2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
77 struct request_queue
*queue
;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree
;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
91 unsigned int busy_queues
;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues
;
102 * queue-depth detection
107 int rq_in_driver_peak
;
110 * idle window management
112 struct timer_list idle_slice_timer
;
113 struct work_struct unplug_work
;
115 struct cfq_queue
*active_queue
;
116 struct cfq_io_context
*active_cic
;
119 * async queue for each priority case
121 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
122 struct cfq_queue
*async_idle_cfqq
;
124 sector_t last_position
;
127 * tunables, see top of file
129 unsigned int cfq_quantum
;
130 unsigned int cfq_fifo_expire
[2];
131 unsigned int cfq_back_penalty
;
132 unsigned int cfq_back_max
;
133 unsigned int cfq_slice
[2];
134 unsigned int cfq_slice_async_rq
;
135 unsigned int cfq_slice_idle
;
137 struct list_head cic_list
;
141 * Per process-grouping structure
144 /* reference count */
146 /* various state flags, see below */
148 /* parent cfq_data */
149 struct cfq_data
*cfqd
;
150 /* service_tree member */
151 struct rb_node rb_node
;
152 /* service_tree key */
153 unsigned long rb_key
;
154 /* prio tree member */
155 struct rb_node p_node
;
156 /* prio tree root we belong to, if any */
157 struct rb_root
*p_root
;
158 /* sorted list of pending requests */
159 struct rb_root sort_list
;
160 /* if fifo isn't expired, next request to serve */
161 struct request
*next_rq
;
162 /* requests queued in sort_list */
164 /* currently allocated requests */
166 /* fifo list of requests in sort_list */
167 struct list_head fifo
;
169 unsigned long slice_end
;
171 unsigned int slice_dispatch
;
173 /* pending metadata requests */
175 /* number of requests that are on the dispatch list or inside driver */
178 /* io prio of this group */
179 unsigned short ioprio
, org_ioprio
;
180 unsigned short ioprio_class
, org_ioprio_class
;
185 enum cfqq_state_flags
{
186 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
187 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
188 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
189 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
190 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
191 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
192 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
193 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
194 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
195 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
196 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
199 #define CFQ_CFQQ_FNS(name) \
200 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
202 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
204 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
206 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
208 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
210 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
214 CFQ_CFQQ_FNS(wait_request
);
215 CFQ_CFQQ_FNS(must_dispatch
);
216 CFQ_CFQQ_FNS(must_alloc
);
217 CFQ_CFQQ_FNS(must_alloc_slice
);
218 CFQ_CFQQ_FNS(fifo_expire
);
219 CFQ_CFQQ_FNS(idle_window
);
220 CFQ_CFQQ_FNS(prio_changed
);
221 CFQ_CFQQ_FNS(slice_new
);
226 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
227 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
228 #define cfq_log(cfqd, fmt, args...) \
229 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
232 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
233 struct io_context
*, gfp_t
);
234 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
235 struct io_context
*);
237 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
240 return cic
->cfqq
[!!is_sync
];
243 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
244 struct cfq_queue
*cfqq
, int is_sync
)
246 cic
->cfqq
[!!is_sync
] = cfqq
;
250 * We regard a request as SYNC, if it's either a read or has the SYNC bit
251 * set (in which case it could also be direct WRITE).
253 static inline int cfq_bio_sync(struct bio
*bio
)
255 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
262 * scheduler run of queue, if there are requests pending and no one in the
263 * driver that will restart queueing
265 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
267 if (cfqd
->busy_queues
) {
268 cfq_log(cfqd
, "schedule dispatch");
269 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
273 static int cfq_queue_empty(struct request_queue
*q
)
275 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
277 return !cfqd
->busy_queues
;
281 * Scale schedule slice based on io priority. Use the sync time slice only
282 * if a queue is marked sync and has sync io queued. A sync queue with async
283 * io only, should not get full sync slice length.
285 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
288 const int base_slice
= cfqd
->cfq_slice
[sync
];
290 WARN_ON(prio
>= IOPRIO_BE_NR
);
292 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
296 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
298 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
302 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
304 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
305 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
309 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
310 * isn't valid until the first request from the dispatch is activated
311 * and the slice time set.
313 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
315 if (cfq_cfqq_slice_new(cfqq
))
317 if (time_before(jiffies
, cfqq
->slice_end
))
324 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
325 * We choose the request that is closest to the head right now. Distance
326 * behind the head is penalized and only allowed to a certain extent.
328 static struct request
*
329 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
331 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
332 unsigned long back_max
;
333 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
334 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
335 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
337 if (rq1
== NULL
|| rq1
== rq2
)
342 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
344 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
346 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
348 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
351 s1
= blk_rq_pos(rq1
);
352 s2
= blk_rq_pos(rq2
);
354 last
= cfqd
->last_position
;
357 * by definition, 1KiB is 2 sectors
359 back_max
= cfqd
->cfq_back_max
* 2;
362 * Strict one way elevator _except_ in the case where we allow
363 * short backward seeks which are biased as twice the cost of a
364 * similar forward seek.
368 else if (s1
+ back_max
>= last
)
369 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
371 wrap
|= CFQ_RQ1_WRAP
;
375 else if (s2
+ back_max
>= last
)
376 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
378 wrap
|= CFQ_RQ2_WRAP
;
380 /* Found required data */
383 * By doing switch() on the bit mask "wrap" we avoid having to
384 * check two variables for all permutations: --> faster!
387 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
403 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
406 * Since both rqs are wrapped,
407 * start with the one that's further behind head
408 * (--> only *one* back seek required),
409 * since back seek takes more time than forward.
419 * The below is leftmost cache rbtree addon
421 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
424 root
->left
= rb_first(&root
->rb
);
427 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
432 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
438 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
442 rb_erase_init(n
, &root
->rb
);
446 * would be nice to take fifo expire time into account as well
448 static struct request
*
449 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
450 struct request
*last
)
452 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
453 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
454 struct request
*next
= NULL
, *prev
= NULL
;
456 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
459 prev
= rb_entry_rq(rbprev
);
462 next
= rb_entry_rq(rbnext
);
464 rbnext
= rb_first(&cfqq
->sort_list
);
465 if (rbnext
&& rbnext
!= &last
->rb_node
)
466 next
= rb_entry_rq(rbnext
);
469 return cfq_choose_req(cfqd
, next
, prev
);
472 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
473 struct cfq_queue
*cfqq
)
476 * just an approximation, should be ok.
