[BLOCK] blk_rq_map_sg: force clear termination bit
[linux-2.6/verdex.git] / fs / jffs2 / readinode.c
blob2eae5d2dbebed3707bf9805675822527a922045e
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/crc32.h>
17 #include <linux/pagemap.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/compiler.h>
20 #include "nodelist.h"
23 * Check the data CRC of the node.
25 * Returns: 0 if the data CRC is correct;
26 * 1 - if incorrect;
27 * error code if an error occured.
29 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
31 struct jffs2_raw_node_ref *ref = tn->fn->raw;
32 int err = 0, pointed = 0;
33 struct jffs2_eraseblock *jeb;
34 unsigned char *buffer;
35 uint32_t crc, ofs, len;
36 size_t retlen;
38 BUG_ON(tn->csize == 0);
40 if (!jffs2_is_writebuffered(c))
41 goto adj_acc;
43 /* Calculate how many bytes were already checked */
44 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
45 len = ofs % c->wbuf_pagesize;
46 if (likely(len))
47 len = c->wbuf_pagesize - len;
49 if (len >= tn->csize) {
50 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
51 ref_offset(ref), tn->csize, ofs);
52 goto adj_acc;
55 ofs += len;
56 len = tn->csize - len;
58 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
59 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
61 #ifndef __ECOS
62 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
63 * adding and jffs2_flash_read_end() interface. */
64 if (c->mtd->point) {
65 err = c->mtd->point(c->mtd, ofs, len, &retlen, &buffer);
66 if (!err && retlen < tn->csize) {
67 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
68 c->mtd->unpoint(c->mtd, buffer, ofs, retlen);
69 } else if (err)
70 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
71 else
72 pointed = 1; /* succefully pointed to device */
74 #endif
76 if (!pointed) {
77 buffer = kmalloc(len, GFP_KERNEL);
78 if (unlikely(!buffer))
79 return -ENOMEM;
81 /* TODO: this is very frequent pattern, make it a separate
82 * routine */
83 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
84 if (err) {
85 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
86 goto free_out;
89 if (retlen != len) {
90 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
91 err = -EIO;
92 goto free_out;
96 /* Continue calculating CRC */
97 crc = crc32(tn->partial_crc, buffer, len);
98 if(!pointed)
99 kfree(buffer);
100 #ifndef __ECOS
101 else
102 c->mtd->unpoint(c->mtd, buffer, ofs, len);
103 #endif
105 if (crc != tn->data_crc) {
106 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
107 ref_offset(ref), tn->data_crc, crc);
108 return 1;
111 adj_acc:
112 jeb = &c->blocks[ref->flash_offset / c->sector_size];
113 len = ref_totlen(c, jeb, ref);
114 /* If it should be REF_NORMAL, it'll get marked as such when
115 we build the fragtree, shortly. No need to worry about GC
116 moving it while it's marked REF_PRISTINE -- GC won't happen
117 till we've finished checking every inode anyway. */
118 ref->flash_offset |= REF_PRISTINE;
120 * Mark the node as having been checked and fix the
121 * accounting accordingly.
123 spin_lock(&c->erase_completion_lock);
124 jeb->used_size += len;
125 jeb->unchecked_size -= len;
126 c->used_size += len;
127 c->unchecked_size -= len;
128 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
129 spin_unlock(&c->erase_completion_lock);
131 return 0;
133 free_out:
134 if(!pointed)
135 kfree(buffer);
136 #ifndef __ECOS
137 else
138 c->mtd->unpoint(c->mtd, buffer, ofs, len);
139 #endif
140 return err;
144 * Helper function for jffs2_add_older_frag_to_fragtree().
146 * Checks the node if we are in the checking stage.
148 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
150 int ret;
152 BUG_ON(ref_obsolete(tn->fn->raw));
154 /* We only check the data CRC of unchecked nodes */
155 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
156 return 0;
158 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
159 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
161 ret = check_node_data(c, tn);
162 if (unlikely(ret < 0)) {
163 JFFS2_ERROR("check_node_data() returned error: %d.\n",
164 ret);
165 } else if (unlikely(ret > 0)) {
166 dbg_readinode("CRC error, mark it obsolete.\n");
167 jffs2_mark_node_obsolete(c, tn->fn->raw);
170 return ret;
173 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
175 struct rb_node *next;
176 struct jffs2_tmp_dnode_info *tn = NULL;
178 dbg_readinode("root %p, offset %d\n", tn_root, offset);
180 next = tn_root->rb_node;
182 while (next) {
183 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
185 if (tn->fn->ofs < offset)
186 next = tn->rb.rb_right;
187 else if (tn->fn->ofs >= offset)
188 next = tn->rb.rb_left;
189 else
190 break;
193 return tn;
197 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
199 jffs2_mark_node_obsolete(c, tn->fn->raw);
200 jffs2_free_full_dnode(tn->fn);
201 jffs2_free_tmp_dnode_info(tn);
204 * This function is used when we read an inode. Data nodes arrive in
205 * arbitrary order -- they may be older or newer than the nodes which
206 * are already in the tree. Where overlaps occur, the older node can
207 * be discarded as long as the newer passes the CRC check. We don't
208 * bother to keep track of holes in this rbtree, and neither do we deal
209 * with frags -- we can have multiple entries starting at the same
210 * offset, and the one with the smallest length will come first in the
211 * ordering.
