2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
57 * Array of node states.
59 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
60 [N_POSSIBLE
] = NODE_MASK_ALL
,
61 [N_ONLINE
] = { { [0] = 1UL } },
63 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
65 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
67 [N_CPU
] = { { [0] = 1UL } },
70 EXPORT_SYMBOL(node_states
);
72 unsigned long totalram_pages __read_mostly
;
73 unsigned long totalreserve_pages __read_mostly
;
74 unsigned long highest_memmap_pfn __read_mostly
;
75 int percpu_pagelist_fraction
;
76 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly
;
82 static void __free_pages_ok(struct page
*page
, unsigned int order
);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
96 #ifdef CONFIG_ZONE_DMA
99 #ifdef CONFIG_ZONE_DMA32
102 #ifdef CONFIG_HIGHMEM
108 EXPORT_SYMBOL(totalram_pages
);
110 static char * const zone_names
[MAX_NR_ZONES
] = {
111 #ifdef CONFIG_ZONE_DMA
114 #ifdef CONFIG_ZONE_DMA32
118 #ifdef CONFIG_HIGHMEM
124 int min_free_kbytes
= 1024;
126 unsigned long __meminitdata nr_kernel_pages
;
127 unsigned long __meminitdata nr_all_pages
;
128 static unsigned long __meminitdata dma_reserve
;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
151 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
152 static int __meminitdata nr_nodemap_entries
;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 int nr_online_nodes __read_mostly
= 1;
167 EXPORT_SYMBOL(nr_node_ids
);
168 EXPORT_SYMBOL(nr_online_nodes
);
171 int page_group_by_mobility_disabled __read_mostly
;
173 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 if (unlikely(page_group_by_mobility_disabled
))
177 migratetype
= MIGRATE_UNMOVABLE
;
179 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
180 PB_migrate
, PB_migrate_end
);
183 bool oom_killer_disabled __read_mostly
;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
190 unsigned long pfn
= page_to_pfn(page
);
193 seq
= zone_span_seqbegin(zone
);
194 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
196 else if (pfn
< zone
->zone_start_pfn
)
198 } while (zone_span_seqretry(zone
, seq
));
203 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
205 if (!pfn_valid_within(page_to_pfn(page
)))
207 if (zone
!= page_zone(page
))
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone
*zone
, struct page
*page
)
217 if (page_outside_zone_boundaries(zone
, page
))
219 if (!page_is_consistent(zone
, page
))
225 static inline int bad_range(struct zone
*zone
, struct page
*page
)
231 static void bad_page(struct page
*page
)
233 static unsigned long resume
;
234 static unsigned long nr_shown
;
235 static unsigned long nr_unshown
;
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
241 if (nr_shown
== 60) {
242 if (time_before(jiffies
, resume
)) {
248 "BUG: Bad page state: %lu messages suppressed\n",
255 resume
= jiffies
+ 60 * HZ
;
257 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
258 current
->comm
, page_to_pfn(page
));
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page
, (void *)page
->flags
, page_count(page
),
262 page_mapcount(page
), page
->mapping
, page
->index
);
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page
);
268 add_taint(TAINT_BAD_PAGE
);
272 * Higher-order pages are called "compound pages". They are structured thusly:
274 * The first PAGE_SIZE page is called the "head page".
276 * The remaining PAGE_SIZE pages are called "tail pages".
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
286 static void free_compound_page(struct page
*page
)
288 __free_pages_ok(page
, compound_order(page
));
291 void prep_compound_page(struct page
*page
, unsigned long order
)
294 int nr_pages
= 1 << order
;
296 set_compound_page_dtor(page
, free_compound_page
);
297 set_compound_order(page
, order
);
299 for (i
= 1; i
< nr_pages
; i
++) {
300 struct page
*p
= page
+ i
;
303 p
->first_page
= page
;
307 static int destroy_compound_page(struct page
*page
, unsigned long order
)
310 int nr_pages
= 1 << order
;
313 if (unlikely(compound_order(page
) != order
) ||
314 unlikely(!PageHead(page
))) {
319 __ClearPageHead(page
);
321 for (i
= 1; i
< nr_pages
; i
++) {
322 struct page
*p
= page
+ i
;
324 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
334 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
343 for (i
= 0; i
< (1 << order
); i
++)
344 clear_highpage(page
+ i
);
347 static inline void set_page_order(struct page
*page
, int order
)
349 set_page_private(page
, order
);
350 __SetPageBuddy(page
);
353 static inline void rmv_page_order(struct page
*page
)
355 __ClearPageBuddy(page
);
356 set_page_private(page
, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
366 * For example, if the starting buddy (buddy2) is #8 its order
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page
*
377 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
379 unsigned long buddy_idx
= page_idx
^ (1 << order
);
381 return page
+ (buddy_idx
- page_idx
);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx
, unsigned int order
)
387 return (page_idx
& ~(1 << order
));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
406 if (!pfn_valid_within(page_to_pfn(buddy
)))
409 if (page_zone_id(page
) != page_zone_id(buddy
))
412 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
413 VM_BUG_ON(page_count(buddy
) != 0);
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
443 static inline void __free_one_page(struct page
*page
,
444 struct zone
*zone
, unsigned int order
,
447 unsigned long page_idx
;
449 if (unlikely(PageCompound(page
)))
450 if (unlikely(destroy_compound_page(page
, order
)))
453 VM_BUG_ON(migratetype
== -1);
455 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
457 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
458 VM_BUG_ON(bad_range(zone
, page
));
460 while (order
< MAX_ORDER
-1) {
461 unsigned long combined_idx
;
464 buddy
= __page_find_buddy(page
, page_idx
, order
);
465 if (!page_is_buddy(page
, buddy
, order
))
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy
->lru
);
470 zone
->free_area
[order
].nr_free
--;
471 rmv_page_order(buddy
);
472 combined_idx
= __find_combined_index(page_idx
, order
);
473 page
= page
+ (combined_idx
- page_idx
);
474 page_idx
= combined_idx
;
477 set_page_order(page
, order
);
479 &zone
->free_area
[order
].free_list
[migratetype
]);
480 zone
->free_area
[order
].nr_free
++;
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
489 static inline void free_page_mlock(struct page
*page
)
491 __ClearPageMlocked(page
);
492 __dec_zone_page_state(page
, NR_MLOCK
);
493 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
496 static void free_page_mlock(struct page
*page
) { }
499 static inline int free_pages_check(struct page
*page
)
501 if (unlikely(page_mapcount(page
) |
502 (page
->mapping
!= NULL
) |
503 (atomic_read(&page
->_count
) != 0) |
504 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
508 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
509 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
514 * Frees a list of pages.
515 * Assumes all pages on list are in same zone, and of same order.
516 * count is the number of pages to free.
518 * If the zone was previously in an "all pages pinned" state then look to
519 * see if this freeing clears that state.
521 * And clear the zone's pages_scanned counter, to hold off the "all pages are
522 * pinned" detection logic.
524 static void free_pages_bulk(struct zone
*zone
, int count
,
525 struct list_head
*list
, int order
)
527 spin_lock(&zone
->lock
);
528 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
529 zone
->pages_scanned
= 0;
531 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
<< order
);
535 VM_BUG_ON(list_empty(list
));
536 page
= list_entry(list
->prev
, struct page
, lru
);
537 /* have to delete it as __free_one_page list manipulates */
538 list_del(&page
->lru
);
539 __free_one_page(page
, zone
, order
, page_private(page
));
541 spin_unlock(&zone
->lock
);
544 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
547 spin_lock(&zone
->lock
);
548 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
549 zone
->pages_scanned
= 0;
551 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
552 __free_one_page(page
, zone
, order
, migratetype
);
553 spin_unlock(&zone
->lock
);
556 static void __free_pages_ok(struct page
*page
, unsigned int order
)
561 int clearMlocked
= PageMlocked(page
);
563 kmemcheck_free_shadow(page
, order
);
565 for (i
= 0 ; i
< (1 << order
) ; ++i
)
566 bad
+= free_pages_check(page
+ i
);
570 if (!PageHighMem(page
)) {
571 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
572 debug_check_no_obj_freed(page_address(page
),
575 arch_free_page(page
, order
);
576 kernel_map_pages(page
, 1 << order
, 0);
578 local_irq_save(flags
);
579 if (unlikely(clearMlocked
))
580 free_page_mlock(page
);
581 __count_vm_events(PGFREE
, 1 << order
);
582 free_one_page(page_zone(page
), page
, order
,
583 get_pageblock_migratetype(page
));
584 local_irq_restore(flags
);
588 * permit the bootmem allocator to evade page validation on high-order frees
590 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
593 __ClearPageReserved(page
);
594 set_page_count(page
, 0);
595 set_page_refcounted(page
);
601 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
602 struct page
*p
= &page
[loop
];
604 if (loop
+ 1 < BITS_PER_LONG
)
606 __ClearPageReserved(p
);
607 set_page_count(p
, 0);
610 set_page_refcounted(page
);
611 __free_pages(page
, order
);
617 * The order of subdivision here is critical for the IO subsystem.
618 * Please do not alter this order without good reasons and regression
619 * testing. Specifically, as large blocks of memory are subdivided,
620 * the order in which smaller blocks are delivered depends on the order
621 * they're subdivided in this function. This is the primary factor
622 * influencing the order in which pages are delivered to the IO
623 * subsystem according to empirical testing, and this is also justified
624 * by considering the behavior of a buddy system containing a single
625 * large block of memory acted on by a series of small allocations.
626 * This behavior is a critical factor in sglist merging's success.
630 static inline void expand(struct zone
*zone
, struct page
*page
,
631 int low
, int high
, struct free_area
*area
,
634 unsigned long size
= 1 << high
;
640 VM_BUG_ON(bad_range(zone
, &page
[size
]));
641 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
643 set_page_order(&page
[size
], high
);
648 * This page is about to be returned from the page allocator
650 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
652 if (unlikely(page_mapcount(page
) |
653 (page
->mapping
!= NULL
) |
654 (atomic_read(&page
->_count
) != 0) |
655 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
660 set_page_private(page
, 0);
661 set_page_refcounted(page
);
663 arch_alloc_page(page
, order
);
664 kernel_map_pages(page
, 1 << order
, 1);
666 if (gfp_flags
& __GFP_ZERO
)
667 prep_zero_page(page
, order
, gfp_flags
);
669 if (order
&& (gfp_flags
& __GFP_COMP
))
670 prep_compound_page(page
, order
);
676 * Go through the free lists for the given migratetype and remove
677 * the smallest available page from the freelists
680 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
683 unsigned int current_order
;
684 struct free_area
* area
;
687 /* Find a page of the appropriate size in the preferred list */
688 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
689 area
= &(zone
->free_area
[current_order
]);
690 if (list_empty(&area
->free_list
[migratetype
]))
693 page
= list_entry(area
->free_list
[migratetype
].next
,
695 list_del(&page
->lru
);
696 rmv_page_order(page
);
698 expand(zone
, page
, order
, current_order
, area
, migratetype
);
707 * This array describes the order lists are fallen back to when
708 * the free lists for the desirable migrate type are depleted
710 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
711 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
712 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
713 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
714 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
718 * Move the free pages in a range to the free lists of the requested type.
719 * Note that start_page and end_pages are not aligned on a pageblock
720 * boundary. If alignment is required, use move_freepages_block()
722 static int move_freepages(struct zone
*zone
,
723 struct page
*start_page
, struct page
*end_page
,
730 #ifndef CONFIG_HOLES_IN_ZONE
732 * page_zone is not safe to call in this context when
733 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
734 * anyway as we check zone boundaries in move_freepages_block().
735 * Remove at a later date when no bug reports exist related to
736 * grouping pages by mobility
738 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
741 for (page
= start_page
; page
<= end_page
;) {
742 /* Make sure we are not inadvertently changing nodes */
743 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
745 if (!pfn_valid_within(page_to_pfn(page
))) {
750 if (!PageBuddy(page
)) {
755 order
= page_order(page
);
756 list_del(&page
->lru
);
758 &zone
->free_area
[order
].free_list
[migratetype
]);
760 pages_moved
+= 1 << order
;
766 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
769 unsigned long start_pfn
, end_pfn
;
770 struct page
*start_page
, *end_page
;
772 start_pfn
= page_to_pfn(page
);
773 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
774 start_page
= pfn_to_page(start_pfn
);
775 end_page
= start_page
+ pageblock_nr_pages
- 1;
776 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
778 /* Do not cross zone boundaries */
779 if (start_pfn
< zone
->zone_start_pfn
)
781 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
784 return move_freepages(zone
, start_page
, end_page
, migratetype
);
787 /* Remove an element from the buddy allocator from the fallback list */
788 static inline struct page
*
789 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
791 struct free_area
* area
;
796 /* Find the largest possible block of pages in the other list */
797 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
799 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
800 migratetype
= fallbacks
[start_migratetype
][i
];
802 /* MIGRATE_RESERVE handled later if necessary */
803 if (migratetype
== MIGRATE_RESERVE
)
806 area
= &(zone
->free_area
[current_order
]);
807 if (list_empty(&area
->free_list
[migratetype
]))
810 page
= list_entry(area
->free_list
[migratetype
].next
,
815 * If breaking a large block of pages, move all free
816 * pages to the preferred allocation list. If falling
817 * back for a reclaimable kernel allocation, be more
818 * agressive about taking ownership of free pages
820 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
821 start_migratetype
== MIGRATE_RECLAIMABLE
) {
823 pages
= move_freepages_block(zone
, page
,
826 /* Claim the whole block if over half of it is free */
827 if (pages
>= (1 << (pageblock_order
-1)))
828 set_pageblock_migratetype(page
,
831 migratetype
= start_migratetype
;
834 /* Remove the page from the freelists */
835 list_del(&page
->lru
);
836 rmv_page_order(page
);
838 if (current_order
== pageblock_order
)
839 set_pageblock_migratetype(page
,
842 expand(zone
, page
, order
, current_order
, area
, migratetype
);
851 * Do the hard work of removing an element from the buddy allocator.