478 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
479 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
483 * The cfqd->service_tree holds all pending cfq_queue's that have
484 * requests waiting to be processed. It is sorted in the order that
485 * we will service the queues.
487 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
490 struct rb_node
**p
, *parent
;
491 struct cfq_queue
*__cfqq
;
492 unsigned long rb_key
;
495 if (cfq_class_idle(cfqq
)) {
496 rb_key
= CFQ_IDLE_DELAY
;
497 parent
= rb_last(&cfqd
->service_tree
.rb
);
498 if (parent
&& parent
!= &cfqq
->rb_node
) {
499 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
500 rb_key
+= __cfqq
->rb_key
;
503 } else if (!add_front
) {
504 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
505 rb_key
+= cfqq
->slice_resid
;
506 cfqq
->slice_resid
= 0;
510 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
512 * same position, nothing more to do
514 if (rb_key
== cfqq
->rb_key
)
517 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
522 p
= &cfqd
->service_tree
.rb
.rb_node
;
527 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
530 * sort RT queues first, we always want to give
531 * preference to them. IDLE queues goes to the back.
532 * after that, sort on the next service time.
534 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
536 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
538 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
540 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
542 else if (rb_key
< __cfqq
->rb_key
)
547 if (n
== &(*p
)->rb_right
)
554 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
556 cfqq
->rb_key
= rb_key
;
557 rb_link_node(&cfqq
->rb_node
, parent
, p
);
558 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
561 static struct cfq_queue
*
562 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
563 sector_t sector
, struct rb_node
**ret_parent
,
564 struct rb_node
***rb_link
)
566 struct rb_node
**p
, *parent
;
567 struct cfq_queue
*cfqq
= NULL
;
575 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
578 * Sort strictly based on sector. Smallest to the left,
579 * largest to the right.
581 if (sector
> blk_rq_pos(cfqq
->next_rq
))
583 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
591 *ret_parent
= parent
;
597 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
599 struct rb_node
**p
, *parent
;
600 struct cfq_queue
*__cfqq
;
603 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
607 if (cfq_class_idle(cfqq
))
612 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
613 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
614 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
616 rb_link_node(&cfqq
->p_node
, parent
, p
);
617 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
623 * Update cfqq's position in the service tree.
625 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
628 * Resorting requires the cfqq to be on the RR list already.
630 if (cfq_cfqq_on_rr(cfqq
)) {
631 cfq_service_tree_add(cfqd
, cfqq
, 0);
632 cfq_prio_tree_add(cfqd
, cfqq
);
637 * add to busy list of queues for service, trying to be fair in ordering
638 * the pending list according to last request service
640 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
642 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
643 BUG_ON(cfq_cfqq_on_rr(cfqq
));
644 cfq_mark_cfqq_on_rr(cfqq
);
646 if (cfq_class_rt(cfqq
))
647 cfqd
->busy_rt_queues
++;
649 cfq_resort_rr_list(cfqd
, cfqq
);
653 * Called when the cfqq no longer has requests pending, remove it from
656 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
658 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
659 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
660 cfq_clear_cfqq_on_rr(cfqq
);
662 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
663 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
665 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
669 BUG_ON(!cfqd
->busy_queues
);
671 if (cfq_class_rt(cfqq
))
672 cfqd
->busy_rt_queues
--;
676 * rb tree support functions
678 static void cfq_del_rq_rb(struct request
*rq
)
680 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
681 struct cfq_data
*cfqd
= cfqq
->cfqd
;
682 const int sync
= rq_is_sync(rq
);
684 BUG_ON(!cfqq
->queued
[sync
]);
685 cfqq
->queued
[sync
]--;
687 elv_rb_del(&cfqq
->sort_list
, rq
);
689 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
690 cfq_del_cfqq_rr(cfqd
, cfqq
);
693 static void cfq_add_rq_rb(struct request
*rq
)
695 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
696 struct cfq_data
*cfqd
= cfqq
->cfqd
;
697 struct request
*__alias
, *prev
;
699 cfqq
->queued
[rq_is_sync(rq
)]++;
702 * looks a little odd, but the first insert might return an alias.
703 * if that happens, put the alias on the dispatch list
705 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
706 cfq_dispatch_insert(cfqd
->queue
, __alias
);
708 if (!cfq_cfqq_on_rr(cfqq
))
709 cfq_add_cfqq_rr(cfqd
, cfqq
);
712 * check if this request is a better next-serve candidate
714 prev
= cfqq
->next_rq
;
715 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
718 * adjust priority tree position, if ->next_rq changes
720 if (prev
!= cfqq
->next_rq
)
721 cfq_prio_tree_add(cfqd
, cfqq
);
723 BUG_ON(!cfqq
->next_rq
);
726 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
728 elv_rb_del(&cfqq
->sort_list
, rq
);
729 cfqq
->queued
[rq_is_sync(rq
)]--;
733 static struct request
*
734 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
736 struct task_struct
*tsk
= current
;
737 struct cfq_io_context
*cic
;
738 struct cfq_queue
*cfqq
;
740 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
744 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
746 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
748 return elv_rb_find(&cfqq
->sort_list
, sector
);
754 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
756 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
758 cfqd
->rq_in_driver
++;
759 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
762 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
765 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
767 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
769 WARN_ON(!cfqd
->rq_in_driver
);
770 cfqd
->rq_in_driver
--;
771 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
775 static void cfq_remove_request(struct request
*rq
)
777 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
779 if (cfqq
->next_rq
== rq
)
780 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
782 list_del_init(&rq
->queuelist
);
785 cfqq
->cfqd
->rq_queued
--;
786 if (rq_is_meta(rq
)) {
787 WARN_ON(!cfqq
->meta_pending
);
788 cfqq
->meta_pending
--;
792 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
795 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
796 struct request
*__rq
;
798 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
799 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
801 return ELEVATOR_FRONT_MERGE
;
804 return ELEVATOR_NO_MERGE
;
807 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
810 if (type
== ELEVATOR_FRONT_MERGE
) {
811 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
813 cfq_reposition_rq_rb(cfqq
, req
);
818 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
819 struct request
*next
)
822 * reposition in fifo if next is older than rq
824 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
825 time_before(next
->start_time
, rq
->start_time
))
826 list_move(&rq
->queuelist
, &next
->queuelist
);
828 cfq_remove_request(next
);
831 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
834 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
835 struct cfq_io_context
*cic
;
836 struct cfq_queue
*cfqq
;
839 * Disallow merge of a sync bio into an async request.
