iwlwifi: iwl_poll_{direct_}bit cleanup
[linux-2.6/verdex.git] / drivers / net / cxgb3 / sge.c
blobd3a6e245f1ef16517cc567bab1332a6eb8e7e4a6
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include "common.h"
40 #include "regs.h"
41 #include "sge_defs.h"
42 #include "t3_cpl.h"
43 #include "firmware_exports.h"
45 #define USE_GTS 0
47 #define SGE_RX_SM_BUF_SIZE 1536
49 #define SGE_RX_COPY_THRES 256
50 #define SGE_RX_PULL_LEN 128
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
57 #define FL0_PG_CHUNK_SIZE 2048
58 #define FL0_PG_ORDER 0
59 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
62 #define SGE_RX_DROP_THRES 16
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
68 #define TX_RECLAIM_PERIOD (HZ / 4)
70 /* WR size in bytes */
71 #define WR_LEN (WR_FLITS * 8)
74 * Types of Tx queues in each queue set. Order here matters, do not change.
76 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
78 /* Values for sge_txq.flags */
79 enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
84 struct tx_desc {
85 __be64 flit[TX_DESC_FLITS];
88 struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
95 struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
97 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
103 struct rx_sw_desc { /* SW state per Rx descriptor */
104 union {
105 struct sk_buff *skb;
106 struct fl_pg_chunk pg_chunk;
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
111 struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
123 struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
134 * HW allows up to 4 descriptors to be combined into a WR.
136 static u8 flit_desc_map[] = {
138 #if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143 #elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148 #else
149 # error "SGE_NUM_GENBITS must be 1 or 2"
150 #endif
153 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
155 return container_of(q, struct sge_qset, fl[qidx]);
158 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
160 return container_of(q, struct sge_qset, rspq);
163 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
165 return container_of(q, struct sge_qset, txq[qidx]);
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
177 static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
180 rmb();
181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
191 static inline int need_skb_unmap(void)
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
201 return sizeof(struct dummy) != 0;
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
226 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
229 const struct sg_ent *sgp;
230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
239 j = 1;
242 curflit = d->sflit + 1 + j;
243 nfrags = skb_shinfo(skb)->nr_frags;
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
254 curflit++;
255 frag_idx++;
258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
275 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
288 if (need_unmap)
289 unmap_skb(d->skb, q, cidx, pdev);
290 if (d->eop)
291 kfree_skb(d->skb);
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
299 q->cidx = cidx;
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
311 static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
314 unsigned int reclaim = q->processed - q->cleaned;
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
329 static inline int should_restart_tx(const struct sge_txq *q)
331 unsigned int r = q->processed - q->cleaned;
333 return q->in_use - r < (q->size >> 1);
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
344 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
346 unsigned int cidx = q->cidx;
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
353 if (q->use_pages) {
354 if (d->pg_chunk.page)
355 put_page(d->pg_chunk.page);
356 d->pg_chunk.page = NULL;
357 } else {
358 kfree_skb(d->skb);
359 d->skb = NULL;
361 if (++cidx == q->size)
362 cidx = 0;
365 if (q->pg_chunk.page) {
366 __free_pages(q->pg_chunk.page, q->order);
367 q->pg_chunk.page = NULL;
372 * add_one_rx_buf - add a packet buffer to a free-buffer list
373 * @va: buffer start VA
374 * @len: the buffer length
375 * @d: the HW Rx descriptor to write
376 * @sd: the SW Rx descriptor to write
377 * @gen: the generation bit value
378 * @pdev: the PCI device associated with the adapter
380 * Add a buffer of the given length to the supplied HW and SW Rx
381 * descriptors.
383 static inline int add_one_rx_buf(void *va, unsigned int len,
384 struct rx_desc *d, struct rx_sw_desc *sd,
385 unsigned int gen, struct pci_dev *pdev)
387 dma_addr_t mapping;
389 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
390 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
391 return -ENOMEM;
393 pci_unmap_addr_set(sd, dma_addr, mapping);
395 d->addr_lo = cpu_to_be32(mapping);
396 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
397 wmb();
398 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
399 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
400 return 0;
403 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
404 unsigned int order)
406 if (!q->pg_chunk.page) {
407 q->pg_chunk.page = alloc_pages(gfp, order);
408 if (unlikely(!q->pg_chunk.page))
409 return -ENOMEM;
410 q->pg_chunk.va = page_address(q->pg_chunk.page);
411 q->pg_chunk.offset = 0;
413 sd->pg_chunk = q->pg_chunk;
415 q->pg_chunk.offset += q->buf_size;
416 if (q->pg_chunk.offset == (PAGE_SIZE << order))
417 q->pg_chunk.page = NULL;
418 else {
419 q->pg_chunk.va += q->buf_size;
420 get_page(q->pg_chunk.page);
422 return 0;
426 * refill_fl - refill an SGE free-buffer list
427 * @adapter: the adapter
428 * @q: the free-list to refill
429 * @n: the number of new buffers to allocate
430 * @gfp: the gfp flags for allocating new buffers
432 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
433 * allocated with the supplied gfp flags. The caller must assure that
434 * @n does not exceed the queue's capacity.
436 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
438 void *buf_start;
439 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
440 struct rx_desc *d = &q->desc[q->pidx];
441 unsigned int count = 0;
443 while (n--) {
444 int err;
446 if (q->use_pages) {
447 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
448 nomem: q->alloc_failed++;
449 break;
451 buf_start = sd->pg_chunk.va;
452 } else {
453 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
455 if (!skb)
456 goto nomem;
458 sd->skb = skb;
459 buf_start = skb->data;
462 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
463 adap->pdev);
464 if (unlikely(err)) {
465 if (!q->use_pages) {
466 kfree_skb(sd->skb);
467 sd->skb = NULL;
469 break;
472 d++;
473 sd++;
474 if (++q->pidx == q->size) {
475 q->pidx = 0;
476 q->gen ^= 1;
477 sd = q->sdesc;
478 d = q->desc;
480 q->credits++;
481 count++;
483 wmb();
484 if (likely(count))
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487 return count;
490 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
492 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
493 GFP_ATOMIC | __GFP_COMP);
497 * recycle_rx_buf - recycle a receive buffer
498 * @adapter: the adapter
499 * @q: the SGE free list
500 * @idx: index of buffer to recycle
502 * Recycles the specified buffer on the given free list by adding it at
503 * the next available slot on the list.
505 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
506 unsigned int idx)
508 struct rx_desc *from = &q->desc[idx];
509 struct rx_desc *to = &q->desc[q->pidx];
511 q->sdesc[q->pidx] = q->sdesc[idx];
512 to->addr_lo = from->addr_lo; /* already big endian */
513 to->addr_hi = from->addr_hi; /* likewise */
514 wmb();
515 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
516 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
517 q->credits++;
519 if (++q->pidx == q->size) {
520 q->pidx = 0;
521 q->gen ^= 1;
523 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
527 * alloc_ring - allocate resources for an SGE descriptor ring
528 * @pdev: the PCI device
529 * @nelem: the number of descriptors
530 * @elem_size: the size of each descriptor
531 * @sw_size: the size of the SW state associated with each ring element
532 * @phys: the physical address of the allocated ring
533 * @metadata: address of the array holding the SW state for the ring
535 * Allocates resources for an SGE descriptor ring, such as Tx queues,
536 * free buffer lists, or response queues. Each SGE ring requires
537 * space for its HW descriptors plus, optionally, space for the SW state
538 * associated with each HW entry (the metadata). The function returns
539 * three values: the virtual address for the HW ring (the return value
540 * of the function), the physical address of the HW ring, and the address
541 * of the SW ring.
543 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
544 size_t sw_size, dma_addr_t * phys, void *metadata)
546 size_t len = nelem * elem_size;
547 void *s = NULL;
548 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
550 if (!p)
551 return NULL;
552 if (sw_size && metadata) {
553 s = kcalloc(nelem, sw_size, GFP_KERNEL);
555 if (!s) {
556 dma_free_coherent(&pdev->dev, len, p, *phys);
557 return NULL;
559 *(void **)metadata = s;
561 memset(p, 0, len);
562 return p;
566 * t3_reset_qset - reset a sge qset
567 * @q: the queue set
569 * Reset the qset structure.
570 * the NAPI structure is preserved in the event of
571 * the qset's reincarnation, for example during EEH recovery.
573 static void t3_reset_qset(struct sge_qset *q)
575 if (q->adap &&
576 !(q->adap->flags & NAPI_INIT)) {
577 memset(q, 0, sizeof(*q));
578 return;
581 q->adap = NULL;
582 memset(&q->rspq, 0, sizeof(q->rspq));
583 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
584 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
585 q->txq_stopped = 0;
586 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
587 kfree(q->lro_frag_tbl);
588 q->lro_nfrags = q->lro_frag_len = 0;
593 * free_qset - free the resources of an SGE queue set
594 * @adapter: the adapter owning the queue set
595 * @q: the queue set
597 * Release the HW and SW resources associated with an SGE queue set, such
598 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
599 * queue set must be quiesced prior to calling this.
601 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
603 int i;
604 struct pci_dev *pdev = adapter->pdev;
606 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
607 if (q->fl[i].desc) {
608 spin_lock_irq(&adapter->sge.reg_lock);
609 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
610 spin_unlock_irq(&adapter->sge.reg_lock);
611 free_rx_bufs(pdev, &q->fl[i]);
612 kfree(q->fl[i].sdesc);
613 dma_free_coherent(&pdev->dev,
614 q->fl[i].size *
615 sizeof(struct rx_desc), q->fl[i].desc,
616 q->fl[i].phys_addr);
619 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
620 if (q->txq[i].desc) {
621 spin_lock_irq(&adapter->sge.reg_lock);
622 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
623 spin_unlock_irq(&adapter->sge.reg_lock);
624 if (q->txq[i].sdesc) {
625 free_tx_desc(adapter, &q->txq[i],
626 q->txq[i].in_use);
627 kfree(q->txq[i].sdesc);
629 dma_free_coherent(&pdev->dev,
630 q->txq[i].size *
631 sizeof(struct tx_desc),
632 q->txq[i].desc, q->txq[i].phys_addr);
633 __skb_queue_purge(&q->txq[i].sendq);
636 if (q->rspq.desc) {
637 spin_lock_irq(&adapter->sge.reg_lock);
638 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
639 spin_unlock_irq(&adapter->sge.reg_lock);
640 dma_free_coherent(&pdev->dev,
641 q->rspq.size * sizeof(struct rsp_desc),
642 q->rspq.desc, q->rspq.phys_addr);
645 t3_reset_qset(q);
649 * init_qset_cntxt - initialize an SGE queue set context info
650 * @qs: the queue set
651 * @id: the queue set id
653 * Initializes the TIDs and context ids for the queues of a queue set.