213 * Returns 0 if the node was handled (including marking it obsolete)
214 * < 0 an if error occurred
216 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
217 struct jffs2_readinode_info *rii,
218 struct jffs2_tmp_dnode_info *tn)
220 uint32_t fn_end = tn->fn->ofs + tn->fn->size;
221 struct jffs2_tmp_dnode_info *this;
223 dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
225 /* If a node has zero dsize, we only have to keep if it if it might be the
226 node with highest version -- i.e. the one which will end up as f->metadata.
227 Note that such nodes won't be REF_UNCHECKED since there are no data to
228 check anyway. */
229 if (!tn->fn->size) {
230 if (rii->mdata_tn) {
231 if (rii->mdata_tn->version < tn->version) {
232 /* We had a candidate mdata node already */
233 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
234 jffs2_kill_tn(c, rii->mdata_tn);
235 } else {
236 dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
237 tn->version, rii->mdata_tn->version);
238 jffs2_kill_tn(c, tn);
239 return 0;
242 rii->mdata_tn = tn;
243 dbg_readinode("keep new mdata with ver %d\n", tn->version);
244 return 0;
247 /* Find the earliest node which _may_ be relevant to this one */
248 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
249 if (this) {
250 /* If the node is coincident with another at a lower address,
251 back up until the other node is found. It may be relevant */
252 while (this->overlapped)
253 this = tn_prev(this);
255 /* First node should never be marked overlapped */
256 BUG_ON(!this);
257 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
260 while (this) {
261 if (this->fn->ofs > fn_end)
262 break;
263 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
264 this->version, this->fn->ofs, this->fn->size);
266 if (this->version == tn->version) {
267 /* Version number collision means REF_PRISTINE GC. Accept either of them
268 as long as the CRC is correct. Check the one we have already... */
269 if (!check_tn_node(c, this)) {
270 /* The one we already had was OK. Keep it and throw away the new one */
271 dbg_readinode("Like old node. Throw away new\n");
272 jffs2_kill_tn(c, tn);
273 return 0;
274 } else {
275 /* Who cares if the new one is good; keep it for now anyway. */
276 dbg_readinode("Like new node. Throw away old\n");
277 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
278 jffs2_kill_tn(c, this);
279 /* Same overlapping from in front and behind */
280 return 0;
283 if (this->version < tn->version &&
284 this->fn->ofs >= tn->fn->ofs &&
285 this->fn->ofs + this->fn->size <= fn_end) {
286 /* New node entirely overlaps 'this' */
287 if (check_tn_node(c, tn)) {
288 dbg_readinode("new node bad CRC\n");
289 jffs2_kill_tn(c, tn);
290 return 0;
292 /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
293 while (this && this->fn->ofs + this->fn->size <= fn_end) {
294 struct jffs2_tmp_dnode_info *next = tn_next(this);
295 if (this->version < tn->version) {
296 tn_erase(this, &rii->tn_root);
297 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
298 this->version, this->fn->ofs,
299 this->fn->ofs+this->fn->size);
300 jffs2_kill_tn(c, this);
302 this = next;
304 dbg_readinode("Done killing overlapped nodes\n");
305 continue;
307 if (this->version > tn->version &&
308 this->fn->ofs <= tn->fn->ofs &&
309 this->fn->ofs+this->fn->size >= fn_end) {
310 /* New node entirely overlapped by 'this' */
311 if (!check_tn_node(c, this)) {
312 dbg_readinode("Good CRC on old node. Kill new\n");
313 jffs2_kill_tn(c, tn);
314 return 0;
316 /* ... but 'this' was bad. Replace it... */
317 dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
318 tn_erase(this, &rii->tn_root);
319 jffs2_kill_tn(c, this);
320 break;
323 this = tn_next(this);
326 /* We neither completely obsoleted nor were completely
327 obsoleted by an earlier node. Insert into the tree */
329 struct rb_node *parent;
330 struct rb_node **link = &rii->tn_root.rb_node;
331 struct jffs2_tmp_dnode_info *insert_point = NULL;
333 while (*link) {
334 parent = *link;
335 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
336 if (tn->fn->ofs > insert_point->fn->ofs)
337 link = &insert_point->rb.rb_right;
338 else if (tn->fn->ofs < insert_point->fn->ofs ||
339 tn->fn->size < insert_point->fn->size)
340 link = &insert_point->rb.rb_left;
341 else
342 link = &insert_point->rb.rb_right;
344 rb_link_node(&tn->rb, &insert_point->rb, link);
345 rb_insert_color(&tn->rb, &rii->tn_root);
348 /* If there's anything behind that overlaps us, note it */
349 this = tn_prev(tn);
350 if (this) {
351 while (1) {
352 if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
353 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
354 this, this->version, this->fn->ofs,
355 this->fn->ofs+this->fn->size);
356 tn->overlapped = 1;
357 break;
359 if (!this->overlapped)
360 break;
361 this = tn_prev(this);
365 /* If the new node overlaps anything ahead, note it */
366 this = tn_next(tn);
367 while (this && this->fn->ofs < fn_end) {
368 this->overlapped = 1;
369 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
370 this->version, this->fn->ofs,
371 this->fn->ofs+this->fn->size);
372 this = tn_next(this);
374 return 0;
377 /* Trivial function to remove the last node in the tree. Which by definition
378 has no right-hand -- so can be removed just by making its only child (if