852 * Call me with the zone->lock already held.
854 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
860 page
= __rmqueue_smallest(zone
, order
, migratetype
);
862 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
863 page
= __rmqueue_fallback(zone
, order
, migratetype
);
866 * Use MIGRATE_RESERVE rather than fail an allocation. goto
867 * is used because __rmqueue_smallest is an inline function
868 * and we want just one call site
871 migratetype
= MIGRATE_RESERVE
;
880 * Obtain a specified number of elements from the buddy allocator, all under
881 * a single hold of the lock, for efficiency. Add them to the supplied list.
882 * Returns the number of new pages which were placed at *list.
884 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
885 unsigned long count
, struct list_head
*list
,
890 spin_lock(&zone
->lock
);
891 for (i
= 0; i
< count
; ++i
) {
892 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
893 if (unlikely(page
== NULL
))
897 * Split buddy pages returned by expand() are received here
898 * in physical page order. The page is added to the callers and
899 * list and the list head then moves forward. From the callers
900 * perspective, the linked list is ordered by page number in
901 * some conditions. This is useful for IO devices that can
902 * merge IO requests if the physical pages are ordered
905 list_add(&page
->lru
, list
);
906 set_page_private(page
, migratetype
);
909 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
910 spin_unlock(&zone
->lock
);
916 * Called from the vmstat counter updater to drain pagesets of this
917 * currently executing processor on remote nodes after they have
920 * Note that this function must be called with the thread pinned to
921 * a single processor.
923 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
928 local_irq_save(flags
);
929 if (pcp
->count
>= pcp
->batch
)
930 to_drain
= pcp
->batch
;
932 to_drain
= pcp
->count
;
933 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
934 pcp
->count
-= to_drain
;
935 local_irq_restore(flags
);
940 * Drain pages of the indicated processor.
942 * The processor must either be the current processor and the
943 * thread pinned to the current processor or a processor that
946 static void drain_pages(unsigned int cpu
)
951 for_each_populated_zone(zone
) {
952 struct per_cpu_pageset
*pset
;
953 struct per_cpu_pages
*pcp
;
955 pset
= zone_pcp(zone
, cpu
);
958 local_irq_save(flags
);
959 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
961 local_irq_restore(flags
);
966 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
968 void drain_local_pages(void *arg
)
970 drain_pages(smp_processor_id());
974 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
976 void drain_all_pages(void)
978 on_each_cpu(drain_local_pages
, NULL
, 1);
981 #ifdef CONFIG_HIBERNATION
983 void mark_free_pages(struct zone
*zone
)
985 unsigned long pfn
, max_zone_pfn
;
988 struct list_head
*curr
;
990 if (!zone
->spanned_pages
)
993 spin_lock_irqsave(&zone
->lock
, flags
);
995 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
996 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
997 if (pfn_valid(pfn
)) {
998 struct page
*page
= pfn_to_page(pfn
);
1000 if (!swsusp_page_is_forbidden(page
))
1001 swsusp_unset_page_free(page
);
1004 for_each_migratetype_order(order
, t
) {
1005 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1008 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1009 for (i
= 0; i
< (1UL << order
); i
++)
1010 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1013 spin_unlock_irqrestore(&zone
->lock
, flags
);
1015 #endif /* CONFIG_PM */
1018 * Free a 0-order page
1020 static void free_hot_cold_page(struct page
*page
, int cold
)
1022 struct zone
*zone
= page_zone(page
);
1023 struct per_cpu_pages
*pcp
;
1024 unsigned long flags
;
1025 int clearMlocked
= PageMlocked(page
);
1027 kmemcheck_free_shadow(page
, 0);
1030 page
->mapping
= NULL
;
1031 if (free_pages_check(page
))
1034 if (!PageHighMem(page
)) {
1035 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1036 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1038 arch_free_page(page
, 0);
1039 kernel_map_pages(page
, 1, 0);
1041 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1042 set_page_private(page
, get_pageblock_migratetype(page
));
1043 local_irq_save(flags
);
1044 if (unlikely(clearMlocked
))
1045 free_page_mlock(page
);
1046 __count_vm_event(PGFREE
);
1049 list_add_tail(&page
->lru
, &pcp
->list
);
1051 list_add(&page
->lru
, &pcp
->list
);
1053 if (pcp
->count
>= pcp
->high
) {
1054 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1055 pcp
->count
-= pcp
->batch
;
1057 local_irq_restore(flags
);
1061 void free_hot_page(struct page
*page
)
1063 free_hot_cold_page(page
, 0);
1066 void free_cold_page(struct page
*page
)
1068 free_hot_cold_page(page
, 1);
1072 * split_page takes a non-compound higher-order page, and splits it into
1073 * n (1<<order) sub-pages: page[0..n]
1074 * Each sub-page must be freed individually.
1076 * Note: this is probably too low level an operation for use in drivers.
1077 * Please consult with lkml before using this in your driver.
1079 void split_page(struct page
*page
, unsigned int order
)
1083 VM_BUG_ON(PageCompound(page
));
1084 VM_BUG_ON(!page_count(page
));
1086 #ifdef CONFIG_KMEMCHECK
1088 * Split shadow pages too, because free(page[0]) would
1089 * otherwise free the whole shadow.
1091 if (kmemcheck_page_is_tracked(page
))
1092 split_page(virt_to_page(page
[0].shadow
), order
);
1095 for (i
= 1; i
< (1 << order
); i
++)
1096 set_page_refcounted(page
+ i
);
1100 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1101 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1105 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1106 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1109 unsigned long flags
;
1111 int cold
= !!(gfp_flags
& __GFP_COLD
);
1116 if (likely(order
== 0)) {
1117 struct per_cpu_pages
*pcp
;
1119 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1120 local_irq_save(flags
);
1122 pcp
->count
= rmqueue_bulk(zone
, 0,
1123 pcp
->batch
, &pcp
->list
, migratetype
);
1124 if (unlikely(!pcp
->count
))
1128 /* Find a page of the appropriate migrate type */
1130 list_for_each_entry_reverse(page
, &pcp
->list
, lru
)
1131 if (page_private(page
) == migratetype
)
1134 list_for_each_entry(page
, &pcp
->list
, lru
)
1135 if (page_private(page
) == migratetype
)
1139 /* Allocate more to the pcp list if necessary */
1140 if (unlikely(&page
->lru
== &pcp
->list
)) {
1141 pcp
->count
+= rmqueue_bulk(zone
, 0,
1142 pcp
->batch
, &pcp
->list
, migratetype
);
1143 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1146 list_del(&page
->lru
);
1149 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1151 * __GFP_NOFAIL is not to be used in new code.
1153 * All __GFP_NOFAIL callers should be fixed so that they
1154 * properly detect and handle allocation failures.
1156 * We most definitely don't want callers attempting to
1157 * allocate greater than single-page units with
1160 WARN_ON_ONCE(order
> 0);
1162 spin_lock_irqsave(&zone
->lock
, flags
);
1163 page
= __rmqueue(zone
, order
, migratetype
);
1164 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1165 spin_unlock(&zone
->lock
);
1170 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1171 zone_statistics(preferred_zone
, zone
);
1172 local_irq_restore(flags
);
1175 VM_BUG_ON(bad_range(zone
, page
));
1176 if (prep_new_page(page
, order
, gfp_flags
))
1181 local_irq_restore(flags
);
1186 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1187 #define ALLOC_WMARK_MIN WMARK_MIN
1188 #define ALLOC_WMARK_LOW WMARK_LOW
1189 #define ALLOC_WMARK_HIGH WMARK_HIGH
1190 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1192 /* Mask to get the watermark bits */
1193 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1195 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1196 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1197 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1199 #ifdef CONFIG_FAIL_PAGE_ALLOC
1201 static struct fail_page_alloc_attr
{
1202 struct fault_attr attr
;
1204 u32 ignore_gfp_highmem
;
1205 u32 ignore_gfp_wait
;
1208 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1210 struct dentry
*ignore_gfp_highmem_file
;
1211 struct dentry
*ignore_gfp_wait_file
;
1212 struct dentry
*min_order_file
;
1214 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1216 } fail_page_alloc
= {
1217 .attr
= FAULT_ATTR_INITIALIZER
,
1218 .ignore_gfp_wait
= 1,
1219 .ignore_gfp_highmem
= 1,
1223 static int __init
setup_fail_page_alloc(char *str
)
1225 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1227 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1229 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1231 if (order
< fail_page_alloc
.min_order
)
1233 if (gfp_mask
& __GFP_NOFAIL
)
1235 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1237 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1240 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1243 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1245 static int __init
fail_page_alloc_debugfs(void)
1247 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1251 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1255 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1257 fail_page_alloc
.ignore_gfp_wait_file
=
1258 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1259 &fail_page_alloc
.ignore_gfp_wait
);
1261 fail_page_alloc
.ignore_gfp_highmem_file
=
1262 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1263 &fail_page_alloc
.ignore_gfp_highmem
);
1264 fail_page_alloc
.min_order_file
=
1265 debugfs_create_u32("min-order", mode
, dir
,
1266 &fail_page_alloc
.min_order
);
1268 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1269 !fail_page_alloc
.ignore_gfp_highmem_file
||
1270 !fail_page_alloc
.min_order_file
) {
1272 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1273 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1274 debugfs_remove(fail_page_alloc
.min_order_file
);
1275 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1281 late_initcall(fail_page_alloc_debugfs
);
1283 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1285 #else /* CONFIG_FAIL_PAGE_ALLOC */
1287 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1292 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1295 * Return 1 if free pages are above 'mark'. This takes into account the order
1296 * of the allocation.
1298 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1299 int classzone_idx
, int alloc_flags
)
1301 /* free_pages my go negative - that's OK */
1303 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1306 if (alloc_flags
& ALLOC_HIGH
)
1308 if (alloc_flags
& ALLOC_HARDER
)
1311 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1313 for (o
= 0; o
< order
; o
++) {
1314 /* At the next order, this order's pages become unavailable */
1315 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1317 /* Require fewer higher order pages to be free */
1320 if (free_pages
<= min
)
1328 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1329 * skip over zones that are not allowed by the cpuset, or that have
1330 * been recently (in last second) found to be nearly full. See further
1331 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1332 * that have to skip over a lot of full or unallowed zones.
1334 * If the zonelist cache is present in the passed in zonelist, then
1335 * returns a pointer to the allowed node mask (either the current
1336 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1338 * If the zonelist cache is not available for this zonelist, does
1339 * nothing and returns NULL.
1341 * If the fullzones BITMAP in the zonelist cache is stale (more than
1342 * a second since last zap'd) then we zap it out (clear its bits.)
1344 * We hold off even calling zlc_setup, until after we've checked the
1345 * first zone in the zonelist, on the theory that most allocations will
1346 * be satisfied from that first zone, so best to examine that zone as
1347 * quickly as we can.
1349 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1351 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1352 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1354 zlc
= zonelist
->zlcache_ptr
;
1358 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1359 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1360 zlc
->last_full_zap
= jiffies
;
1363 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1364 &cpuset_current_mems_allowed
:
1365 &node_states
[N_HIGH_MEMORY
];
1366 return allowednodes
;
1370 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1371 * if it is worth looking at further for free memory:
1372 * 1) Check that the zone isn't thought to be full (doesn't have its
1373 * bit set in the zonelist_cache fullzones BITMAP).
1374 * 2) Check that the zones node (obtained from the zonelist_cache
1375 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1376 * Return true (non-zero) if zone is worth looking at further, or
1377 * else return false (zero) if it is not.
1379 * This check -ignores- the distinction between various watermarks,
1380 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1381 * found to be full for any variation of these watermarks, it will
1382 * be considered full for up to one second by all requests, unless
1383 * we are so low on memory on all allowed nodes that we are forced
1384 * into the second scan of the zonelist.
1386 * In the second scan we ignore this zonelist cache and exactly
1387 * apply the watermarks to all zones, even it is slower to do so.
1388 * We are low on memory in the second scan, and should leave no stone
1389 * unturned looking for a free page.
1391 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1392 nodemask_t
*allowednodes
)
1394 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1395 int i
; /* index of *z in zonelist zones */
1396 int n
; /* node that zone *z is on */
1398 zlc
= zonelist
->zlcache_ptr
;
1402 i
= z
- zonelist
->_zonerefs
;
1405 /* This zone is worth trying if it is allowed but not full */
1406 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1410 * Given 'z' scanning a zonelist, set the corresponding bit in
1411 * zlc->fullzones, so that subsequent attempts to allocate a page
1412 * from that zone don't waste time re-examining it.