841 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
845 * Lookup the cfqq that this bio will be queued with. Allow
846 * merge only if rq is queued there.
848 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
852 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
853 if (cfqq
== RQ_CFQQ(rq
))
859 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
860 struct cfq_queue
*cfqq
)
863 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
865 cfqq
->slice_dispatch
= 0;
867 cfq_clear_cfqq_wait_request(cfqq
);
868 cfq_clear_cfqq_must_dispatch(cfqq
);
869 cfq_clear_cfqq_must_alloc_slice(cfqq
);
870 cfq_clear_cfqq_fifo_expire(cfqq
);
871 cfq_mark_cfqq_slice_new(cfqq
);
873 del_timer(&cfqd
->idle_slice_timer
);
876 cfqd
->active_queue
= cfqq
;
880 * current cfqq expired its slice (or was too idle), select new one
883 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
886 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
888 if (cfq_cfqq_wait_request(cfqq
))
889 del_timer(&cfqd
->idle_slice_timer
);
891 cfq_clear_cfqq_wait_request(cfqq
);
894 * store what was left of this slice, if the queue idled/timed out
896 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
897 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
898 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
901 cfq_resort_rr_list(cfqd
, cfqq
);
903 if (cfqq
== cfqd
->active_queue
)
904 cfqd
->active_queue
= NULL
;
906 if (cfqd
->active_cic
) {
907 put_io_context(cfqd
->active_cic
->ioc
);
908 cfqd
->active_cic
= NULL
;
912 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
914 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
917 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
921 * Get next queue for service. Unless we have a queue preemption,
922 * we'll simply select the first cfqq in the service tree.
924 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
926 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
929 return cfq_rb_first(&cfqd
->service_tree
);
933 * Get and set a new active queue for service.
935 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
936 struct cfq_queue
*cfqq
)
939 cfqq
= cfq_get_next_queue(cfqd
);
941 cfq_clear_cfqq_coop(cfqq
);
944 __cfq_set_active_queue(cfqd
, cfqq
);
948 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
951 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
952 return blk_rq_pos(rq
) - cfqd
->last_position
;
954 return cfqd
->last_position
- blk_rq_pos(rq
);
957 #define CIC_SEEK_THR 8 * 1024
958 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
960 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
962 struct cfq_io_context
*cic
= cfqd
->active_cic
;
963 sector_t sdist
= cic
->seek_mean
;
965 if (!sample_valid(cic
->seek_samples
))
966 sdist
= CIC_SEEK_THR
;
968 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
971 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
972 struct cfq_queue
*cur_cfqq
)
974 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
975 struct rb_node
*parent
, *node
;
976 struct cfq_queue
*__cfqq
;
977 sector_t sector
= cfqd
->last_position
;
979 if (RB_EMPTY_ROOT(root
))
983 * First, if we find a request starting at the end of the last
984 * request, choose it.
986 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
991 * If the exact sector wasn't found, the parent of the NULL leaf
992 * will contain the closest sector.
994 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
995 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
998 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
999 node
= rb_next(&__cfqq
->p_node
);
1001 node
= rb_prev(&__cfqq
->p_node
);
1005 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1006 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1014 * cur_cfqq - passed in so that we don't decide that the current queue is
1015 * closely cooperating with itself.
1017 * So, basically we're assuming that that cur_cfqq has dispatched at least
1018 * one request, and that cfqd->last_position reflects a position on the disk
1019 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1022 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1023 struct cfq_queue
*cur_cfqq
,
1026 struct cfq_queue
*cfqq
;
1029 * A valid cfq_io_context is necessary to compare requests against
1030 * the seek_mean of the current cfqq.
1032 if (!cfqd
->active_cic
)
1036 * We should notice if some of the queues are cooperating, eg
1037 * working closely on the same area of the disk. In that case,
1038 * we can group them together and don't waste time idling.
1040 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1044 if (cfq_cfqq_coop(cfqq
))
1048 cfq_mark_cfqq_coop(cfqq
);
1052 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1054 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1055 struct cfq_io_context
*cic
;
1059 * SSD device without seek penalty, disable idling. But only do so
1060 * for devices that support queuing, otherwise we still have a problem
1061 * with sync vs async workloads.
1063 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1066 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1067 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1070 * idle is disabled, either manually or by past process history
1072 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1076 * still requests with the driver, don't idle
1078 if (cfqd
->rq_in_driver
)
1082 * task has exited, don't wait
1084 cic
= cfqd
->active_cic
;
1085 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1088 cfq_mark_cfqq_wait_request(cfqq
);
1091 * we don't want to idle for seeks, but we do want to allow
1092 * fair distribution of slice time for a process doing back-to-back
1093 * seeks. so allow a little bit of time for him to submit a new rq
1095 sl
= cfqd
->cfq_slice_idle
;
1096 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1097 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1099 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1100 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1104 * Move request from internal lists to the request queue dispatch list.
