fail_uninit:
626 ace_init_cleanup(dev);
627 fail_free_netdev:
628 free_netdev(dev);
629 return -ENODEV;
632 static void __devexit acenic_remove_one(struct pci_dev *pdev)
634 struct net_device *dev = pci_get_drvdata(pdev);
635 struct ace_private *ap = netdev_priv(dev);
636 struct ace_regs __iomem *regs = ap->regs;
637 short i;
639 unregister_netdev(dev);
641 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
642 if (ap->version >= 2)
643 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
646 * This clears any pending interrupts
648 writel(1, &regs->Mb0Lo);
649 readl(&regs->CpuCtrl); /* flush */
652 * Make sure no other CPUs are processing interrupts
653 * on the card before the buffers are being released.
654 * Otherwise one might experience some `interesting'
655 * effects.
657 * Then release the RX buffers - jumbo buffers were
658 * already released in ace_close().
660 ace_sync_irq(dev->irq);
662 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
663 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
665 if (skb) {
666 struct ring_info *ringp;
667 dma_addr_t mapping;
669 ringp = &ap->skb->rx_std_skbuff[i];
670 mapping = pci_unmap_addr(ringp, mapping);
671 pci_unmap_page(ap->pdev, mapping,
672 ACE_STD_BUFSIZE,
673 PCI_DMA_FROMDEVICE);
675 ap->rx_std_ring[i].size = 0;
676 ap->skb->rx_std_skbuff[i].skb = NULL;
677 dev_kfree_skb(skb);
681 if (ap->version >= 2) {
682 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
683 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
685 if (skb) {
686 struct ring_info *ringp;
687 dma_addr_t mapping;
689 ringp = &ap->skb->rx_mini_skbuff[i];
690 mapping = pci_unmap_addr(ringp,mapping);
691 pci_unmap_page(ap->pdev, mapping,
692 ACE_MINI_BUFSIZE,
693 PCI_DMA_FROMDEVICE);
695 ap->rx_mini_ring[i].size = 0;
696 ap->skb->rx_mini_skbuff[i].skb = NULL;
697 dev_kfree_skb(skb);
702 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
703 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
704 if (skb) {
705 struct ring_info *ringp;
706 dma_addr_t mapping;
708 ringp = &ap->skb->rx_jumbo_skbuff[i];
709 mapping = pci_unmap_addr(ringp, mapping);
710 pci_unmap_page(ap->pdev, mapping,
711 ACE_JUMBO_BUFSIZE,
712 PCI_DMA_FROMDEVICE);
714 ap->rx_jumbo_ring[i].size = 0;
715 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
716 dev_kfree_skb(skb);
720 ace_init_cleanup(dev);
721 free_netdev(dev);
724 static struct pci_driver acenic_pci_driver = {
725 .name = "acenic",
726 .id_table = acenic_pci_tbl,
727 .probe = acenic_probe_one,
728 .remove = __devexit_p(acenic_remove_one),
731 static int __init acenic_init(void)
733 return pci_module_init(&acenic_pci_driver);
736 static void __exit acenic_exit(void)
738 pci_unregister_driver(&acenic_pci_driver);
741 module_init(acenic_init);
742 module_exit(acenic_exit);
744 static void ace_free_descriptors(struct net_device *dev)
746 struct ace_private *ap = netdev_priv(dev);
747 int size;
749 if (ap->rx_std_ring != NULL) {
750 size = (sizeof(struct rx_desc) *
751 (RX_STD_RING_ENTRIES +
752 RX_JUMBO_RING_ENTRIES +
753 RX_MINI_RING_ENTRIES +
754 RX_RETURN_RING_ENTRIES));
755 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
756 ap->rx_ring_base_dma);
757 ap->rx_std_ring = NULL;
758 ap->rx_jumbo_ring = NULL;
759 ap->rx_mini_ring = NULL;
760 ap->rx_return_ring = NULL;
762 if (ap->evt_ring != NULL) {
763 size = (sizeof(struct event) * EVT_RING_ENTRIES);
764 pci_free_consistent(ap->pdev, size, ap->evt_ring,
765 ap->evt_ring_dma);
766 ap->evt_ring = NULL;
768 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
769 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
770 pci_free_consistent(ap->pdev, size, ap->tx_ring,
771 ap->tx_ring_dma);
773 ap->tx_ring = NULL;
775 if (ap->evt_prd != NULL) {
776 pci_free_consistent(ap->pdev, sizeof(u32),
777 (void *)ap->evt_prd, ap->evt_prd_dma);
778 ap->evt_prd = NULL;
780 if (ap->rx_ret_prd != NULL) {
781 pci_free_consistent(ap->pdev, sizeof(u32),
782 (void *)ap->rx_ret_prd,
783 ap->rx_ret_prd_dma);
784 ap->rx_ret_prd = NULL;
786 if (ap->tx_csm != NULL) {
787 pci_free_consistent(ap->pdev, sizeof(u32),
788 (void *)ap->tx_csm, ap->tx_csm_dma);
789 ap->tx_csm = NULL;
794 static int ace_allocate_descriptors(struct net_device *dev)
796 struct ace_private *ap = netdev_priv(dev);
797 int size;
799 size = (sizeof(struct rx_desc) *
800 (RX_STD_RING_ENTRIES +
801 RX_JUMBO_RING_ENTRIES +
802 RX_MINI_RING_ENTRIES +
803 RX_RETURN_RING_ENTRIES));
805 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
806 &ap->rx_ring_base_dma);
807 if (ap->rx_std_ring == NULL)
808 goto fail;
810 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
811 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
812 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
814 size = (sizeof(struct event) * EVT_RING_ENTRIES);
816 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
818 if (ap->evt_ring == NULL)
819 goto fail;
822 * Only allocate a host TX ring for the Tigon II, the Tigon I
823 * has to use PCI registers for this ;-(
825 if (!ACE_IS_TIGON_I(ap)) {
826 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
828 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
829 &ap->tx_ring_dma);
831 if (ap->tx_ring == NULL)
832 goto fail;
835 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
836 &ap->evt_prd_dma);
837 if (ap->evt_prd == NULL)
838 goto fail;
840 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
841 &ap->rx_ret_prd_dma);
842 if (ap->rx_ret_prd == NULL)
843 goto fail;
845 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
846 &ap->tx_csm_dma);
847 if (ap->tx_csm == NULL)
848 goto fail;
850 return 0;
852 fail:
853 /* Clean up. */
854 ace_init_cleanup(dev);
855 return 1;
860 * Generic cleanup handling data allocated during init. Used when the
861 * module is unloaded or if an error occurs during initialization
863 static void ace_init_cleanup(struct net_device *dev)
865 struct ace_private *ap;
867 ap = netdev_priv(dev);
869 ace_free_descriptors(dev);
871 if (ap->info)
872 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
873 ap->info, ap->info_dma);
874 if (ap->skb)
875 kfree(ap->skb);
876 if (ap->trace_buf)
877 kfree(ap->trace_buf);
879 if (dev->irq)
880 free_irq(dev->irq, dev);
882 iounmap(ap->regs);
887 * Commands are considered to be slow.
889 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
891 u32 idx;
893 idx = readl(&regs->CmdPrd);
895 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
896 idx = (idx + 1) % CMD_RING_ENTRIES;
898 writel(idx, &regs->CmdPrd);
902 static int __devinit ace_init(struct net_device *dev)
904 struct ace_private *ap;
905 struct ace_regs __iomem *regs;
906 struct ace_info *info = NULL;
907 struct pci_dev *pdev;
908 unsigned long myjif;
909 u64 tmp_ptr;
910 u32 tig_ver, mac1, mac2, tmp, pci_state;
911 int board_idx, ecode = 0;
912 short i;
913 unsigned char cache_size;
915 ap = netdev_priv(dev);
916 regs = ap->regs;
918 board_idx = ap->board_idx;
921 * aman@sgi.com - its useful to do a NIC reset here to
922 * address the `Firmware not running' problem subsequent
923 * to any crashes involving the NIC
925 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
926 readl(&regs->HostCtrl); /* PCI write posting */
927 udelay(5);
930 * Don't access any other registers before this point!
932 #ifdef __BIG_ENDIAN
934 * This will most likely need BYTE_SWAP once we switch
935 * to using __raw_writel()
937 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
938 &regs->HostCtrl);
939 #else
940 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
941 &regs->HostCtrl);
942 #endif
943 readl(&regs->HostCtrl); /* PCI write posting */
946 * Stop the NIC CPU and clear pending interrupts
948 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
949 readl(&regs->CpuCtrl); /* PCI write posting */
950 writel(0, &regs->Mb0Lo);
952 tig_ver = readl(&regs->HostCtrl) >> 28;
954 switch(tig_ver){
955 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
956 case 4:
957 case 5:
958 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
959 tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
960 tigonFwReleaseFix);
961 writel(0, &regs->LocalCtrl);
962 ap->version = 1;
963 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
964 break;
965 #endif
966 case 6:
967 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
968 tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
969 tigon2FwReleaseFix);
970 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
971 readl(&regs->CpuBCtrl); /* PCI write posting */
973 * The SRAM bank size does _not_ indicate the amount
974 * of memory on the card, it controls the _bank_ size!
975 * Ie. a 1MB AceNIC will have two banks of 512KB.