379 any) take its place under its parent. */
380 static void eat_last(struct rb_root *root, struct rb_node *node)
382 struct rb_node *parent = rb_parent(node);
383 struct rb_node **link;
385 /* LAST! */
386 BUG_ON(node->rb_right);
388 if (!parent)
389 link = &root->rb_node;
390 else if (node == parent->rb_left)
391 link = &parent->rb_left;
392 else
393 link = &parent->rb_right;
395 *link = node->rb_left;
396 /* Colour doesn't matter now. Only the parent pointer. */
397 if (node->rb_left)
398 node->rb_left->rb_parent_color = node->rb_parent_color;
401 /* We put this in reverse order, so we can just use eat_last */
402 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
404 struct rb_node **link = &ver_root->rb_node;
405 struct rb_node *parent = NULL;
406 struct jffs2_tmp_dnode_info *this_tn;
408 while (*link) {
409 parent = *link;
410 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
412 if (tn->version > this_tn->version)
413 link = &parent->rb_left;
414 else
415 link = &parent->rb_right;
417 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
418 rb_link_node(&tn->rb, parent, link);
419 rb_insert_color(&tn->rb, ver_root);
422 /* Build final, normal fragtree from tn tree. It doesn't matter which order
423 we add nodes to the real fragtree, as long as they don't overlap. And
424 having thrown away the majority of overlapped nodes as we went, there
425 really shouldn't be many sets of nodes which do overlap. If we start at
426 the end, we can use the overlap markers -- we can just eat nodes which
427 aren't overlapped, and when we encounter nodes which _do_ overlap we
428 sort them all into a temporary tree in version order before replaying them. */
429 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
430 struct jffs2_inode_info *f,
431 struct jffs2_readinode_info *rii)
433 struct jffs2_tmp_dnode_info *pen, *last, *this;
434 struct rb_root ver_root = RB_ROOT;
435 uint32_t high_ver = 0;
437 if (rii->mdata_tn) {
438 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
439 high_ver = rii->mdata_tn->version;
440 rii->latest_ref = rii->mdata_tn->fn->raw;
442 #ifdef JFFS2_DBG_READINODE_MESSAGES
443 this = tn_last(&rii->tn_root);
444 while (this) {
445 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
446 this->fn->ofs+this->fn->size, this->overlapped);
447 this = tn_prev(this);
449 #endif
450 pen = tn_last(&rii->tn_root);
451 while ((last = pen)) {
452 pen = tn_prev(last);
454 eat_last(&rii->tn_root, &last->rb);
455 ver_insert(&ver_root, last);
457 if (unlikely(last->overlapped))
458 continue;
460 /* Now we have a bunch of nodes in reverse version
461 order, in the tree at ver_root. Most of the time,
462 there'll actually be only one node in the 'tree',
463 in fact. */
464 this = tn_last(&ver_root);
466 while (this) {
467 struct jffs2_tmp_dnode_info *vers_next;
468 int ret;
469 vers_next = tn_prev(this);
470 eat_last(&ver_root, &this->rb);
471 if (check_tn_node(c, this)) {
472 dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
473 this->version, this->fn->ofs,
474 this->fn->ofs+this->fn->size);
475 jffs2_kill_tn(c, this);
476 } else {
477 if (this->version > high_ver) {
478 /* Note that this is different from the other
479 highest_version, because this one is only
480 counting _valid_ nodes which could give the
481 latest inode metadata */
482 high_ver = this->version;
483 rii->latest_ref = this->fn->raw;
485 dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
486 this, this->version, this->fn->ofs,
487 this->fn->ofs+this->fn->size, this->overlapped);
489 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
490 if (ret) {
491 /* Free the nodes in vers_root; let the caller
492 deal with the rest */
493 JFFS2_ERROR("Add node to tree failed %d\n", ret);
494 while (1) {
495 vers_next = tn_prev(this);
496 if (check_tn_node(c, this))
497 jffs2_mark_node_obsolete(c, this->fn->raw);
498 jffs2_free_full_dnode(this->fn);
499 jffs2_free_tmp_dnode_info(this);
500 this = vers_next;
501 if (!this)
502 break;
503 eat_last(&ver_root, &vers_next->rb);
505 return ret;
507 jffs2_free_tmp_dnode_info(this);
509 this = vers_next;
512 return 0;
515 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
517 struct rb_node *this;
518 struct jffs2_tmp_dnode_info *tn;
520 this = list->rb_node;
522 /* Now at bottom of tree */
523 while (this) {
524 if (this->rb_left)
525 this = this->rb_left;
526 else if (this->rb_right)
527 this = this->rb_right;
528 else {
529 tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
530 jffs2_free_full_dnode(tn->fn);
531 jffs2_free_tmp_dnode_info(tn);
533 this = rb_parent(this);
534 if (!this)
535 break;
537 if (this->rb_left == &tn->rb)
538 this->rb_left = NULL;
539 else if (this->rb_right == &tn->rb)
540 this->rb_right = NULL;
541 else BUG();
544 list->rb_node = NULL;
547 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
549 struct jffs2_full_dirent *next;
551 while (fd) {
552 next = fd->next;
553 jffs2_free_full_dirent(fd);
554 fd = next;
558 /* Returns first valid node after 'ref'. May return 'ref' */
559 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
561 while (ref && ref->next_in_ino) {
562 if (!ref_obsolete(ref))
563 return ref;
564 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
565 ref = ref->next_in_ino;
567 return NULL;
571 * Helper function for jffs2_get_inode_nodes().