1106 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1108 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1109 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1111 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1113 cfq_remove_request(rq
);
1115 elv_dispatch_sort(q
, rq
);
1117 if (cfq_cfqq_sync(cfqq
))
1118 cfqd
->sync_flight
++;
1122 * return expired entry, or NULL to just start from scratch in rbtree
1124 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1126 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1130 if (cfq_cfqq_fifo_expire(cfqq
))
1133 cfq_mark_cfqq_fifo_expire(cfqq
);
1135 if (list_empty(&cfqq
->fifo
))
1138 fifo
= cfq_cfqq_sync(cfqq
);
1139 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1141 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1144 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1149 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1151 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1153 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1155 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1159 * Select a queue for service. If we have a current active queue,
1160 * check whether to continue servicing it, or retrieve and set a new one.
1162 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1164 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1166 cfqq
= cfqd
->active_queue
;
1171 * The active queue has run out of time, expire it and select new.
1173 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1177 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1180 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1182 * We simulate this as cfqq timed out so that it gets to bank
1183 * the remaining of its time slice.
1185 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1186 cfq_slice_expired(cfqd
, 1);
1191 * The active queue has requests and isn't expired, allow it to
1194 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1198 * If another queue has a request waiting within our mean seek
1199 * distance, let it run. The expire code will check for close
1200 * cooperators and put the close queue at the front of the service
1203 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1208 * No requests pending. If the active queue still has requests in
1209 * flight or is idling for a new request, allow either of these
1210 * conditions to happen (or time out) before selecting a new queue.
1212 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1213 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1219 cfq_slice_expired(cfqd
, 0);
1221 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1226 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1230 while (cfqq
->next_rq
) {
1231 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1235 BUG_ON(!list_empty(&cfqq
->fifo
));
1240 * Drain our current requests. Used for barriers and when switching
1241 * io schedulers on-the-fly.
1243 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1245 struct cfq_queue
*cfqq
;
1248 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1249 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1251 cfq_slice_expired(cfqd
, 0);
1253 BUG_ON(cfqd
->busy_queues
);
1255 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1260 * Dispatch a request from cfqq, moving them to the request queue
1263 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1267 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1270 * follow expired path, else get first next available
1272 rq
= cfq_check_fifo(cfqq
);
1277 * insert request into driver dispatch list
1279 cfq_dispatch_insert(cfqd
->queue
, rq
);
1281 if (!cfqd
->active_cic
) {
1282 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1284 atomic_long_inc(&cic
->ioc
->refcount
);
1285 cfqd
->active_cic
= cic
;
1290 * Find the cfqq that we need to service and move a request from that to the
1293 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1295 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1296 struct cfq_queue
*cfqq
;
1297 unsigned int max_dispatch
;
1299 if (!cfqd
->busy_queues
)
1302 if (unlikely(force
))
1303 return cfq_forced_dispatch(cfqd
);
1305 cfqq
= cfq_select_queue(cfqd
);
1310 * If this is an async queue and we have sync IO in flight, let it wait
1312 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1315 max_dispatch
= cfqd
->cfq_quantum
;
1316 if (cfq_class_idle(cfqq
))
1320 * Does this cfqq already have too much IO in flight?
1322 if (cfqq
->dispatched
>= max_dispatch
) {
1324 * idle queue must always only have a single IO in flight
1326 if (cfq_class_idle(cfqq
))
1330 * We have other queues, don't allow more IO from this one
1332 if (cfqd
->busy_queues
> 1)
1336 * we are the only queue, allow up to 4 times of 'quantum'
1338 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1343 * Dispatch a request from this cfqq
1345 cfq_dispatch_request(cfqd
, cfqq
);
1346 cfqq
->slice_dispatch
++;
1347 cfq_clear_cfqq_must_dispatch(cfqq
);
1350 * expire an async queue immediately if it has used up its slice. idle
1351 * queue always expire after 1 dispatch round.
1353 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1354 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1355 cfq_class_idle(cfqq
))) {
1356 cfqq
->slice_end
= jiffies
+ 1;
1357 cfq_slice_expired(cfqd
, 0);
1360 cfq_log(cfqd
, "dispatched a request");
1365 * task holds one reference to the queue, dropped when task exits. each rq
1366 * in-flight on this queue also holds a reference, dropped when rq is freed.
1368 * queue lock must be held here.
1370 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1372 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1374 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1376 if (!atomic_dec_and_test(&cfqq
->ref
))
1379 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1380 BUG_ON(rb_first(&cfqq
->sort_list
));
1381 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1382 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1384 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1385 __cfq_slice_expired(cfqd
, cfqq
, 0);
1386 cfq_schedule_dispatch(cfqd
);
1389 kmem_cache_free(cfq_pool
, cfqq
);
1393 * Must always be called with the rcu_read_lock() held
1396 __call_for_each_cic(struct io_context
*ioc
,
1397 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1399 struct cfq_io_context
*cic
;
1400 struct hlist_node
*n
;
1402 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1407 * Call func for each cic attached to this ioc.
1410 call_for_each_cic(struct io_context
*ioc
,
1411 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1414 __call_for_each_cic(ioc
, func
);
1418 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1420 struct cfq_io_context
*cic
;
1422 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1424 kmem_cache_free(cfq_ioc_pool
, cic
);
1425 elv_ioc_count_dec(ioc_count
);
1429 * CFQ scheduler is exiting, grab exit lock and check
1430 * the pending io context count. If it hits zero,
1431 * complete ioc_gone and set it back to NULL
1433 spin_lock(&ioc_gone_lock
);
1434 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1438 spin_unlock(&ioc_gone_lock
);
1442 static void cfq_cic_free(struct cfq_io_context
*cic
)
1444 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1447 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1449 unsigned long flags
;
1451 BUG_ON(!cic
->dead_key
);
1453 spin_lock_irqsave(&ioc
->lock
, flags
);
1454 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1455 hlist_del_rcu(&cic
->cic_list
);
1456 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1462 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1463 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1464 * and ->trim() which is called with the task lock held
1466 static void cfq_free_io_context(struct io_context
*ioc
)
1469 * ioc->refcount is zero here, or we are called from elv_unregister(),
1470 * so no more cic's are allowed to be linked into this ioc. So it
1471 * should be ok to iterate over the known list, we will see all cic's
1472 * since no new ones are added.