977 writel(SRAM_BANK_512K, &regs->LocalCtrl);
978 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
979 ap->version = 2;
980 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
981 break;
982 default:
983 printk(KERN_WARNING " Unsupported Tigon version detected "
984 "(%i)\n", tig_ver);
985 ecode = -ENODEV;
986 goto init_error;
990 * ModeStat _must_ be set after the SRAM settings as this change
991 * seems to corrupt the ModeStat and possible other registers.
992 * The SRAM settings survive resets and setting it to the same
993 * value a second time works as well. This is what caused the
994 * `Firmware not running' problem on the Tigon II.
996 #ifdef __BIG_ENDIAN
997 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
998 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
999 #else
1000 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
1001 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
1002 #endif
1003 readl(&regs->ModeStat); /* PCI write posting */
1005 mac1 = 0;
1006 for(i = 0; i < 4; i++) {
1007 mac1 = mac1 << 8;
1008 tmp = read_eeprom_byte(dev, 0x8c+i);
1009 if (tmp < 0) {
1010 ecode = -EIO;
1011 goto init_error;
1012 } else
1013 mac1 |= (tmp & 0xff);
1015 mac2 = 0;
1016 for(i = 4; i < 8; i++) {
1017 mac2 = mac2 << 8;
1018 tmp = read_eeprom_byte(dev, 0x8c+i);
1019 if (tmp < 0) {
1020 ecode = -EIO;
1021 goto init_error;
1022 } else
1023 mac2 |= (tmp & 0xff);
1026 writel(mac1, &regs->MacAddrHi);
1027 writel(mac2, &regs->MacAddrLo);
1029 printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
1030 (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
1031 (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
1033 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1034 dev->dev_addr[1] = mac1 & 0xff;
1035 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1036 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1037 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1038 dev->dev_addr[5] = mac2 & 0xff;
1041 * Looks like this is necessary to deal with on all architectures,
1042 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1043 * Ie. having two NICs in the machine, one will have the cache
1044 * line set at boot time, the other will not.
1046 pdev = ap->pdev;
1047 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1048 cache_size <<= 2;
1049 if (cache_size != SMP_CACHE_BYTES) {
1050 printk(KERN_INFO " PCI cache line size set incorrectly "
1051 "(%i bytes) by BIOS/FW, ", cache_size);
1052 if (cache_size > SMP_CACHE_BYTES)
1053 printk("expecting %i\n", SMP_CACHE_BYTES);
1054 else {
1055 printk("correcting to %i\n", SMP_CACHE_BYTES);
1056 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1057 SMP_CACHE_BYTES >> 2);
1061 pci_state = readl(&regs->PciState);
1062 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1063 "latency: %i clks\n",
1064 (pci_state & PCI_32BIT) ? 32 : 64,
1065 (pci_state & PCI_66MHZ) ? 66 : 33,
1066 ap->pci_latency);
1069 * Set the max DMA transfer size. Seems that for most systems
1070 * the performance is better when no MAX parameter is
1071 * set. However for systems enabling PCI write and invalidate,
1072 * DMA writes must be set to the L1 cache line size to get
1073 * optimal performance.
1075 * The default is now to turn the PCI write and invalidate off
1076 * - that is what Alteon does for NT.
1078 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1079 if (ap->version >= 2) {
1080 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1082 * Tuning parameters only supported for 8 cards
1084 if (board_idx == BOARD_IDX_OVERFLOW ||
1085 dis_pci_mem_inval[board_idx]) {
1086 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1087 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1088 pci_write_config_word(pdev, PCI_COMMAND,
1089 ap->pci_command);
1090 printk(KERN_INFO " Disabling PCI memory "
1091 "write and invalidate\n");
1093 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1094 printk(KERN_INFO " PCI memory write & invalidate "
1095 "enabled by BIOS, enabling counter measures\n");
1097 switch(SMP_CACHE_BYTES) {
1098 case 16:
1099 tmp |= DMA_WRITE_MAX_16;
1100 break;
1101 case 32:
1102 tmp |= DMA_WRITE_MAX_32;
1103 break;
1104 case 64:
1105 tmp |= DMA_WRITE_MAX_64;
1106 break;
1107 case 128:
1108 tmp |= DMA_WRITE_MAX_128;
1109 break;
1110 default:
1111 printk(KERN_INFO " Cache line size %i not "
1112 "supported, PCI write and invalidate "
1113 "disabled\n", SMP_CACHE_BYTES);
1114 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1115 pci_write_config_word(pdev, PCI_COMMAND,
1116 ap->pci_command);
1121 #ifdef __sparc__
1123 * On this platform, we know what the best dma settings
1124 * are. We use 64-byte maximum bursts, because if we
1125 * burst larger than the cache line size (or even cross
1126 * a 64byte boundary in a single burst) the UltraSparc
1127 * PCI controller will disconnect at 64-byte multiples.
1129 * Read-multiple will be properly enabled above, and when
1130 * set will give the PCI controller proper hints about
1131 * prefetching.
1133 tmp &= ~DMA_READ_WRITE_MASK;
1134 tmp |= DMA_READ_MAX_64;
1135 tmp |= DMA_WRITE_MAX_64;
1136 #endif
1137 #ifdef __alpha__
1138 tmp &= ~DMA_READ_WRITE_MASK;
1139 tmp |= DMA_READ_MAX_128;
1141 * All the docs say MUST NOT. Well, I did.
1142 * Nothing terrible happens, if we load wrong size.
1143 * Bit w&i still works better!
1145 tmp |= DMA_WRITE_MAX_128;
1146 #endif
1147 writel(tmp, &regs->PciState);
1149 #if 0
1151 * The Host PCI bus controller driver has to set FBB.
1152 * If all devices on that PCI bus support FBB, then the controller
1153 * can enable FBB support in the Host PCI Bus controller (or on
1154 * the PCI-PCI bridge if that applies).
1155 * -ggg
1158 * I have received reports from people having problems when this
1159 * bit is enabled.
1161 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1162 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1163 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1164 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1166 #endif
1169 * Configure DMA attributes.
1171 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1172 ap->pci_using_dac = 1;
1173 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1174 ap->pci_using_dac = 0;
1175 } else {
1176 ecode = -ENODEV;
1177 goto init_error;
1181 * Initialize the generic info block and the command+event rings
1182 * and the control blocks for the transmit and receive rings
1183 * as they need to be setup once and for all.
1185 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1186 &ap->info_dma))) {
1187 ecode = -EAGAIN;
1188 goto init_error;
1190 ap->info = info;
1193 * Get the memory for the skb rings.
1195 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1196 ecode = -EAGAIN;
1197 goto init_error;
1200 ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ,
1201 DRV_NAME, dev);
1202 if (ecode) {
1203 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1204 DRV_NAME, pdev->irq);
1205 goto init_error;
1206 } else
1207 dev->irq = pdev->irq;
1209 #ifdef INDEX_DEBUG
1210 spin_lock_init(&ap->debug_lock);
1211 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1212 ap->last_std_rx = 0;
1213 ap->last_mini_rx = 0;
1214 #endif
1216 memset(ap->info, 0, sizeof(struct ace_info));
1217 memset(ap->skb, 0, sizeof(struct ace_skb));
1219 ace_load_firmware(dev);
1220 ap->fw_running = 0;
1222 tmp_ptr = ap->info_dma;
1223 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1224 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1226 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1228 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1229 info->evt_ctrl.flags = 0;
1231 *(ap->evt_prd) = 0;
1232 wmb();
1233 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1234 writel(0, &regs->EvtCsm);
1236 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1237 info->cmd_ctrl.flags = 0;
1238 info->cmd_ctrl.max_len = 0;
1240 for (i = 0; i < CMD_RING_ENTRIES; i++)
1241 writel(0, &regs->CmdRng[i]);
1243 writel(0, &regs->CmdPrd);
1244 writel(0, &regs->CmdCsm);
1246 tmp_ptr = ap->info_dma;
1247 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1248 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1250 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1251 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1252 info->rx_std_ctrl.flags =
1253 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1255 memset(ap->rx_std_ring, 0,
1256 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1258 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1259 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1261 ap->rx_std_skbprd = 0;
1262 atomic_set(&ap->cur_rx_bufs, 0);
1264 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1265 (ap->rx_ring_base_dma +
1266 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1267 info->rx_jumbo_ctrl.max_len = 0;
1268 info->rx_jumbo_ctrl.flags =
1269 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1271 memset(ap->rx_jumbo_ring, 0,
1272 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1274 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1275 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1277 ap->rx_jumbo_skbprd = 0;
1278 atomic_set(&ap->cur_jumbo_bufs, 0);
1280 memset(ap->rx_mini_ring, 0,
1281 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1283 if (ap->version >= 2) {
1284 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1285 (ap->rx_ring_base_dma +
1286 (sizeof(struct rx_desc) *
1287 (RX_STD_RING_ENTRIES +
1288 RX_JUMBO_RING_ENTRIES))));
1289 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1290 info->rx_mini_ctrl.flags =
1291 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
1293 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1294 ap->rx_mini_ring[i].flags =
1295 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1296 } else {
1297 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1298 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1299 info->rx_mini_ctrl.max_len = 0;
1302 ap->rx_mini_skbprd = 0;