572 * It is called every time an directory entry node is found.
574 * Returns: 0 on success;
575 * negative error code on failure.
577 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
578 struct jffs2_raw_dirent *rd, size_t read,
579 struct jffs2_readinode_info *rii)
581 struct jffs2_full_dirent *fd;
582 uint32_t crc;
584 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
585 BUG_ON(ref_obsolete(ref));
587 crc = crc32(0, rd, sizeof(*rd) - 8);
588 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
589 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
590 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
591 jffs2_mark_node_obsolete(c, ref);
592 return 0;
595 /* If we've never checked the CRCs on this node, check them now */
596 if (ref_flags(ref) == REF_UNCHECKED) {
597 struct jffs2_eraseblock *jeb;
598 int len;
600 /* Sanity check */
601 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
602 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
603 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
604 jffs2_mark_node_obsolete(c, ref);
605 return 0;
608 jeb = &c->blocks[ref->flash_offset / c->sector_size];
609 len = ref_totlen(c, jeb, ref);
611 spin_lock(&c->erase_completion_lock);
612 jeb->used_size += len;
613 jeb->unchecked_size -= len;
614 c->used_size += len;
615 c->unchecked_size -= len;
616 ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
617 spin_unlock(&c->erase_completion_lock);
620 fd = jffs2_alloc_full_dirent(rd->nsize + 1);
621 if (unlikely(!fd))
622 return -ENOMEM;
624 fd->raw = ref;
625 fd->version = je32_to_cpu(rd->version);
626 fd->ino = je32_to_cpu(rd->ino);
627 fd->type = rd->type;
629 if (fd->version > rii->highest_version)
630 rii->highest_version = fd->version;
632 /* Pick out the mctime of the latest dirent */
633 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
634 rii->mctime_ver = fd->version;
635 rii->latest_mctime = je32_to_cpu(rd->mctime);
639 * Copy as much of the name as possible from the raw
640 * dirent we've already read from the flash.
642 if (read > sizeof(*rd))
643 memcpy(&fd->name[0], &rd->name[0],
644 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
646 /* Do we need to copy any more of the name directly from the flash? */
647 if (rd->nsize + sizeof(*rd) > read) {
648 /* FIXME: point() */
649 int err;
650 int already = read - sizeof(*rd);
652 err = jffs2_flash_read(c, (ref_offset(ref)) + read,
653 rd->nsize - already, &read, &fd->name[already]);
654 if (unlikely(read != rd->nsize - already) && likely(!err))
655 return -EIO;
657 if (unlikely(err)) {
658 JFFS2_ERROR("read remainder of name: error %d\n", err);
659 jffs2_free_full_dirent(fd);
660 return -EIO;
664 fd->nhash = full_name_hash(fd->name, rd->nsize);
665 fd->next = NULL;
666 fd->name[rd->nsize] = '\0';
669 * Wheee. We now have a complete jffs2_full_dirent structure, with
670 * the name in it and everything. Link it into the list
672 jffs2_add_fd_to_list(c, fd, &rii->fds);
674 return 0;
678 * Helper function for jffs2_get_inode_nodes().
679 * It is called every time an inode node is found.
681 * Returns: 0 on success (possibly after marking a bad node obsolete);
682 * negative error code on failure.
684 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
685 struct jffs2_raw_inode *rd, int rdlen,
686 struct jffs2_readinode_info *rii)
688 struct jffs2_tmp_dnode_info *tn;
689 uint32_t len, csize;
690 int ret = 0;
691 uint32_t crc;
693 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
694 BUG_ON(ref_obsolete(ref));
696 crc = crc32(0, rd, sizeof(*rd) - 8);
697 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
698 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
699 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
700 jffs2_mark_node_obsolete(c, ref);
701 return 0;
704 tn = jffs2_alloc_tmp_dnode_info();
705 if (!tn) {
706 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
707 return -ENOMEM;
710 tn->partial_crc = 0;
711 csize = je32_to_cpu(rd->csize);
713 /* If we've never checked the CRCs on this node, check them now */
714 if (ref_flags(ref) == REF_UNCHECKED) {
716 /* Sanity checks */
717 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
718 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
719 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
720 jffs2_dbg_dump_node(c, ref_offset(ref));
721 jffs2_mark_node_obsolete(c, ref);
722 goto free_out;
725 if (jffs2_is_writebuffered(c) && csize != 0) {
726 /* At this point we are supposed to check the data CRC
727 * of our unchecked node. But thus far, we do not
728 * know whether the node is valid or obsolete. To
729 * figure this out, we need to walk all the nodes of
730 * the inode and build the inode fragtree. We don't
731 * want to spend time checking data of nodes which may
732 * later be found to be obsolete. So we put off the full
733 * data CRC checking until we have read all the inode
734 * nodes and have started building the fragtree.