1474 __call_for_each_cic(ioc
, cic_free_func
);
1477 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1479 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1480 __cfq_slice_expired(cfqd
, cfqq
, 0);
1481 cfq_schedule_dispatch(cfqd
);
1484 cfq_put_queue(cfqq
);
1487 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1488 struct cfq_io_context
*cic
)
1490 struct io_context
*ioc
= cic
->ioc
;
1492 list_del_init(&cic
->queue_list
);
1495 * Make sure key == NULL is seen for dead queues
1498 cic
->dead_key
= (unsigned long) cic
->key
;
1501 if (ioc
->ioc_data
== cic
)
1502 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1504 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1505 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1506 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1509 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1510 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1511 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1515 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1516 struct cfq_io_context
*cic
)
1518 struct cfq_data
*cfqd
= cic
->key
;
1521 struct request_queue
*q
= cfqd
->queue
;
1522 unsigned long flags
;
1524 spin_lock_irqsave(q
->queue_lock
, flags
);
1527 * Ensure we get a fresh copy of the ->key to prevent
1528 * race between exiting task and queue
1530 smp_read_barrier_depends();
1532 __cfq_exit_single_io_context(cfqd
, cic
);
1534 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1539 * The process that ioc belongs to has exited, we need to clean up
1540 * and put the internal structures we have that belongs to that process.
1542 static void cfq_exit_io_context(struct io_context
*ioc
)
1544 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1547 static struct cfq_io_context
*
1548 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1550 struct cfq_io_context
*cic
;
1552 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1555 cic
->last_end_request
= jiffies
;
1556 INIT_LIST_HEAD(&cic
->queue_list
);
1557 INIT_HLIST_NODE(&cic
->cic_list
);
1558 cic
->dtor
= cfq_free_io_context
;
1559 cic
->exit
= cfq_exit_io_context
;
1560 elv_ioc_count_inc(ioc_count
);
1566 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1568 struct task_struct
*tsk
= current
;
1571 if (!cfq_cfqq_prio_changed(cfqq
))
1574 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1575 switch (ioprio_class
) {
1577 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1578 case IOPRIO_CLASS_NONE
:
1580 * no prio set, inherit CPU scheduling settings
1582 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1583 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1585 case IOPRIO_CLASS_RT
:
1586 cfqq
->ioprio
= task_ioprio(ioc
);
1587 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1589 case IOPRIO_CLASS_BE
:
1590 cfqq
->ioprio
= task_ioprio(ioc
);
1591 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1593 case IOPRIO_CLASS_IDLE
:
1594 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1596 cfq_clear_cfqq_idle_window(cfqq
);
1601 * keep track of original prio settings in case we have to temporarily
1602 * elevate the priority of this queue
1604 cfqq
->org_ioprio
= cfqq
->ioprio
;
1605 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1606 cfq_clear_cfqq_prio_changed(cfqq
);
1609 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1611 struct cfq_data
*cfqd
= cic
->key
;
1612 struct cfq_queue
*cfqq
;
1613 unsigned long flags
;
1615 if (unlikely(!cfqd
))
1618 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1620 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1622 struct cfq_queue
*new_cfqq
;
1623 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1626 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1627 cfq_put_queue(cfqq
);
1631 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1633 cfq_mark_cfqq_prio_changed(cfqq
);
1635 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1638 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1640 call_for_each_cic(ioc
, changed_ioprio
);
1641 ioc
->ioprio_changed
= 0;
1644 static struct cfq_queue
*
1645 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1646 struct io_context
*ioc
, gfp_t gfp_mask
)
1648 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1649 struct cfq_io_context
*cic
;
1652 cic
= cfq_cic_lookup(cfqd
, ioc
);
1653 /* cic always exists here */
1654 cfqq
= cic_to_cfqq(cic
, is_sync
);
1660 } else if (gfp_mask
& __GFP_WAIT
) {
1662 * Inform the allocator of the fact that we will
1663 * just repeat this allocation if it fails, to allow
1664 * the allocator to do whatever it needs to attempt to
1667 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1668 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1669 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1671 spin_lock_irq(cfqd
->queue
->queue_lock
);
1674 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1675 gfp_mask
| __GFP_ZERO
,
1681 RB_CLEAR_NODE(&cfqq
->rb_node
);
1682 RB_CLEAR_NODE(&cfqq
->p_node
);
1683 INIT_LIST_HEAD(&cfqq
->fifo
);
1685 atomic_set(&cfqq
->ref
, 0);
1688 cfq_mark_cfqq_prio_changed(cfqq
);
1690 cfq_init_prio_data(cfqq
, ioc
);
1693 if (!cfq_class_idle(cfqq
))
1694 cfq_mark_cfqq_idle_window(cfqq
);
1695 cfq_mark_cfqq_sync(cfqq
);
1697 cfqq
->pid
= current
->pid
;
1698 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1702 kmem_cache_free(cfq_pool
, new_cfqq
);
1705 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1709 static struct cfq_queue
**
1710 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1712 switch (ioprio_class
) {
1713 case IOPRIO_CLASS_RT
:
1714 return &cfqd
->async_cfqq
[0][ioprio
];
1715 case IOPRIO_CLASS_BE
:
1716 return &cfqd
->async_cfqq
[1][ioprio
];
1717 case IOPRIO_CLASS_IDLE
:
1718 return &cfqd
->async_idle_cfqq
;
1724 static struct cfq_queue
*
1725 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1728 const int ioprio
= task_ioprio(ioc
);
1729 const int ioprio_class
= task_ioprio_class(ioc
);
1730 struct cfq_queue
**async_cfqq
= NULL
;
1731 struct cfq_queue
*cfqq
= NULL
;
1734 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1739 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1745 * pin the queue now that it's allocated, scheduler exit will prune it
1747 if (!is_sync
&& !(*async_cfqq
)) {
1748 atomic_inc(&cfqq
->ref
);
1752 atomic_inc(&cfqq
->ref
);
1757 * We drop cfq io contexts lazily, so we may find a dead one.