1303 atomic_set(&ap->cur_mini_bufs, 0);
1305 set_aceaddr(&info->rx_return_ctrl.rngptr,
1306 (ap->rx_ring_base_dma +
1307 (sizeof(struct rx_desc) *
1308 (RX_STD_RING_ENTRIES +
1309 RX_JUMBO_RING_ENTRIES +
1310 RX_MINI_RING_ENTRIES))));
1311 info->rx_return_ctrl.flags = 0;
1312 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1314 memset(ap->rx_return_ring, 0,
1315 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1317 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1318 *(ap->rx_ret_prd) = 0;
1320 writel(TX_RING_BASE, &regs->WinBase);
1322 if (ACE_IS_TIGON_I(ap)) {
1323 ap->tx_ring = (struct tx_desc *) regs->Window;
1324 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1325 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1326 writel(0, (void __iomem *)ap->tx_ring + i * 4);
1328 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1329 } else {
1330 memset(ap->tx_ring, 0,
1331 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1333 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1336 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1337 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
1340 * The Tigon I does not like having the TX ring in host memory ;-(
1342 if (!ACE_IS_TIGON_I(ap))
1343 tmp |= RCB_FLG_TX_HOST_RING;
1344 #if TX_COAL_INTS_ONLY
1345 tmp |= RCB_FLG_COAL_INT_ONLY;
1346 #endif
1347 info->tx_ctrl.flags = tmp;
1349 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1352 * Potential item for tuning parameter
1354 #if 0 /* NO */
1355 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1356 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1357 #else
1358 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1359 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1360 #endif
1362 writel(0, &regs->MaskInt);
1363 writel(1, &regs->IfIdx);
1364 #if 0
1366 * McKinley boxes do not like us fiddling with AssistState
1367 * this early
1369 writel(1, &regs->AssistState);
1370 #endif
1372 writel(DEF_STAT, &regs->TuneStatTicks);
1373 writel(DEF_TRACE, &regs->TuneTrace);
1375 ace_set_rxtx_parms(dev, 0);
1377 if (board_idx == BOARD_IDX_OVERFLOW) {
1378 printk(KERN_WARNING "%s: more than %i NICs detected, "
1379 "ignoring module parameters!\n",
1380 ap->name, ACE_MAX_MOD_PARMS);
1381 } else if (board_idx >= 0) {
1382 if (tx_coal_tick[board_idx])
1383 writel(tx_coal_tick[board_idx],
1384 &regs->TuneTxCoalTicks);
1385 if (max_tx_desc[board_idx])
1386 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1388 if (rx_coal_tick[board_idx])
1389 writel(rx_coal_tick[board_idx],
1390 &regs->TuneRxCoalTicks);
1391 if (max_rx_desc[board_idx])
1392 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1394 if (trace[board_idx])
1395 writel(trace[board_idx], &regs->TuneTrace);
1397 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1398 writel(tx_ratio[board_idx], &regs->TxBufRat);
1402 * Default link parameters
1404 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1405 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1406 if(ap->version >= 2)
1407 tmp |= LNK_TX_FLOW_CTL_Y;
1410 * Override link default parameters
1412 if ((board_idx >= 0) && link[board_idx]) {
1413 int option = link[board_idx];
1415 tmp = LNK_ENABLE;
1417 if (option & 0x01) {
1418 printk(KERN_INFO "%s: Setting half duplex link\n",
1419 ap->name);
1420 tmp &= ~LNK_FULL_DUPLEX;
1422 if (option & 0x02)
1423 tmp &= ~LNK_NEGOTIATE;
1424 if (option & 0x10)
1425 tmp |= LNK_10MB;
1426 if (option & 0x20)
1427 tmp |= LNK_100MB;
1428 if (option & 0x40)
1429 tmp |= LNK_1000MB;
1430 if ((option & 0x70) == 0) {
1431 printk(KERN_WARNING "%s: No media speed specified, "
1432 "forcing auto negotiation\n", ap->name);
1433 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1434 LNK_100MB | LNK_10MB;
1436 if ((option & 0x100) == 0)
1437 tmp |= LNK_NEG_FCTL;
1438 else
1439 printk(KERN_INFO "%s: Disabling flow control "
1440 "negotiation\n", ap->name);
1441 if (option & 0x200)
1442 tmp |= LNK_RX_FLOW_CTL_Y;
1443 if ((option & 0x400) && (ap->version >= 2)) {
1444 printk(KERN_INFO "%s: Enabling TX flow control\n",
1445 ap->name);
1446 tmp |= LNK_TX_FLOW_CTL_Y;
1450 ap->link = tmp;
1451 writel(tmp, &regs->TuneLink);
1452 if (ap->version >= 2)
1453 writel(tmp, &regs->TuneFastLink);
1455 if (ACE_IS_TIGON_I(ap))
1456 writel(tigonFwStartAddr, &regs->Pc);
1457 if (ap->version == 2)
1458 writel(tigon2FwStartAddr, &regs->Pc);
1460 writel(0, &regs->Mb0Lo);
1463 * Set tx_csm before we start receiving interrupts, otherwise
1464 * the interrupt handler might think it is supposed to process
1465 * tx ints before we are up and running, which may cause a null
1466 * pointer access in the int handler.
1468 ap->cur_rx = 0;
1469 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1471 wmb();
1472 ace_set_txprd(regs, ap, 0);
1473 writel(0, &regs->RxRetCsm);
1476 * Zero the stats before starting the interface
1478 memset(&ap->stats, 0, sizeof(ap->stats));
1481 * Enable DMA engine now.
1482 * If we do this sooner, Mckinley box pukes.
1483 * I assume it's because Tigon II DMA engine wants to check
1484 * *something* even before the CPU is started.
1486 writel(1, &regs->AssistState); /* enable DMA */
1489 * Start the NIC CPU
1491 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1492 readl(&regs->CpuCtrl);
1495 * Wait for the firmware to spin up - max 3 seconds.
1497 myjif = jiffies + 3 * HZ;
1498 while (time_before(jiffies, myjif) && !ap->fw_running)
1499 cpu_relax();
1501 if (!ap->fw_running) {
1502 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1504 ace_dump_trace(ap);
1505 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1506 readl(&regs->CpuCtrl);
1508 /* aman@sgi.com - account for badly behaving firmware/NIC:
1509 * - have observed that the NIC may continue to generate
1510 * interrupts for some reason; attempt to stop it - halt
1511 * second CPU for Tigon II cards, and also clear Mb0
1512 * - if we're a module, we'll fail to load if this was
1513 * the only GbE card in the system => if the kernel does
1514 * see an interrupt from the NIC, code to handle it is
1515 * gone and OOps! - so free_irq also
1517 if (ap->version >= 2)
1518 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1519 &regs->CpuBCtrl);
1520 writel(0, &regs->Mb0Lo);
1521 readl(&regs->Mb0Lo);
1523 ecode = -EBUSY;
1524 goto init_error;
1528 * We load the ring here as there seem to be no way to tell the
1529 * firmware to wipe the ring without re-initializing it.
1531 if (!test_and_set_bit(0, &ap->std_refill_busy))
1532 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1533 else
1534 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1535 ap->name);
1536 if (ap->version >= 2) {
1537 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1538 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1539 else
1540 printk(KERN_ERR "%s: Someone is busy refilling "
1541 "the RX mini ring\n", ap->name);
1543 return 0;
1545 init_error:
1546 ace_init_cleanup(dev);
1547 return ecode;
1551 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1553 struct ace_private *ap = netdev_priv(dev);
1554 struct ace_regs __iomem *regs = ap->regs;
1555 int board_idx = ap->board_idx;
1557 if (board_idx >= 0) {
1558 if (!jumbo) {
1559 if (!tx_coal_tick[board_idx])
1560 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1561 if (!max_tx_desc[board_idx])
1562 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1563 if (!rx_coal_tick[board_idx])
1564 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1565 if (!max_rx_desc[board_idx])
1566 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1567 if (!tx_ratio[board_idx])
1568 writel(DEF_TX_RATIO, &regs->TxBufRat);
1569 } else {
1570 if (!tx_coal_tick[board_idx])
1571 writel(DEF_JUMBO_TX_COAL,
1572 &regs->TuneTxCoalTicks);
1573 if (!max_tx_desc[board_idx])
1574 writel(DEF_JUMBO_TX_MAX_DESC,
1575 &regs->TuneMaxTxDesc);
1576 if (!rx_coal_tick[board_idx])
1577 writel(DEF_JUMBO_RX_COAL,
1578 &regs->TuneRxCoalTicks);
1579 if (!max_rx_desc[board_idx])
1580 writel(DEF_JUMBO_RX_MAX_DESC,
1581 &regs->TuneMaxRxDesc);
1582 if (!tx_ratio[board_idx])
1583 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1589 static void ace_watchdog(struct net_device *data)
1591 struct net_device *dev = data;
1592 struct ace_private *ap = netdev_priv(dev);
1593 struct ace_regs __iomem *regs = ap->regs;
1596 * We haven't received a stats update event for more than 2.5
1597 * seconds and there is data in the transmit queue, thus we
1598 * asume the card is stuck.
1600 if (*ap->tx_csm != ap->tx_ret_csm) {
1601 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1602 dev->name, (unsigned int)readl(&regs->HostCtrl));
1603 /* This can happen due to ieee flow control. */
1604 } else {
1605 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1606 dev->name);
1607 #if 0
1608 netif_wake_queue(dev);
1609 #endif
1614 static void ace_tasklet(unsigned long dev)
1616 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1617 int cur_size;
1619 cur_size = atomic_read(&ap->cur_rx_bufs);
1620 if ((cur_size < RX_LOW_STD_THRES) &&
1621 !test_and_set_bit(0, &ap->std_refill_busy)) {
1622 #ifdef DEBUG
1623 printk("refilling buffers (current %i)\n", cur_size);
1624 #endif
1625 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1628 if (ap->version >= 2) {
1629 cur_size = atomic_read(&ap->cur_mini_bufs);
1630 if ((cur_size < RX_LOW_MINI_THRES) &&
1631 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1632 #ifdef DEBUG
1633 printk("refilling mini buffers (current %i)\n",
1634 cur_size);
1635 #endif
1636 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1640 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1641 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1642 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1643 #ifdef DEBUG
1644 printk("refilling jumbo buffers (current %i)\n", cur_size);
1645 #endif
1646 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1648 ap->tasklet_pending = 0;
1653 * Copy the contents of the NIC's trace buffer to kernel memory.