736 * The fragtree is being built starting with nodes
737 * having the highest version number, so we'll be able
738 * to detect whether a node is valid (i.e., it is not
739 * overlapped by a node with higher version) or not.
740 * And we'll be able to check only those nodes, which
741 * are not obsolete.
743 * Of course, this optimization only makes sense in case
744 * of NAND flashes (or other flashes whith
745 * !jffs2_can_mark_obsolete()), since on NOR flashes
746 * nodes are marked obsolete physically.
748 * Since NAND flashes (or other flashes with
749 * jffs2_is_writebuffered(c)) are anyway read by
750 * fractions of c->wbuf_pagesize, and we have just read
751 * the node header, it is likely that the starting part
752 * of the node data is also read when we read the
753 * header. So we don't mind to check the CRC of the
754 * starting part of the data of the node now, and check
755 * the second part later (in jffs2_check_node_data()).
756 * Of course, we will not need to re-read and re-check
757 * the NAND page which we have just read. This is why we
758 * read the whole NAND page at jffs2_get_inode_nodes(),
759 * while we needed only the node header.
761 unsigned char *buf;
763 /* 'buf' will point to the start of data */
764 buf = (unsigned char *)rd + sizeof(*rd);
765 /* len will be the read data length */
766 len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
767 tn->partial_crc = crc32(0, buf, len);
769 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
771 /* If we actually calculated the whole data CRC
772 * and it is wrong, drop the node. */
773 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
774 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
775 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
776 jffs2_mark_node_obsolete(c, ref);
777 goto free_out;
780 } else if (csize == 0) {
782 * We checked the header CRC. If the node has no data, adjust
783 * the space accounting now. For other nodes this will be done
784 * later either when the node is marked obsolete or when its
785 * data is checked.
787 struct jffs2_eraseblock *jeb;
789 dbg_readinode("the node has no data.\n");
790 jeb = &c->blocks[ref->flash_offset / c->sector_size];
791 len = ref_totlen(c, jeb, ref);
793 spin_lock(&c->erase_completion_lock);
794 jeb->used_size += len;
795 jeb->unchecked_size -= len;
796 c->used_size += len;
797 c->unchecked_size -= len;
798 ref->flash_offset = ref_offset(ref) | REF_NORMAL;
799 spin_unlock(&c->erase_completion_lock);
803 tn->fn = jffs2_alloc_full_dnode();
804 if (!tn->fn) {
805 JFFS2_ERROR("alloc fn failed\n");
806 ret = -ENOMEM;
807 goto free_out;
810 tn->version = je32_to_cpu(rd->version);
811 tn->fn->ofs = je32_to_cpu(rd->offset);
812 tn->data_crc = je32_to_cpu(rd->data_crc);
813 tn->csize = csize;
814 tn->fn->raw = ref;
815 tn->overlapped = 0;
817 if (tn->version > rii->highest_version)
818 rii->highest_version = tn->version;
820 /* There was a bug where we wrote hole nodes out with
821 csize/dsize swapped. Deal with it */
822 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
823 tn->fn->size = csize;
824 else // normal case...
825 tn->fn->size = je32_to_cpu(rd->dsize);
827 dbg_readinode("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
828 ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
830 ret = jffs2_add_tn_to_tree(c, rii, tn);
832 if (ret) {
833 jffs2_free_full_dnode(tn->fn);
834 free_out:
835 jffs2_free_tmp_dnode_info(tn);
836 return ret;
838 #ifdef JFFS2_DBG_READINODE_MESSAGES
839 dbg_readinode("After adding ver %d:\n", je32_to_cpu(rd->version));
840 tn = tn_first(&rii->tn_root);
841 while (tn) {
842 dbg_readinode("%p: v %d r 0x%x-0x%x ov %d\n",
843 tn, tn->version, tn->fn->ofs,
844 tn->fn->ofs+tn->fn->size, tn->overlapped);
845 tn = tn_next(tn);
847 #endif
848 return 0;
852 * Helper function for jffs2_get_inode_nodes().
853 * It is called every time an unknown node is found.
855 * Returns: 0 on success;
856 * negative error code on failure.