1760 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1761 struct cfq_io_context
*cic
)
1763 unsigned long flags
;
1765 WARN_ON(!list_empty(&cic
->queue_list
));
1767 spin_lock_irqsave(&ioc
->lock
, flags
);
1769 BUG_ON(ioc
->ioc_data
== cic
);
1771 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1772 hlist_del_rcu(&cic
->cic_list
);
1773 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1778 static struct cfq_io_context
*
1779 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1781 struct cfq_io_context
*cic
;
1782 unsigned long flags
;
1791 * we maintain a last-hit cache, to avoid browsing over the tree
1793 cic
= rcu_dereference(ioc
->ioc_data
);
1794 if (cic
&& cic
->key
== cfqd
) {
1800 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1804 /* ->key must be copied to avoid race with cfq_exit_queue() */
1807 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1812 spin_lock_irqsave(&ioc
->lock
, flags
);
1813 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1814 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1822 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1823 * the process specific cfq io context when entered from the block layer.
1824 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1826 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1827 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1829 unsigned long flags
;
1832 ret
= radix_tree_preload(gfp_mask
);
1837 spin_lock_irqsave(&ioc
->lock
, flags
);
1838 ret
= radix_tree_insert(&ioc
->radix_root
,
1839 (unsigned long) cfqd
, cic
);
1841 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1842 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1844 radix_tree_preload_end();
1847 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1848 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1849 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1854 printk(KERN_ERR
"cfq: cic link failed!\n");
1860 * Setup general io context and cfq io context. There can be several cfq
1861 * io contexts per general io context, if this process is doing io to more
1862 * than one device managed by cfq.
1864 static struct cfq_io_context
*
1865 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1867 struct io_context
*ioc
= NULL
;
1868 struct cfq_io_context
*cic
;
1870 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1872 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1876 cic
= cfq_cic_lookup(cfqd
, ioc
);
1880 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1884 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1888 smp_read_barrier_depends();
1889 if (unlikely(ioc
->ioprio_changed
))
1890 cfq_ioc_set_ioprio(ioc
);
1896 put_io_context(ioc
);
1901 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1903 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1904 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1906 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1907 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1908 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1912 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1918 if (!cic
->last_request_pos
)
1920 else if (cic
->last_request_pos
< blk_rq_pos(rq
))
1921 sdist
= blk_rq_pos(rq
) - cic
->last_request_pos
;
1923 sdist
= cic
->last_request_pos
- blk_rq_pos(rq
);
1926 * Don't allow the seek distance to get too large from the
1927 * odd fragment, pagein, etc
1929 if (cic
->seek_samples
<= 60) /* second&third seek */
1930 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1932 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1934 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1935 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1936 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1937 do_div(total
, cic
->seek_samples
);
1938 cic
->seek_mean
= (sector_t
)total
;
1942 * Disable idle window if the process thinks too long or seeks so much that
1946 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1947 struct cfq_io_context
*cic
)
1949 int old_idle
, enable_idle
;
1952 * Don't idle for async or idle io prio class
1954 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1957 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1959 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1960 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1962 else if (sample_valid(cic
->ttime_samples
)) {
1963 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1969 if (old_idle
!= enable_idle
) {
1970 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1972 cfq_mark_cfqq_idle_window(cfqq
);
1974 cfq_clear_cfqq_idle_window(cfqq
);
1979 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1980 * no or if we aren't sure, a 1 will cause a preempt.
1983 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1986 struct cfq_queue
*cfqq
;
1988 cfqq
= cfqd
->active_queue
;
1992 if (cfq_slice_used(cfqq
))
1995 if (cfq_class_idle(new_cfqq
))
1998 if (cfq_class_idle(cfqq
))
2002 * if the new request is sync, but the currently running queue is
2003 * not, let the sync request have priority.
2005 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2009 * So both queues are sync. Let the new request get disk time if
2010 * it's a metadata request and the current queue is doing regular IO.
2012 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2016 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2018 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2021 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2025 * if this request is as-good as one we would expect from the
2026 * current cfqq, let it preempt
2028 if (cfq_rq_close(cfqd
, rq
))
2035 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2036 * let it have half of its nominal slice.
2038 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2040 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2041 cfq_slice_expired(cfqd
, 1);
2044 * Put the new queue at the front of the of the current list,
2045 * so we know that it will be selected next.
2047 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2049 cfq_service_tree_add(cfqd
, cfqq
, 1);
2051 cfqq
->slice_end
= 0;
2052 cfq_mark_cfqq_slice_new(cfqq
);
2056 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2057 * something we should do about it
2060 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2063 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2067 cfqq
->meta_pending
++;
2069 cfq_update_io_thinktime(cfqd
, cic
);
2070 cfq_update_io_seektime(cfqd
, cic
, rq
);
2071 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2073 cic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2075 if (cfqq
== cfqd
->active_queue
) {
2077 * Remember that we saw a request from this process, but
2078 * don't start queuing just yet. Otherwise we risk seeing lots
2079 * of tiny requests, because we disrupt the normal plugging
2080 * and merging. If the request is already larger than a single
2081 * page, let it rip immediately. For that case we assume that
2082 * merging is already done. Ditto for a busy system that
2083 * has other work pending, don't risk delaying until the
2084 * idle timer unplug to continue working.
2086 if (cfq_cfqq_wait_request(cfqq
)) {
2087 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2088 cfqd
->busy_queues
> 1) {
2089 del_timer(&cfqd
->idle_slice_timer
);
2090 __blk_run_queue(cfqd
->queue
);
2092 cfq_mark_cfqq_must_dispatch(cfqq
);
2094 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2096 * not the active queue - expire current slice if it is
2097 * idle and has expired it's mean thinktime or this new queue
2098 * has some old slice time left and is of higher priority or
2099 * this new queue is RT and the current one is BE
2101 cfq_preempt_queue(cfqd
, cfqq
);
2102 __blk_run_queue(cfqd
->queue
);
2106 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2108 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2109 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2111 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2112 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2116 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2118 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2122 * Update hw_tag based on peak queue depth over 50 samples under
2125 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2127 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
2128 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
2130 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2131 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
2134 if (cfqd
->hw_tag_samples
++ < 50)
2137 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2142 cfqd
->hw_tag_samples
= 0;
2143 cfqd
->rq_in_driver_peak
= 0;
2146 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2148 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2149 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2150 const int sync
= rq_is_sync(rq
);
2154 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2156 cfq_update_hw_tag(cfqd
);
2158 WARN_ON(!cfqd
->rq_in_driver
);
2159 WARN_ON(!cfqq
->dispatched
);
2160 cfqd
->rq_in_driver
--;
2163 if (cfq_cfqq_sync(cfqq
))
2164 cfqd
->sync_flight
--;
2167 RQ_CIC(rq
)->last_end_request
= now
;
2170 * If this is the active queue, check if it needs to be expired,
2171 * or if we want to idle in case it has no pending requests.