1655 static void ace_dump_trace(struct ace_private *ap)
1657 #if 0
1658 if (!ap->trace_buf)
1659 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1660 return;
1661 #endif
1666 * Load the standard rx ring.
1668 * Loading rings is safe without holding the spin lock since this is
1669 * done only before the device is enabled, thus no interrupts are
1670 * generated and by the interrupt handler/tasklet handler.
1672 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1674 struct ace_regs __iomem *regs = ap->regs;
1675 short i, idx;
1678 prefetchw(&ap->cur_rx_bufs);
1680 idx = ap->rx_std_skbprd;
1682 for (i = 0; i < nr_bufs; i++) {
1683 struct sk_buff *skb;
1684 struct rx_desc *rd;
1685 dma_addr_t mapping;
1687 skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1688 if (!skb)
1689 break;
1691 skb_reserve(skb, NET_IP_ALIGN);
1692 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1693 offset_in_page(skb->data),
1694 ACE_STD_BUFSIZE,
1695 PCI_DMA_FROMDEVICE);
1696 ap->skb->rx_std_skbuff[idx].skb = skb;
1697 pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1698 mapping, mapping);
1700 rd = &ap->rx_std_ring[idx];
1701 set_aceaddr(&rd->addr, mapping);
1702 rd->size = ACE_STD_BUFSIZE;
1703 rd->idx = idx;
1704 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1707 if (!i)
1708 goto error_out;
1710 atomic_add(i, &ap->cur_rx_bufs);
1711 ap->rx_std_skbprd = idx;
1713 if (ACE_IS_TIGON_I(ap)) {
1714 struct cmd cmd;
1715 cmd.evt = C_SET_RX_PRD_IDX;
1716 cmd.code = 0;
1717 cmd.idx = ap->rx_std_skbprd;
1718 ace_issue_cmd(regs, &cmd);
1719 } else {
1720 writel(idx, &regs->RxStdPrd);
1721 wmb();
1724 out:
1725 clear_bit(0, &ap->std_refill_busy);
1726 return;
1728 error_out:
1729 printk(KERN_INFO "Out of memory when allocating "
1730 "standard receive buffers\n");
1731 goto out;
1735 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1737 struct ace_regs __iomem *regs = ap->regs;
1738 short i, idx;
1740 prefetchw(&ap->cur_mini_bufs);
1742 idx = ap->rx_mini_skbprd;
1743 for (i = 0; i < nr_bufs; i++) {
1744 struct sk_buff *skb;
1745 struct rx_desc *rd;
1746 dma_addr_t mapping;
1748 skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1749 if (!skb)
1750 break;
1752 skb_reserve(skb, NET_IP_ALIGN);
1753 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1754 offset_in_page(skb->data),
1755 ACE_MINI_BUFSIZE,
1756 PCI_DMA_FROMDEVICE);
1757 ap->skb->rx_mini_skbuff[idx].skb = skb;
1758 pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1759 mapping, mapping);
1761 rd = &ap->rx_mini_ring[idx];
1762 set_aceaddr(&rd->addr, mapping);
1763 rd->size = ACE_MINI_BUFSIZE;
1764 rd->idx = idx;
1765 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1768 if (!i)
1769 goto error_out;
1771 atomic_add(i, &ap->cur_mini_bufs);
1773 ap->rx_mini_skbprd = idx;
1775 writel(idx, &regs->RxMiniPrd);
1776 wmb();
1778 out:
1779 clear_bit(0, &ap->mini_refill_busy);
1780 return;
1781 error_out:
1782 printk(KERN_INFO "Out of memory when allocating "
1783 "mini receive buffers\n");
1784 goto out;
1789 * Load the jumbo rx ring, this may happen at any time if the MTU
1790 * is changed to a value > 1500.
1792 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1794 struct ace_regs __iomem *regs = ap->regs;
1795 short i, idx;
1797 idx = ap->rx_jumbo_skbprd;
1799 for (i = 0; i < nr_bufs; i++) {
1800 struct sk_buff *skb;
1801 struct rx_desc *rd;
1802 dma_addr_t mapping;
1804 skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
1805 if (!skb)
1806 break;
1808 skb_reserve(skb, NET_IP_ALIGN);
1809 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1810 offset_in_page(skb->data),
1811 ACE_JUMBO_BUFSIZE,
1812 PCI_DMA_FROMDEVICE);
1813 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1814 pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1815 mapping, mapping);
1817 rd = &ap->rx_jumbo_ring[idx];
1818 set_aceaddr(&rd->addr, mapping);
1819 rd->size = ACE_JUMBO_BUFSIZE;
1820 rd->idx = idx;
1821 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1824 if (!i)
1825 goto error_out;
1827 atomic_add(i, &ap->cur_jumbo_bufs);
1828 ap->rx_jumbo_skbprd = idx;
1830 if (ACE_IS_TIGON_I(ap)) {
1831 struct cmd cmd;
1832 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1833 cmd.code = 0;
1834 cmd.idx = ap->rx_jumbo_skbprd;
1835 ace_issue_cmd(regs, &cmd);
1836 } else {
1837 writel(idx, &regs->RxJumboPrd);
1838 wmb();
1841 out:
1842 clear_bit(0, &ap->jumbo_refill_busy);
1843 return;
1844 error_out:
1845 if (net_ratelimit())
1846 printk(KERN_INFO "Out of memory when allocating "
1847 "jumbo receive buffers\n");
1848 goto out;
1853 * All events are considered to be slow (RX/TX ints do not generate
1854 * events) and are handled here, outside the main interrupt handler,
1855 * to reduce the size of the handler.
1857 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1859 struct ace_private *ap;
1861 ap = netdev_priv(dev);
1863 while (evtcsm != evtprd) {
1864 switch (ap->evt_ring[evtcsm].evt) {
1865 case E_FW_RUNNING:
1866 printk(KERN_INFO "%s: Firmware up and running\n",
1867 ap->name);
1868 ap->fw_running = 1;
1869 wmb();
1870 break;
1871 case E_STATS_UPDATED:
1872 break;
1873 case E_LNK_STATE:
1875 u16 code = ap->evt_ring[evtcsm].code;
1876 switch (code) {
1877 case E_C_LINK_UP:
1879 u32 state = readl(&ap->regs->GigLnkState);
1880 printk(KERN_WARNING "%s: Optical link UP "
1881 "(%s Duplex, Flow Control: %s%s)\n",
1882 ap->name,
1883 state & LNK_FULL_DUPLEX ? "Full":"Half",
1884 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1885 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1886 break;
1888 case E_C_LINK_DOWN:
1889 printk(KERN_WARNING "%s: Optical link DOWN\n",
1890 ap->name);
1891 break;
1892 case E_C_LINK_10_100:
1893 printk(KERN_WARNING "%s: 10/100BaseT link "
1894 "UP\n", ap->name);
1895 break;
1896 default:
1897 printk(KERN_ERR "%s: Unknown optical link "
1898 "state %02x\n", ap->name, code);
1900 break;
1902 case E_ERROR:
1903 switch(ap->evt_ring[evtcsm].code) {
1904 case E_C_ERR_INVAL_CMD:
1905 printk(KERN_ERR "%s: invalid command error\n",
1906 ap->name);
1907 break;
1908 case E_C_ERR_UNIMP_CMD:
1909 printk(KERN_ERR "%s: unimplemented command "
1910 "error\n", ap->name);
1911 break;
1912 case E_C_ERR_BAD_CFG:
1913 printk(KERN_ERR "%s: bad config error\n",
1914 ap->name);
1915 break;
1916 default:
1917 printk(KERN_ERR "%s: unknown error %02x\n",
1918 ap->name, ap->evt_ring[evtcsm].code);
1920 break;
1921 case E_RESET_JUMBO_RNG:
1923 int i;
1924 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1925 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1926 ap->rx_jumbo_ring[i].size = 0;
1927 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1928 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1929 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1933 if (ACE_IS_TIGON_I(ap)) {
1934 struct cmd cmd;
1935 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1936 cmd.code = 0;
1937 cmd.idx = 0;
1938 ace_issue_cmd(ap->regs, &cmd);
1939 } else {
1940 writel(0, &((ap->regs)->RxJumboPrd));
1941 wmb();
1944 ap->jumbo = 0;
1945 ap->rx_jumbo_skbprd = 0;
1946 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1947 ap->name);
1948 clear_bit(0, &ap->jumbo_refill_busy);
1949 break;
1951 default:
1952 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1953 ap->name, ap->evt_ring[evtcsm].evt);
1955 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1958 return evtcsm;
1962 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1964 struct ace_private *ap = netdev_priv(dev);
1965 u32 idx;
1966 int mini_count = 0, std_count = 0;
1968 idx = rxretcsm;
1970 prefetchw(&ap->cur_rx_bufs);
1971 prefetchw(&ap->cur_mini_bufs);
1973 while (idx != rxretprd) {
1974 struct ring_info *rip;
1975 struct sk_buff *skb;
1976 struct rx_desc *rxdesc, *retdesc;
1977 u32 skbidx;
1978 int bd_flags, desc_type, mapsize;
1979 u16 csum;
1982 /* make sure the rx descriptor isn't read before rxretprd */
1983 if (idx == rxretcsm)
1984 rmb();
1986 retdesc = &ap->rx_return_ring[idx];
1987 skbidx = retdesc->idx;
1988 bd_flags = retdesc->flags;
1989 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1991 switch(desc_type) {
1993 * Normal frames do not have any flags set
1995 * Mini and normal frames arrive frequently,
1996 * so use a local counter to avoid doing
1997 * atomic operations for each packet arriving.