1414 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1416 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1417 int i
; /* index of *z in zonelist zones */
1419 zlc
= zonelist
->zlcache_ptr
;
1423 i
= z
- zonelist
->_zonerefs
;
1425 set_bit(i
, zlc
->fullzones
);
1428 #else /* CONFIG_NUMA */
1430 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1435 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1436 nodemask_t
*allowednodes
)
1441 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1444 #endif /* CONFIG_NUMA */
1447 * get_page_from_freelist goes through the zonelist trying to allocate
1450 static struct page
*
1451 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1452 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1453 struct zone
*preferred_zone
, int migratetype
)
1456 struct page
*page
= NULL
;
1459 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1460 int zlc_active
= 0; /* set if using zonelist_cache */
1461 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1463 classzone_idx
= zone_idx(preferred_zone
);
1466 * Scan zonelist, looking for a zone with enough free.
1467 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1469 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1470 high_zoneidx
, nodemask
) {
1471 if (NUMA_BUILD
&& zlc_active
&&
1472 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1474 if ((alloc_flags
& ALLOC_CPUSET
) &&
1475 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1478 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1479 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1483 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1484 if (zone_watermark_ok(zone
, order
, mark
,
1485 classzone_idx
, alloc_flags
))
1488 if (zone_reclaim_mode
== 0)
1489 goto this_zone_full
;
1491 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1493 case ZONE_RECLAIM_NOSCAN
:
1496 case ZONE_RECLAIM_FULL
:
1497 /* scanned but unreclaimable */
1498 goto this_zone_full
;
1500 /* did we reclaim enough */
1501 if (!zone_watermark_ok(zone
, order
, mark
,
1502 classzone_idx
, alloc_flags
))
1503 goto this_zone_full
;
1508 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1509 gfp_mask
, migratetype
);
1514 zlc_mark_zone_full(zonelist
, z
);
1516 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1518 * we do zlc_setup after the first zone is tried but only
1519 * if there are multiple nodes make it worthwhile
1521 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1527 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1528 /* Disable zlc cache for second zonelist scan */
1536 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1537 unsigned long pages_reclaimed
)
1539 /* Do not loop if specifically requested */
1540 if (gfp_mask
& __GFP_NORETRY
)
1544 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1545 * means __GFP_NOFAIL, but that may not be true in other
1548 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1552 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1553 * specified, then we retry until we no longer reclaim any pages
1554 * (above), or we've reclaimed an order of pages at least as
1555 * large as the allocation's order. In both cases, if the
1556 * allocation still fails, we stop retrying.
1558 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1562 * Don't let big-order allocations loop unless the caller
1563 * explicitly requests that.
1565 if (gfp_mask
& __GFP_NOFAIL
)
1571 static inline struct page
*
1572 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1573 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1574 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1579 /* Acquire the OOM killer lock for the zones in zonelist */
1580 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1581 schedule_timeout_uninterruptible(1);
1586 * Go through the zonelist yet one more time, keep very high watermark
1587 * here, this is only to catch a parallel oom killing, we must fail if
1588 * we're still under heavy pressure.
1590 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1591 order
, zonelist
, high_zoneidx
,
1592 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1593 preferred_zone
, migratetype
);
1597 /* The OOM killer will not help higher order allocs */
1598 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1601 /* Exhausted what can be done so it's blamo time */
1602 out_of_memory(zonelist
, gfp_mask
, order
);
1605 clear_zonelist_oom(zonelist
, gfp_mask
);
1609 /* The really slow allocator path where we enter direct reclaim */
1610 static inline struct page
*
1611 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1612 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1613 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1614 int migratetype
, unsigned long *did_some_progress
)
1616 struct page
*page
= NULL
;
1617 struct reclaim_state reclaim_state
;
1618 struct task_struct
*p
= current
;
1622 /* We now go into synchronous reclaim */
1623 cpuset_memory_pressure_bump();
1626 * The task's cpuset might have expanded its set of allowable nodes
1628 p
->flags
|= PF_MEMALLOC
;
1629 lockdep_set_current_reclaim_state(gfp_mask
);
1630 reclaim_state
.reclaimed_slab
= 0;
1631 p
->reclaim_state
= &reclaim_state
;
1633 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1635 p
->reclaim_state
= NULL
;
1636 lockdep_clear_current_reclaim_state();
1637 p
->flags
&= ~PF_MEMALLOC
;
1644 if (likely(*did_some_progress
))
1645 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1646 zonelist
, high_zoneidx
,
1647 alloc_flags
, preferred_zone
,
1653 * This is called in the allocator slow-path if the allocation request is of
1654 * sufficient urgency to ignore watermarks and take other desperate measures
1656 static inline struct page
*
1657 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1658 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1659 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1665 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1666 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1667 preferred_zone
, migratetype
);
1669 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1670 congestion_wait(WRITE
, HZ
/50);
1671 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1677 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1678 enum zone_type high_zoneidx
)
1683 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1684 wakeup_kswapd(zone
, order
);
1688 gfp_to_alloc_flags(gfp_t gfp_mask
)
1690 struct task_struct
*p
= current
;
1691 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1692 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1694 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1695 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1698 * The caller may dip into page reserves a bit more if the caller
1699 * cannot run direct reclaim, or if the caller has realtime scheduling
1700 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1701 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1703 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1706 alloc_flags
|= ALLOC_HARDER
;
1708 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1709 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1711 alloc_flags
&= ~ALLOC_CPUSET
;
1712 } else if (unlikely(rt_task(p
)))
1713 alloc_flags
|= ALLOC_HARDER
;
1715 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1716 if (!in_interrupt() &&
1717 ((p
->flags
& PF_MEMALLOC
) ||
1718 unlikely(test_thread_flag(TIF_MEMDIE
))))
1719 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1725 static inline struct page
*
1726 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1727 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1728 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1731 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1732 struct page
*page
= NULL
;
1734 unsigned long pages_reclaimed
= 0;
1735 unsigned long did_some_progress
;
1736 struct task_struct
*p
= current
;
1739 * In the slowpath, we sanity check order to avoid ever trying to
1740 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1741 * be using allocators in order of preference for an area that is
1744 if (WARN_ON_ONCE(order
>= MAX_ORDER
))
1748 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1749 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1750 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1751 * using a larger set of nodes after it has established that the
1752 * allowed per node queues are empty and that nodes are
1755 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1758 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1761 * OK, we're below the kswapd watermark and have kicked background
1762 * reclaim. Now things get more complex, so set up alloc_flags according
1763 * to how we want to proceed.
1765 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1768 /* This is the last chance, in general, before the goto nopage. */
1769 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1770 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1771 preferred_zone
, migratetype
);
1776 /* Allocate without watermarks if the context allows */
1777 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1778 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1779 zonelist
, high_zoneidx
, nodemask
,
1780 preferred_zone
, migratetype
);
1785 /* Atomic allocations - we can't balance anything */
1789 /* Avoid recursion of direct reclaim */
1790 if (p
->flags
& PF_MEMALLOC
)
1793 /* Try direct reclaim and then allocating */
1794 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1795 zonelist
, high_zoneidx
,
1797 alloc_flags
, preferred_zone
,
1798 migratetype
, &did_some_progress
);
1803 * If we failed to make any progress reclaiming, then we are
1804 * running out of options and have to consider going OOM
1806 if (!did_some_progress
) {
1807 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1808 if (oom_killer_disabled
)
1810 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1811 zonelist
, high_zoneidx
,
1812 nodemask
, preferred_zone
,
1818 * The OOM killer does not trigger for high-order
1819 * ~__GFP_NOFAIL allocations so if no progress is being
1820 * made, there are no other options and retrying is
1823 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1824 !(gfp_mask
& __GFP_NOFAIL
))
1831 /* Check if we should retry the allocation */
1832 pages_reclaimed
+= did_some_progress
;
1833 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1834 /* Wait for some write requests to complete then retry */
1835 congestion_wait(WRITE
, HZ
/50);
1840 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1841 printk(KERN_WARNING
"%s: page allocation failure."
1842 " order:%d, mode:0x%x\n",
1843 p
->comm
, order
, gfp_mask
);
1849 if (kmemcheck_enabled
)
1850 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1856 * This is the 'heart' of the zoned buddy allocator.
1859 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1860 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1862 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1863 struct zone
*preferred_zone
;
1865 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1867 gfp_mask
&= gfp_allowed_mask
;
1869 lockdep_trace_alloc(gfp_mask
);
1871 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1873 if (should_fail_alloc_page(gfp_mask
, order
))
1877 * Check the zones suitable for the gfp_mask contain at least one
1878 * valid zone. It's possible to have an empty zonelist as a result
1879 * of GFP_THISNODE and a memoryless node
1881 if (unlikely(!zonelist
->_zonerefs
->zone
))
1884 /* The preferred zone is used for statistics later */
1885 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1886 if (!preferred_zone
)
1889 /* First allocation attempt */
1890 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1891 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1892 preferred_zone
, migratetype
);
1893 if (unlikely(!page
))
1894 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1895 zonelist
, high_zoneidx
, nodemask
,
1896 preferred_zone
, migratetype
);
1900 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1903 * Common helper functions.
1905 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1908 page
= alloc_pages(gfp_mask
, order
);
1911 return (unsigned long) page_address(page
);
1914 EXPORT_SYMBOL(__get_free_pages
);
1916 unsigned long get_zeroed_page(gfp_t gfp_mask
)
1921 * get_zeroed_page() returns a 32-bit address, which cannot represent
1924 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1926 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1928 return (unsigned long) page_address(page
);
1932 EXPORT_SYMBOL(get_zeroed_page
);
1934 void __pagevec_free(struct pagevec
*pvec
)
1936 int i
= pagevec_count(pvec
);
1939 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1942 void __free_pages(struct page
*page
, unsigned int order
)
1944 if (put_page_testzero(page
)) {
1946 free_hot_page(page
);
1948 __free_pages_ok(page
, order
);
1952 EXPORT_SYMBOL(__free_pages
);
1954 void free_pages(unsigned long addr
, unsigned int order
)
1957 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1958 __free_pages(virt_to_page((void *)addr
), order
);
1962 EXPORT_SYMBOL(free_pages
);
1965 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1966 * @size: the number of bytes to allocate
1967 * @gfp_mask: GFP flags for the allocation
1969 * This function is similar to alloc_pages(), except that it allocates the
1970 * minimum number of pages to satisfy the request. alloc_pages() can only
1971 * allocate memory in power-of-two pages.
1973 * This function is also limited by MAX_ORDER.
1975 * Memory allocated by this function must be released by free_pages_exact().
1977 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
1979 unsigned int order
= get_order(size
);
1982 addr
= __get_free_pages(gfp_mask
, order
);
1984 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
1985 unsigned long used
= addr
+ PAGE_ALIGN(size
);
1987 split_page(virt_to_page(addr
), order
);
1988 while (used
< alloc_end
) {
1994 return (void *)addr
;
1996 EXPORT_SYMBOL(alloc_pages_exact
);
1999 * free_pages_exact - release memory allocated via alloc_pages_exact()
2000 * @virt: the value returned by alloc_pages_exact.
2001 * @size: size of allocation, same value as passed to alloc_pages_exact().
2003 * Release the memory allocated by a previous call to alloc_pages_exact.
2005 void free_pages_exact(void *virt
, size_t size
)
2007 unsigned long addr
= (unsigned long)virt
;
2008 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2010 while (addr
< end
) {
2015 EXPORT_SYMBOL(free_pages_exact
);
2017 static unsigned int nr_free_zone_pages(int offset
)
2022 /* Just pick one node, since fallback list is circular */
2023 unsigned int sum
= 0;
2025 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2027 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2028 unsigned long size
= zone
->present_pages
;
2029 unsigned long high
= high_wmark_pages(zone
);
2038 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2040 unsigned int nr_free_buffer_pages(void)
2042 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2044 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2047 * Amount of free RAM allocatable within all zones
2049 unsigned int nr_free_pagecache_pages(void)
2051 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2054 static inline void show_node(struct zone
*zone
)
2057 printk("Node %d ", zone_to_nid(zone
));
2060 void si_meminfo(struct sysinfo
*val
)
2062 val
->totalram
= totalram_pages
;
2064 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2065 val
->bufferram
= nr_blockdev_pages();
2066 val
->totalhigh
= totalhigh_pages
;
2067 val
->freehigh
= nr_free_highpages();
2068 val
->mem_unit
= PAGE_SIZE
;
2071 EXPORT_SYMBOL(si_meminfo
);
2074 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2076 pg_data_t
*pgdat
= NODE_DATA(nid
);
2078 val
->totalram
= pgdat
->node_present_pages
;
2079 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2080 #ifdef CONFIG_HIGHMEM
2081 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2082 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2088 val
->mem_unit
= PAGE_SIZE
;
2092 #define K(x) ((x) << (PAGE_SHIFT-10))
2095 * Show free area list (used inside shift_scroll-lock stuff)
2096 * We also calculate the percentage fragmentation. We do this by counting the
2097 * memory on each free list with the exception of the first item on the list.