2173 if (cfqd
->active_queue
== cfqq
) {
2174 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2176 if (cfq_cfqq_slice_new(cfqq
)) {
2177 cfq_set_prio_slice(cfqd
, cfqq
);
2178 cfq_clear_cfqq_slice_new(cfqq
);
2181 * If there are no requests waiting in this queue, and
2182 * there are other queues ready to issue requests, AND
2183 * those other queues are issuing requests within our
2184 * mean seek distance, give them a chance to run instead
2187 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2188 cfq_slice_expired(cfqd
, 1);
2189 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2190 sync
&& !rq_noidle(rq
))
2191 cfq_arm_slice_timer(cfqd
);
2194 if (!cfqd
->rq_in_driver
)
2195 cfq_schedule_dispatch(cfqd
);
2199 * we temporarily boost lower priority queues if they are holding fs exclusive
2200 * resources. they are boosted to normal prio (CLASS_BE/4)
2202 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2204 if (has_fs_excl()) {
2206 * boost idle prio on transactions that would lock out other
2207 * users of the filesystem
2209 if (cfq_class_idle(cfqq
))
2210 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2211 if (cfqq
->ioprio
> IOPRIO_NORM
)
2212 cfqq
->ioprio
= IOPRIO_NORM
;
2215 * check if we need to unboost the queue
2217 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2218 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2219 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2220 cfqq
->ioprio
= cfqq
->org_ioprio
;
2224 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2226 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2227 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2228 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2229 return ELV_MQUEUE_MUST
;
2232 return ELV_MQUEUE_MAY
;
2235 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2237 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2238 struct task_struct
*tsk
= current
;
2239 struct cfq_io_context
*cic
;
2240 struct cfq_queue
*cfqq
;
2243 * don't force setup of a queue from here, as a call to may_queue
2244 * does not necessarily imply that a request actually will be queued.
2245 * so just lookup a possibly existing queue, or return 'may queue'
2248 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2250 return ELV_MQUEUE_MAY
;
2252 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2254 cfq_init_prio_data(cfqq
, cic
->ioc
);
2255 cfq_prio_boost(cfqq
);
2257 return __cfq_may_queue(cfqq
);
2260 return ELV_MQUEUE_MAY
;
2264 * queue lock held here
2266 static void cfq_put_request(struct request
*rq
)
2268 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2271 const int rw
= rq_data_dir(rq
);
2273 BUG_ON(!cfqq
->allocated
[rw
]);
2274 cfqq
->allocated
[rw
]--;
2276 put_io_context(RQ_CIC(rq
)->ioc
);
2278 rq
->elevator_private
= NULL
;
2279 rq
->elevator_private2
= NULL
;
2281 cfq_put_queue(cfqq
);
2286 * Allocate cfq data structures associated with this request.
2289 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2291 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2292 struct cfq_io_context
*cic
;
2293 const int rw
= rq_data_dir(rq
);
2294 const int is_sync
= rq_is_sync(rq
);
2295 struct cfq_queue
*cfqq
;
2296 unsigned long flags
;
2298 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2300 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2302 spin_lock_irqsave(q
->queue_lock
, flags
);
2307 cfqq
= cic_to_cfqq(cic
, is_sync
);
2309 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2314 cic_set_cfqq(cic
, cfqq
, is_sync
);
2317 cfqq
->allocated
[rw
]++;
2318 cfq_clear_cfqq_must_alloc(cfqq
);
2319 atomic_inc(&cfqq
->ref
);
2321 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2323 rq
->elevator_private
= cic
;
2324 rq
->elevator_private2
= cfqq
;
2329 put_io_context(cic
->ioc
);
2331 cfq_schedule_dispatch(cfqd
);
2332 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2333 cfq_log(cfqd
, "set_request fail");
2337 static void cfq_kick_queue(struct work_struct
*work
)
2339 struct cfq_data
*cfqd
=
2340 container_of(work
, struct cfq_data
, unplug_work
);
2341 struct request_queue
*q
= cfqd
->queue
;
2343 spin_lock_irq(q
->queue_lock
);
2344 __blk_run_queue(cfqd
->queue
);
2345 spin_unlock_irq(q
->queue_lock
);
2349 * Timer running if the active_queue is currently idling inside its time slice
2351 static void cfq_idle_slice_timer(unsigned long data
)
2353 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2354 struct cfq_queue
*cfqq
;
2355 unsigned long flags
;
2358 cfq_log(cfqd
, "idle timer fired");
2360 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2362 cfqq
= cfqd
->active_queue
;
2367 * We saw a request before the queue expired, let it through
2369 if (cfq_cfqq_must_dispatch(cfqq
))
2375 if (cfq_slice_used(cfqq
))
2379 * only expire and reinvoke request handler, if there are
2380 * other queues with pending requests
2382 if (!cfqd
->busy_queues
)
2386 * not expired and it has a request pending, let it dispatch
2388 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2392 cfq_slice_expired(cfqd
, timed_out
);
2394 cfq_schedule_dispatch(cfqd
);
2396 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2399 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2401 del_timer_sync(&cfqd
->idle_slice_timer
);
2402 cancel_work_sync(&cfqd
->unplug_work
);
2405 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2409 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2410 if (cfqd
->async_cfqq
[0][i
])
2411 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2412 if (cfqd
->async_cfqq
[1][i
])
2413 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2416 if (cfqd
->async_idle_cfqq
)
2417 cfq_put_queue(cfqd
->async_idle_cfqq
);
2420 static void cfq_exit_queue(struct elevator_queue
*e
)
2422 struct cfq_data
*cfqd
= e
->elevator_data
;
2423 struct request_queue
*q
= cfqd
->queue
;
2425 cfq_shutdown_timer_wq(cfqd
);
2427 spin_lock_irq(q
->queue_lock
);
2429 if (cfqd
->active_queue
)
2430 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2432 while (!list_empty(&cfqd
->cic_list
)) {