1999 case 0:
2000 rip = &ap->skb->rx_std_skbuff[skbidx];
2001 mapsize = ACE_STD_BUFSIZE;
2002 rxdesc = &ap->rx_std_ring[skbidx];
2003 std_count++;
2004 break;
2005 case BD_FLG_JUMBO:
2006 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
2007 mapsize = ACE_JUMBO_BUFSIZE;
2008 rxdesc = &ap->rx_jumbo_ring[skbidx];
2009 atomic_dec(&ap->cur_jumbo_bufs);
2010 break;
2011 case BD_FLG_MINI:
2012 rip = &ap->skb->rx_mini_skbuff[skbidx];
2013 mapsize = ACE_MINI_BUFSIZE;
2014 rxdesc = &ap->rx_mini_ring[skbidx];
2015 mini_count++;
2016 break;
2017 default:
2018 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
2019 "returned by NIC\n", dev->name,
2020 retdesc->flags);
2021 goto error;
2024 skb = rip->skb;
2025 rip->skb = NULL;
2026 pci_unmap_page(ap->pdev,
2027 pci_unmap_addr(rip, mapping),
2028 mapsize,
2029 PCI_DMA_FROMDEVICE);
2030 skb_put(skb, retdesc->size);
2033 * Fly baby, fly!
2035 csum = retdesc->tcp_udp_csum;
2037 skb->dev = dev;
2038 skb->protocol = eth_type_trans(skb, dev);
2041 * Instead of forcing the poor tigon mips cpu to calculate
2042 * pseudo hdr checksum, we do this ourselves.
2044 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2045 skb->csum = htons(csum);
2046 skb->ip_summed = CHECKSUM_HW;
2047 } else {
2048 skb->ip_summed = CHECKSUM_NONE;
2051 /* send it up */
2052 #if ACENIC_DO_VLAN
2053 if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
2054 vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
2055 } else
2056 #endif
2057 netif_rx(skb);
2059 dev->last_rx = jiffies;
2060 ap->stats.rx_packets++;
2061 ap->stats.rx_bytes += retdesc->size;
2063 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2066 atomic_sub(std_count, &ap->cur_rx_bufs);
2067 if (!ACE_IS_TIGON_I(ap))
2068 atomic_sub(mini_count, &ap->cur_mini_bufs);
2070 out:
2072 * According to the documentation RxRetCsm is obsolete with
2073 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2075 if (ACE_IS_TIGON_I(ap)) {
2076 writel(idx, &ap->regs->RxRetCsm);
2078 ap->cur_rx = idx;
2080 return;
2081 error:
2082 idx = rxretprd;
2083 goto out;
2087 static inline void ace_tx_int(struct net_device *dev,
2088 u32 txcsm, u32 idx)
2090 struct ace_private *ap = netdev_priv(dev);
2092 do {
2093 struct sk_buff *skb;
2094 dma_addr_t mapping;
2095 struct tx_ring_info *info;
2097 info = ap->skb->tx_skbuff + idx;
2098 skb = info->skb;
2099 mapping = pci_unmap_addr(info, mapping);
2101 if (mapping) {
2102 pci_unmap_page(ap->pdev, mapping,
2103 pci_unmap_len(info, maplen),
2104 PCI_DMA_TODEVICE);
2105 pci_unmap_addr_set(info, mapping, 0);
2108 if (skb) {
2109 ap->stats.tx_packets++;
2110 ap->stats.tx_bytes += skb->len;
2111 dev_kfree_skb_irq(skb);
2112 info->skb = NULL;
2115 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2116 } while (idx != txcsm);
2118 if (netif_queue_stopped(dev))
2119 netif_wake_queue(dev);
2121 wmb();
2122 ap->tx_ret_csm = txcsm;
2124 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2126 * We could try to make it before. In this case we would get
2127 * the following race condition: hard_start_xmit on other cpu
2128 * enters after we advanced tx_ret_csm and fills space,
2129 * which we have just freed, so that we make illegal device wakeup.
2130 * There is no good way to workaround this (at entry
2131 * to ace_start_xmit detects this condition and prevents
2132 * ring corruption, but it is not a good workaround.)
2134 * When tx_ret_csm is advanced after, we wake up device _only_
2135 * if we really have some space in ring (though the core doing
2136 * hard_start_xmit can see full ring for some period and has to
2137 * synchronize.) Superb.
2138 * BUT! We get another subtle race condition. hard_start_xmit
2139 * may think that ring is full between wakeup and advancing
2140 * tx_ret_csm and will stop device instantly! It is not so bad.
2141 * We are guaranteed that there is something in ring, so that
2142 * the next irq will resume transmission. To speedup this we could
2143 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2144 * (see ace_start_xmit).
2146 * Well, this dilemma exists in all lock-free devices.
2147 * We, following scheme used in drivers by Donald Becker,
2148 * select the least dangerous.
2149 * --ANK
2154 static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
2156 struct net_device *dev = (struct net_device *)dev_id;
2157 struct ace_private *ap = netdev_priv(dev);
2158 struct ace_regs __iomem *regs = ap->regs;
2159 u32 idx;
2160 u32 txcsm, rxretcsm, rxretprd;
2161 u32 evtcsm, evtprd;
2164 * In case of PCI shared interrupts or spurious interrupts,
2165 * we want to make sure it is actually our interrupt before
2166 * spending any time in here.
2168 if (!(readl(&regs->HostCtrl) & IN_INT))
2169 return IRQ_NONE;
2172 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2173 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2174 * writel(0, &regs->Mb0Lo).
2176 * "IRQ avoidance" recommended in docs applies to IRQs served
2177 * threads and it is wrong even for that case.
2179 writel(0, &regs->Mb0Lo);
2180 readl(&regs->Mb0Lo);
2183 * There is no conflict between transmit handling in
2184 * start_xmit and receive processing, thus there is no reason
2185 * to take a spin lock for RX handling. Wait until we start
2186 * working on the other stuff - hey we don't need a spin lock
2187 * anymore.
2189 rxretprd = *ap->rx_ret_prd;
2190 rxretcsm = ap->cur_rx;
2192 if (rxretprd != rxretcsm)
2193 ace_rx_int(dev, rxretprd, rxretcsm);
2195 txcsm = *ap->tx_csm;
2196 idx = ap->tx_ret_csm;
2198 if (txcsm != idx) {
2200 * If each skb takes only one descriptor this check degenerates
2201 * to identity, because new space has just been opened.
2202 * But if skbs are fragmented we must check that this index
2203 * update releases enough of space, otherwise we just
2204 * wait for device to make more work.
2206 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2207 ace_tx_int(dev, txcsm, idx);
2210 evtcsm = readl(&regs->EvtCsm);
2211 evtprd = *ap->evt_prd;
2213 if (evtcsm != evtprd) {
2214 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2215 writel(evtcsm, &regs->EvtCsm);
2219 * This has to go last in the interrupt handler and run with
2220 * the spin lock released ... what lock?