655 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
657 qs->rspq.cntxt_id = id;
658 qs->fl[0].cntxt_id = 2 * id;
659 qs->fl[1].cntxt_id = 2 * id + 1;
660 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
661 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
662 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
663 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
668 * sgl_len - calculates the size of an SGL of the given capacity
669 * @n: the number of SGL entries
671 * Calculates the number of flits needed for a scatter/gather list that
672 * can hold the given number of entries.
674 static inline unsigned int sgl_len(unsigned int n)
676 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
677 return (3 * n) / 2 + (n & 1);
681 * flits_to_desc - returns the num of Tx descriptors for the given flits
682 * @n: the number of flits
684 * Calculates the number of Tx descriptors needed for the supplied number
685 * of flits.
687 static inline unsigned int flits_to_desc(unsigned int n)
689 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
690 return flit_desc_map[n];
694 * get_packet - return the next ingress packet buffer from a free list
695 * @adap: the adapter that received the packet
696 * @fl: the SGE free list holding the packet
697 * @len: the packet length including any SGE padding
698 * @drop_thres: # of remaining buffers before we start dropping packets
700 * Get the next packet from a free list and complete setup of the
701 * sk_buff. If the packet is small we make a copy and recycle the
702 * original buffer, otherwise we use the original buffer itself. If a
703 * positive drop threshold is supplied packets are dropped and their
704 * buffers recycled if (a) the number of remaining buffers is under the
705 * threshold and the packet is too big to copy, or (b) the packet should
706 * be copied but there is no memory for the copy.
708 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
709 unsigned int len, unsigned int drop_thres)
711 struct sk_buff *skb = NULL;
712 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
714 prefetch(sd->skb->data);
715 fl->credits--;
717 if (len <= SGE_RX_COPY_THRES) {
718 skb = alloc_skb(len, GFP_ATOMIC);
719 if (likely(skb != NULL)) {
720 __skb_put(skb, len);
721 pci_dma_sync_single_for_cpu(adap->pdev,
722 pci_unmap_addr(sd, dma_addr), len,
723 PCI_DMA_FROMDEVICE);
724 memcpy(skb->data, sd->skb->data, len);
725 pci_dma_sync_single_for_device(adap->pdev,
726 pci_unmap_addr(sd, dma_addr), len,
727 PCI_DMA_FROMDEVICE);
728 } else if (!drop_thres)
729 goto use_orig_buf;
730 recycle:
731 recycle_rx_buf(adap, fl, fl->cidx);
732 return skb;
735 if (unlikely(fl->credits < drop_thres))
736 goto recycle;
738 use_orig_buf:
739 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
740 fl->buf_size, PCI_DMA_FROMDEVICE);
741 skb = sd->skb;
742 skb_put(skb, len);
743 __refill_fl(adap, fl);
744 return skb;
748 * get_packet_pg - return the next ingress packet buffer from a free list
749 * @adap: the adapter that received the packet
750 * @fl: the SGE free list holding the packet
751 * @len: the packet length including any SGE padding
752 * @drop_thres: # of remaining buffers before we start dropping packets
754 * Get the next packet from a free list populated with page chunks.
755 * If the packet is small we make a copy and recycle the original buffer,
756 * otherwise we attach the original buffer as a page fragment to a fresh
757 * sk_buff. If a positive drop threshold is supplied packets are dropped
758 * and their buffers recycled if (a) the number of remaining buffers is
759 * under the threshold and the packet is too big to copy, or (b) there's
760 * no system memory.
762 * Note: this function is similar to @get_packet but deals with Rx buffers
763 * that are page chunks rather than sk_buffs.
765 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
766 struct sge_rspq *q, unsigned int len,
767 unsigned int drop_thres)
769 struct sk_buff *newskb, *skb;
770 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
772 newskb = skb = q->pg_skb;
774 if (!skb && (len <= SGE_RX_COPY_THRES)) {
775 newskb = alloc_skb(len, GFP_ATOMIC);
776 if (likely(newskb != NULL)) {
777 __skb_put(newskb, len);
778 pci_dma_sync_single_for_cpu(adap->pdev,
779 pci_unmap_addr(sd, dma_addr), len,
780 PCI_DMA_FROMDEVICE);
781 memcpy(newskb->data, sd->pg_chunk.va, len);
782 pci_dma_sync_single_for_device(adap->pdev,
783 pci_unmap_addr(sd, dma_addr), len,
784 PCI_DMA_FROMDEVICE);
785 } else if (!drop_thres)
786 return NULL;
787 recycle:
788 fl->credits--;
789 recycle_rx_buf(adap, fl, fl->cidx);
790 q->rx_recycle_buf++;
791 return newskb;
794 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
795 goto recycle;
797 if (!skb)
798 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
799 if (unlikely(!newskb)) {
800 if (!drop_thres)
801 return NULL;
802 goto recycle;
805 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
806 fl->buf_size, PCI_DMA_FROMDEVICE);
807 if (!skb) {
808 __skb_put(newskb, SGE_RX_PULL_LEN);
809 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
810 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
811 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
812 len - SGE_RX_PULL_LEN);
813 newskb->len = len;
814 newskb->data_len = len - SGE_RX_PULL_LEN;
815 } else {
816 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
817 sd->pg_chunk.page,
818 sd->pg_chunk.offset, len);
819 newskb->len += len;
820 newskb->data_len += len;
822 newskb->truesize += newskb->data_len;
824 fl->credits--;
826 * We do not refill FLs here, we let the caller do it to overlap a
827 * prefetch.
829 return newskb;
833 * get_imm_packet - return the next ingress packet buffer from a response
834 * @resp: the response descriptor containing the packet data
836 * Return a packet containing the immediate data of the given response.
838 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
840 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
842 if (skb) {
843 __skb_put(skb, IMMED_PKT_SIZE);
844 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
846 return skb;
850 * calc_tx_descs - calculate the number of Tx descriptors for a packet
851 * @skb: the packet
853 * Returns the number of Tx descriptors needed for the given Ethernet
854 * packet. Ethernet packets require addition of WR and CPL headers.
856 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
858 unsigned int flits;
860 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
861 return 1;
863 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
864 if (skb_shinfo(skb)->gso_size)
865 flits++;
866 return flits_to_desc(flits);
870 * make_sgl - populate a scatter/gather list for a packet
871 * @skb: the packet
872 * @sgp: the SGL to populate
873 * @start: start address of skb main body data to include in the SGL
874 * @len: length of skb main body data to include in the SGL
875 * @pdev: the PCI device
877 * Generates a scatter/gather list for the buffers that make up a packet
878 * and returns the SGL size in 8-byte words. The caller must size the SGL
879 * appropriately.
881 static inline unsigned int make_sgl(const struct sk_buff *skb,
882 struct sg_ent *sgp, unsigned char *start,
883 unsigned int len, struct pci_dev *pdev)
885 dma_addr_t mapping;
886 unsigned int i, j = 0, nfrags;
888 if (len) {
889 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
890 sgp->len[0] = cpu_to_be32(len);
891 sgp->addr[0] = cpu_to_be64(mapping);
892 j = 1;
895 nfrags = skb_shinfo(skb)->nr_frags;
896 for (i = 0; i < nfrags; i++) {
897 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
899 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
900 frag->size, PCI_DMA_TODEVICE);
901 sgp->len[j] = cpu_to_be32(frag->size);
902 sgp->addr[j] = cpu_to_be64(mapping);
903 j ^= 1;
904 if (j == 0)
905 ++sgp;
907 if (j)
908 sgp->len[j] = 0;
909 return ((nfrags + (len != 0)) * 3) / 2 + j;
913 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
914 * @adap: the adapter
915 * @q: the Tx queue
917 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
918 * where the HW is going to sleep just after we checked, however,
919 * then the interrupt handler will detect the outstanding TX packet
920 * and ring the doorbell for us.
922 * When GTS is disabled we unconditionally ring the doorbell.
924 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
926 #if USE_GTS
927 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
928 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
929 set_bit(TXQ_LAST_PKT_DB, &q->flags);
930 t3_write_reg(adap, A_SG_KDOORBELL,
931 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
933 #else
934 wmb(); /* write descriptors before telling HW */
935 t3_write_reg(adap, A_SG_KDOORBELL,
936 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
937 #endif
940 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
942 #if SGE_NUM_GENBITS == 2
943 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
944 #endif
948 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
949 * @ndesc: number of Tx descriptors spanned by the SGL
950 * @skb: the packet corresponding to the WR
951 * @d: first Tx descriptor to be written
952 * @pidx: index of above descriptors
953 * @q: the SGE Tx queue
954 * @sgl: the SGL
955 * @flits: number of flits to the start of the SGL in the first descriptor
956 * @sgl_flits: the SGL size in flits
957 * @gen: the Tx descriptor generation
958 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
959 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
961 * Write a work request header and an associated SGL. If the SGL is
962 * small enough to fit into one Tx descriptor it has already been written
963 * and we just need to write the WR header. Otherwise we distribute the
964 * SGL across the number of descriptors it spans.