858 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
860 /* We don't mark unknown nodes as REF_UNCHECKED */
861 if (ref_flags(ref) == REF_UNCHECKED) {
862 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
863 ref_offset(ref));
864 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
865 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
866 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
867 jffs2_mark_node_obsolete(c, ref);
868 return 0;
871 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
873 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
875 case JFFS2_FEATURE_INCOMPAT:
876 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
877 je16_to_cpu(un->nodetype), ref_offset(ref));
878 /* EEP */
879 BUG();
880 break;
882 case JFFS2_FEATURE_ROCOMPAT:
883 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
884 je16_to_cpu(un->nodetype), ref_offset(ref));
885 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
886 break;
888 case JFFS2_FEATURE_RWCOMPAT_COPY:
889 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
890 je16_to_cpu(un->nodetype), ref_offset(ref));
891 break;
893 case JFFS2_FEATURE_RWCOMPAT_DELETE:
894 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
895 je16_to_cpu(un->nodetype), ref_offset(ref));
896 jffs2_mark_node_obsolete(c, ref);
897 return 0;
900 return 0;
904 * Helper function for jffs2_get_inode_nodes().
905 * The function detects whether more data should be read and reads it if yes.
907 * Returns: 0 on succes;
908 * negative error code on failure.
910 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
911 int needed_len, int *rdlen, unsigned char *buf)
913 int err, to_read = needed_len - *rdlen;
914 size_t retlen;
915 uint32_t offs;
917 if (jffs2_is_writebuffered(c)) {
918 int rem = to_read % c->wbuf_pagesize;
920 if (rem)
921 to_read += c->wbuf_pagesize - rem;
924 /* We need to read more data */
925 offs = ref_offset(ref) + *rdlen;
927 dbg_readinode("read more %d bytes\n", to_read);
929 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
930 if (err) {
931 JFFS2_ERROR("can not read %d bytes from 0x%08x, "
932 "error code: %d.\n", to_read, offs, err);
933 return err;
936 if (retlen < to_read) {
937 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
938 offs, retlen, to_read);
939 return -EIO;
942 *rdlen += to_read;
943 return 0;
946 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
947 with this ino. Perform a preliminary ordering on data nodes, throwing away
948 those which are completely obsoleted by newer ones. The naïve approach we
949 use to take of just returning them _all_ in version order will cause us to
950 run out of memory in certain degenerate cases. */
951 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
952 struct jffs2_readinode_info *rii)
954 struct jffs2_raw_node_ref *ref, *valid_ref;
955 unsigned char *buf = NULL;
956 union jffs2_node_union *node;
957 size_t retlen;
958 int len, err;
960 rii->mctime_ver = 0;
962 dbg_readinode("ino #%u\n", f->inocache->ino);
964 /* FIXME: in case of NOR and available ->point() this
965 * needs to be fixed. */
966 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
967 buf = kmalloc(len, GFP_KERNEL);
968 if (!buf)
969 return -ENOMEM;
971 spin_lock(&c->erase_completion_lock);
972 valid_ref = jffs2_first_valid_node(f->inocache->nodes);
973 if (!valid_ref && f->inocache->ino != 1)
974 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
975 while (valid_ref) {
976 /* We can hold a pointer to a non-obsolete node without the spinlock,
977 but _obsolete_ nodes may disappear at any time, if the block
978 they're in gets erased. So if we mark 'ref' obsolete while we're
979 not holding the lock, it can go away immediately. For that reason,
980 we find the next valid node first, before processing 'ref'.
982 ref = valid_ref;
983 valid_ref = jffs2_first_valid_node(ref->next_in_ino);
984 spin_unlock(&c->erase_completion_lock);
986 cond_resched();
989 * At this point we don't know the type of the node we're going
990 * to read, so we do not know the size of its header. In order
991 * to minimize the amount of flash IO we assume the header is
992 * of size = JFFS2_MIN_NODE_HEADER.
994 len = JFFS2_MIN_NODE_HEADER;
995 if (jffs2_is_writebuffered(c)) {
996 int end, rem;
999 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1000 * but this flash has some minimal I/O unit. It is
1001 * possible that we'll need to read more soon, so read
1002 * up to the next min. I/O unit, in order not to
1003 * re-read the same min. I/O unit twice.
1005 end = ref_offset(ref) + len;
1006 rem = end % c->wbuf_pagesize;
1007 if (rem)
1008 end += c->wbuf_pagesize - rem;
1009 len = end - ref_offset(ref);
1012 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1014 /* FIXME: point() */
1015 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1016 if (err) {
1017 JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
1018 goto free_out;
1021 if (retlen < len) {
1022 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1023 err = -EIO;
1024 goto free_out;
1027 node = (union jffs2_node_union *)buf;
1029 /* No need to mask in the valid bit; it shouldn't be invalid */
1030 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1031 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1032 ref_offset(ref), je16_to_cpu(node->u.magic),
1033 je16_to_cpu(node->u.nodetype),
1034 je32_to_cpu(node->u.totlen),
1035 je32_to_cpu(node->u.hdr_crc));
1036 jffs2_dbg_dump_node(c, ref_offset(ref));
1037 jffs2_mark_node_obsolete(c, ref);
1038 goto cont;
1040 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1041 /* Not a JFFS2 node, whinge and move on */
1042 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1043 je16_to_cpu(node->u.magic), ref_offset(ref));
1044 jffs2_mark_node_obsolete(c, ref);
1045 goto cont;
1048 switch (je16_to_cpu(node->u.nodetype)) {
1050 case JFFS2_NODETYPE_DIRENT:
1052 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1053 len < sizeof(struct jffs2_raw_dirent)) {
1054 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1055 if (unlikely(err))
1056 goto free_out;
1059 err = read_direntry(c, ref, &node->d, retlen, rii);
1060 if (unlikely(err))
1061 goto free_out;
1063 break;
1065 case JFFS2_NODETYPE_INODE:
1067 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1068 len < sizeof(struct jffs2_raw_inode)) {
1069 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1070 if (unlikely(err))
1071 goto free_out;
1074 err = read_dnode(c, ref, &node->i, len, rii);
1075 if (unlikely(err))
1076 goto free_out;
1078 break;
1080 default:
1081 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1082 len < sizeof(struct jffs2_unknown_node)) {
1083 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1084 if (unlikely(err))
1085 goto free_out;
1088 err = read_unknown(c, ref, &node->u);
1089 if (unlikely(err))
1090 goto free_out;
1093 cont:
1094 spin_lock(&c->erase_completion_lock);
1097 spin_unlock(&c->erase_completion_lock);
1098 kfree(buf);
1100 f->highest_version = rii->highest_version;
1102 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1103 f->inocache->ino, rii->highest_version, rii->latest_mctime,
1104 rii->mctime_ver);
1105 return 0;
1107 free_out:
1108 jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1109 jffs2_free_full_dirent_list(rii->fds);
1110 rii->fds = NULL;
1111 kfree(buf);
1112 return err;
1115 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1116 struct jffs2_inode_info *f,
1117 struct jffs2_raw_inode *latest_node)
1119 struct jffs2_readinode_info rii;
1120 uint32_t crc, new_size;
1121 size_t retlen;
1122 int ret;
1124 dbg_readinode("ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink);
1126 memset(&rii, 0, sizeof(rii));
1128 /* Grab all nodes relevant to this ino */
1129 ret = jffs2_get_inode_nodes(c, f, &rii);
1131 if (ret) {
1132 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1133 if (f->inocache->state == INO_STATE_READING)
1134 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1135 return ret;
1138 ret = jffs2_build_inode_fragtree(c, f, &rii);
1139 if (ret) {
1140 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1141 f->inocache->ino, ret);
1142 if (f->inocache->state == INO_STATE_READING)
1143 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1144 jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1145 /* FIXME: We could at least crc-check them all */
1146 if (rii.mdata_tn) {
1147 jffs2_free_full_dnode(rii.mdata_tn->fn);
1148 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1149 rii.mdata_tn = NULL;
1151 return ret;
1154 if (rii.mdata_tn) {
1155 if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1156 f->metadata = rii.mdata_tn->fn;
1157 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1158 } else {
1159 jffs2_kill_tn(c, rii.mdata_tn);
1161 rii.mdata_tn = NULL;
1164 f->dents = rii.fds;
1166 jffs2_dbg_fragtree_paranoia_check_nolock(f);
1168 if (unlikely(!rii.latest_ref)) {
1169 /* No data nodes for this inode. */
1170 if (f->inocache->ino != 1) {
1171 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1172 if (!rii.fds) {
1173 if (f->inocache->state == INO_STATE_READING)
1174 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1175 return -EIO;
1177 JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1179 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1180 latest_node->version = cpu_to_je32(0);
1181 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1182 latest_node->isize = cpu_to_je32(0);
1183 latest_node->gid = cpu_to_je16(0);
1184 latest_node->uid = cpu_to_je16(0);
1185 if (f->inocache->state == INO_STATE_READING)
1186 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1187 return 0;
1190 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1191 if (ret || retlen != sizeof(*latest_node)) {
1192 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1193 ret, retlen, sizeof(*latest_node));
1194 /* FIXME: If this fails, there seems to be a memory leak. Find it. */
1195 up(&f->sem);
1196 jffs2_do_clear_inode(c, f);
1197 return ret?ret:-EIO;
1200 crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1201 if (crc != je32_to_cpu(latest_node->node_crc)) {
1202 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1203 f->inocache->ino, ref_offset(rii.latest_ref));
1204 up(&f->sem);
1205 jffs2_do_clear_inode(c, f);
1206 return -EIO;
1209 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1210 case S_IFDIR:
1211 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1212 /* The times in the latest_node are actually older than
1213 mctime in the latest dirent. Cheat. */
1214 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1216 break;
1219 case S_IFREG:
1220 /* If it was a regular file, truncate it to the latest node's isize */
1221 new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1222 if (new_size != je32_to_cpu(latest_node->isize)) {
1223 JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1224 f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1225 latest_node->isize = cpu_to_je32(new_size);
1227 break;
1229 case S_IFLNK:
1230 /* Hack to work around broken isize in old symlink code.