2222 if (netif_running(dev)) {
2223 int cur_size;
2224 int run_tasklet = 0;
2226 cur_size = atomic_read(&ap->cur_rx_bufs);
2227 if (cur_size < RX_LOW_STD_THRES) {
2228 if ((cur_size < RX_PANIC_STD_THRES) &&
2229 !test_and_set_bit(0, &ap->std_refill_busy)) {
2230 #ifdef DEBUG
2231 printk("low on std buffers %i\n", cur_size);
2232 #endif
2233 ace_load_std_rx_ring(ap,
2234 RX_RING_SIZE - cur_size);
2235 } else
2236 run_tasklet = 1;
2239 if (!ACE_IS_TIGON_I(ap)) {
2240 cur_size = atomic_read(&ap->cur_mini_bufs);
2241 if (cur_size < RX_LOW_MINI_THRES) {
2242 if ((cur_size < RX_PANIC_MINI_THRES) &&
2243 !test_and_set_bit(0,
2244 &ap->mini_refill_busy)) {
2245 #ifdef DEBUG
2246 printk("low on mini buffers %i\n",
2247 cur_size);
2248 #endif
2249 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2250 } else
2251 run_tasklet = 1;
2255 if (ap->jumbo) {
2256 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2257 if (cur_size < RX_LOW_JUMBO_THRES) {
2258 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2259 !test_and_set_bit(0,
2260 &ap->jumbo_refill_busy)){
2261 #ifdef DEBUG
2262 printk("low on jumbo buffers %i\n",
2263 cur_size);
2264 #endif
2265 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2266 } else
2267 run_tasklet = 1;
2270 if (run_tasklet && !ap->tasklet_pending) {
2271 ap->tasklet_pending = 1;
2272 tasklet_schedule(&ap->ace_tasklet);
2276 return IRQ_HANDLED;
2280 #if ACENIC_DO_VLAN
2281 static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2283 struct ace_private *ap = netdev_priv(dev);
2284 unsigned long flags;
2286 local_irq_save(flags);
2287 ace_mask_irq(dev);
2289 ap->vlgrp = grp;
2291 ace_unmask_irq(dev);
2292 local_irq_restore(flags);
2296 static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2298 struct ace_private *ap = netdev_priv(dev);
2299 unsigned long flags;
2301 local_irq_save(flags);
2302 ace_mask_irq(dev);
2304 if (ap->vlgrp)
2305 ap->vlgrp->vlan_devices[vid] = NULL;
2307 ace_unmask_irq(dev);
2308 local_irq_restore(flags);
2310 #endif /* ACENIC_DO_VLAN */
2313 static int ace_open(struct net_device *dev)
2315 struct ace_private *ap = netdev_priv(dev);
2316 struct ace_regs __iomem *regs = ap->regs;
2317 struct cmd cmd;
2319 if (!(ap->fw_running)) {
2320 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2321 return -EBUSY;
2324 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2326 cmd.evt = C_CLEAR_STATS;
2327 cmd.code = 0;
2328 cmd.idx = 0;
2329 ace_issue_cmd(regs, &cmd);
2331 cmd.evt = C_HOST_STATE;
2332 cmd.code = C_C_STACK_UP;
2333 cmd.idx = 0;
2334 ace_issue_cmd(regs, &cmd);
2336 if (ap->jumbo &&
2337 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2338 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2340 if (dev->flags & IFF_PROMISC) {
2341 cmd.evt = C_SET_PROMISC_MODE;
2342 cmd.code = C_C_PROMISC_ENABLE;
2343 cmd.idx = 0;
2344 ace_issue_cmd(regs, &cmd);
2346 ap->promisc = 1;
2347 }else
2348 ap->promisc = 0;
2349 ap->mcast_all = 0;
2351 #if 0
2352 cmd.evt = C_LNK_NEGOTIATION;
2353 cmd.code = 0;
2354 cmd.idx = 0;
2355 ace_issue_cmd(regs, &cmd);
2356 #endif
2358 netif_start_queue(dev);
2361 * Setup the bottom half rx ring refill handler
2363 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2364 return 0;
2368 static int ace_close(struct net_device *dev)
2370 struct ace_private *ap = netdev_priv(dev);
2371 struct ace_regs __iomem *regs = ap->regs;
2372 struct cmd cmd;
2373 unsigned long flags;
2374 short i;
2377 * Without (or before) releasing irq and stopping hardware, this
2378 * is an absolute non-sense, by the way. It will be reset instantly
2379 * by the first irq.
2381 netif_stop_queue(dev);
2384 if (ap->promisc) {
2385 cmd.evt = C_SET_PROMISC_MODE;
2386 cmd.code = C_C_PROMISC_DISABLE;
2387 cmd.idx = 0;
2388 ace_issue_cmd(regs, &cmd);
2389 ap->promisc = 0;
2392 cmd.evt = C_HOST_STATE;
2393 cmd.code = C_C_STACK_DOWN;
2394 cmd.idx = 0;
2395 ace_issue_cmd(regs, &cmd);
2397 tasklet_kill(&ap->ace_tasklet);
2400 * Make sure one CPU is not processing packets while
2401 * buffers are being released by another.
2404 local_irq_save(flags);
2405 ace_mask_irq(dev);
2407 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2408 struct sk_buff *skb;
2409 dma_addr_t mapping;
2410 struct tx_ring_info *info;
2412 info = ap->skb->tx_skbuff + i;
2413 skb = info->skb;
2414 mapping = pci_unmap_addr(info, mapping);
2416 if (mapping) {
2417 if (ACE_IS_TIGON_I(ap)) {
2418 struct tx_desc __iomem *tx
2419 = (struct tx_desc __iomem *) &ap->tx_ring[i];
2420 writel(0, &tx->addr.addrhi);
2421 writel(0, &tx->addr.addrlo);
2422 writel(0, &tx->flagsize);
2423 } else
2424 memset(ap->tx_ring + i, 0,
2425 sizeof(struct tx_desc));
2426 pci_unmap_page(ap->pdev, mapping,
2427 pci_unmap_len(info, maplen),
2428 PCI_DMA_TODEVICE);
2429 pci_unmap_addr_set(info, mapping, 0);
2431 if (skb) {
2432 dev_kfree_skb(skb);
2433 info->skb = NULL;
2437 if (ap->jumbo) {
2438 cmd.evt = C_RESET_JUMBO_RNG;
2439 cmd.code = 0;
2440 cmd.idx = 0;
2441 ace_issue_cmd(regs, &cmd);
2444 ace_unmask_irq(dev);
2445 local_irq_restore(flags);
2447 return 0;
2451 static inline dma_addr_t
2452 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2453 struct sk_buff *tail, u32 idx)
2455 dma_addr_t mapping;
2456 struct tx_ring_info *info;
2458 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2459 offset_in_page(skb->data),
2460 skb->len, PCI_DMA_TODEVICE);
2462 info = ap->skb->tx_skbuff + idx;
2463 info->skb = tail;
2464 pci_unmap_addr_set(info, mapping, mapping);
2465 pci_unmap_len_set(info, maplen, skb->len);
2466 return mapping;
2470 static inline void
2471 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2472 u32 flagsize, u32 vlan_tag)
2474 #if !USE_TX_COAL_NOW
2475 flagsize &= ~BD_FLG_COAL_NOW;
2476 #endif
2478 if (ACE_IS_TIGON_I(ap)) {
2479 struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
2480 writel(addr >> 32, &io->addr.addrhi);
2481 writel(addr & 0xffffffff, &io->addr.addrlo);
2482 writel(flagsize, &io->flagsize);
2483 #if ACENIC_DO_VLAN
2484 writel(vlan_tag, &io->vlanres);
2485 #endif
2486 } else {
2487 desc->addr.addrhi = addr >> 32;
2488 desc->addr.addrlo = addr;
2489 desc->flagsize = flagsize;
2490 #if ACENIC_DO_VLAN
2491 desc->vlanres = vlan_tag;
2492 #endif
2497 static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
2499 struct ace_private *ap = netdev_priv(dev);
2500 struct ace_regs __iomem *regs = ap->regs;
2501 struct tx_desc *desc;
2502 u32 idx, flagsize;
2503 unsigned long maxjiff = jiffies + 3*HZ;
2505 restart:
2506 idx = ap->tx_prd;
2508 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2509 goto overflow;
2511 if (!skb_shinfo(skb)->nr_frags) {
2512 dma_addr_t mapping;
2513 u32 vlan_tag = 0;
2515 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2516 flagsize = (skb->len << 16) | (BD_FLG_END);
2517 if (skb->ip_summed == CHECKSUM_HW)
2518 flagsize |= BD_FLG_TCP_UDP_SUM;
2519 #if ACENIC_DO_VLAN
2520 if (vlan_tx_tag_present(skb)) {
2521 flagsize |= BD_FLG_VLAN_TAG;
2522 vlan_tag = vlan_tx_tag_get(skb);
2524 #endif
2525 desc = ap->tx_ring + idx;
2526 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2528 /* Look at ace_tx_int for explanations. */
2529 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2530 flagsize |= BD_FLG_COAL_NOW;
2532 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2533 } else {
2534 dma_addr_t mapping;
2535 u32 vlan_tag = 0;
2536 int i, len = 0;
2538 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2539 flagsize = (skb_headlen(skb) << 16);
2540 if (skb->ip_summed == CHECKSUM_HW)
2541 flagsize |= BD_FLG_TCP_UDP_SUM;
2542 #if ACENIC_DO_VLAN
2543 if (vlan_tx_tag_present(skb)) {
2544 flagsize |= BD_FLG_VLAN_TAG;
2545 vlan_tag = vlan_tx_tag_get(skb);
2547 #endif
2549 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2551 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2553 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2554 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2555 struct tx_ring_info *info;
2557 len += frag->size;
2558 info = ap->skb->tx_skbuff + idx;
2559 desc = ap->tx_ring + idx;
2561 mapping = pci_map_page(ap->pdev, frag->page,
2562 frag->page_offset, frag->size,
2563 PCI_DMA_TODEVICE);
2565 flagsize = (frag->size << 16);
2566 if (skb->ip_summed == CHECKSUM_HW)
2567 flagsize |= BD_FLG_TCP_UDP_SUM;
2568 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2570 if (i == skb_shinfo(skb)->nr_frags - 1) {
2571 flagsize |= BD_FLG_END;
2572 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2573 flagsize |= BD_FLG_COAL_NOW;
2576 * Only the last fragment frees
2577 * the skb!
2579 info->skb = skb;
2580 } else {
2581 info->skb = NULL;
2583 pci_unmap_addr_set(info, mapping, mapping);
2584 pci_unmap_len_set(info, maplen, frag->size);
2585 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2589 wmb();
2590 ap->tx_prd = idx;
2591 ace_set_txprd(regs, ap, idx);
2593 if (flagsize & BD_FLG_COAL_NOW) {
2594 netif_stop_queue(dev);
2597 * A TX-descriptor producer (an IRQ) might have gotten
2598 * inbetween, making the ring free again. Since xmit is
2599 * serialized, this is the only situation we have to
2600 * re-test.
2602 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2603 netif_wake_queue(dev);
2606 dev->trans_start = jiffies;
2607 return NETDEV_TX_OK;
2609 overflow:
2611 * This race condition is unavoidable with lock-free drivers.
2612 * We wake up the queue _before_ tx_prd is advanced, so that we can
2613 * enter hard_start_xmit too early, while tx ring still looks closed.