2099 void show_free_areas(void)
2104 for_each_populated_zone(zone
) {
2106 printk("%s per-cpu:\n", zone
->name
);
2108 for_each_online_cpu(cpu
) {
2109 struct per_cpu_pageset
*pageset
;
2111 pageset
= zone_pcp(zone
, cpu
);
2113 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2114 cpu
, pageset
->pcp
.high
,
2115 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2119 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2120 " inactive_file:%lu"
2122 " dirty:%lu writeback:%lu unstable:%lu\n"
2123 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2124 global_page_state(NR_ACTIVE_ANON
),
2125 global_page_state(NR_ACTIVE_FILE
),
2126 global_page_state(NR_INACTIVE_ANON
),
2127 global_page_state(NR_INACTIVE_FILE
),
2128 global_page_state(NR_UNEVICTABLE
),
2129 global_page_state(NR_FILE_DIRTY
),
2130 global_page_state(NR_WRITEBACK
),
2131 global_page_state(NR_UNSTABLE_NFS
),
2132 global_page_state(NR_FREE_PAGES
),
2133 global_page_state(NR_SLAB_RECLAIMABLE
) +
2134 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2135 global_page_state(NR_FILE_MAPPED
),
2136 global_page_state(NR_PAGETABLE
),
2137 global_page_state(NR_BOUNCE
));
2139 for_each_populated_zone(zone
) {
2148 " active_anon:%lukB"
2149 " inactive_anon:%lukB"
2150 " active_file:%lukB"
2151 " inactive_file:%lukB"
2152 " unevictable:%lukB"
2154 " pages_scanned:%lu"
2155 " all_unreclaimable? %s"
2158 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2159 K(min_wmark_pages(zone
)),
2160 K(low_wmark_pages(zone
)),
2161 K(high_wmark_pages(zone
)),
2162 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2163 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2164 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2165 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2166 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2167 K(zone
->present_pages
),
2168 zone
->pages_scanned
,
2169 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2171 printk("lowmem_reserve[]:");
2172 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2173 printk(" %lu", zone
->lowmem_reserve
[i
]);
2177 for_each_populated_zone(zone
) {
2178 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2181 printk("%s: ", zone
->name
);
2183 spin_lock_irqsave(&zone
->lock
, flags
);
2184 for (order
= 0; order
< MAX_ORDER
; order
++) {
2185 nr
[order
] = zone
->free_area
[order
].nr_free
;
2186 total
+= nr
[order
] << order
;
2188 spin_unlock_irqrestore(&zone
->lock
, flags
);
2189 for (order
= 0; order
< MAX_ORDER
; order
++)
2190 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2191 printk("= %lukB\n", K(total
));
2194 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2196 show_swap_cache_info();
2199 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2201 zoneref
->zone
= zone
;
2202 zoneref
->zone_idx
= zone_idx(zone
);
2206 * Builds allocation fallback zone lists.
2208 * Add all populated zones of a node to the zonelist.
2210 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2211 int nr_zones
, enum zone_type zone_type
)
2215 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2220 zone
= pgdat
->node_zones
+ zone_type
;
2221 if (populated_zone(zone
)) {
2222 zoneref_set_zone(zone
,
2223 &zonelist
->_zonerefs
[nr_zones
++]);
2224 check_highest_zone(zone_type
);
2227 } while (zone_type
);
2234 * 0 = automatic detection of better ordering.
2235 * 1 = order by ([node] distance, -zonetype)
2236 * 2 = order by (-zonetype, [node] distance)
2238 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2239 * the same zonelist. So only NUMA can configure this param.
2241 #define ZONELIST_ORDER_DEFAULT 0
2242 #define ZONELIST_ORDER_NODE 1
2243 #define ZONELIST_ORDER_ZONE 2
2245 /* zonelist order in the kernel.
2246 * set_zonelist_order() will set this to NODE or ZONE.
2248 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2249 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2253 /* The value user specified ....changed by config */
2254 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2255 /* string for sysctl */
2256 #define NUMA_ZONELIST_ORDER_LEN 16
2257 char numa_zonelist_order
[16] = "default";
2260 * interface for configure zonelist ordering.
2261 * command line option "numa_zonelist_order"
2262 * = "[dD]efault - default, automatic configuration.
2263 * = "[nN]ode - order by node locality, then by zone within node
2264 * = "[zZ]one - order by zone, then by locality within zone
2267 static int __parse_numa_zonelist_order(char *s
)
2269 if (*s
== 'd' || *s
== 'D') {
2270 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2271 } else if (*s
== 'n' || *s
== 'N') {
2272 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2273 } else if (*s
== 'z' || *s
== 'Z') {
2274 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2277 "Ignoring invalid numa_zonelist_order value: "
2284 static __init
int setup_numa_zonelist_order(char *s
)
2287 return __parse_numa_zonelist_order(s
);
2290 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2293 * sysctl handler for numa_zonelist_order
2295 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2296 struct file
*file
, void __user
*buffer
, size_t *length
,
2299 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2303 strncpy(saved_string
, (char*)table
->data
,
2304 NUMA_ZONELIST_ORDER_LEN
);
2305 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
2309 int oldval
= user_zonelist_order
;
2310 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2312 * bogus value. restore saved string
2314 strncpy((char*)table
->data
, saved_string
,
2315 NUMA_ZONELIST_ORDER_LEN
);
2316 user_zonelist_order
= oldval
;
2317 } else if (oldval
!= user_zonelist_order
)
2318 build_all_zonelists();
2324 #define MAX_NODE_LOAD (nr_online_nodes)
2325 static int node_load
[MAX_NUMNODES
];
2328 * find_next_best_node - find the next node that should appear in a given node's fallback list
2329 * @node: node whose fallback list we're appending
2330 * @used_node_mask: nodemask_t of already used nodes
2332 * We use a number of factors to determine which is the next node that should
2333 * appear on a given node's fallback list. The node should not have appeared
2334 * already in @node's fallback list, and it should be the next closest node
2335 * according to the distance array (which contains arbitrary distance values
2336 * from each node to each node in the system), and should also prefer nodes
2337 * with no CPUs, since presumably they'll have very little allocation pressure
2338 * on them otherwise.
2339 * It returns -1 if no node is found.
2341 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2344 int min_val
= INT_MAX
;
2346 const struct cpumask
*tmp
= cpumask_of_node(0);
2348 /* Use the local node if we haven't already */
2349 if (!node_isset(node
, *used_node_mask
)) {
2350 node_set(node
, *used_node_mask
);
2354 for_each_node_state(n
, N_HIGH_MEMORY
) {
2356 /* Don't want a node to appear more than once */
2357 if (node_isset(n
, *used_node_mask
))
2360 /* Use the distance array to find the distance */
2361 val
= node_distance(node
, n
);
2363 /* Penalize nodes under us ("prefer the next node") */
2366 /* Give preference to headless and unused nodes */
2367 tmp
= cpumask_of_node(n
);
2368 if (!cpumask_empty(tmp
))
2369 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2371 /* Slight preference for less loaded node */
2372 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2373 val
+= node_load
[n
];
2375 if (val
< min_val
) {
2382 node_set(best_node
, *used_node_mask
);
2389 * Build zonelists ordered by node and zones within node.
2390 * This results in maximum locality--normal zone overflows into local
2391 * DMA zone, if any--but risks exhausting DMA zone.
2393 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2396 struct zonelist
*zonelist
;
2398 zonelist
= &pgdat
->node_zonelists
[0];
2399 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2401 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2403 zonelist
->_zonerefs
[j
].zone
= NULL
;
2404 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2408 * Build gfp_thisnode zonelists
2410 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2413 struct zonelist
*zonelist
;
2415 zonelist
= &pgdat
->node_zonelists
[1];
2416 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2417 zonelist
->_zonerefs
[j
].zone
= NULL
;
2418 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2422 * Build zonelists ordered by zone and nodes within zones.
2423 * This results in conserving DMA zone[s] until all Normal memory is
2424 * exhausted, but results in overflowing to remote node while memory
2425 * may still exist in local DMA zone.
2427 static int node_order
[MAX_NUMNODES
];
2429 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2432 int zone_type
; /* needs to be signed */
2434 struct zonelist
*zonelist
;
2436 zonelist
= &pgdat
->node_zonelists
[0];
2438 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2439 for (j
= 0; j
< nr_nodes
; j
++) {
2440 node
= node_order
[j
];
2441 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2442 if (populated_zone(z
)) {
2444 &zonelist
->_zonerefs
[pos
++]);
2445 check_highest_zone(zone_type
);
2449 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2450 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2453 static int default_zonelist_order(void)
2456 unsigned long low_kmem_size
,total_size
;
2460 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2461 * If they are really small and used heavily, the system can fall
2462 * into OOM very easily.
2463 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2465 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2468 for_each_online_node(nid
) {
2469 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2470 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2471 if (populated_zone(z
)) {
2472 if (zone_type
< ZONE_NORMAL
)
2473 low_kmem_size
+= z
->present_pages
;
2474 total_size
+= z
->present_pages
;
2478 if (!low_kmem_size
|| /* there are no DMA area. */
2479 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2480 return ZONELIST_ORDER_NODE
;
2482 * look into each node's config.
2483 * If there is a node whose DMA/DMA32 memory is very big area on
2484 * local memory, NODE_ORDER may be suitable.
2486 average_size
= total_size
/
2487 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2488 for_each_online_node(nid
) {
2491 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2492 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2493 if (populated_zone(z
)) {
2494 if (zone_type
< ZONE_NORMAL
)
2495 low_kmem_size
+= z
->present_pages
;
2496 total_size
+= z
->present_pages
;
2499 if (low_kmem_size
&&
2500 total_size
> average_size
&& /* ignore small node */
2501 low_kmem_size
> total_size
* 70/100)
2502 return ZONELIST_ORDER_NODE
;
2504 return ZONELIST_ORDER_ZONE
;
2507 static void set_zonelist_order(void)
2509 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2510 current_zonelist_order
= default_zonelist_order();
2512 current_zonelist_order
= user_zonelist_order
;
2515 static void build_zonelists(pg_data_t
*pgdat
)
2519 nodemask_t used_mask
;
2520 int local_node
, prev_node
;
2521 struct zonelist
*zonelist
;
2522 int order
= current_zonelist_order
;
2524 /* initialize zonelists */
2525 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2526 zonelist
= pgdat
->node_zonelists
+ i
;
2527 zonelist
->_zonerefs
[0].zone
= NULL
;
2528 zonelist
->_zonerefs
[0].zone_idx
= 0;
2531 /* NUMA-aware ordering of nodes */
2532 local_node
= pgdat
->node_id
;
2533 load
= nr_online_nodes
;
2534 prev_node
= local_node
;
2535 nodes_clear(used_mask
);
2537 memset(node_load
, 0, sizeof(node_load
));
2538 memset(node_order
, 0, sizeof(node_order
));
2541 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2542 int distance
= node_distance(local_node
, node
);
2545 * If another node is sufficiently far away then it is better
2546 * to reclaim pages in a zone before going off node.
2548 if (distance
> RECLAIM_DISTANCE
)
2549 zone_reclaim_mode
= 1;
2552 * We don't want to pressure a particular node.
2553 * So adding penalty to the first node in same
2554 * distance group to make it round-robin.
2556 if (distance
!= node_distance(local_node
, prev_node
))
2557 node_load
[node
] = load
;
2561 if (order
== ZONELIST_ORDER_NODE
)
2562 build_zonelists_in_node_order(pgdat
, node
);
2564 node_order
[j
++] = node
; /* remember order */
2567 if (order
== ZONELIST_ORDER_ZONE
) {
2568 /* calculate node order -- i.e., DMA last! */
2569 build_zonelists_in_zone_order(pgdat
, j
);
2572 build_thisnode_zonelists(pgdat
);
2575 /* Construct the zonelist performance cache - see further mmzone.h */
2576 static void build_zonelist_cache(pg_data_t
*pgdat
)
2578 struct zonelist
*zonelist
;
2579 struct zonelist_cache
*zlc
;
2582 zonelist
= &pgdat
->node_zonelists
[0];
2583 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2584 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2585 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2586 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2590 #else /* CONFIG_NUMA */
2592 static void set_zonelist_order(void)
2594 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2597 static void build_zonelists(pg_data_t
*pgdat
)
2599 int node
, local_node
;
2601 struct zonelist
*zonelist
;
2603 local_node
= pgdat
->node_id
;
2605 zonelist
= &pgdat
->node_zonelists
[0];
2606 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2609 * Now we build the zonelist so that it contains the zones
2610 * of all the other nodes.
2611 * We don't want to pressure a particular node, so when
2612 * building the zones for node N, we make sure that the
2613 * zones coming right after the local ones are those from
2614 * node N+1 (modulo N)
2616 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2617 if (!node_online(node
))
2619 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2622 for (node
= 0; node
< local_node
; node
++) {
2623 if (!node_online(node
))
2625 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2629 zonelist
->_zonerefs
[j
].zone
= NULL
;
2630 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2633 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2634 static void build_zonelist_cache(pg_data_t
*pgdat
)
2636 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2639 #endif /* CONFIG_NUMA */
2641 /* return values int ....just for stop_machine() */
2642 static int __build_all_zonelists(void *dummy
)
2646 for_each_online_node(nid
) {
2647 pg_data_t
*pgdat
= NODE_DATA(nid
);
2649 build_zonelists(pgdat
);
2650 build_zonelist_cache(pgdat
);
2655 void build_all_zonelists(void)
2657 set_zonelist_order();
2659 if (system_state
== SYSTEM_BOOTING
) {
2660 __build_all_zonelists(NULL
);
2661 mminit_verify_zonelist();
2662 cpuset_init_current_mems_allowed();
2664 /* we have to stop all cpus to guarantee there is no user
2666 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2667 /* cpuset refresh routine should be here */
2669 vm_total_pages
= nr_free_pagecache_pages();
2671 * Disable grouping by mobility if the number of pages in the
2672 * system is too low to allow the mechanism to work. It would be
2673 * more accurate, but expensive to check per-zone. This check is
2674 * made on memory-hotadd so a system can start with mobility
2675 * disabled and enable it later
2677 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2678 page_group_by_mobility_disabled
= 1;
2680 page_group_by_mobility_disabled
= 0;
2682 printk("Built %i zonelists in %s order, mobility grouping %s. "
2683 "Total pages: %ld\n",
2685 zonelist_order_name
[current_zonelist_order
],
2686 page_group_by_mobility_disabled
? "off" : "on",
2689 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2694 * Helper functions to size the waitqueue hash table.
2695 * Essentially these want to choose hash table sizes sufficiently
2696 * large so that collisions trying to wait on pages are rare.
2697 * But in fact, the number of active page waitqueues on typical
2698 * systems is ridiculously low, less than 200. So this is even
2699 * conservative, even though it seems large.
2701 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2702 * waitqueues, i.e. the size of the waitq table given the number of pages.
2704 #define PAGES_PER_WAITQUEUE 256
2706 #ifndef CONFIG_MEMORY_HOTPLUG
2707 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2709 unsigned long size
= 1;
2711 pages
/= PAGES_PER_WAITQUEUE
;
2713 while (size
< pages
)
2717 * Once we have dozens or even hundreds of threads sleeping
2718 * on IO we've got bigger problems than wait queue collision.
2719 * Limit the size of the wait table to a reasonable size.
2721 size
= min(size
, 4096UL);
2723 return max(size
, 4UL);
2727 * A zone's size might be changed by hot-add, so it is not possible to determine
2728 * a suitable size for its wait_table. So we use the maximum size now.
2730 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2732 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2733 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2734 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2736 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2737 * or more by the traditional way. (See above). It equals:
2739 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2740 * ia64(16K page size) : = ( 8G + 4M)byte.
2741 * powerpc (64K page size) : = (32G +16M)byte.
2743 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2750 * This is an integer logarithm so that shifts can be used later
2751 * to extract the more random high bits from the multiplicative
2752 * hash function before the remainder is taken.
2754 static inline unsigned long wait_table_bits(unsigned long size
)
2759 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2762 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2763 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2764 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2765 * higher will lead to a bigger reserve which will get freed as contiguous
2766 * blocks as reclaim kicks in
2768 static void setup_zone_migrate_reserve(struct zone
*zone
)
2770 unsigned long start_pfn
, pfn
, end_pfn
;
2772 unsigned long reserve
, block_migratetype
;
2774 /* Get the start pfn, end pfn and the number of blocks to reserve */
2775 start_pfn
= zone
->zone_start_pfn
;
2776 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2777 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2780 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2781 if (!pfn_valid(pfn
))
2783 page
= pfn_to_page(pfn
);
2785 /* Watch out for overlapping nodes */
2786 if (page_to_nid(page
) != zone_to_nid(zone
))
2789 /* Blocks with reserved pages will never free, skip them. */
2790 if (PageReserved(page
))
2793 block_migratetype
= get_pageblock_migratetype(page
);
2795 /* If this block is reserved, account for it */
2796 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2801 /* Suitable for reserving if this block is movable */
2802 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2803 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2804 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2810 * If the reserve is met and this is a previous reserved block,
2813 if (block_migratetype
== MIGRATE_RESERVE
) {
2814 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2815 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2821 * Initially all pages are reserved - free ones are freed
2822 * up by free_all_bootmem() once the early boot process is
2823 * done. Non-atomic initialization, single-pass.
2825 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2826 unsigned long start_pfn
, enum memmap_context context
)
2829 unsigned long end_pfn
= start_pfn
+ size
;
2833 if (highest_memmap_pfn
< end_pfn
- 1)
2834 highest_memmap_pfn
= end_pfn
- 1;
2836 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2837 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2839 * There can be holes in boot-time mem_map[]s
2840 * handed to this function. They do not
2841 * exist on hotplugged memory.
2843 if (context
== MEMMAP_EARLY
) {
2844 if (!early_pfn_valid(pfn
))
2846 if (!early_pfn_in_nid(pfn
, nid
))
2849 page
= pfn_to_page(pfn
);
2850 set_page_links(page
, zone
, nid
, pfn
);
2851 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2852 init_page_count(page
);
2853 reset_page_mapcount(page
);
2854 SetPageReserved(page
);
2856 * Mark the block movable so that blocks are reserved for
2857 * movable at startup. This will force kernel allocations
2858 * to reserve their blocks rather than leaking throughout
2859 * the address space during boot when many long-lived
2860 * kernel allocations are made. Later some blocks near
2861 * the start are marked MIGRATE_RESERVE by
2862 * setup_zone_migrate_reserve()
2864 * bitmap is created for zone's valid pfn range. but memmap
2865 * can be created for invalid pages (for alignment)
2866 * check here not to call set_pageblock_migratetype() against
2869 if ((z
->zone_start_pfn
<= pfn
)
2870 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2871 && !(pfn
& (pageblock_nr_pages
- 1)))
2872 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2874 INIT_LIST_HEAD(&page
->lru
);
2875 #ifdef WANT_PAGE_VIRTUAL
2876 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2877 if (!is_highmem_idx(zone
))
2878 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2883 static void __meminit
zone_init_free_lists(struct zone
*zone
)
2886 for_each_migratetype_order(order
, t
) {
2887 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2888 zone
->free_area
[order
].nr_free
= 0;
2892 #ifndef __HAVE_ARCH_MEMMAP_INIT
2893 #define memmap_init(size, nid, zone, start_pfn) \
2894 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2897 static int zone_batchsize(struct zone
*zone
)
2903 * The per-cpu-pages pools are set to around 1000th of the
2904 * size of the zone. But no more than 1/2 of a meg.
2906 * OK, so we don't know how big the cache is. So guess.
2908 batch
= zone
->present_pages
/ 1024;
2909 if (batch
* PAGE_SIZE
> 512 * 1024)
2910 batch
= (512 * 1024) / PAGE_SIZE
;
2911 batch
/= 4; /* We effectively *= 4 below */
2916 * Clamp the batch to a 2^n - 1 value. Having a power
2917 * of 2 value was found to be more likely to have
2918 * suboptimal cache aliasing properties in some cases.
2920 * For example if 2 tasks are alternately allocating
2921 * batches of pages, one task can end up with a lot
2922 * of pages of one half of the possible page colors
2923 * and the other with pages of the other colors.
2925 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
2930 /* The deferral and batching of frees should be suppressed under NOMMU
2933 * The problem is that NOMMU needs to be able to allocate large chunks
2934 * of contiguous memory as there's no hardware page translation to
2935 * assemble apparent contiguous memory from discontiguous pages.
2937 * Queueing large contiguous runs of pages for batching, however,
2938 * causes the pages to actually be freed in smaller chunks. As there
2939 * can be a significant delay between the individual batches being
2940 * recycled, this leads to the once large chunks of space being
2941 * fragmented and becoming unavailable for high-order allocations.
2947 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2949 struct per_cpu_pages
*pcp
;
2951 memset(p
, 0, sizeof(*p
));
2955 pcp
->high
= 6 * batch
;
2956 pcp
->batch
= max(1UL, 1 * batch
);
2957 INIT_LIST_HEAD(&pcp
->list
);
2961 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2962 * to the value high for the pageset p.
2965 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2968 struct per_cpu_pages
*pcp
;
2972 pcp
->batch
= max(1UL, high
/4);
2973 if ((high
/4) > (PAGE_SHIFT
* 8))
2974 pcp
->batch
= PAGE_SHIFT
* 8;
2980 * Boot pageset table. One per cpu which is going to be used for all
2981 * zones and all nodes. The parameters will be set in such a way
2982 * that an item put on a list will immediately be handed over to
2983 * the buddy list. This is safe since pageset manipulation is done
2984 * with interrupts disabled.
2986 * Some NUMA counter updates may also be caught by the boot pagesets.
2988 * The boot_pagesets must be kept even after bootup is complete for
2989 * unused processors and/or zones. They do play a role for bootstrapping
2990 * hotplugged processors.
2992 * zoneinfo_show() and maybe other functions do
2993 * not check if the processor is online before following the pageset pointer.
2994 * Other parts of the kernel may not check if the zone is available.
2996 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2999 * Dynamically allocate memory for the
3000 * per cpu pageset array in struct zone.
3002 static int __cpuinit
process_zones(int cpu
)
3004 struct zone
*zone
, *dzone
;
3005 int node
= cpu_to_node(cpu
);
3007 node_set_state(node
, N_CPU
); /* this node has a cpu */
3009 for_each_populated_zone(zone
) {
3010 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3012 if (!zone_pcp(zone
, cpu
))
3015 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3017 if (percpu_pagelist_fraction
)
3018 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3019 (zone
->present_pages
/ percpu_pagelist_fraction
));
3024 for_each_zone(dzone
) {
3025 if (!populated_zone(dzone
))
3029 kfree(zone_pcp(dzone
, cpu
));
3030 zone_pcp(dzone
, cpu
) = NULL
;
3035 static inline void free_zone_pagesets(int cpu
)
3039 for_each_zone(zone
) {
3040 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3042 /* Free per_cpu_pageset if it is slab allocated */
3043 if (pset
!= &boot_pageset
[cpu
])
3045 zone_pcp(zone
, cpu
) = NULL
;
3049 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3050 unsigned long action
,
3053 int cpu
= (long)hcpu
;
3054 int ret
= NOTIFY_OK
;
3057 case CPU_UP_PREPARE
:
3058 case CPU_UP_PREPARE_FROZEN
:
3059 if (process_zones(cpu
))
3062 case CPU_UP_CANCELED
:
3063 case CPU_UP_CANCELED_FROZEN
:
3065 case CPU_DEAD_FROZEN
:
3066 free_zone_pagesets(cpu
);
3074 static struct notifier_block __cpuinitdata pageset_notifier
=
3075 { &pageset_cpuup_callback
, NULL
, 0 };
3077 void __init
setup_per_cpu_pageset(void)
3081 /* Initialize per_cpu_pageset for cpu 0.
3082 * A cpuup callback will do this for every cpu
3083 * as it comes online
3085 err
= process_zones(smp_processor_id());
3087 register_cpu_notifier(&pageset_notifier
);
3092 static noinline __init_refok
3093 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3096 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3100 * The per-page waitqueue mechanism uses hashed waitqueues
3103 zone
->wait_table_hash_nr_entries
=
3104 wait_table_hash_nr_entries(zone_size_pages
);
3105 zone
->wait_table_bits
=
3106 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3107 alloc_size
= zone
->wait_table_hash_nr_entries
3108 * sizeof(wait_queue_head_t
);
3110 if (!slab_is_available()) {
3111 zone
->wait_table
= (wait_queue_head_t
*)
3112 alloc_bootmem_node(pgdat
, alloc_size
);
3115 * This case means that a zone whose size was 0 gets new memory
3116 * via memory hot-add.
3117 * But it may be the case that a new node was hot-added. In
3118 * this case vmalloc() will not be able to use this new node's
3119 * memory - this wait_table must be initialized to use this new
3120 * node itself as well.
3121 * To use this new node's memory, further consideration will be
3124 zone
->wait_table
= vmalloc(alloc_size
);
3126 if (!zone
->wait_table
)
3129 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3130 init_waitqueue_head(zone
->wait_table
+ i
);
3135 static __meminit
void zone_pcp_init(struct zone
*zone
)
3138 unsigned long batch
= zone_batchsize(zone
);
3140 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3142 /* Early boot. Slab allocator not functional yet */
3143 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3144 setup_pageset(&boot_pageset
[cpu
],0);
3146 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3149 if (zone
->present_pages
)
3150 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3151 zone
->name
, zone
->present_pages
, batch
);
3154 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3155 unsigned long zone_start_pfn
,
3157 enum memmap_context context
)
3159 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3161 ret
= zone_wait_table_init(zone
, size
);
3164 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3166 zone
->zone_start_pfn
= zone_start_pfn
;
3168 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3169 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3171 (unsigned long)zone_idx(zone
),
3172 zone_start_pfn
, (zone_start_pfn
+ size
));
3174 zone_init_free_lists(zone
);
3179 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3181 * Basic iterator support. Return the first range of PFNs for a node
3182 * Note: nid == MAX_NUMNODES returns first region regardless of node
3184 static int __meminit
first_active_region_index_in_nid(int nid
)
3188 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3189 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3196 * Basic iterator support. Return the next active range of PFNs for a node
3197 * Note: nid == MAX_NUMNODES returns next region regardless of node
3199 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3201 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3202 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3208 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3210 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3211 * Architectures may implement their own version but if add_active_range()
3212 * was used and there are no special requirements, this is a convenient
3215 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3219 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3220 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3221 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3223 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3224 return early_node_map
[i
].nid
;
3226 /* This is a memory hole */
3229 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3231 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3235 nid
= __early_pfn_to_nid(pfn
);
3238 /* just returns 0 */
3242 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3243 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3247 nid
= __early_pfn_to_nid(pfn
);
3248 if (nid
>= 0 && nid
!= node
)
3254 /* Basic iterator support to walk early_node_map[] */
3255 #define for_each_active_range_index_in_nid(i, nid) \
3256 for (i = first_active_region_index_in_nid(nid); i != -1; \
3257 i = next_active_region_index_in_nid(i, nid))
3260 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3261 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3262 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3264 * If an architecture guarantees that all ranges registered with
3265 * add_active_ranges() contain no holes and may be freed, this
3266 * this function may be used instead of calling free_bootmem() manually.
3268 void __init
free_bootmem_with_active_regions(int nid
,
3269 unsigned long max_low_pfn
)
3273 for_each_active_range_index_in_nid(i
, nid
) {
3274 unsigned long size_pages
= 0;
3275 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3277 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3280 if (end_pfn
> max_low_pfn
)
3281 end_pfn
= max_low_pfn
;
3283 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3284 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3285 PFN_PHYS(early_node_map
[i
].start_pfn
),
3286 size_pages
<< PAGE_SHIFT
);
3290 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3295 for_each_active_range_index_in_nid(i
, nid
) {
3296 ret
= work_fn(early_node_map
[i
].start_pfn
,
3297 early_node_map
[i
].end_pfn
, data
);
3303 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3304 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3306 * If an architecture guarantees that all ranges registered with
3307 * add_active_ranges() contain no holes and may be freed, this
3308 * function may be used instead of calling memory_present() manually.
3310 void __init
sparse_memory_present_with_active_regions(int nid
)
3314 for_each_active_range_index_in_nid(i
, nid
)
3315 memory_present(early_node_map
[i
].nid
,
3316 early_node_map
[i
].start_pfn
,
3317 early_node_map
[i
].end_pfn
);
3321 * get_pfn_range_for_nid - Return the start and end page frames for a node
3322 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3323 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3324 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3326 * It returns the start and end page frame of a node based on information
3327 * provided by an arch calling add_active_range(). If called for a node
3328 * with no available memory, a warning is printed and the start and end
3331 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3332 unsigned long *start_pfn
, unsigned long *end_pfn
)
3338 for_each_active_range_index_in_nid(i
, nid
) {
3339 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3340 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3343 if (*start_pfn
== -1UL)
3348 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3349 * assumption is made that zones within a node are ordered in monotonic
3350 * increasing memory addresses so that the "highest" populated zone is used
3352 static void __init
find_usable_zone_for_movable(void)
3355 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3356 if (zone_index
== ZONE_MOVABLE
)
3359 if (arch_zone_highest_possible_pfn
[zone_index
] >
3360 arch_zone_lowest_possible_pfn
[zone_index
])
3364 VM_BUG_ON(zone_index
== -1);
3365 movable_zone
= zone_index
;
3369 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3370 * because it is sized independant of architecture. Unlike the other zones,
3371 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3372 * in each node depending on the size of each node and how evenly kernelcore
3373 * is distributed. This helper function adjusts the zone ranges
3374 * provided by the architecture for a given node by using the end of the
3375 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3376 * zones within a node are in order of monotonic increases memory addresses
3378 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3379 unsigned long zone_type
,
3380 unsigned long node_start_pfn
,
3381 unsigned long node_end_pfn
,
3382 unsigned long *zone_start_pfn
,
3383 unsigned long *zone_end_pfn
)
3385 /* Only adjust if ZONE_MOVABLE is on this node */
3386 if (zone_movable_pfn
[nid
]) {
3387 /* Size ZONE_MOVABLE */
3388 if (zone_type
== ZONE_MOVABLE
) {
3389 *zone_start_pfn
= zone_movable_pfn
[nid
];
3390 *zone_end_pfn
= min(node_end_pfn
,
3391 arch_zone_highest_possible_pfn
[movable_zone
]);
3393 /* Adjust for ZONE_MOVABLE starting within this range */
3394 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3395 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3396 *zone_end_pfn
= zone_movable_pfn
[nid
];
3398 /* Check if this whole range is within ZONE_MOVABLE */
3399 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3400 *zone_start_pfn
= *zone_end_pfn
;
3405 * Return the number of pages a zone spans in a node, including holes
3406 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3408 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3409 unsigned long zone_type
,
3410 unsigned long *ignored
)
3412 unsigned long node_start_pfn
, node_end_pfn
;
3413 unsigned long zone_start_pfn
, zone_end_pfn
;
3415 /* Get the start and end of the node and zone */
3416 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3417 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3418 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3419 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3420 node_start_pfn
, node_end_pfn
,
3421 &zone_start_pfn
, &zone_end_pfn
);
3423 /* Check that this node has pages within the zone's required range */
3424 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3427 /* Move the zone boundaries inside the node if necessary */
3428 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3429 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3431 /* Return the spanned pages */
3432 return zone_end_pfn
- zone_start_pfn
;
3436 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3437 * then all holes in the requested range will be accounted for.
3439 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3440 unsigned long range_start_pfn
,
3441 unsigned long range_end_pfn
)
3444 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3445 unsigned long start_pfn
;
3447 /* Find the end_pfn of the first active range of pfns in the node */
3448 i
= first_active_region_index_in_nid(nid
);
3452 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3454 /* Account for ranges before physical memory on this node */
3455 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3456 hole_pages
= prev_end_pfn
- range_start_pfn
;
3458 /* Find all holes for the zone within the node */
3459 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3461 /* No need to continue if prev_end_pfn is outside the zone */
3462 if (prev_end_pfn
>= range_end_pfn
)
3465 /* Make sure the end of the zone is not within the hole */
3466 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3467 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3469 /* Update the hole size cound and move on */
3470 if (start_pfn
> range_start_pfn
) {
3471 BUG_ON(prev_end_pfn
> start_pfn
);
3472 hole_pages
+= start_pfn
- prev_end_pfn
;
3474 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3477 /* Account for ranges past physical memory on this node */
3478 if (range_end_pfn
> prev_end_pfn
)
3479 hole_pages
+= range_end_pfn
-
3480 max(range_start_pfn
, prev_end_pfn
);
3486 * absent_pages_in_range - Return number of page frames in holes within a range
3487 * @start_pfn: The start PFN to start searching for holes
3488 * @end_pfn: The end PFN to stop searching for holes
3490 * It returns the number of pages frames in memory holes within a range.
3492 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3493 unsigned long end_pfn
)
3495 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3498 /* Return the number of page frames in holes in a zone on a node */
3499 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3500 unsigned long zone_type
,
3501 unsigned long *ignored
)
3503 unsigned long node_start_pfn
, node_end_pfn
;
3504 unsigned long zone_start_pfn
, zone_end_pfn
;
3506 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3507 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3509 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3512 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3513 node_start_pfn
, node_end_pfn
,
3514 &zone_start_pfn
, &zone_end_pfn
);
3515 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3519 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3520 unsigned long zone_type
,
3521 unsigned long *zones_size
)
3523 return zones_size
[zone_type
];
3526 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3527 unsigned long zone_type
,
3528 unsigned long *zholes_size
)
3533 return zholes_size
[zone_type
];
3538 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3539 unsigned long *zones_size
, unsigned long *zholes_size
)
3541 unsigned long realtotalpages
, totalpages
= 0;
3544 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3545 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3547 pgdat
->node_spanned_pages
= totalpages
;
3549 realtotalpages
= totalpages
;
3550 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3552 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3554 pgdat
->node_present_pages
= realtotalpages
;
3555 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3559 #ifndef CONFIG_SPARSEMEM
3561 * Calculate the size of the zone->blockflags rounded to an unsigned long
3562 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3563 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3564 * round what is now in bits to nearest long in bits, then return it in
3567 static unsigned long __init
usemap_size(unsigned long zonesize
)
3569 unsigned long usemapsize
;
3571 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3572 usemapsize
= usemapsize
>> pageblock_order
;
3573 usemapsize
*= NR_PAGEBLOCK_BITS
;
3574 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3576 return usemapsize
/ 8;
3579 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3580 struct zone
*zone
, unsigned long zonesize
)
3582 unsigned long usemapsize
= usemap_size(zonesize
);
3583 zone
->pageblock_flags
= NULL
;
3585 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3588 static void inline setup_usemap(struct pglist_data
*pgdat
,
3589 struct zone
*zone
, unsigned long zonesize
) {}
3590 #endif /* CONFIG_SPARSEMEM */
3592 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3594 /* Return a sensible default order for the pageblock size. */
3595 static inline int pageblock_default_order(void)
3597 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3598 return HUGETLB_PAGE_ORDER
;
3603 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3604 static inline void __init
set_pageblock_order(unsigned int order
)
3606 /* Check that pageblock_nr_pages has not already been setup */
3607 if (pageblock_order
)
3611 * Assume the largest contiguous order of interest is a huge page.
3612 * This value may be variable depending on boot parameters on IA64
3614 pageblock_order
= order
;
3616 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3619 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3620 * and pageblock_default_order() are unused as pageblock_order is set
3621 * at compile-time. See include/linux/pageblock-flags.h for the values of
3622 * pageblock_order based on the kernel config
3624 static inline int pageblock_default_order(unsigned int order
)
3628 #define set_pageblock_order(x) do {} while (0)
3630 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3633 * Set up the zone data structures:
3634 * - mark all pages reserved
3635 * - mark all memory queues empty
3636 * - clear the memory bitmaps
3638 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3639 unsigned long *zones_size
, unsigned long *zholes_size
)
3642 int nid
= pgdat
->node_id
;
3643 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3646 pgdat_resize_init(pgdat
);
3647 pgdat
->nr_zones
= 0;
3648 init_waitqueue_head(&pgdat
->kswapd_wait
);
3649 pgdat
->kswapd_max_order
= 0;
3650 pgdat_page_cgroup_init(pgdat
);
3652 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3653 struct zone
*zone
= pgdat
->node_zones
+ j
;
3654 unsigned long size
, realsize
, memmap_pages
;
3657 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3658 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3662 * Adjust realsize so that it accounts for how much memory
3663 * is used by this zone for memmap. This affects the watermark
3664 * and per-cpu initialisations
3667 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3668 if (realsize
>= memmap_pages
) {
3669 realsize
-= memmap_pages
;
3672 " %s zone: %lu pages used for memmap\n",
3673 zone_names
[j
], memmap_pages
);
3676 " %s zone: %lu pages exceeds realsize %lu\n",
3677 zone_names
[j
], memmap_pages
, realsize
);
3679 /* Account for reserved pages */
3680 if (j
== 0 && realsize
> dma_reserve
) {
3681 realsize
-= dma_reserve
;
3682 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3683 zone_names
[0], dma_reserve
);
3686 if (!is_highmem_idx(j
))
3687 nr_kernel_pages
+= realsize
;
3688 nr_all_pages
+= realsize
;
3690 zone
->spanned_pages
= size
;
3691 zone
->present_pages
= realsize
;
3694 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3696 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3698 zone
->name
= zone_names
[j
];
3699 spin_lock_init(&zone
->lock
);
3700 spin_lock_init(&zone
->lru_lock
);
3701 zone_seqlock_init(zone
);
3702 zone
->zone_pgdat
= pgdat
;
3704 zone
->prev_priority
= DEF_PRIORITY
;
3706 zone_pcp_init(zone
);
3708 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3709 zone
->lru
[l
].nr_saved_scan
= 0;
3711 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3712 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3713 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3714 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3715 zap_zone_vm_stats(zone
);
3720 set_pageblock_order(pageblock_default_order());
3721 setup_usemap(pgdat
, zone
, size
);
3722 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3723 size
, MEMMAP_EARLY
);
3725 memmap_init(size
, nid
, j
, zone_start_pfn
);
3726 zone_start_pfn
+= size
;
3730 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3732 /* Skip empty nodes */
3733 if (!pgdat
->node_spanned_pages
)
3736 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3737 /* ia64 gets its own node_mem_map, before this, without bootmem */
3738 if (!pgdat
->node_mem_map
) {
3739 unsigned long size
, start
, end
;
3743 * The zone's endpoints aren't required to be MAX_ORDER
3744 * aligned but the node_mem_map endpoints must be in order
3745 * for the buddy allocator to function correctly.
3747 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3748 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3749 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3750 size
= (end
- start
) * sizeof(struct page
);
3751 map
= alloc_remap(pgdat
->node_id
, size
);
3753 map
= alloc_bootmem_node(pgdat
, size
);
3754 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3756 #ifndef CONFIG_NEED_MULTIPLE_NODES
3758 * With no DISCONTIG, the global mem_map is just set as node 0's
3760 if (pgdat
== NODE_DATA(0)) {
3761 mem_map
= NODE_DATA(0)->node_mem_map
;
3762 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3763 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3764 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3765 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3768 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3771 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3772 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3774 pg_data_t
*pgdat
= NODE_DATA(nid
);
3776 pgdat
->node_id
= nid
;
3777 pgdat
->node_start_pfn
= node_start_pfn
;
3778 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3780 alloc_node_mem_map(pgdat
);
3781 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3782 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3783 nid
, (unsigned long)pgdat
,
3784 (unsigned long)pgdat
->node_mem_map
);
3787 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3790 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3792 #if MAX_NUMNODES > 1
3794 * Figure out the number of possible node ids.
3796 static void __init
setup_nr_node_ids(void)
3799 unsigned int highest
= 0;
3801 for_each_node_mask(node
, node_possible_map
)
3803 nr_node_ids
= highest
+ 1;
3806 static inline void setup_nr_node_ids(void)
3812 * add_active_range - Register a range of PFNs backed by physical memory
3813 * @nid: The node ID the range resides on
3814 * @start_pfn: The start PFN of the available physical memory
3815 * @end_pfn: The end PFN of the available physical memory
3817 * These ranges are stored in an early_node_map[] and later used by
3818 * free_area_init_nodes() to calculate zone sizes and holes. If the
3819 * range spans a memory hole, it is up to the architecture to ensure
3820 * the memory is not freed by the bootmem allocator. If possible
3821 * the range being registered will be merged with existing ranges.
3823 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3824 unsigned long end_pfn
)
3828 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3829 "Entering add_active_range(%d, %#lx, %#lx) "
3830 "%d entries of %d used\n",
3831 nid
, start_pfn
, end_pfn
,
3832 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3834 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3836 /* Merge with existing active regions if possible */
3837 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3838 if (early_node_map
[i
].nid
!= nid
)
3841 /* Skip if an existing region covers this new one */
3842 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3843 end_pfn
<= early_node_map
[i
].end_pfn
)
3846 /* Merge forward if suitable */
3847 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3848 end_pfn
> early_node_map
[i
].end_pfn
) {
3849 early_node_map
[i
].end_pfn
= end_pfn
;
3853 /* Merge backward if suitable */
3854 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3855 end_pfn
>= early_node_map
[i
].start_pfn
) {
3856 early_node_map
[i
].start_pfn
= start_pfn
;
3861 /* Check that early_node_map is large enough */
3862 if (i
>= MAX_ACTIVE_REGIONS
) {
3863 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3864 MAX_ACTIVE_REGIONS
);
3868 early_node_map
[i
].nid
= nid
;
3869 early_node_map
[i
].start_pfn
= start_pfn
;
3870 early_node_map
[i
].end_pfn
= end_pfn
;
3871 nr_nodemap_entries
= i
+ 1;
3875 * remove_active_range - Shrink an existing registered range of PFNs
3876 * @nid: The node id the range is on that should be shrunk
3877 * @start_pfn: The new PFN of the range
3878 * @end_pfn: The new PFN of the range
3880 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3881 * The map is kept near the end physical page range that has already been
3882 * registered. This function allows an arch to shrink an existing registered
3885 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
3886 unsigned long end_pfn
)
3891 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
3892 nid
, start_pfn
, end_pfn
);
3894 /* Find the old active region end and shrink */
3895 for_each_active_range_index_in_nid(i
, nid
) {
3896 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3897 early_node_map
[i
].end_pfn
<= end_pfn
) {
3899 early_node_map
[i
].start_pfn
= 0;
3900 early_node_map
[i
].end_pfn
= 0;
3904 if (early_node_map
[i
].start_pfn
< start_pfn
&&
3905 early_node_map
[i
].end_pfn
> start_pfn
) {
3906 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
3907 early_node_map
[i
].end_pfn
= start_pfn
;
3908 if (temp_end_pfn
> end_pfn
)
3909 add_active_range(nid
, end_pfn
, temp_end_pfn
);
3912 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
3913 early_node_map
[i
].end_pfn
> end_pfn
&&
3914 early_node_map
[i
].start_pfn
< end_pfn
) {
3915 early_node_map
[i
].start_pfn
= end_pfn
;
3923 /* remove the blank ones */
3924 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
3925 if (early_node_map
[i
].nid
!= nid
)
3927 if (early_node_map
[i
].end_pfn
)
3929 /* we found it, get rid of it */
3930 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
3931 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
3932 sizeof(early_node_map
[j
]));
3933 j
= nr_nodemap_entries
- 1;
3934 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
3935 nr_nodemap_entries
--;
3940 * remove_all_active_ranges - Remove all currently registered regions
3942 * During discovery, it may be found that a table like SRAT is invalid
3943 * and an alternative discovery method must be used. This function removes
3944 * all currently registered regions.
3946 void __init
remove_all_active_ranges(void)
3948 memset(early_node_map
, 0, sizeof(early_node_map
));
3949 nr_nodemap_entries
= 0;
3952 /* Compare two active node_active_regions */
3953 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3955 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3956 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3958 /* Done this way to avoid overflows */
3959 if (arange
->start_pfn
> brange
->start_pfn
)
3961 if (arange
->start_pfn
< brange
->start_pfn
)
3967 /* sort the node_map by start_pfn */
3968 static void __init
sort_node_map(void)
3970 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3971 sizeof(struct node_active_region
),
3972 cmp_node_active_region
, NULL
);
3975 /* Find the lowest pfn for a node */
3976 static unsigned long __init
find_min_pfn_for_node(int nid
)
3979 unsigned long min_pfn
= ULONG_MAX
;
3981 /* Assuming a sorted map, the first range found has the starting pfn */
3982 for_each_active_range_index_in_nid(i
, nid
)
3983 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3985 if (min_pfn
== ULONG_MAX
) {
3987 "Could not find start_pfn for node %d\n", nid
);
3995 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3997 * It returns the minimum PFN based on information provided via
3998 * add_active_range().
4000 unsigned long __init
find_min_pfn_with_active_regions(void)
4002 return find_min_pfn_for_node(MAX_NUMNODES
);
4006 * early_calculate_totalpages()
4007 * Sum pages in active regions for movable zone.
4008 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4010 static unsigned long __init
early_calculate_totalpages(void)
4013 unsigned long totalpages
= 0;
4015 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4016 unsigned long pages
= early_node_map
[i
].end_pfn
-
4017 early_node_map
[i
].start_pfn
;
4018 totalpages
+= pages
;
4020 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4026 * Find the PFN the Movable zone begins in each node. Kernel memory
4027 * is spread evenly between nodes as long as the nodes have enough
4028 * memory. When they don't, some nodes will have more kernelcore than
4031 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4034 unsigned long usable_startpfn
;
4035 unsigned long kernelcore_node
, kernelcore_remaining
;
4036 unsigned long totalpages
= early_calculate_totalpages();
4037 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4040 * If movablecore was specified, calculate what size of
4041 * kernelcore that corresponds so that memory usable for
4042 * any allocation type is evenly spread. If both kernelcore
4043 * and movablecore are specified, then the value of kernelcore
4044 * will be used for required_kernelcore if it's greater than
4045 * what movablecore would have allowed.
4047 if (required_movablecore
) {
4048 unsigned long corepages
;
4051 * Round-up so that ZONE_MOVABLE is at least as large as what
4052 * was requested by the user
4054 required_movablecore
=
4055 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4056 corepages
= totalpages
- required_movablecore
;
4058 required_kernelcore
= max(required_kernelcore
, corepages
);
4061 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4062 if (!required_kernelcore
)
4065 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4066 find_usable_zone_for_movable();
4067 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4070 /* Spread kernelcore memory as evenly as possible throughout nodes */
4071 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4072 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4074 * Recalculate kernelcore_node if the division per node
4075 * now exceeds what is necessary to satisfy the requested
4076 * amount of memory for the kernel
4078 if (required_kernelcore
< kernelcore_node
)
4079 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4082 * As the map is walked, we track how much memory is usable
4083 * by the kernel using kernelcore_remaining. When it is
4084 * 0, the rest of the node is usable by ZONE_MOVABLE
4086 kernelcore_remaining
= kernelcore_node
;
4088 /* Go through each range of PFNs within this node */
4089 for_each_active_range_index_in_nid(i
, nid
) {
4090 unsigned long start_pfn
, end_pfn
;
4091 unsigned long size_pages
;
4093 start_pfn
= max(early_node_map
[i
].start_pfn
,
4094 zone_movable_pfn
[nid
]);
4095 end_pfn
= early_node_map
[i
].end_pfn
;
4096 if (start_pfn
>= end_pfn
)
4099 /* Account for what is only usable for kernelcore */
4100 if (start_pfn
< usable_startpfn
) {
4101 unsigned long kernel_pages
;
4102 kernel_pages
= min(end_pfn
, usable_startpfn
)
4105 kernelcore_remaining
-= min(kernel_pages
,
4106 kernelcore_remaining
);
4107 required_kernelcore
-= min(kernel_pages
,
4108 required_kernelcore
);
4110 /* Continue if range is now fully accounted */
4111 if (end_pfn
<= usable_startpfn
) {
4114 * Push zone_movable_pfn to the end so
4115 * that if we have to rebalance
4116 * kernelcore across nodes, we will
4117 * not double account here
4119 zone_movable_pfn
[nid
] = end_pfn
;
4122 start_pfn
= usable_startpfn
;
4126 * The usable PFN range for ZONE_MOVABLE is from
4127 * start_pfn->end_pfn. Calculate size_pages as the
4128 * number of pages used as kernelcore
4130 size_pages
= end_pfn
- start_pfn
;
4131 if (size_pages
> kernelcore_remaining
)
4132 size_pages
= kernelcore_remaining
;
4133 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4136 * Some kernelcore has been met, update counts and
4137 * break if the kernelcore for this node has been
4140 required_kernelcore
-= min(required_kernelcore
,
4142 kernelcore_remaining
-= size_pages
;
4143 if (!kernelcore_remaining
)
4149 * If there is still required_kernelcore, we do another pass with one
4150 * less node in the count. This will push zone_movable_pfn[nid] further
4151 * along on the nodes that still have memory until kernelcore is
4155 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4158 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4159 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4160 zone_movable_pfn
[nid
] =
4161 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4164 /* Any regular memory on that node ? */
4165 static void check_for_regular_memory(pg_data_t
*pgdat
)
4167 #ifdef CONFIG_HIGHMEM
4168 enum zone_type zone_type
;
4170 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4171 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4172 if (zone
->present_pages
)
4173 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4179 * free_area_init_nodes - Initialise all pg_data_t and zone data
4180 * @max_zone_pfn: an array of max PFNs for each zone
4182 * This will call free_area_init_node() for each active node in the system.
4183 * Using the page ranges provided by add_active_range(), the size of each
4184 * zone in each node and their holes is calculated. If the maximum PFN
4185 * between two adjacent zones match, it is assumed that the zone is empty.
4186 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4187 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4188 * starts where the previous one ended. For example, ZONE_DMA32 starts
4189 * at arch_max_dma_pfn.
4191 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4196 /* Sort early_node_map as initialisation assumes it is sorted */
4199 /* Record where the zone boundaries are */
4200 memset(arch_zone_lowest_possible_pfn
, 0,
4201 sizeof(arch_zone_lowest_possible_pfn
));
4202 memset(arch_zone_highest_possible_pfn
, 0,
4203 sizeof(arch_zone_highest_possible_pfn
));
4204 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4205 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4206 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4207 if (i
== ZONE_MOVABLE
)
4209 arch_zone_lowest_possible_pfn
[i
] =
4210 arch_zone_highest_possible_pfn
[i
-1];
4211 arch_zone_highest_possible_pfn
[i
] =
4212 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4214 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4215 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4217 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4218 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4219 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4221 /* Print out the zone ranges */
4222 printk("Zone PFN ranges:\n");
4223 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4224 if (i
== ZONE_MOVABLE
)
4226 printk(" %-8s %0#10lx -> %0#10lx\n",
4228 arch_zone_lowest_possible_pfn
[i
],
4229 arch_zone_highest_possible_pfn
[i
]);
4232 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4233 printk("Movable zone start PFN for each node\n");
4234 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4235 if (zone_movable_pfn
[i
])
4236 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4239 /* Print out the early_node_map[] */
4240 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4241 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4242 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4243 early_node_map
[i
].start_pfn
,
4244 early_node_map
[i
].end_pfn
);
4247 * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
4248 * that node_mask, clear it at first
4250 nodes_clear(node_states
[N_HIGH_MEMORY
]);
4251 /* Initialise every node */
4252 mminit_verify_pageflags_layout();
4253 setup_nr_node_ids();
4254 for_each_online_node(nid
) {
4255 pg_data_t
*pgdat
= NODE_DATA(nid
);
4256 free_area_init_node(nid
, NULL
,
4257 find_min_pfn_for_node(nid
), NULL
);
4259 /* Any memory on that node */
4260 if (pgdat
->node_present_pages
)
4261 node_set_state(nid
, N_HIGH_MEMORY
);
4262 check_for_regular_memory(pgdat
);
4266 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4268 unsigned long long coremem
;
4272 coremem
= memparse(p
, &p
);
4273 *core
= coremem
>> PAGE_SHIFT
;
4275 /* Paranoid check that UL is enough for the coremem value */
4276 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4282 * kernelcore=size sets the amount of memory for use for allocations that
4283 * cannot be reclaimed or migrated.
4285 static int __init
cmdline_parse_kernelcore(char *p
)
4287 return cmdline_parse_core(p
, &required_kernelcore
);
4291 * movablecore=size sets the amount of memory for use for allocations that
4292 * can be reclaimed or migrated.
4294 static int __init
cmdline_parse_movablecore(char *p
)
4296 return cmdline_parse_core(p
, &required_movablecore
);
4299 early_param("kernelcore", cmdline_parse_kernelcore
);
4300 early_param("movablecore", cmdline_parse_movablecore
);
4302 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4305 * set_dma_reserve - set the specified number of pages reserved in the first zone
4306 * @new_dma_reserve: The number of pages to mark reserved
4308 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4309 * In the DMA zone, a significant percentage may be consumed by kernel image
4310 * and other unfreeable allocations which can skew the watermarks badly. This
4311 * function may optionally be used to account for unfreeable pages in the
4312 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4313 * smaller per-cpu batchsize.
4315 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4317 dma_reserve
= new_dma_reserve
;
4320 #ifndef CONFIG_NEED_MULTIPLE_NODES
4321 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4322 EXPORT_SYMBOL(contig_page_data
);
4325 void __init
free_area_init(unsigned long *zones_size
)
4327 free_area_init_node(0, zones_size
,
4328 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4331 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4332 unsigned long action
, void *hcpu
)
4334 int cpu
= (unsigned long)hcpu
;
4336 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4340 * Spill the event counters of the dead processor
4341 * into the current processors event counters.
4342 * This artificially elevates the count of the current
4345 vm_events_fold_cpu(cpu
);
4348 * Zero the differential counters of the dead processor
4349 * so that the vm statistics are consistent.
4351 * This is only okay since the processor is dead and cannot
4352 * race with what we are doing.
4354 refresh_cpu_vm_stats(cpu
);
4359 void __init
page_alloc_init(void)
4361 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4365 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4366 * or min_free_kbytes changes.
4368 static void calculate_totalreserve_pages(void)
4370 struct pglist_data
*pgdat
;
4371 unsigned long reserve_pages
= 0;
4372 enum zone_type i
, j
;
4374 for_each_online_pgdat(pgdat
) {
4375 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4376 struct zone
*zone
= pgdat
->node_zones
+ i
;
4377 unsigned long max
= 0;
4379 /* Find valid and maximum lowmem_reserve in the zone */
4380 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4381 if (zone
->lowmem_reserve
[j
] > max
)
4382 max
= zone
->lowmem_reserve
[j
];
4385 /* we treat the high watermark as reserved pages. */
4386 max
+= high_wmark_pages(zone
);
4388 if (max
> zone
->present_pages
)
4389 max
= zone
->present_pages
;
4390 reserve_pages
+= max
;
4393 totalreserve_pages
= reserve_pages
;
4397 * setup_per_zone_lowmem_reserve - called whenever
4398 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4399 * has a correct pages reserved value, so an adequate number of
4400 * pages are left in the zone after a successful __alloc_pages().
4402 static void setup_per_zone_lowmem_reserve(void)
4404 struct pglist_data
*pgdat
;
4405 enum zone_type j
, idx
;
4407 for_each_online_pgdat(pgdat
) {
4408 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4409 struct zone
*zone
= pgdat
->node_zones
+ j
;
4410 unsigned long present_pages
= zone
->present_pages
;
4412 zone
->lowmem_reserve
[j
] = 0;
4416 struct zone
*lower_zone
;
4420 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4421 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4423 lower_zone
= pgdat
->node_zones
+ idx
;
4424 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4425 sysctl_lowmem_reserve_ratio
[idx
];
4426 present_pages
+= lower_zone
->present_pages
;
4431 /* update totalreserve_pages */
4432 calculate_totalreserve_pages();
4436 * setup_per_zone_wmarks - called when min_free_kbytes changes
4437 * or when memory is hot-{added|removed}
4439 * Ensures that the watermark[min,low,high] values for each zone are set
4440 * correctly with respect to min_free_kbytes.
4442 void setup_per_zone_wmarks(void)
4444 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4445 unsigned long lowmem_pages
= 0;
4447 unsigned long flags
;
4449 /* Calculate total number of !ZONE_HIGHMEM pages */
4450 for_each_zone(zone
) {
4451 if (!is_highmem(zone
))
4452 lowmem_pages
+= zone
->present_pages
;
4455 for_each_zone(zone
) {
4458 spin_lock_irqsave(&zone
->lock
, flags
);
4459 tmp
= (u64
)pages_min
* zone
->present_pages
;
4460 do_div(tmp
, lowmem_pages
);
4461 if (is_highmem(zone
)) {
4463 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4464 * need highmem pages, so cap pages_min to a small
4467 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4468 * deltas controls asynch page reclaim, and so should
4469 * not be capped for highmem.
4473 min_pages
= zone
->present_pages
/ 1024;
4474 if (min_pages
< SWAP_CLUSTER_MAX
)
4475 min_pages
= SWAP_CLUSTER_MAX
;
4476 if (min_pages
> 128)
4478 zone
->watermark
[WMARK_MIN
] = min_pages
;
4481 * If it's a lowmem zone, reserve a number of pages
4482 * proportionate to the zone's size.
4484 zone
->watermark
[WMARK_MIN
] = tmp
;
4487 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4488 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4489 setup_zone_migrate_reserve(zone
);
4490 spin_unlock_irqrestore(&zone
->lock
, flags
);
4493 /* update totalreserve_pages */
4494 calculate_totalreserve_pages();
4498 * The inactive anon list should be small enough that the VM never has to
4499 * do too much work, but large enough that each inactive page has a chance
4500 * to be referenced again before it is swapped out.
4502 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4503 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4504 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4505 * the anonymous pages are kept on the inactive list.
4508 * memory ratio inactive anon
4509 * -------------------------------------
4518 void calculate_zone_inactive_ratio(struct zone
*zone
)
4520 unsigned int gb
, ratio
;
4522 /* Zone size in gigabytes */
4523 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4525 ratio
= int_sqrt(10 * gb
);
4529 zone
->inactive_ratio
= ratio
;
4532 static void __init
setup_per_zone_inactive_ratio(void)
4537 calculate_zone_inactive_ratio(zone
);
4541 * Initialise min_free_kbytes.
4543 * For small machines we want it small (128k min). For large machines
4544 * we want it large (64MB max). But it is not linear, because network
4545 * bandwidth does not increase linearly with machine size. We use
4547 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4548 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4564 static int __init
init_per_zone_wmark_min(void)
4566 unsigned long lowmem_kbytes
;
4568 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4570 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4571 if (min_free_kbytes
< 128)
4572 min_free_kbytes
= 128;
4573 if (min_free_kbytes
> 65536)
4574 min_free_kbytes
= 65536;
4575 setup_per_zone_wmarks();
4576 setup_per_zone_lowmem_reserve();
4577 setup_per_zone_inactive_ratio();
4580 module_init(init_per_zone_wmark_min
)
4583 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4584 * that we can call two helper functions whenever min_free_kbytes
4587 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4588 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4590 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4592 setup_per_zone_wmarks();
4597 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4598 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4603 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4608 zone
->min_unmapped_pages
= (zone
->present_pages
*
4609 sysctl_min_unmapped_ratio
) / 100;
4613 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4614 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4619 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4624 zone
->min_slab_pages
= (zone
->present_pages
*
4625 sysctl_min_slab_ratio
) / 100;
4631 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4632 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4633 * whenever sysctl_lowmem_reserve_ratio changes.
4635 * The reserve ratio obviously has absolutely no relation with the
4636 * minimum watermarks. The lowmem reserve ratio can only make sense
4637 * if in function of the boot time zone sizes.
4639 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4640 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4642 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4643 setup_per_zone_lowmem_reserve();
4648 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4649 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4650 * can have before it gets flushed back to buddy allocator.
4653 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4654 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4660 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4661 if (!write
|| (ret
== -EINVAL
))
4663 for_each_zone(zone
) {
4664 for_each_online_cpu(cpu
) {
4666 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4667 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4673 int hashdist
= HASHDIST_DEFAULT
;
4676 static int __init
set_hashdist(char *str
)
4680 hashdist
= simple_strtoul(str
, &str
, 0);
4683 __setup("hashdist=", set_hashdist
);
4687 * allocate a large system hash table from bootmem
4688 * - it is assumed that the hash table must contain an exact power-of-2
4689 * quantity of entries
4690 * - limit is the number of hash buckets, not the total allocation size
4692 void *__init
alloc_large_system_hash(const char *tablename
,
4693 unsigned long bucketsize
,
4694 unsigned long numentries
,
4697 unsigned int *_hash_shift
,
4698 unsigned int *_hash_mask
,
4699 unsigned long limit
)
4701 unsigned long long max
= limit
;
4702 unsigned long log2qty
, size
;
4705 /* allow the kernel cmdline to have a say */
4707 /* round applicable memory size up to nearest megabyte */
4708 numentries
= nr_kernel_pages
;
4709 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4710 numentries
>>= 20 - PAGE_SHIFT
;
4711 numentries
<<= 20 - PAGE_SHIFT
;
4713 /* limit to 1 bucket per 2^scale bytes of low memory */
4714 if (scale
> PAGE_SHIFT
)
4715 numentries
>>= (scale
- PAGE_SHIFT
);
4717 numentries
<<= (PAGE_SHIFT
- scale
);
4719 /* Make sure we've got at least a 0-order allocation.. */
4720 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4721 numentries
= PAGE_SIZE
/ bucketsize
;
4723 numentries
= roundup_pow_of_two(numentries
);
4725 /* limit allocation size to 1/16 total memory by default */
4727 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4728 do_div(max
, bucketsize
);
4731 if (numentries
> max
)
4734 log2qty
= ilog2(numentries
);
4737 size
= bucketsize
<< log2qty
;
4738 if (flags
& HASH_EARLY
)
4739 table
= alloc_bootmem_nopanic(size
);
4741 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4744 * If bucketsize is not a power-of-two, we may free
4745 * some pages at the end of hash table which
4746 * alloc_pages_exact() automatically does
4748 if (get_order(size
) < MAX_ORDER
)
4749 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4751 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4754 panic("Failed to allocate %s hash table\n", tablename
);
4756 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4759 ilog2(size
) - PAGE_SHIFT
,
4763 *_hash_shift
= log2qty
;
4765 *_hash_mask
= (1 << log2qty
) - 1;
4768 * If hashdist is set, the table allocation is done with __vmalloc()
4769 * which invokes the kmemleak_alloc() callback. This function may also
4770 * be called before the slab and kmemleak are initialised when
4771 * kmemleak simply buffers the request to be executed later
4772 * (GFP_ATOMIC flag ignored in this case).
4775 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4780 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4781 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4784 #ifdef CONFIG_SPARSEMEM
4785 return __pfn_to_section(pfn
)->pageblock_flags
;
4787 return zone
->pageblock_flags
;
4788 #endif /* CONFIG_SPARSEMEM */
4791 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4793 #ifdef CONFIG_SPARSEMEM
4794 pfn
&= (PAGES_PER_SECTION
-1);
4795 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4797 pfn
= pfn
- zone
->zone_start_pfn
;
4798 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4799 #endif /* CONFIG_SPARSEMEM */
4803 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4804 * @page: The page within the block of interest
4805 * @start_bitidx: The first bit of interest to retrieve
4806 * @end_bitidx: The last bit of interest
4807 * returns pageblock_bits flags
4809 unsigned long get_pageblock_flags_group(struct page
*page
,
4810 int start_bitidx
, int end_bitidx
)
4813 unsigned long *bitmap
;
4814 unsigned long pfn
, bitidx
;
4815 unsigned long flags
= 0;
4816 unsigned long value
= 1;
4818 zone
= page_zone(page
);
4819 pfn
= page_to_pfn(page
);
4820 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4821 bitidx
= pfn_to_bitidx(zone
, pfn
);
4823 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4824 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4831 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4832 * @page: The page within the block of interest
4833 * @start_bitidx: The first bit of interest
4834 * @end_bitidx: The last bit of interest
4835 * @flags: The flags to set
4837 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4838 int start_bitidx
, int end_bitidx
)
4841 unsigned long *bitmap
;
4842 unsigned long pfn
, bitidx
;
4843 unsigned long value
= 1;
4845 zone
= page_zone(page
);
4846 pfn
= page_to_pfn(page
);
4847 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4848 bitidx
= pfn_to_bitidx(zone
, pfn
);
4849 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
4850 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
4852 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4854 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4856 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4860 * This is designed as sub function...plz see page_isolation.c also.
4861 * set/clear page block's type to be ISOLATE.
4862 * page allocater never alloc memory from ISOLATE block.
4865 int set_migratetype_isolate(struct page
*page
)
4868 unsigned long flags
;
4871 zone
= page_zone(page
);
4872 spin_lock_irqsave(&zone
->lock
, flags
);
4874 * In future, more migrate types will be able to be isolation target.
4876 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4878 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4879 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4882 spin_unlock_irqrestore(&zone
->lock
, flags
);
4888 void unset_migratetype_isolate(struct page
*page
)
4891 unsigned long flags
;
4892 zone
= page_zone(page
);
4893 spin_lock_irqsave(&zone
->lock
, flags
);
4894 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4896 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4897 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4899 spin_unlock_irqrestore(&zone
->lock
, flags
);
4902 #ifdef CONFIG_MEMORY_HOTREMOVE
4904 * All pages in the range must be isolated before calling this.
4907 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4913 unsigned long flags
;
4914 /* find the first valid pfn */
4915 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4920 zone
= page_zone(pfn_to_page(pfn
));
4921 spin_lock_irqsave(&zone
->lock
, flags
);
4923 while (pfn
< end_pfn
) {
4924 if (!pfn_valid(pfn
)) {
4928 page
= pfn_to_page(pfn
);
4929 BUG_ON(page_count(page
));
4930 BUG_ON(!PageBuddy(page
));
4931 order
= page_order(page
);
4932 #ifdef CONFIG_DEBUG_VM
4933 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4934 pfn
, 1 << order
, end_pfn
);
4936 list_del(&page
->lru
);
4937 rmv_page_order(page
);
4938 zone
->free_area
[order
].nr_free
--;
4939 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4941 for (i
= 0; i
< (1 << order
); i
++)
4942 SetPageReserved((page
+i
));
4943 pfn
+= (1 << order
);
4945 spin_unlock_irqrestore(&zone
->lock
, flags
);