966 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
967 struct tx_desc *d, unsigned int pidx,
968 const struct sge_txq *q,
969 const struct sg_ent *sgl,
970 unsigned int flits, unsigned int sgl_flits,
971 unsigned int gen, __be32 wr_hi,
972 __be32 wr_lo)
974 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
975 struct tx_sw_desc *sd = &q->sdesc[pidx];
977 sd->skb = skb;
978 if (need_skb_unmap()) {
979 sd->fragidx = 0;
980 sd->addr_idx = 0;
981 sd->sflit = flits;
984 if (likely(ndesc == 1)) {
985 sd->eop = 1;
986 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
987 V_WR_SGLSFLT(flits)) | wr_hi;
988 wmb();
989 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
990 V_WR_GEN(gen)) | wr_lo;
991 wr_gen2(d, gen);
992 } else {
993 unsigned int ogen = gen;
994 const u64 *fp = (const u64 *)sgl;
995 struct work_request_hdr *wp = wrp;
997 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
998 V_WR_SGLSFLT(flits)) | wr_hi;
1000 while (sgl_flits) {
1001 unsigned int avail = WR_FLITS - flits;
1003 if (avail > sgl_flits)
1004 avail = sgl_flits;
1005 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1006 sgl_flits -= avail;
1007 ndesc--;
1008 if (!sgl_flits)
1009 break;
1011 fp += avail;
1012 d++;
1013 sd->eop = 0;
1014 sd++;
1015 if (++pidx == q->size) {
1016 pidx = 0;
1017 gen ^= 1;
1018 d = q->desc;
1019 sd = q->sdesc;
1022 sd->skb = skb;
1023 wrp = (struct work_request_hdr *)d;
1024 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1025 V_WR_SGLSFLT(1)) | wr_hi;
1026 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1027 sgl_flits + 1)) |
1028 V_WR_GEN(gen)) | wr_lo;
1029 wr_gen2(d, gen);
1030 flits = 1;
1032 sd->eop = 1;
1033 wrp->wr_hi |= htonl(F_WR_EOP);
1034 wmb();
1035 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1036 wr_gen2((struct tx_desc *)wp, ogen);
1037 WARN_ON(ndesc != 0);
1042 * write_tx_pkt_wr - write a TX_PKT work request
1043 * @adap: the adapter
1044 * @skb: the packet to send
1045 * @pi: the egress interface
1046 * @pidx: index of the first Tx descriptor to write
1047 * @gen: the generation value to use
1048 * @q: the Tx queue
1049 * @ndesc: number of descriptors the packet will occupy
1050 * @compl: the value of the COMPL bit to use
1052 * Generate a TX_PKT work request to send the supplied packet.
1054 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1055 const struct port_info *pi,
1056 unsigned int pidx, unsigned int gen,
1057 struct sge_txq *q, unsigned int ndesc,
1058 unsigned int compl)
1060 unsigned int flits, sgl_flits, cntrl, tso_info;
1061 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1062 struct tx_desc *d = &q->desc[pidx];
1063 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1065 cpl->len = htonl(skb->len | 0x80000000);
1066 cntrl = V_TXPKT_INTF(pi->port_id);
1068 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1069 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1071 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1072 if (tso_info) {
1073 int eth_type;
1074 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1076 d->flit[2] = 0;
1077 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1078 hdr->cntrl = htonl(cntrl);
1079 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1080 CPL_ETH_II : CPL_ETH_II_VLAN;
1081 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1082 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1083 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1084 hdr->lso_info = htonl(tso_info);
1085 flits = 3;
1086 } else {
1087 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1088 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1089 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1090 cpl->cntrl = htonl(cntrl);
1092 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1093 q->sdesc[pidx].skb = NULL;
1094 if (!skb->data_len)
1095 skb_copy_from_linear_data(skb, &d->flit[2],
1096 skb->len);
1097 else
1098 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1100 flits = (skb->len + 7) / 8 + 2;
1101 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1102 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1103 | F_WR_SOP | F_WR_EOP | compl);
1104 wmb();
1105 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1106 V_WR_TID(q->token));
1107 wr_gen2(d, gen);
1108 kfree_skb(skb);
1109 return;
1112 flits = 2;
1115 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1116 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1118 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1119 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1120 htonl(V_WR_TID(q->token)));
1123 static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1124 struct sge_txq *q)
1126 netif_stop_queue(dev);
1127 set_bit(TXQ_ETH, &qs->txq_stopped);
1128 q->stops++;
1132 * eth_xmit - add a packet to the Ethernet Tx queue
1133 * @skb: the packet
1134 * @dev: the egress net device
1136 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1138 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1140 unsigned int ndesc, pidx, credits, gen, compl;
1141 const struct port_info *pi = netdev_priv(dev);
1142 struct adapter *adap = pi->adapter;
1143 struct sge_qset *qs = pi->qs;
1144 struct sge_txq *q = &qs->txq[TXQ_ETH];
1147 * The chip min packet length is 9 octets but play safe and reject
1148 * anything shorter than an Ethernet header.
1150 if (unlikely(skb->len < ETH_HLEN)) {
1151 dev_kfree_skb(skb);
1152 return NETDEV_TX_OK;
1155 spin_lock(&q->lock);
1156 reclaim_completed_tx(adap, q);
1158 credits = q->size - q->in_use;
1159 ndesc = calc_tx_descs(skb);
1161 if (unlikely(credits < ndesc)) {
1162 t3_stop_queue(dev, qs, q);
1163 dev_err(&adap->pdev->dev,
1164 "%s: Tx ring %u full while queue awake!\n",
1165 dev->name, q->cntxt_id & 7);
1166 spin_unlock(&q->lock);
1167 return NETDEV_TX_BUSY;
1170 q->in_use += ndesc;
1171 if (unlikely(credits - ndesc < q->stop_thres)) {
1172 t3_stop_queue(dev, qs, q);
1174 if (should_restart_tx(q) &&
1175 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1176 q->restarts++;
1177 netif_wake_queue(dev);
1181 gen = q->gen;
1182 q->unacked += ndesc;
1183 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1184 q->unacked &= 7;
1185 pidx = q->pidx;
1186 q->pidx += ndesc;
1187 if (q->pidx >= q->size) {
1188 q->pidx -= q->size;
1189 q->gen ^= 1;
1192 /* update port statistics */
1193 if (skb->ip_summed == CHECKSUM_COMPLETE)
1194 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1195 if (skb_shinfo(skb)->gso_size)
1196 qs->port_stats[SGE_PSTAT_TSO]++;
1197 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1198 qs->port_stats[SGE_PSTAT_VLANINS]++;
1200 dev->trans_start = jiffies;
1201 spin_unlock(&q->lock);
1204 * We do not use Tx completion interrupts to free DMAd Tx packets.
1205 * This is good for performamce but means that we rely on new Tx
1206 * packets arriving to run the destructors of completed packets,
1207 * which open up space in their sockets' send queues. Sometimes
1208 * we do not get such new packets causing Tx to stall. A single
1209 * UDP transmitter is a good example of this situation. We have
1210 * a clean up timer that periodically reclaims completed packets
1211 * but it doesn't run often enough (nor do we want it to) to prevent
1212 * lengthy stalls. A solution to this problem is to run the
1213 * destructor early, after the packet is queued but before it's DMAd.
1214 * A cons is that we lie to socket memory accounting, but the amount
1215 * of extra memory is reasonable (limited by the number of Tx
1216 * descriptors), the packets do actually get freed quickly by new
1217 * packets almost always, and for protocols like TCP that wait for
1218 * acks to really free up the data the extra memory is even less.
1219 * On the positive side we run the destructors on the sending CPU
1220 * rather than on a potentially different completing CPU, usually a
1221 * good thing. We also run them without holding our Tx queue lock,
1222 * unlike what reclaim_completed_tx() would otherwise do.
1224 * Run the destructor before telling the DMA engine about the packet
1225 * to make sure it doesn't complete and get freed prematurely.
1227 if (likely(!skb_shared(skb)))
1228 skb_orphan(skb);
1230 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1231 check_ring_tx_db(adap, q);
1232 return NETDEV_TX_OK;
1236 * write_imm - write a packet into a Tx descriptor as immediate data
1237 * @d: the Tx descriptor to write
1238 * @skb: the packet
1239 * @len: the length of packet data to write as immediate data
1240 * @gen: the generation bit value to write
1242 * Writes a packet as immediate data into a Tx descriptor. The packet
1243 * contains a work request at its beginning. We must write the packet
1244 * carefully so the SGE doesn't read it accidentally before it's written
1245 * in its entirety.
1247 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1248 unsigned int len, unsigned int gen)
1250 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1251 struct work_request_hdr *to = (struct work_request_hdr *)d;
1253 if (likely(!skb->data_len))
1254 memcpy(&to[1], &from[1], len - sizeof(*from));
1255 else
1256 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1258 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1259 V_WR_BCNTLFLT(len & 7));
1260 wmb();
1261 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1262 V_WR_LEN((len + 7) / 8));
1263 wr_gen2(d, gen);
1264 kfree_skb(skb);
1268 * check_desc_avail - check descriptor availability on a send queue
1269 * @adap: the adapter
1270 * @q: the send queue
1271 * @skb: the packet needing the descriptors
1272 * @ndesc: the number of Tx descriptors needed
1273 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1275 * Checks if the requested number of Tx descriptors is available on an
1276 * SGE send queue. If the queue is already suspended or not enough
1277 * descriptors are available the packet is queued for later transmission.
1278 * Must be called with the Tx queue locked.
1280 * Returns 0 if enough descriptors are available, 1 if there aren't
1281 * enough descriptors and the packet has been queued, and 2 if the caller
1282 * needs to retry because there weren't enough descriptors at the
1283 * beginning of the call but some freed up in the mean time.
1285 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1286 struct sk_buff *skb, unsigned int ndesc,
1287 unsigned int qid)
1289 if (unlikely(!skb_queue_empty(&q->sendq))) {
1290 addq_exit:__skb_queue_tail(&q->sendq, skb);
1291 return 1;
1293 if (unlikely(q->size - q->in_use < ndesc)) {
1294 struct sge_qset *qs = txq_to_qset(q, qid);
1296 set_bit(qid, &qs->txq_stopped);
1297 smp_mb__after_clear_bit();
1299 if (should_restart_tx(q) &&
1300 test_and_clear_bit(qid, &qs->txq_stopped))
1301 return 2;
1303 q->stops++;
1304 goto addq_exit;
1306 return 0;
1310 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1311 * @q: the SGE control Tx queue
1313 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1314 * that send only immediate data (presently just the control queues) and
1315 * thus do not have any sk_buffs to release.
1317 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1319 unsigned int reclaim = q->processed - q->cleaned;
1321 q->in_use -= reclaim;
1322 q->cleaned += reclaim;
1325 static inline int immediate(const struct sk_buff *skb)
1327 return skb->len <= WR_LEN;
1331 * ctrl_xmit - send a packet through an SGE control Tx queue
1332 * @adap: the adapter
1333 * @q: the control queue
1334 * @skb: the packet
1336 * Send a packet through an SGE control Tx queue. Packets sent through
1337 * a control queue must fit entirely as immediate data in a single Tx
1338 * descriptor and have no page fragments.
1340 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1341 struct sk_buff *skb)
1343 int ret;
1344 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1346 if (unlikely(!immediate(skb))) {
1347 WARN_ON(1);
1348 dev_kfree_skb(skb);
1349 return NET_XMIT_SUCCESS;
1352 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1353 wrp->wr_lo = htonl(V_WR_TID(q->token));
1355 spin_lock(&q->lock);
1356 again:reclaim_completed_tx_imm(q);
1358 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1359 if (unlikely(ret)) {
1360 if (ret == 1) {
1361 spin_unlock(&q->lock);
1362 return NET_XMIT_CN;
1364 goto again;
1367 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1369 q->in_use++;
1370 if (++q->pidx >= q->size) {
1371 q->pidx = 0;
1372 q->gen ^= 1;
1374 spin_unlock(&q->lock);
1375 wmb();
1376 t3_write_reg(adap, A_SG_KDOORBELL,
1377 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1378 return NET_XMIT_SUCCESS;
1382 * restart_ctrlq - restart a suspended control queue
1383 * @qs: the queue set cotaining the control queue
1385 * Resumes transmission on a suspended Tx control queue.
1387 static void restart_ctrlq(unsigned long data)
1389 struct sk_buff *skb;
1390 struct sge_qset *qs = (struct sge_qset *)data;
1391 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1393 spin_lock(&q->lock);
1394 again:reclaim_completed_tx_imm(q);
1396 while (q->in_use < q->size &&
1397 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1399 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1401 if (++q->pidx >= q->size) {
1402 q->pidx = 0;
1403 q->gen ^= 1;
1405 q->in_use++;
1408 if (!skb_queue_empty(&q->sendq)) {
1409 set_bit(TXQ_CTRL, &qs->txq_stopped);
1410 smp_mb__after_clear_bit();
1412 if (should_restart_tx(q) &&
1413 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1414 goto again;
1415 q->stops++;
1418 spin_unlock(&q->lock);
1419 wmb();
1420 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1421 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1425 * Send a management message through control queue 0
1427 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1429 int ret;
1430 local_bh_disable();
1431 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1432 local_bh_enable();
1434 return ret;
1438 * deferred_unmap_destructor - unmap a packet when it is freed
1439 * @skb: the packet
1441 * This is the packet destructor used for Tx packets that need to remain
1442 * mapped until they are freed rather than until their Tx descriptors are
1443 * freed.
1445 static void deferred_unmap_destructor(struct sk_buff *skb)
1447 int i;
1448 const dma_addr_t *p;
1449 const struct skb_shared_info *si;
1450 const struct deferred_unmap_info *dui;
1452 dui = (struct deferred_unmap_info *)skb->head;
1453 p = dui->addr;
1455 if (skb->tail - skb->transport_header)
1456 pci_unmap_single(dui->pdev, *p++,
1457 skb->tail - skb->transport_header,
1458 PCI_DMA_TODEVICE);
1460 si = skb_shinfo(skb);
1461 for (i = 0; i < si->nr_frags; i++)
1462 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1463 PCI_DMA_TODEVICE);
1466 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1467 const struct sg_ent *sgl, int sgl_flits)
1469 dma_addr_t *p;
1470 struct deferred_unmap_info *dui;
1472 dui = (struct deferred_unmap_info *)skb->head;
1473 dui->pdev = pdev;
1474 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1475 *p++ = be64_to_cpu(sgl->addr[0]);
1476 *p++ = be64_to_cpu(sgl->addr[1]);
1478 if (sgl_flits)
1479 *p = be64_to_cpu(sgl->addr[0]);
1483 * write_ofld_wr - write an offload work request
1484 * @adap: the adapter
1485 * @skb: the packet to send
1486 * @q: the Tx queue
1487 * @pidx: index of the first Tx descriptor to write
1488 * @gen: the generation value to use
1489 * @ndesc: number of descriptors the packet will occupy
1491 * Write an offload work request to send the supplied packet. The packet
1492 * data already carry the work request with most fields populated.
1494 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1495 struct sge_txq *q, unsigned int pidx,
1496 unsigned int gen, unsigned int ndesc)
1498 unsigned int sgl_flits, flits;
1499 struct work_request_hdr *from;
1500 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1501 struct tx_desc *d = &q->desc[pidx];
1503 if (immediate(skb)) {
1504 q->sdesc[pidx].skb = NULL;
1505 write_imm(d, skb, skb->len, gen);
1506 return;
1509 /* Only TX_DATA builds SGLs */
1511 from = (struct work_request_hdr *)skb->data;
1512 memcpy(&d->flit[1], &from[1],
1513 skb_transport_offset(skb) - sizeof(*from));
1515 flits = skb_transport_offset(skb) / 8;
1516 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1517 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1518 skb->tail - skb->transport_header,
1519 adap->pdev);
1520 if (need_skb_unmap()) {
1521 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1522 skb->destructor = deferred_unmap_destructor;
1525 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1526 gen, from->wr_hi, from->wr_lo);
1530 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1531 * @skb: the packet
1533 * Returns the number of Tx descriptors needed for the given offload
1534 * packet. These packets are already fully constructed.
1536 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1538 unsigned int flits, cnt;
1540 if (skb->len <= WR_LEN)
1541 return 1; /* packet fits as immediate data */
1543 flits = skb_transport_offset(skb) / 8; /* headers */
1544 cnt = skb_shinfo(skb)->nr_frags;
1545 if (skb->tail != skb->transport_header)
1546 cnt++;
1547 return flits_to_desc(flits + sgl_len(cnt));
1551 * ofld_xmit - send a packet through an offload queue
1552 * @adap: the adapter
1553 * @q: the Tx offload queue
1554 * @skb: the packet
1556 * Send an offload packet through an SGE offload queue.
1558 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1559 struct sk_buff *skb)
1561 int ret;
1562 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1564 spin_lock(&q->lock);
1565 again:reclaim_completed_tx(adap, q);
1567 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1568 if (unlikely(ret)) {
1569 if (ret == 1) {
1570 skb->priority = ndesc; /* save for restart */
1571 spin_unlock(&q->lock);
1572 return NET_XMIT_CN;
1574 goto again;
1577 gen = q->gen;
1578 q->in_use += ndesc;
1579 pidx = q->pidx;
1580 q->pidx += ndesc;
1581 if (q->pidx >= q->size) {
1582 q->pidx -= q->size;
1583 q->gen ^= 1;
1585 spin_unlock(&q->lock);
1587 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1588 check_ring_tx_db(adap, q);
1589 return NET_XMIT_SUCCESS;
1593 * restart_offloadq - restart a suspended offload queue
1594 * @qs: the queue set cotaining the offload queue
1596 * Resumes transmission on a suspended Tx offload queue.
1598 static void restart_offloadq(unsigned long data)
1600 struct sk_buff *skb;
1601 struct sge_qset *qs = (struct sge_qset *)data;
1602 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1603 const struct port_info *pi = netdev_priv(qs->netdev);
1604 struct adapter *adap = pi->adapter;
1606 spin_lock(&q->lock);
1607 again:reclaim_completed_tx(adap, q);
1609 while ((skb = skb_peek(&q->sendq)) != NULL) {
1610 unsigned int gen, pidx;
1611 unsigned int ndesc = skb->priority;
1613 if (unlikely(q->size - q->in_use < ndesc)) {
1614 set_bit(TXQ_OFLD, &qs->txq_stopped);
1615 smp_mb__after_clear_bit();
1617 if (should_restart_tx(q) &&
1618 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1619 goto again;
1620 q->stops++;
1621 break;
1624 gen = q->gen;
1625 q->in_use += ndesc;
1626 pidx = q->pidx;
1627 q->pidx += ndesc;
1628 if (q->pidx >= q->size) {
1629 q->pidx -= q->size;
1630 q->gen ^= 1;
1632 __skb_unlink(skb, &q->sendq);
1633 spin_unlock(&q->lock);
1635 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1636 spin_lock(&q->lock);
1638 spin_unlock(&q->lock);
1640 #if USE_GTS
1641 set_bit(TXQ_RUNNING, &q->flags);
1642 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1643 #endif
1644 wmb();
1645 t3_write_reg(adap, A_SG_KDOORBELL,
1646 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1650 * queue_set - return the queue set a packet should use
1651 * @skb: the packet
1653 * Maps a packet to the SGE queue set it should use. The desired queue
1654 * set is carried in bits 1-3 in the packet's priority.
1656 static inline int queue_set(const struct sk_buff *skb)
1658 return skb->priority >> 1;
1662 * is_ctrl_pkt - return whether an offload packet is a control packet
1663 * @skb: the packet
1665 * Determines whether an offload packet should use an OFLD or a CTRL
1666 * Tx queue. This is indicated by bit 0 in the packet's priority.
1668 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1670 return skb->priority & 1;
1674 * t3_offload_tx - send an offload packet
1675 * @tdev: the offload device to send to
1676 * @skb: the packet
1678 * Sends an offload packet. We use the packet priority to select the
1679 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1680 * should be sent as regular or control, bits 1-3 select the queue set.
1682 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1684 struct adapter *adap = tdev2adap(tdev);
1685 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1687 if (unlikely(is_ctrl_pkt(skb)))
1688 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1690 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1694 * offload_enqueue - add an offload packet to an SGE offload receive queue
1695 * @q: the SGE response queue
1696 * @skb: the packet
1698 * Add a new offload packet to an SGE response queue's offload packet
1699 * queue. If the packet is the first on the queue it schedules the RX
1700 * softirq to process the queue.
1702 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1704 int was_empty = skb_queue_empty(&q->rx_queue);
1706 __skb_queue_tail(&q->rx_queue, skb);
1708 if (was_empty) {
1709 struct sge_qset *qs = rspq_to_qset(q);
1711 napi_schedule(&qs->napi);
1716 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1717 * @tdev: the offload device that will be receiving the packets
1718 * @q: the SGE response queue that assembled the bundle
1719 * @skbs: the partial bundle
1720 * @n: the number of packets in the bundle
1722 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1724 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1725 struct sge_rspq *q,
1726 struct sk_buff *skbs[], int n)
1728 if (n) {
1729 q->offload_bundles++;
1730 tdev->recv(tdev, skbs, n);
1735 * ofld_poll - NAPI handler for offload packets in interrupt mode
1736 * @dev: the network device doing the polling
1737 * @budget: polling budget
1739 * The NAPI handler for offload packets when a response queue is serviced
1740 * by the hard interrupt handler, i.e., when it's operating in non-polling
1741 * mode. Creates small packet batches and sends them through the offload
1742 * receive handler. Batches need to be of modest size as we do prefetches
1743 * on the packets in each.
1745 static int ofld_poll(struct napi_struct *napi, int budget)
1747 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1748 struct sge_rspq *q = &qs->rspq;
1749 struct adapter *adapter = qs->adap;
1750 int work_done = 0;
1752 while (work_done < budget) {
1753 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1754 struct sk_buff_head queue;
1755 int ngathered;
1757 spin_lock_irq(&q->lock);
1758 __skb_queue_head_init(&queue);
1759 skb_queue_splice_init(&q->rx_queue, &queue);
1760 if (skb_queue_empty(&queue)) {
1761 napi_complete(napi);
1762 spin_unlock_irq(&q->lock);
1763 return work_done;
1765 spin_unlock_irq(&q->lock);
1767 ngathered = 0;
1768 skb_queue_walk_safe(&queue, skb, tmp) {
1769 if (work_done >= budget)
1770 break;
1771 work_done++;
1773 __skb_unlink(skb, &queue);
1774 prefetch(skb->data);
1775 skbs[ngathered] = skb;
1776 if (++ngathered == RX_BUNDLE_SIZE) {
1777 q->offload_bundles++;
1778 adapter->tdev.recv(&adapter->tdev, skbs,
1779 ngathered);
1780 ngathered = 0;
1783 if (!skb_queue_empty(&queue)) {
1784 /* splice remaining packets back onto Rx queue */
1785 spin_lock_irq(&q->lock);
1786 skb_queue_splice(&queue, &q->rx_queue);
1787 spin_unlock_irq(&q->lock);
1789 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1792 return work_done;
1796 * rx_offload - process a received offload packet
1797 * @tdev: the offload device receiving the packet
1798 * @rq: the response queue that received the packet
1799 * @skb: the packet
1800 * @rx_gather: a gather list of packets if we are building a bundle
1801 * @gather_idx: index of the next available slot in the bundle
1803 * Process an ingress offload pakcet and add it to the offload ingress
1804 * queue. Returns the index of the next available slot in the bundle.
1806 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1807 struct sk_buff *skb, struct sk_buff *rx_gather[],
1808 unsigned int gather_idx)
1810 skb_reset_mac_header(skb);
1811 skb_reset_network_header(skb);
1812 skb_reset_transport_header(skb);
1814 if (rq->polling) {
1815 rx_gather[gather_idx++] = skb;
1816 if (gather_idx == RX_BUNDLE_SIZE) {
1817 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1818 gather_idx = 0;
1819 rq->offload_bundles++;
1821 } else
1822 offload_enqueue(rq, skb);
1824 return gather_idx;
1828 * restart_tx - check whether to restart suspended Tx queues
1829 * @qs: the queue set to resume
1831 * Restarts suspended Tx queues of an SGE queue set if they have enough
1832 * free resources to resume operation.
1834 static void restart_tx(struct sge_qset *qs)
1836 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1837 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1838 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1839 qs->txq[TXQ_ETH].restarts++;
1840 if (netif_running(qs->netdev))
1841 netif_wake_queue(qs->netdev);
1844 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1845 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1846 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1847 qs->txq[TXQ_OFLD].restarts++;
1848 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1850 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1851 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1852 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1853 qs->txq[TXQ_CTRL].restarts++;
1854 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1859 * rx_eth - process an ingress ethernet packet
1860 * @adap: the adapter
1861 * @rq: the response queue that received the packet
1862 * @skb: the packet
1863 * @pad: amount of padding at the start of the buffer
1865 * Process an ingress ethernet pakcet and deliver it to the stack.
1866 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1867 * if it was immediate data in a response.
1869 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1870 struct sk_buff *skb, int pad, int lro)
1872 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1873 struct sge_qset *qs = rspq_to_qset(rq);
1874 struct port_info *pi;
1876 skb_pull(skb, sizeof(*p) + pad);
1877 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1878 pi = netdev_priv(skb->dev);
1879 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
1880 !p->fragment) {
1881 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1882 skb->ip_summed = CHECKSUM_UNNECESSARY;
1883 } else
1884 skb->ip_summed = CHECKSUM_NONE;
1886 if (unlikely(p->vlan_valid)) {
1887 struct vlan_group *grp = pi->vlan_grp;
1889 qs->port_stats[SGE_PSTAT_VLANEX]++;
1890 if (likely(grp))
1891 if (lro)
1892 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1893 grp,
1894 ntohs(p->vlan),
1896 else
1897 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1898 rq->polling);
1899 else
1900 dev_kfree_skb_any(skb);
1901 } else if (rq->polling) {
1902 if (lro)
1903 lro_receive_skb(&qs->lro_mgr, skb, p);
1904 else
1905 netif_receive_skb(skb);
1906 } else
1907 netif_rx(skb);
1910 static inline int is_eth_tcp(u32 rss)
1912 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1916 * lro_frame_ok - check if an ingress packet is eligible for LRO
1917 * @p: the CPL header of the packet
1919 * Returns true if a received packet is eligible for LRO.
1920 * The following conditions must be true:
1921 * - packet is TCP/IP Ethernet II (checked elsewhere)
1922 * - not an IP fragment
1923 * - no IP options
1924 * - TCP/IP checksums are correct
1925 * - the packet is for this host
1927 static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1929 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1930 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1932 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
1933 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
1936 static int t3_get_lro_header(void **eh, void **iph, void **tcph,
1937 u64 *hdr_flags, void *priv)
1939 const struct cpl_rx_pkt *cpl = priv;
1941 if (!lro_frame_ok(cpl))
1942 return -1;
1944 *eh = (struct ethhdr *)(cpl + 1);
1945 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
1946 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
1948 *hdr_flags = LRO_IPV4 | LRO_TCP;
1949 return 0;
1952 static int t3_get_skb_header(struct sk_buff *skb,
1953 void **iph, void **tcph, u64 *hdr_flags,
1954 void *priv)
1956 void *eh;
1958 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
1961 static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
1962 void **iph, void **tcph, u64 *hdr_flags,
1963 void *priv)
1965 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
1969 * lro_add_page - add a page chunk to an LRO session
1970 * @adap: the adapter
1971 * @qs: the associated queue set
1972 * @fl: the free list containing the page chunk to add
1973 * @len: packet length
1974 * @complete: Indicates the last fragment of a frame
1976 * Add a received packet contained in a page chunk to an existing LRO
1977 * session.
1979 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
1980 struct sge_fl *fl, int len, int complete)
1982 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1983 struct cpl_rx_pkt *cpl;
1984 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
1985 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
1986 int offset = 0;
1988 if (!nr_frags) {
1989 offset = 2 + sizeof(struct cpl_rx_pkt);
1990 qs->lro_va = cpl = sd->pg_chunk.va + 2;
1993 fl->credits--;
1995 len -= offset;
1996 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1997 fl->buf_size, PCI_DMA_FROMDEVICE);
1999 rx_frag += nr_frags;
2000 rx_frag->page = sd->pg_chunk.page;
2001 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2002 rx_frag->size = len;
2003 frag_len += len;
2004 qs->lro_nfrags++;
2005 qs->lro_frag_len = frag_len;
2007 if (!complete)
2008 return;
2010 qs->lro_nfrags = qs->lro_frag_len = 0;
2011 cpl = qs->lro_va;
2013 if (unlikely(cpl->vlan_valid)) {
2014 struct net_device *dev = qs->netdev;
2015 struct port_info *pi = netdev_priv(dev);
2016 struct vlan_group *grp = pi->vlan_grp;
2018 if (likely(grp != NULL)) {
2019 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2020 qs->lro_frag_tbl,
2021 frag_len, frag_len,
2022 grp, ntohs(cpl->vlan),
2023 cpl, 0);
2024 return;
2027 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2028 frag_len, frag_len, cpl, 0);
2032 * init_lro_mgr - initialize a LRO manager object
2033 * @lro_mgr: the LRO manager object
2035 static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2037 lro_mgr->dev = qs->netdev;
2038 lro_mgr->features = LRO_F_NAPI;
2039 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2040 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2041 lro_mgr->max_desc = T3_MAX_LRO_SES;
2042 lro_mgr->lro_arr = qs->lro_desc;
2043 lro_mgr->get_frag_header = t3_get_frag_header;
2044 lro_mgr->get_skb_header = t3_get_skb_header;
2045 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2046 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2047 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2051 * handle_rsp_cntrl_info - handles control information in a response
2052 * @qs: the queue set corresponding to the response
2053 * @flags: the response control flags
2055 * Handles the control information of an SGE response, such as GTS
2056 * indications and completion credits for the queue set's Tx queues.
2057 * HW coalesces credits, we don't do any extra SW coalescing.
2059 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2061 unsigned int credits;
2063 #if USE_GTS
2064 if (flags & F_RSPD_TXQ0_GTS)
2065 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2066 #endif
2068 credits = G_RSPD_TXQ0_CR(flags);
2069 if (credits)
2070 qs->txq[TXQ_ETH].processed += credits;
2072 credits = G_RSPD_TXQ2_CR(flags);
2073 if (credits)
2074 qs->txq[TXQ_CTRL].processed += credits;
2076 # if USE_GTS
2077 if (flags & F_RSPD_TXQ1_GTS)
2078 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2079 # endif
2080 credits = G_RSPD_TXQ1_CR(flags);
2081 if (credits)
2082 qs->txq[TXQ_OFLD].processed += credits;
2086 * check_ring_db - check if we need to ring any doorbells
2087 * @adapter: the adapter
2088 * @qs: the queue set whose Tx queues are to be examined
2089 * @sleeping: indicates which Tx queue sent GTS
2091 * Checks if some of a queue set's Tx queues need to ring their doorbells
2092 * to resume transmission after idling while they still have unprocessed
2093 * descriptors.
2095 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2096 unsigned int sleeping)
2098 if (sleeping & F_RSPD_TXQ0_GTS) {
2099 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2101 if (txq->cleaned + txq->in_use != txq->processed &&
2102 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2103 set_bit(TXQ_RUNNING, &txq->flags);
2104 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2105 V_EGRCNTX(txq->cntxt_id));
2109 if (sleeping & F_RSPD_TXQ1_GTS) {
2110 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2112 if (txq->cleaned + txq->in_use != txq->processed &&
2113 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2114 set_bit(TXQ_RUNNING, &txq->flags);
2115 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2116 V_EGRCNTX(txq->cntxt_id));
2122 * is_new_response - check if a response is newly written
2123 * @r: the response descriptor
2124 * @q: the response queue
2126 * Returns true if a response descriptor contains a yet unprocessed
2127 * response.
2129 static inline int is_new_response(const struct rsp_desc *r,
2130 const struct sge_rspq *q)
2132 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2135 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2137 q->pg_skb = NULL;
2138 q->rx_recycle_buf = 0;
2141 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2142 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2143 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2144 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2145 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2147 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2148 #define NOMEM_INTR_DELAY 2500
2151 * process_responses - process responses from an SGE response queue
2152 * @adap: the adapter
2153 * @qs: the queue set to which the response queue belongs
2154 * @budget: how many responses can be processed in this round
2156 * Process responses from an SGE response queue up to the supplied budget.
2157 * Responses include received packets as well as credits and other events
2158 * for the queues that belong to the response queue's queue set.
2159 * A negative budget is effectively unlimited.
2161 * Additionally choose the interrupt holdoff time for the next interrupt
2162 * on this queue. If the system is under memory shortage use a fairly
2163 * long delay to help recovery.
2165 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2166 int budget)
2168 struct sge_rspq *q = &qs->rspq;
2169 struct rsp_desc *r = &q->desc[q->cidx];
2170 int budget_left = budget;
2171 unsigned int sleeping = 0;
2172 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2173 int ngathered = 0;
2175 q->next_holdoff = q->holdoff_tmr;
2177 while (likely(budget_left && is_new_response(r, q))) {
2178 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2179 struct sk_buff *skb = NULL;
2180 u32 len, flags = ntohl(r->flags);
2181 __be32 rss_hi = *(const __be32 *)r,
2182 rss_lo = r->rss_hdr.rss_hash_val;
2184 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2186 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2187 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2188 if (!skb)
2189 goto no_mem;
2191 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2192 skb->data[0] = CPL_ASYNC_NOTIF;
2193 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2194 q->async_notif++;
2195 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2196 skb = get_imm_packet(r);
2197 if (unlikely(!skb)) {
2198 no_mem:
2199 q->next_holdoff = NOMEM_INTR_DELAY;
2200 q->nomem++;
2201 /* consume one credit since we tried */
2202 budget_left--;
2203 break;
2205 q->imm_data++;
2206 ethpad = 0;
2207 } else if ((len = ntohl(r->len_cq)) != 0) {
2208 struct sge_fl *fl;
2210 if (eth)
2211 lro = qs->lro_enabled && is_eth_tcp(rss_hi);
2213 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2214 if (fl->use_pages) {
2215 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2217 prefetch(addr);
2218 #if L1_CACHE_BYTES < 128
2219 prefetch(addr + L1_CACHE_BYTES);
2220 #endif
2221 __refill_fl(adap, fl);
2222 if (lro > 0) {
2223 lro_add_page(adap, qs, fl,
2224 G_RSPD_LEN(len),
2225 flags & F_RSPD_EOP);
2226 goto next_fl;
2229 skb = get_packet_pg(adap, fl, q,
2230 G_RSPD_LEN(len),
2231 eth ?
2232 SGE_RX_DROP_THRES : 0);
2233 q->pg_skb = skb;
2234 } else
2235 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2236 eth ? SGE_RX_DROP_THRES : 0);
2237 if (unlikely(!skb)) {
2238 if (!eth)
2239 goto no_mem;
2240 q->rx_drops++;
2241 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2242 __skb_pull(skb, 2);
2243 next_fl:
2244 if (++fl->cidx == fl->size)
2245 fl->cidx = 0;
2246 } else
2247 q->pure_rsps++;
2249 if (flags & RSPD_CTRL_MASK) {
2250 sleeping |= flags & RSPD_GTS_MASK;
2251 handle_rsp_cntrl_info(qs, flags);
2254 r++;
2255 if (unlikely(++q->cidx == q->size)) {
2256 q->cidx = 0;
2257 q->gen ^= 1;
2258 r = q->desc;
2260 prefetch(r);
2262 if (++q->credits >= (q->size / 4)) {
2263 refill_rspq(adap, q, q->credits);
2264 q->credits = 0;
2267 packet_complete = flags &
2268 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2269 F_RSPD_ASYNC_NOTIF);
2271 if (skb != NULL && packet_complete) {
2272 if (eth)
2273 rx_eth(adap, q, skb, ethpad, lro);
2274 else {
2275 q->offload_pkts++;
2276 /* Preserve the RSS info in csum & priority */
2277 skb->csum = rss_hi;
2278 skb->priority = rss_lo;
2279 ngathered = rx_offload(&adap->tdev, q, skb,
2280 offload_skbs,
2281 ngathered);
2284 if (flags & F_RSPD_EOP)
2285 clear_rspq_bufstate(q);
2287 --budget_left;
2290 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2291 lro_flush_all(&qs->lro_mgr);
2292 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2293 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2294 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2296 if (sleeping)
2297 check_ring_db(adap, qs, sleeping);
2299 smp_mb(); /* commit Tx queue .processed updates */
2300 if (unlikely(qs->txq_stopped != 0))
2301 restart_tx(qs);
2303 budget -= budget_left;
2304 return budget;
2307 static inline int is_pure_response(const struct rsp_desc *r)
2309 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2311 return (n | r->len_cq) == 0;
2315 * napi_rx_handler - the NAPI handler for Rx processing
2316 * @napi: the napi instance
2317 * @budget: how many packets we can process in this round
2319 * Handler for new data events when using NAPI.
2321 static int napi_rx_handler(struct napi_struct *napi, int budget)
2323 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2324 struct adapter *adap = qs->adap;
2325 int work_done = process_responses(adap, qs, budget);
2327 if (likely(work_done < budget)) {
2328 napi_complete(napi);
2331 * Because we don't atomically flush the following
2332 * write it is possible that in very rare cases it can
2333 * reach the device in a way that races with a new
2334 * response being written plus an error interrupt
2335 * causing the NAPI interrupt handler below to return
2336 * unhandled status to the OS. To protect against
2337 * this would require flushing the write and doing
2338 * both the write and the flush with interrupts off.
2339 * Way too expensive and unjustifiable given the
2340 * rarity of the race.
2342 * The race cannot happen at all with MSI-X.
2344 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2345 V_NEWTIMER(qs->rspq.next_holdoff) |
2346 V_NEWINDEX(qs->rspq.cidx));
2348 return work_done;
2352 * Returns true if the device is already scheduled for polling.
2354 static inline int napi_is_scheduled(struct napi_struct *napi)
2356 return test_bit(NAPI_STATE_SCHED, &napi->state);
2360 * process_pure_responses - process pure responses from a response queue
2361 * @adap: the adapter
2362 * @qs: the queue set owning the response queue
2363 * @r: the first pure response to process
2365 * A simpler version of process_responses() that handles only pure (i.e.,
2366 * non data-carrying) responses. Such respones are too light-weight to
2367 * justify calling a softirq under NAPI, so we handle them specially in
2368 * the interrupt handler. The function is called with a pointer to a
2369 * response, which the caller must ensure is a valid pure response.
2371 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2373 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2374 struct rsp_desc *r)
2376 struct sge_rspq *q = &qs->rspq;
2377 unsigned int sleeping = 0;
2379 do {
2380 u32 flags = ntohl(r->flags);
2382 r++;
2383 if (unlikely(++q->cidx == q->size)) {
2384 q->cidx = 0;
2385 q->gen ^= 1;
2386 r = q->desc;
2388 prefetch(r);
2390 if (flags & RSPD_CTRL_MASK) {
2391 sleeping |= flags & RSPD_GTS_MASK;
2392 handle_rsp_cntrl_info(qs, flags);
2395 q->pure_rsps++;
2396 if (++q->credits >= (q->size / 4)) {
2397 refill_rspq(adap, q, q->credits);
2398 q->credits = 0;
2400 } while (is_new_response(r, q) && is_pure_response(r));
2402 if (sleeping)
2403 check_ring_db(adap, qs, sleeping);
2405 smp_mb(); /* commit Tx queue .processed updates */
2406 if (unlikely(qs->txq_stopped != 0))
2407 restart_tx(qs);
2409 return is_new_response(r, q);
2413 * handle_responses - decide what to do with new responses in NAPI mode
2414 * @adap: the adapter
2415 * @q: the response queue
2417 * This is used by the NAPI interrupt handlers to decide what to do with
2418 * new SGE responses. If there are no new responses it returns -1. If
2419 * there are new responses and they are pure (i.e., non-data carrying)
2420 * it handles them straight in hard interrupt context as they are very
2421 * cheap and don't deliver any packets. Finally, if there are any data
2422 * signaling responses it schedules the NAPI handler. Returns 1 if it
2423 * schedules NAPI, 0 if all new responses were pure.
2425 * The caller must ascertain NAPI is not already running.
2427 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2429 struct sge_qset *qs = rspq_to_qset(q);
2430 struct rsp_desc *r = &q->desc[q->cidx];
2432 if (!is_new_response(r, q))
2433 return -1;
2434 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2435 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2436 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2437 return 0;
2439 napi_schedule(&qs->napi);
2440 return 1;
2444 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2445 * (i.e., response queue serviced in hard interrupt).
2447 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2449 struct sge_qset *qs = cookie;
2450 struct adapter *adap = qs->adap;
2451 struct sge_rspq *q = &qs->rspq;
2453 spin_lock(&q->lock);
2454 if (process_responses(adap, qs, -1) == 0)
2455 q->unhandled_irqs++;
2456 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2457 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2458 spin_unlock(&q->lock);
2459 return IRQ_HANDLED;
2463 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2464 * (i.e., response queue serviced by NAPI polling).
2466 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2468 struct sge_qset *qs = cookie;
2469 struct sge_rspq *q = &qs->rspq;
2471 spin_lock(&q->lock);
2473 if (handle_responses(qs->adap, q) < 0)
2474 q->unhandled_irqs++;
2475 spin_unlock(&q->lock);
2476 return IRQ_HANDLED;
2480 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2481 * SGE response queues as well as error and other async events as they all use
2482 * the same MSI vector. We use one SGE response queue per port in this mode
2483 * and protect all response queues with queue 0's lock.
2485 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2487 int new_packets = 0;
2488 struct adapter *adap = cookie;
2489 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2491 spin_lock(&q->lock);
2493 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2494 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2495 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2496 new_packets = 1;
2499 if (adap->params.nports == 2 &&
2500 process_responses(adap, &adap->sge.qs[1], -1)) {
2501 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2503 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2504 V_NEWTIMER(q1->next_holdoff) |
2505 V_NEWINDEX(q1->cidx));
2506 new_packets = 1;
2509 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2510 q->unhandled_irqs++;
2512 spin_unlock(&q->lock);
2513 return IRQ_HANDLED;
2516 static int rspq_check_napi(struct sge_qset *qs)
2518 struct sge_rspq *q = &qs->rspq;
2520 if (!napi_is_scheduled(&qs->napi) &&
2521 is_new_response(&q->desc[q->cidx], q)) {
2522 napi_schedule(&qs->napi);
2523 return 1;
2525 return 0;
2529 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2530 * by NAPI polling). Handles data events from SGE response queues as well as
2531 * error and other async events as they all use the same MSI vector. We use
2532 * one SGE response queue per port in this mode and protect all response
2533 * queues with queue 0's lock.
2535 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2537 int new_packets;
2538 struct adapter *adap = cookie;
2539 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2541 spin_lock(&q->lock);
2543 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2544 if (adap->params.nports == 2)
2545 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2546 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2547 q->unhandled_irqs++;
2549 spin_unlock(&q->lock);
2550 return IRQ_HANDLED;
2554 * A helper function that processes responses and issues GTS.
2556 static inline int process_responses_gts(struct adapter *adap,
2557 struct sge_rspq *rq)
2559 int work;
2561 work = process_responses(adap, rspq_to_qset(rq), -1);
2562 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2563 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2564 return work;
2568 * The legacy INTx interrupt handler. This needs to handle data events from
2569 * SGE response queues as well as error and other async events as they all use
2570 * the same interrupt pin. We use one SGE response queue per port in this mode
2571 * and protect all response queues with queue 0's lock.
2573 static irqreturn_t t3_intr(int irq, void *cookie)
2575 int work_done, w0, w1;
2576 struct adapter *adap = cookie;
2577 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2578 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2580 spin_lock(&q0->lock);
2582 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2583 w1 = adap->params.nports == 2 &&
2584 is_new_response(&q1->desc[q1->cidx], q1);
2586 if (likely(w0 | w1)) {
2587 t3_write_reg(adap, A_PL_CLI, 0);
2588 t3_read_reg(adap, A_PL_CLI); /* flush */
2590 if (likely(w0))
2591 process_responses_gts(adap, q0);
2593 if (w1)
2594 process_responses_gts(adap, q1);
2596 work_done = w0 | w1;
2597 } else
2598 work_done = t3_slow_intr_handler(adap);
2600 spin_unlock(&q0->lock);
2601 return IRQ_RETVAL(work_done != 0);
2605 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2606 * Handles data events from SGE response queues as well as error and other
2607 * async events as they all use the same interrupt pin. We use one SGE
2608 * response queue per port in this mode and protect all response queues with
2609 * queue 0's lock.
2611 static irqreturn_t t3b_intr(int irq, void *cookie)
2613 u32 map;
2614 struct adapter *adap = cookie;
2615 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2617 t3_write_reg(adap, A_PL_CLI, 0);
2618 map = t3_read_reg(adap, A_SG_DATA_INTR);
2620 if (unlikely(!map)) /* shared interrupt, most likely */
2621 return IRQ_NONE;
2623 spin_lock(&q0->lock);
2625 if (unlikely(map & F_ERRINTR))
2626 t3_slow_intr_handler(adap);
2628 if (likely(map & 1))
2629 process_responses_gts(adap, q0);
2631 if (map & 2)
2632 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2634 spin_unlock(&q0->lock);
2635 return IRQ_HANDLED;
2639 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2640 * Handles data events from SGE response queues as well as error and other
2641 * async events as they all use the same interrupt pin. We use one SGE
2642 * response queue per port in this mode and protect all response queues with
2643 * queue 0's lock.
2645 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2647 u32 map;
2648 struct adapter *adap = cookie;
2649 struct sge_qset *qs0 = &adap->sge.qs[0];
2650 struct sge_rspq *q0 = &qs0->rspq;
2652 t3_write_reg(adap, A_PL_CLI, 0);
2653 map = t3_read_reg(adap, A_SG_DATA_INTR);
2655 if (unlikely(!map)) /* shared interrupt, most likely */
2656 return IRQ_NONE;
2658 spin_lock(&q0->lock);
2660 if (unlikely(map & F_ERRINTR))
2661 t3_slow_intr_handler(adap);
2663 if (likely(map & 1))
2664 napi_schedule(&qs0->napi);
2666 if (map & 2)
2667 napi_schedule(&adap->sge.qs[1].napi);
2669 spin_unlock(&q0->lock);
2670 return IRQ_HANDLED;
2674 * t3_intr_handler - select the top-level interrupt handler
2675 * @adap: the adapter
2676 * @polling: whether using NAPI to service response queues
2678 * Selects the top-level interrupt handler based on the type of interrupts
2679 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2680 * response queues.
2682 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2684 if (adap->flags & USING_MSIX)
2685 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2686 if (adap->flags & USING_MSI)
2687 return polling ? t3_intr_msi_napi : t3_intr_msi;
2688 if (adap->params.rev > 0)
2689 return polling ? t3b_intr_napi : t3b_intr;
2690 return t3_intr;
2693 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2694 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2695 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2696 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2697 F_HIRCQPARITYERROR)
2698 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2699 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2700 F_RSPQDISABLED)
2703 * t3_sge_err_intr_handler - SGE async event interrupt handler
2704 * @adapter: the adapter
2706 * Interrupt handler for SGE asynchronous (non-data) events.
2708 void t3_sge_err_intr_handler(struct adapter *adapter)
2710 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2712 if (status & SGE_PARERR)
2713 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2714 status & SGE_PARERR);
2715 if (status & SGE_FRAMINGERR)
2716 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2717 status & SGE_FRAMINGERR);
2719 if (status & F_RSPQCREDITOVERFOW)
2720 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2722 if (status & F_RSPQDISABLED) {
2723 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2725 CH_ALERT(adapter,
2726 "packet delivered to disabled response queue "
2727 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2730 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2731 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2732 status & F_HIPIODRBDROPERR ? "high" : "lo");
2734 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2735 if (status & SGE_FATALERR)
2736 t3_fatal_err(adapter);
2740 * sge_timer_cb - perform periodic maintenance of an SGE qset
2741 * @data: the SGE queue set to maintain
2743 * Runs periodically from a timer to perform maintenance of an SGE queue
2744 * set. It performs two tasks:
2746 * a) Cleans up any completed Tx descriptors that may still be pending.
2747 * Normal descriptor cleanup happens when new packets are added to a Tx
2748 * queue so this timer is relatively infrequent and does any cleanup only
2749 * if the Tx queue has not seen any new packets in a while. We make a
2750 * best effort attempt to reclaim descriptors, in that we don't wait
2751 * around if we cannot get a queue's lock (which most likely is because
2752 * someone else is queueing new packets and so will also handle the clean
2753 * up). Since control queues use immediate data exclusively we don't
2754 * bother cleaning them up here.
2756 * b) Replenishes Rx queues that have run out due to memory shortage.
2757 * Normally new Rx buffers are added when existing ones are consumed but
2758 * when out of memory a queue can become empty. We try to add only a few
2759 * buffers here, the queue will be replenished fully as these new buffers
2760 * are used up if memory shortage has subsided.
2762 static void sge_timer_cb(unsigned long data)
2764 spinlock_t *lock;
2765 struct sge_qset *qs = (struct sge_qset *)data;
2766 struct adapter *adap = qs->adap;
2768 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2769 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2770 spin_unlock(&qs->txq[TXQ_ETH].lock);
2772 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2773 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2774 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2776 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2777 &adap->sge.qs[0].rspq.lock;
2778 if (spin_trylock_irq(lock)) {
2779 if (!napi_is_scheduled(&qs->napi)) {
2780 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2782 if (qs->fl[0].credits < qs->fl[0].size)
2783 __refill_fl(adap, &qs->fl[0]);
2784 if (qs->fl[1].credits < qs->fl[1].size)
2785 __refill_fl(adap, &qs->fl[1]);
2787 if (status & (1 << qs->rspq.cntxt_id)) {
2788 qs->rspq.starved++;
2789 if (qs->rspq.credits) {
2790 refill_rspq(adap, &qs->rspq, 1);
2791 qs->rspq.credits--;
2792 qs->rspq.restarted++;
2793 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2794 1 << qs->rspq.cntxt_id);
2798 spin_unlock_irq(lock);
2800 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2804 * t3_update_qset_coalesce - update coalescing settings for a queue set
2805 * @qs: the SGE queue set
2806 * @p: new queue set parameters
2808 * Update the coalescing settings for an SGE queue set. Nothing is done
2809 * if the queue set is not initialized yet.
2811 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2813 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2814 qs->rspq.polling = p->polling;
2815 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2819 * t3_sge_alloc_qset - initialize an SGE queue set
2820 * @adapter: the adapter
2821 * @id: the queue set id
2822 * @nports: how many Ethernet ports will be using this queue set
2823 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2824 * @p: configuration parameters for this queue set
2825 * @ntxq: number of Tx queues for the queue set
2826 * @netdev: net device associated with this queue set
2828 * Allocate resources and initialize an SGE queue set. A queue set
2829 * comprises a response queue, two Rx free-buffer queues, and up to 3
2830 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2831 * queue, offload queue, and control queue.
2833 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2834 int irq_vec_idx, const struct qset_params *p,
2835 int ntxq, struct net_device *dev)
2837 int i, avail, ret = -ENOMEM;
2838 struct sge_qset *q = &adapter->sge.qs[id];
2839 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
2841 init_qset_cntxt(q, id);
2842 setup_timer(&q->tx_reclaim_timer, sge_timer_cb, (unsigned long)q);
2844 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2845 sizeof(struct rx_desc),
2846 sizeof(struct rx_sw_desc),
2847 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2848 if (!q->fl[0].desc)
2849 goto err;
2851 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2852 sizeof(struct rx_desc),
2853 sizeof(struct rx_sw_desc),
2854 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2855 if (!q->fl[1].desc)
2856 goto err;
2858 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2859 sizeof(struct rsp_desc), 0,
2860 &q->rspq.phys_addr, NULL);
2861 if (!q->rspq.desc)
2862 goto err;
2864 for (i = 0; i < ntxq; ++i) {
2866 * The control queue always uses immediate data so does not
2867 * need to keep track of any sk_buffs.
2869 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2871 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2872 sizeof(struct tx_desc), sz,
2873 &q->txq[i].phys_addr,
2874 &q->txq[i].sdesc);
2875 if (!q->txq[i].desc)
2876 goto err;
2878 q->txq[i].gen = 1;
2879 q->txq[i].size = p->txq_size[i];
2880 spin_lock_init(&q->txq[i].lock);
2881 skb_queue_head_init(&q->txq[i].sendq);
2884 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2885 (unsigned long)q);
2886 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2887 (unsigned long)q);
2889 q->fl[0].gen = q->fl[1].gen = 1;
2890 q->fl[0].size = p->fl_size;
2891 q->fl[1].size = p->jumbo_size;
2893 q->rspq.gen = 1;
2894 q->rspq.size = p->rspq_size;
2895 spin_lock_init(&q->rspq.lock);
2896 skb_queue_head_init(&q->rspq.rx_queue);
2898 q->txq[TXQ_ETH].stop_thres = nports *
2899 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2901 #if FL0_PG_CHUNK_SIZE > 0
2902 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2903 #else
2904 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2905 #endif
2906 #if FL1_PG_CHUNK_SIZE > 0
2907 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2908 #else
2909 q->fl[1].buf_size = is_offload(adapter) ?
2910 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2911 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2912 #endif
2914 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2915 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2916 q->fl[0].order = FL0_PG_ORDER;
2917 q->fl[1].order = FL1_PG_ORDER;
2919 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2920 sizeof(struct skb_frag_struct),
2921 GFP_KERNEL);
2922 q->lro_nfrags = q->lro_frag_len = 0;
2923 spin_lock_irq(&adapter->sge.reg_lock);
2925 /* FL threshold comparison uses < */
2926 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2927 q->rspq.phys_addr, q->rspq.size,
2928 q->fl[0].buf_size, 1, 0);
2929 if (ret)
2930 goto err_unlock;
2932 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2933 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2934 q->fl[i].phys_addr, q->fl[i].size,
2935 q->fl[i].buf_size, p->cong_thres, 1,
2937 if (ret)
2938 goto err_unlock;
2941 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2942 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2943 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2944 1, 0);
2945 if (ret)
2946 goto err_unlock;
2948 if (ntxq > 1) {
2949 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2950 USE_GTS, SGE_CNTXT_OFLD, id,
2951 q->txq[TXQ_OFLD].phys_addr,
2952 q->txq[TXQ_OFLD].size, 0, 1, 0);
2953 if (ret)
2954 goto err_unlock;
2957 if (ntxq > 2) {
2958 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2959 SGE_CNTXT_CTRL, id,
2960 q->txq[TXQ_CTRL].phys_addr,
2961 q->txq[TXQ_CTRL].size,
2962 q->txq[TXQ_CTRL].token, 1, 0);
2963 if (ret)
2964 goto err_unlock;
2967 spin_unlock_irq(&adapter->sge.reg_lock);
2969 q->adap = adapter;
2970 q->netdev = dev;
2971 t3_update_qset_coalesce(q, p);
2973 init_lro_mgr(q, lro_mgr);
2975 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
2976 GFP_KERNEL | __GFP_COMP);
2977 if (!avail) {
2978 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
2979 goto err;
2981 if (avail < q->fl[0].size)
2982 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
2983 avail);
2985 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
2986 GFP_KERNEL | __GFP_COMP);
2987 if (avail < q->fl[1].size)
2988 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
2989 avail);
2990 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2992 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2993 V_NEWTIMER(q->rspq.holdoff_tmr));
2995 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2996 return 0;
2998 err_unlock:
2999 spin_unlock_irq(&adapter->sge.reg_lock);
3000 err:
3001 t3_free_qset(adapter, q);
3002 return ret;
3006 * t3_stop_sge_timers - stop SGE timer call backs
3007 * @adap: the adapter
3009 * Stops each SGE queue set's timer call back
3011 void t3_stop_sge_timers(struct adapter *adap)
3013 int i;
3015 for (i = 0; i < SGE_QSETS; ++i) {
3016 struct sge_qset *q = &adap->sge.qs[i];
3018 if (q->tx_reclaim_timer.function)
3019 del_timer_sync(&q->tx_reclaim_timer);
3024 * t3_free_sge_resources - free SGE resources
3025 * @adap: the adapter
3027 * Frees resources used by the SGE queue sets.
3029 void t3_free_sge_resources(struct adapter *adap)
3031 int i;
3033 for (i = 0; i < SGE_QSETS; ++i)
3034 t3_free_qset(adap, &adap->sge.qs[i]);
3038 * t3_sge_start - enable SGE
3039 * @adap: the adapter
3041 * Enables the SGE for DMAs. This is the last step in starting packet
3042 * transfers.
3044 void t3_sge_start(struct adapter *adap)
3046 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3050 * t3_sge_stop - disable SGE operation
3051 * @adap: the adapter
3053 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3054 * from error interrupts) or from normal process context. In the latter
3055 * case it also disables any pending queue restart tasklets. Note that
3056 * if it is called in interrupt context it cannot disable the restart
3057 * tasklets as it cannot wait, however the tasklets will have no effect
3058 * since the doorbells are disabled and the driver will call this again
3059 * later from process context, at which time the tasklets will be stopped
3060 * if they are still running.
3062 void t3_sge_stop(struct adapter *adap)
3064 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3065 if (!in_interrupt()) {
3066 int i;
3068 for (i = 0; i < SGE_QSETS; ++i) {
3069 struct sge_qset *qs = &adap->sge.qs[i];
3071 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3072 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3078 * t3_sge_init - initialize SGE
3079 * @adap: the adapter
3080 * @p: the SGE parameters
3082 * Performs SGE initialization needed every time after a chip reset.
3083 * We do not initialize any of the queue sets here, instead the driver
3084 * top-level must request those individually. We also do not enable DMA
3085 * here, that should be done after the queues have been set up.
3087 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3089 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3091 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3092 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3093 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3094 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3095 #if SGE_NUM_GENBITS == 1
3096 ctrl |= F_EGRGENCTRL;
3097 #endif
3098 if (adap->params.rev > 0) {
3099 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3100 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3102 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3103 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3104 V_LORCQDRBTHRSH(512));
3105 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3106 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3107 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3108 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3109 adap->params.rev < T3_REV_C ? 1000 : 500);
3110 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3111 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3112 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3113 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3114 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3118 * t3_sge_prep - one-time SGE initialization
3119 * @adap: the associated adapter
3120 * @p: SGE parameters
3122 * Performs one-time initialization of SGE SW state. Includes determining
3123 * defaults for the assorted SGE parameters, which admins can change until
3124 * they are used to initialize the SGE.
3126 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3128 int i;
3130 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3131 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3133 for (i = 0; i < SGE_QSETS; ++i) {
3134 struct qset_params *q = p->qset + i;
3136 q->polling = adap->params.rev > 0;
3137 q->coalesce_usecs = 5;
3138 q->rspq_size = 1024;
3139 q->fl_size = 1024;
3140 q->jumbo_size = 512;
3141 q->txq_size[TXQ_ETH] = 1024;
3142 q->txq_size[TXQ_OFLD] = 1024;
3143 q->txq_size[TXQ_CTRL] = 256;
3144 q->cong_thres = 0;
3147 spin_lock_init(&adap->sge.reg_lock);
3151 * t3_get_desc - dump an SGE descriptor for debugging purposes
3152 * @qs: the queue set
3153 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3154 * @idx: the descriptor index in the queue
3155 * @data: where to dump the descriptor contents
3157 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3158 * size of the descriptor.
3160 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3161 unsigned char *data)
3163 if (qnum >= 6)
3164 return -EINVAL;
3166 if (qnum < 3) {
3167 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3168 return -EINVAL;
3169 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3170 return sizeof(struct tx_desc);
3173 if (qnum == 3) {
3174 if (!qs->rspq.desc || idx >= qs->rspq.size)
3175 return -EINVAL;
3176 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3177 return sizeof(struct rsp_desc);
3180 qnum -= 4;
3181 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3182 return -EINVAL;
3183 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3184 return sizeof(struct rx_desc);