2614 * This happens ~1-4 times per 100000 packets, so that we can allow
2615 * to loop syncing to other CPU. Probably, we need an additional
2616 * wmb() in ace_tx_intr as well.
2618 * Note that this race is relieved by reserving one more entry
2619 * in tx ring than it is necessary (see original non-SG driver).
2620 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2621 * is already overkill.
2623 * Alternative is to return with 1 not throttling queue. In this
2624 * case loop becomes longer, no more useful effects.
2626 if (time_before(jiffies, maxjiff)) {
2627 barrier();
2628 cpu_relax();
2629 goto restart;
2632 /* The ring is stuck full. */
2633 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2634 return NETDEV_TX_BUSY;
2638 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2640 struct ace_private *ap = netdev_priv(dev);
2641 struct ace_regs __iomem *regs = ap->regs;
2643 if (new_mtu > ACE_JUMBO_MTU)
2644 return -EINVAL;
2646 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2647 dev->mtu = new_mtu;
2649 if (new_mtu > ACE_STD_MTU) {
2650 if (!(ap->jumbo)) {
2651 printk(KERN_INFO "%s: Enabling Jumbo frame "
2652 "support\n", dev->name);
2653 ap->jumbo = 1;
2654 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2655 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2656 ace_set_rxtx_parms(dev, 1);
2658 } else {
2659 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2660 ace_sync_irq(dev->irq);
2661 ace_set_rxtx_parms(dev, 0);
2662 if (ap->jumbo) {
2663 struct cmd cmd;
2665 cmd.evt = C_RESET_JUMBO_RNG;
2666 cmd.code = 0;
2667 cmd.idx = 0;
2668 ace_issue_cmd(regs, &cmd);
2672 return 0;
2675 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2677 struct ace_private *ap = netdev_priv(dev);
2678 struct ace_regs __iomem *regs = ap->regs;
2679 u32 link;
2681 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2682 ecmd->supported =
2683 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2684 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2685 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2686 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2688 ecmd->port = PORT_FIBRE;
2689 ecmd->transceiver = XCVR_INTERNAL;
2691 link = readl(&regs->GigLnkState);
2692 if (link & LNK_1000MB)
2693 ecmd->speed = SPEED_1000;
2694 else {
2695 link = readl(&regs->FastLnkState);
2696 if (link & LNK_100MB)
2697 ecmd->speed = SPEED_100;
2698 else if (link & LNK_10MB)
2699 ecmd->speed = SPEED_10;
2700 else
2701 ecmd->speed = 0;
2703 if (link & LNK_FULL_DUPLEX)
2704 ecmd->duplex = DUPLEX_FULL;
2705 else
2706 ecmd->duplex = DUPLEX_HALF;
2708 if (link & LNK_NEGOTIATE)
2709 ecmd->autoneg = AUTONEG_ENABLE;
2710 else
2711 ecmd->autoneg = AUTONEG_DISABLE;
2713 #if 0
2715 * Current struct ethtool_cmd is insufficient
2717 ecmd->trace = readl(&regs->TuneTrace);
2719 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2720 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2721 #endif
2722 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2723 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2725 return 0;
2728 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2730 struct ace_private *ap = netdev_priv(dev);
2731 struct ace_regs __iomem *regs = ap->regs;
2732 u32 link, speed;
2734 link = readl(&regs->GigLnkState);
2735 if (link & LNK_1000MB)
2736 speed = SPEED_1000;
2737 else {
2738 link = readl(&regs->FastLnkState);
2739 if (link & LNK_100MB)
2740 speed = SPEED_100;
2741 else if (link & LNK_10MB)
2742 speed = SPEED_10;
2743 else
2744 speed = SPEED_100;
2747 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2748 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2749 if (!ACE_IS_TIGON_I(ap))
2750 link |= LNK_TX_FLOW_CTL_Y;
2751 if (ecmd->autoneg == AUTONEG_ENABLE)
2752 link |= LNK_NEGOTIATE;
2753 if (ecmd->speed != speed) {
2754 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2755 switch (speed) {
2756 case SPEED_1000:
2757 link |= LNK_1000MB;
2758 break;
2759 case SPEED_100:
2760 link |= LNK_100MB;
2761 break;
2762 case SPEED_10:
2763 link |= LNK_10MB;
2764 break;
2768 if (ecmd->duplex == DUPLEX_FULL)
2769 link |= LNK_FULL_DUPLEX;
2771 if (link != ap->link) {
2772 struct cmd cmd;
2773 printk(KERN_INFO "%s: Renegotiating link state\n",
2774 dev->name);
2776 ap->link = link;
2777 writel(link, &regs->TuneLink);
2778 if (!ACE_IS_TIGON_I(ap))
2779 writel(link, &regs->TuneFastLink);
2780 wmb();
2782 cmd.evt = C_LNK_NEGOTIATION;
2783 cmd.code = 0;
2784 cmd.idx = 0;
2785 ace_issue_cmd(regs, &cmd);
2787 return 0;
2790 static void ace_get_drvinfo(struct net_device *dev,
2791 struct ethtool_drvinfo *info)
2793 struct ace_private *ap = netdev_priv(dev);
2795 strlcpy(info->driver, "acenic", sizeof(info->driver));
2796 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2797 tigonFwReleaseMajor, tigonFwReleaseMinor,
2798 tigonFwReleaseFix);
2800 if (ap->pdev)
2801 strlcpy(info->bus_info, pci_name(ap->pdev),
2802 sizeof(info->bus_info));
2807 * Set the hardware MAC address.
2809 static int ace_set_mac_addr(struct net_device *dev, void *p)
2811 struct ace_private *ap = netdev_priv(dev);
2812 struct ace_regs __iomem *regs = ap->regs;
2813 struct sockaddr *addr=p;
2814 u8 *da;
2815 struct cmd cmd;
2817 if(netif_running(dev))
2818 return -EBUSY;
2820 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2822 da = (u8 *)dev->dev_addr;
2824 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2825 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2826 &regs->MacAddrLo);
2828 cmd.evt = C_SET_MAC_ADDR;
2829 cmd.code = 0;
2830 cmd.idx = 0;
2831 ace_issue_cmd(regs, &cmd);
2833 return 0;
2837 static void ace_set_multicast_list(struct net_device *dev)
2839 struct ace_private *ap = netdev_priv(dev);
2840 struct ace_regs __iomem *regs = ap->regs;
2841 struct cmd cmd;
2843 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2844 cmd.evt = C_SET_MULTICAST_MODE;
2845 cmd.code = C_C_MCAST_ENABLE;
2846 cmd.idx = 0;
2847 ace_issue_cmd(regs, &cmd);
2848 ap->mcast_all = 1;
2849 } else if (ap->mcast_all) {
2850 cmd.evt = C_SET_MULTICAST_MODE;
2851 cmd.code = C_C_MCAST_DISABLE;
2852 cmd.idx = 0;
2853 ace_issue_cmd(regs, &cmd);
2854 ap->mcast_all = 0;
2857 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2858 cmd.evt = C_SET_PROMISC_MODE;
2859 cmd.code = C_C_PROMISC_ENABLE;
2860 cmd.idx = 0;
2861 ace_issue_cmd(regs, &cmd);
2862 ap->promisc = 1;
2863 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2864 cmd.evt = C_SET_PROMISC_MODE;
2865 cmd.code = C_C_PROMISC_DISABLE;
2866 cmd.idx = 0;
2867 ace_issue_cmd(regs, &cmd);
2868 ap->promisc = 0;
2872 * For the time being multicast relies on the upper layers
2873 * filtering it properly. The Firmware does not allow one to
2874 * set the entire multicast list at a time and keeping track of
2875 * it here is going to be messy.
2877 if ((dev->mc_count) && !(ap->mcast_all)) {
2878 cmd.evt = C_SET_MULTICAST_MODE;
2879 cmd.code = C_C_MCAST_ENABLE;
2880 cmd.idx = 0;
2881 ace_issue_cmd(regs, &cmd);
2882 }else if (!ap->mcast_all) {
2883 cmd.evt = C_SET_MULTICAST_MODE;
2884 cmd.code = C_C_MCAST_DISABLE;
2885 cmd.idx = 0;
2886 ace_issue_cmd(regs, &cmd);
2891 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2893 struct ace_private *ap = netdev_priv(dev);
2894 struct ace_mac_stats __iomem *mac_stats =
2895 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2897 ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2898 ap->stats.multicast = readl(&mac_stats->kept_mc);
2899 ap->stats.collisions = readl(&mac_stats->coll);
2901 return &ap->stats;
2905 static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
2906 u32 dest, int size)
2908 void __iomem *tdest;
2909 u32 *wsrc;
2910 short tsize, i;
2912 if (size <= 0)
2913 return;
2915 while (size > 0) {
2916 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2917 min_t(u32, size, ACE_WINDOW_SIZE));
2918 tdest = (void __iomem *) &regs->Window +
2919 (dest & (ACE_WINDOW_SIZE - 1));
2920 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2922 * This requires byte swapping on big endian, however
2923 * writel does that for us
2925 wsrc = src;
2926 for (i = 0; i < (tsize / 4); i++) {
2927 writel(wsrc[i], tdest + i*4);
2929 dest += tsize;
2930 src += tsize;
2931 size -= tsize;
2934 return;
2938 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2940 void __iomem *tdest;
2941 short tsize = 0, i;
2943 if (size <= 0)
2944 return;
2946 while (size > 0) {
2947 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2948 min_t(u32, size, ACE_WINDOW_SIZE));
2949 tdest = (void __iomem *) &regs->Window +
2950 (dest & (ACE_WINDOW_SIZE - 1));
2951 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2953 for (i = 0; i < (tsize / 4); i++) {
2954 writel(0, tdest + i*4);
2957 dest += tsize;
2958 size -= tsize;
2961 return;
2966 * Download the firmware into the SRAM on the NIC
2968 * This operation requires the NIC to be halted and is performed with
2969 * interrupts disabled and with the spinlock hold.