1231 Remove this when dwmw2 comes to his senses and stops
1232 symlinks from being an entirely gratuitous special
1233 case. */
1234 if (!je32_to_cpu(latest_node->isize))
1235 latest_node->isize = latest_node->dsize;
1237 if (f->inocache->state != INO_STATE_CHECKING) {
1238 /* Symlink's inode data is the target path. Read it and
1239 * keep in RAM to facilitate quick follow symlink
1240 * operation. */
1241 f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
1242 if (!f->target) {
1243 JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
1244 up(&f->sem);
1245 jffs2_do_clear_inode(c, f);
1246 return -ENOMEM;
1249 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1250 je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
1252 if (ret || retlen != je32_to_cpu(latest_node->csize)) {
1253 if (retlen != je32_to_cpu(latest_node->csize))
1254 ret = -EIO;
1255 kfree(f->target);
1256 f->target = NULL;
1257 up(&f->sem);
1258 jffs2_do_clear_inode(c, f);
1259 return -ret;
1262 f->target[je32_to_cpu(latest_node->csize)] = '\0';
1263 dbg_readinode("symlink's target '%s' cached\n", f->target);
1266 /* fall through... */
1268 case S_IFBLK:
1269 case S_IFCHR:
1270 /* Certain inode types should have only one data node, and it's
1271 kept as the metadata node */
1272 if (f->metadata) {
1273 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1274 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1275 up(&f->sem);
1276 jffs2_do_clear_inode(c, f);
1277 return -EIO;
1279 if (!frag_first(&f->fragtree)) {
1280 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1281 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1282 up(&f->sem);
1283 jffs2_do_clear_inode(c, f);
1284 return -EIO;
1286 /* ASSERT: f->fraglist != NULL */
1287 if (frag_next(frag_first(&f->fragtree))) {
1288 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1289 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1290 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1291 up(&f->sem);
1292 jffs2_do_clear_inode(c, f);
1293 return -EIO;
1295 /* OK. We're happy */
1296 f->metadata = frag_first(&f->fragtree)->node;
1297 jffs2_free_node_frag(frag_first(&f->fragtree));
1298 f->fragtree = RB_ROOT;
1299 break;
1301 if (f->inocache->state == INO_STATE_READING)
1302 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1304 return 0;
1307 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1308 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1309 uint32_t ino, struct jffs2_raw_inode *latest_node)
1311 dbg_readinode("read inode #%u\n", ino);
1313 retry_inocache:
1314 spin_lock(&c->inocache_lock);
1315 f->inocache = jffs2_get_ino_cache(c, ino);
1317 if (f->inocache) {
1318 /* Check its state. We may need to wait before we can use it */
1319 switch(f->inocache->state) {
1320 case INO_STATE_UNCHECKED:
1321 case INO_STATE_CHECKEDABSENT:
1322 f->inocache->state = INO_STATE_READING;
1323 break;
1325 case INO_STATE_CHECKING:
1326 case INO_STATE_GC:
1327 /* If it's in either of these states, we need
1328 to wait for whoever's got it to finish and
1329 put it back. */
1330 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1331 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1332 goto retry_inocache;
1334 case INO_STATE_READING:
1335 case INO_STATE_PRESENT:
1336 /* Eep. This should never happen. It can
1337 happen if Linux calls read_inode() again
1338 before clear_inode() has finished though. */
1339 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1340 /* Fail. That's probably better than allowing it to succeed */
1341 f->inocache = NULL;
1342 break;
1344 default:
1345 BUG();
1348 spin_unlock(&c->inocache_lock);
1350 if (!f->inocache && ino == 1) {
1351 /* Special case - no root inode on medium */
1352 f->inocache = jffs2_alloc_inode_cache();
1353 if (!f->inocache) {
1354 JFFS2_ERROR("cannot allocate inocache for root inode\n");
1355 return -ENOMEM;
1357 dbg_readinode("creating inocache for root inode\n");
1358 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1359 f->inocache->ino = f->inocache->nlink = 1;
1360 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1361 f->inocache->state = INO_STATE_READING;
1362 jffs2_add_ino_cache(c, f->inocache);
1364 if (!f->inocache) {
1365 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1366 return -ENOENT;
1369 return jffs2_do_read_inode_internal(c, f, latest_node);
1372 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1374 struct jffs2_raw_inode n;
1375 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1376 int ret;
1378 if (!f)
1379 return -ENOMEM;
1381 init_MUTEX_LOCKED(&f->sem);
1382 f->inocache = ic;
1384 ret = jffs2_do_read_inode_internal(c, f, &n);
1385 if (!ret) {
1386 up(&f->sem);
1387 jffs2_do_clear_inode(c, f);
1389 kfree (f);
1390 return ret;
1393 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1395 struct jffs2_full_dirent *fd, *fds;
1396 int deleted;
1398 jffs2_clear_acl(f);
1399 jffs2_xattr_delete_inode(c, f->inocache);
1400 down(&f->sem);
1401 deleted = f->inocache && !f->inocache->nlink;
1403 if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1404 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1406 if (f->metadata) {
1407 if (deleted)
1408 jffs2_mark_node_obsolete(c, f->metadata->raw);
1409 jffs2_free_full_dnode(f->metadata);
1412 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1414 if (f->target) {
1415 kfree(f->target);
1416 f->target = NULL;
1419 fds = f->dents;
1420 while(fds) {
1421 fd = fds;
1422 fds = fd->next;
1423 jffs2_free_full_dirent(fd);
1426 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1427 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1428 if (f->inocache->nodes == (void *)f->inocache)
1429 jffs2_del_ino_cache(c, f->inocache);
1432 up(&f->sem);