2433 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2434 struct cfq_io_context
,
2437 __cfq_exit_single_io_context(cfqd
, cic
);
2440 cfq_put_async_queues(cfqd
);
2442 spin_unlock_irq(q
->queue_lock
);
2444 cfq_shutdown_timer_wq(cfqd
);
2449 static void *cfq_init_queue(struct request_queue
*q
)
2451 struct cfq_data
*cfqd
;
2454 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2458 cfqd
->service_tree
= CFQ_RB_ROOT
;
2461 * Not strictly needed (since RB_ROOT just clears the node and we
2462 * zeroed cfqd on alloc), but better be safe in case someone decides
2463 * to add magic to the rb code
2465 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2466 cfqd
->prio_trees
[i
] = RB_ROOT
;
2468 INIT_LIST_HEAD(&cfqd
->cic_list
);
2472 init_timer(&cfqd
->idle_slice_timer
);
2473 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2474 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2476 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2478 cfqd
->cfq_quantum
= cfq_quantum
;
2479 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2480 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2481 cfqd
->cfq_back_max
= cfq_back_max
;
2482 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2483 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2484 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2485 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2486 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2492 static void cfq_slab_kill(void)
2495 * Caller already ensured that pending RCU callbacks are completed,
2496 * so we should have no busy allocations at this point.
2499 kmem_cache_destroy(cfq_pool
);
2501 kmem_cache_destroy(cfq_ioc_pool
);
2504 static int __init
cfq_slab_setup(void)
2506 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2510 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2521 * sysfs parts below -->
2524 cfq_var_show(unsigned int var
, char *page
)
2526 return sprintf(page
, "%d\n", var
);
2530 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2532 char *p
= (char *) page
;
2534 *var
= simple_strtoul(p
, &p
, 10);
2538 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2539 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2541 struct cfq_data *cfqd = e->elevator_data; \
2542 unsigned int __data = __VAR; \
2544 __data = jiffies_to_msecs(__data); \
2545 return cfq_var_show(__data, (page)); \
2547 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2548 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2549 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2550 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2551 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2552 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2553 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2554 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2555 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2556 #undef SHOW_FUNCTION
2558 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2559 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2561 struct cfq_data *cfqd = e->elevator_data; \
2562 unsigned int __data; \
2563 int ret = cfq_var_store(&__data, (page), count); \
2564 if (__data < (MIN)) \
2566 else if (__data > (MAX)) \
2569 *(__PTR) = msecs_to_jiffies(__data); \
2571 *(__PTR) = __data; \
2574 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2575 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2577 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2579 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2580 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2582 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2583 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2584 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2585 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2587 #undef STORE_FUNCTION
2589 #define CFQ_ATTR(name) \
2590 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2592 static struct elv_fs_entry cfq_attrs
[] = {
2594 CFQ_ATTR(fifo_expire_sync
),
2595 CFQ_ATTR(fifo_expire_async
),
2596 CFQ_ATTR(back_seek_max
),
2597 CFQ_ATTR(back_seek_penalty
),
2598 CFQ_ATTR(slice_sync
),
2599 CFQ_ATTR(slice_async
),
2600 CFQ_ATTR(slice_async_rq
),
2601 CFQ_ATTR(slice_idle
),
2605 static struct elevator_type iosched_cfq
= {
2607 .elevator_merge_fn
= cfq_merge
,
2608 .elevator_merged_fn
= cfq_merged_request
,
2609 .elevator_merge_req_fn
= cfq_merged_requests
,
2610 .elevator_allow_merge_fn
= cfq_allow_merge
,
2611 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2612 .elevator_add_req_fn
= cfq_insert_request
,
2613 .elevator_activate_req_fn
= cfq_activate_request
,
2614 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2615 .elevator_queue_empty_fn
= cfq_queue_empty
,
2616 .elevator_completed_req_fn
= cfq_completed_request
,
2617 .elevator_former_req_fn
= elv_rb_former_request
,
2618 .elevator_latter_req_fn
= elv_rb_latter_request
,
2619 .elevator_set_req_fn
= cfq_set_request
,
2620 .elevator_put_req_fn
= cfq_put_request
,
2621 .elevator_may_queue_fn
= cfq_may_queue
,
2622 .elevator_init_fn
= cfq_init_queue
,
2623 .elevator_exit_fn
= cfq_exit_queue
,
2624 .trim
= cfq_free_io_context
,
2626 .elevator_attrs
= cfq_attrs
,
2627 .elevator_name
= "cfq",
2628 .elevator_owner
= THIS_MODULE
,
2631 static int __init
cfq_init(void)
2634 * could be 0 on HZ < 1000 setups
2636 if (!cfq_slice_async
)
2637 cfq_slice_async
= 1;
2638 if (!cfq_slice_idle
)
2641 if (cfq_slab_setup())
2644 elv_register(&iosched_cfq
);
2649 static void __exit
cfq_exit(void)
2651 DECLARE_COMPLETION_ONSTACK(all_gone
);
2652 elv_unregister(&iosched_cfq
);
2653 ioc_gone
= &all_gone
;
2654 /* ioc_gone's update must be visible before reading ioc_count */
2658 * this also protects us from entering cfq_slab_kill() with
2659 * pending RCU callbacks
2661 if (elv_ioc_count_read(ioc_count
))
2662 wait_for_completion(&all_gone
);
2666 module_init(cfq_init
);
2667 module_exit(cfq_exit
);
2669 MODULE_AUTHOR("Jens Axboe");
2670 MODULE_LICENSE("GPL");
2671 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");