2971 int __devinit ace_load_firmware(struct net_device *dev)
2973 struct ace_private *ap = netdev_priv(dev);
2974 struct ace_regs __iomem *regs = ap->regs;
2976 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2977 printk(KERN_ERR "%s: trying to download firmware while the "
2978 "CPU is running!\n", ap->name);
2979 return -EFAULT;
2983 * Do not try to clear more than 512KB or we end up seeing
2984 * funny things on NICs with only 512KB SRAM
2986 ace_clear(regs, 0x2000, 0x80000-0x2000);
2987 if (ACE_IS_TIGON_I(ap)) {
2988 ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
2989 ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
2990 ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
2991 tigonFwRodataLen);
2992 ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
2993 ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
2994 }else if (ap->version == 2) {
2995 ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
2996 ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
2997 ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
2998 ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
2999 tigon2FwRodataLen);
3000 ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
3003 return 0;
3008 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
3010 * Accessing the EEPROM is `interesting' to say the least - don't read
3011 * this code right after dinner.
3013 * This is all about black magic and bit-banging the device .... I
3014 * wonder in what hospital they have put the guy who designed the i2c
3015 * specs.
3017 * Oh yes, this is only the beginning!
3019 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
3020 * code i2c readout code by beta testing all my hacks.
3022 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
3024 u32 local;
3026 readl(&regs->LocalCtrl);
3027 udelay(ACE_SHORT_DELAY);
3028 local = readl(&regs->LocalCtrl);
3029 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
3030 writel(local, &regs->LocalCtrl);
3031 readl(&regs->LocalCtrl);
3032 mb();
3033 udelay(ACE_SHORT_DELAY);
3034 local |= EEPROM_CLK_OUT;
3035 writel(local, &regs->LocalCtrl);
3036 readl(&regs->LocalCtrl);
3037 mb();
3038 udelay(ACE_SHORT_DELAY);
3039 local &= ~EEPROM_DATA_OUT;
3040 writel(local, &regs->LocalCtrl);
3041 readl(&regs->LocalCtrl);
3042 mb();
3043 udelay(ACE_SHORT_DELAY);
3044 local &= ~EEPROM_CLK_OUT;
3045 writel(local, &regs->LocalCtrl);
3046 readl(&regs->LocalCtrl);
3047 mb();
3051 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
3053 short i;
3054 u32 local;
3056 udelay(ACE_SHORT_DELAY);
3057 local = readl(&regs->LocalCtrl);
3058 local &= ~EEPROM_DATA_OUT;
3059 local |= EEPROM_WRITE_ENABLE;
3060 writel(local, &regs->LocalCtrl);
3061 readl(&regs->LocalCtrl);
3062 mb();
3064 for (i = 0; i < 8; i++, magic <<= 1) {
3065 udelay(ACE_SHORT_DELAY);
3066 if (magic & 0x80)
3067 local |= EEPROM_DATA_OUT;
3068 else
3069 local &= ~EEPROM_DATA_OUT;
3070 writel(local, &regs->LocalCtrl);
3071 readl(&regs->LocalCtrl);
3072 mb();
3074 udelay(ACE_SHORT_DELAY);
3075 local |= EEPROM_CLK_OUT;
3076 writel(local, &regs->LocalCtrl);
3077 readl(&regs->LocalCtrl);
3078 mb();
3079 udelay(ACE_SHORT_DELAY);
3080 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3081 writel(local, &regs->LocalCtrl);
3082 readl(&regs->LocalCtrl);
3083 mb();
3088 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3090 int state;
3091 u32 local;
3093 local = readl(&regs->LocalCtrl);
3094 local &= ~EEPROM_WRITE_ENABLE;
3095 writel(local, &regs->LocalCtrl);
3096 readl(&regs->LocalCtrl);
3097 mb();
3098 udelay(ACE_LONG_DELAY);
3099 local |= EEPROM_CLK_OUT;
3100 writel(local, &regs->LocalCtrl);
3101 readl(&regs->LocalCtrl);
3102 mb();
3103 udelay(ACE_SHORT_DELAY);
3104 /* sample data in middle of high clk */
3105 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3106 udelay(ACE_SHORT_DELAY);
3107 mb();
3108 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3109 readl(&regs->LocalCtrl);
3110 mb();
3112 return state;
3116 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3118 u32 local;
3120 udelay(ACE_SHORT_DELAY);
3121 local = readl(&regs->LocalCtrl);
3122 local |= EEPROM_WRITE_ENABLE;
3123 writel(local, &regs->LocalCtrl);
3124 readl(&regs->LocalCtrl);
3125 mb();
3126 udelay(ACE_SHORT_DELAY);
3127 local &= ~EEPROM_DATA_OUT;
3128 writel(local, &regs->LocalCtrl);
3129 readl(&regs->LocalCtrl);
3130 mb();
3131 udelay(ACE_SHORT_DELAY);
3132 local |= EEPROM_CLK_OUT;
3133 writel(local, &regs->LocalCtrl);
3134 readl(&regs->LocalCtrl);
3135 mb();
3136 udelay(ACE_SHORT_DELAY);
3137 local |= EEPROM_DATA_OUT;
3138 writel(local, &regs->LocalCtrl);
3139 readl(&regs->LocalCtrl);
3140 mb();
3141 udelay(ACE_LONG_DELAY);
3142 local &= ~EEPROM_CLK_OUT;
3143 writel(local, &regs->LocalCtrl);
3144 mb();
3149 * Read a whole byte from the EEPROM.
3151 static int __devinit read_eeprom_byte(struct net_device *dev,
3152 unsigned long offset)
3154 struct ace_private *ap = netdev_priv(dev);
3155 struct ace_regs __iomem *regs = ap->regs;
3156 unsigned long flags;
3157 u32 local;
3158 int result = 0;
3159 short i;
3161 if (!dev) {
3162 printk(KERN_ERR "No device!\n");
3163 result = -ENODEV;
3164 goto out;
3168 * Don't take interrupts on this CPU will bit banging
3169 * the %#%#@$ I2C device
3171 local_irq_save(flags);
3173 eeprom_start(regs);
3175 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3176 if (eeprom_check_ack(regs)) {
3177 local_irq_restore(flags);
3178 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3179 result = -EIO;
3180 goto eeprom_read_error;
3183 eeprom_prep(regs, (offset >> 8) & 0xff);
3184 if (eeprom_check_ack(regs)) {
3185 local_irq_restore(flags);
3186 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3187 ap->name);
3188 result = -EIO;
3189 goto eeprom_read_error;
3192 eeprom_prep(regs, offset & 0xff);
3193 if (eeprom_check_ack(regs)) {
3194 local_irq_restore(flags);
3195 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3196 ap->name);
3197 result = -EIO;
3198 goto eeprom_read_error;
3201 eeprom_start(regs);
3202 eeprom_prep(regs, EEPROM_READ_SELECT);
3203 if (eeprom_check_ack(regs)) {
3204 local_irq_restore(flags);
3205 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3206 ap->name);
3207 result = -EIO;
3208 goto eeprom_read_error;
3211 for (i = 0; i < 8; i++) {
3212 local = readl(&regs->LocalCtrl);
3213 local &= ~EEPROM_WRITE_ENABLE;
3214 writel(local, &regs->LocalCtrl);
3215 readl(&regs->LocalCtrl);
3216 udelay(ACE_LONG_DELAY);
3217 mb();
3218 local |= EEPROM_CLK_OUT;
3219 writel(local, &regs->LocalCtrl);
3220 readl(&regs->LocalCtrl);
3221 mb();
3222 udelay(ACE_SHORT_DELAY);
3223 /* sample data mid high clk */
3224 result = (result << 1) |
3225 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3226 udelay(ACE_SHORT_DELAY);
3227 mb();
3228 local = readl(&regs->LocalCtrl);
3229 local &= ~EEPROM_CLK_OUT;
3230 writel(local, &regs->LocalCtrl);
3231 readl(&regs->LocalCtrl);
3232 udelay(ACE_SHORT_DELAY);
3233 mb();
3234 if (i == 7) {
3235 local |= EEPROM_WRITE_ENABLE;
3236 writel(local, &regs->LocalCtrl);
3237 readl(&regs->LocalCtrl);
3238 mb();
3239 udelay(ACE_SHORT_DELAY);
3243 local |= EEPROM_DATA_OUT;
3244 writel(local, &regs->LocalCtrl);
3245 readl(&regs->LocalCtrl);
3246 mb();
3247 udelay(ACE_SHORT_DELAY);
3248 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3249 readl(&regs->LocalCtrl);
3250 udelay(ACE_LONG_DELAY);
3251 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3252 readl(&regs->LocalCtrl);
3253 mb();
3254 udelay(ACE_SHORT_DELAY);
3255 eeprom_stop(regs);
3257 local_irq_restore(flags);
3258 out:
3259 return result;
3261 eeprom_read_error:
3262 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3263 ap->name, offset);
3264 goto out;
3269 * Local variables:
3270 * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
3271 * End: