intel-iommu: Performance improvement for domain_pfn_mapping()
[linux-2.6/verdex.git] / drivers / pci / intel-iommu.c
blobf8074236bcce17a2f5db2fcd41e28ccb38864a3f
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
79 return mm_to_dma_pfn(page_to_pfn(pg));
81 static inline unsigned long virt_to_dma_pfn(void *p)
83 return page_to_dma_pfn(virt_to_page(p));
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
89 static int rwbf_quirk;
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
97 struct root_entry {
98 u64 val;
99 u64 rsvd1;
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
104 return (root->val & 1);
106 static inline void set_root_present(struct root_entry *root)
108 root->val |= 1;
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
112 root->val |= value & VTD_PAGE_MASK;
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
135 struct context_entry {
136 u64 lo;
137 u64 hi;
140 static inline bool context_present(struct context_entry *context)
142 return (context->lo & 1);
144 static inline void context_set_present(struct context_entry *context)
146 context->lo |= 1;
149 static inline void context_set_fault_enable(struct context_entry *context)
151 context->lo &= (((u64)-1) << 2) | 1;
154 static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
161 static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
164 context->lo |= value & VTD_PAGE_MASK;
167 static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
170 context->hi |= value & 7;
173 static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
179 static inline void context_clear_entry(struct context_entry *context)
181 context->lo = 0;
182 context->hi = 0;
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
190 * 8-10: available
191 * 11: snoop behavior
192 * 12-63: Host physcial address
194 struct dma_pte {
195 u64 val;
198 static inline void dma_clear_pte(struct dma_pte *pte)
200 pte->val = 0;
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
205 pte->val |= DMA_PTE_READ;
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
210 pte->val |= DMA_PTE_WRITE;
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
215 pte->val |= DMA_PTE_SNP;
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
220 pte->val = (pte->val & ~3) | (prot & 3);
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
225 return (pte->val & VTD_PAGE_MASK);
228 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
230 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
233 static inline bool dma_pte_present(struct dma_pte *pte)
235 return (pte->val & 3) != 0;
239 * This domain is a statically identity mapping domain.
240 * 1. This domain creats a static 1:1 mapping to all usable memory.
241 * 2. It maps to each iommu if successful.
242 * 3. Each iommu mapps to this domain if successful.
244 struct dmar_domain *si_domain;
246 /* devices under the same p2p bridge are owned in one domain */
247 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
249 /* domain represents a virtual machine, more than one devices
250 * across iommus may be owned in one domain, e.g. kvm guest.
252 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
254 /* si_domain contains mulitple devices */
255 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
257 struct dmar_domain {
258 int id; /* domain id */
259 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
261 struct list_head devices; /* all devices' list */
262 struct iova_domain iovad; /* iova's that belong to this domain */
264 struct dma_pte *pgd; /* virtual address */
265 spinlock_t mapping_lock; /* page table lock */
266 int gaw; /* max guest address width */
268 /* adjusted guest address width, 0 is level 2 30-bit */
269 int agaw;
271 int flags; /* flags to find out type of domain */
273 int iommu_coherency;/* indicate coherency of iommu access */
274 int iommu_snooping; /* indicate snooping control feature*/
275 int iommu_count; /* reference count of iommu */
276 spinlock_t iommu_lock; /* protect iommu set in domain */
277 u64 max_addr; /* maximum mapped address */
280 /* PCI domain-device relationship */
281 struct device_domain_info {
282 struct list_head link; /* link to domain siblings */
283 struct list_head global; /* link to global list */
284 int segment; /* PCI domain */
285 u8 bus; /* PCI bus number */
286 u8 devfn; /* PCI devfn number */
287 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
288 struct intel_iommu *iommu; /* IOMMU used by this device */
289 struct dmar_domain *domain; /* pointer to domain */
292 static void flush_unmaps_timeout(unsigned long data);
294 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
296 #define HIGH_WATER_MARK 250
297 struct deferred_flush_tables {
298 int next;
299 struct iova *iova[HIGH_WATER_MARK];
300 struct dmar_domain *domain[HIGH_WATER_MARK];
303 static struct deferred_flush_tables *deferred_flush;
305 /* bitmap for indexing intel_iommus */
306 static int g_num_of_iommus;
308 static DEFINE_SPINLOCK(async_umap_flush_lock);
309 static LIST_HEAD(unmaps_to_do);
311 static int timer_on;
312 static long list_size;
314 static void domain_remove_dev_info(struct dmar_domain *domain);
316 #ifdef CONFIG_DMAR_DEFAULT_ON
317 int dmar_disabled = 0;
318 #else
319 int dmar_disabled = 1;
320 #endif /*CONFIG_DMAR_DEFAULT_ON*/
322 static int __initdata dmar_map_gfx = 1;
323 static int dmar_forcedac;
324 static int intel_iommu_strict;
326 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
327 static DEFINE_SPINLOCK(device_domain_lock);
328 static LIST_HEAD(device_domain_list);
330 static struct iommu_ops intel_iommu_ops;
332 static int __init intel_iommu_setup(char *str)
334 if (!str)
335 return -EINVAL;
336 while (*str) {
337 if (!strncmp(str, "on", 2)) {
338 dmar_disabled = 0;
339 printk(KERN_INFO "Intel-IOMMU: enabled\n");
340 } else if (!strncmp(str, "off", 3)) {
341 dmar_disabled = 1;
342 printk(KERN_INFO "Intel-IOMMU: disabled\n");
343 } else if (!strncmp(str, "igfx_off", 8)) {
344 dmar_map_gfx = 0;
345 printk(KERN_INFO
346 "Intel-IOMMU: disable GFX device mapping\n");
347 } else if (!strncmp(str, "forcedac", 8)) {
348 printk(KERN_INFO
349 "Intel-IOMMU: Forcing DAC for PCI devices\n");
350 dmar_forcedac = 1;
351 } else if (!strncmp(str, "strict", 6)) {
352 printk(KERN_INFO
353 "Intel-IOMMU: disable batched IOTLB flush\n");
354 intel_iommu_strict = 1;
357 str += strcspn(str, ",");
358 while (*str == ',')
359 str++;
361 return 0;
363 __setup("intel_iommu=", intel_iommu_setup);
365 static struct kmem_cache *iommu_domain_cache;
366 static struct kmem_cache *iommu_devinfo_cache;
367 static struct kmem_cache *iommu_iova_cache;
369 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
371 unsigned int flags;
372 void *vaddr;
374 /* trying to avoid low memory issues */
375 flags = current->flags & PF_MEMALLOC;
376 current->flags |= PF_MEMALLOC;
377 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
378 current->flags &= (~PF_MEMALLOC | flags);
379 return vaddr;
383 static inline void *alloc_pgtable_page(void)
385 unsigned int flags;
386 void *vaddr;
388 /* trying to avoid low memory issues */
389 flags = current->flags & PF_MEMALLOC;
390 current->flags |= PF_MEMALLOC;
391 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
392 current->flags &= (~PF_MEMALLOC | flags);
393 return vaddr;
396 static inline void free_pgtable_page(void *vaddr)
398 free_page((unsigned long)vaddr);
401 static inline void *alloc_domain_mem(void)
403 return iommu_kmem_cache_alloc(iommu_domain_cache);
406 static void free_domain_mem(void *vaddr)
408 kmem_cache_free(iommu_domain_cache, vaddr);
411 static inline void * alloc_devinfo_mem(void)
413 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
416 static inline void free_devinfo_mem(void *vaddr)
418 kmem_cache_free(iommu_devinfo_cache, vaddr);
421 struct iova *alloc_iova_mem(void)
423 return iommu_kmem_cache_alloc(iommu_iova_cache);
426 void free_iova_mem(struct iova *iova)
428 kmem_cache_free(iommu_iova_cache, iova);
432 static inline int width_to_agaw(int width);
434 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
436 unsigned long sagaw;
437 int agaw = -1;
439 sagaw = cap_sagaw(iommu->cap);
440 for (agaw = width_to_agaw(max_gaw);
441 agaw >= 0; agaw--) {
442 if (test_bit(agaw, &sagaw))
443 break;
446 return agaw;
450 * Calculate max SAGAW for each iommu.
452 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
454 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
458 * calculate agaw for each iommu.
459 * "SAGAW" may be different across iommus, use a default agaw, and
460 * get a supported less agaw for iommus that don't support the default agaw.
462 int iommu_calculate_agaw(struct intel_iommu *iommu)
464 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
467 /* This functionin only returns single iommu in a domain */
468 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
470 int iommu_id;
472 /* si_domain and vm domain should not get here. */
473 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
474 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
476 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
477 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
478 return NULL;
480 return g_iommus[iommu_id];
483 static void domain_update_iommu_coherency(struct dmar_domain *domain)
485 int i;
487 domain->iommu_coherency = 1;
489 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
490 for (; i < g_num_of_iommus; ) {
491 if (!ecap_coherent(g_iommus[i]->ecap)) {
492 domain->iommu_coherency = 0;
493 break;
495 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
499 static void domain_update_iommu_snooping(struct dmar_domain *domain)
501 int i;
503 domain->iommu_snooping = 1;
505 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
506 for (; i < g_num_of_iommus; ) {
507 if (!ecap_sc_support(g_iommus[i]->ecap)) {
508 domain->iommu_snooping = 0;
509 break;
511 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
515 /* Some capabilities may be different across iommus */
516 static void domain_update_iommu_cap(struct dmar_domain *domain)
518 domain_update_iommu_coherency(domain);
519 domain_update_iommu_snooping(domain);
522 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
524 struct dmar_drhd_unit *drhd = NULL;
525 int i;
527 for_each_drhd_unit(drhd) {
528 if (drhd->ignored)
529 continue;
530 if (segment != drhd->segment)
531 continue;
533 for (i = 0; i < drhd->devices_cnt; i++) {
534 if (drhd->devices[i] &&
535 drhd->devices[i]->bus->number == bus &&
536 drhd->devices[i]->devfn == devfn)
537 return drhd->iommu;
538 if (drhd->devices[i] &&
539 drhd->devices[i]->subordinate &&
540 drhd->devices[i]->subordinate->number <= bus &&
541 drhd->devices[i]->subordinate->subordinate >= bus)
542 return drhd->iommu;
545 if (drhd->include_all)
546 return drhd->iommu;
549 return NULL;
552 static void domain_flush_cache(struct dmar_domain *domain,
553 void *addr, int size)
555 if (!domain->iommu_coherency)
556 clflush_cache_range(addr, size);
559 /* Gets context entry for a given bus and devfn */
560 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
561 u8 bus, u8 devfn)
563 struct root_entry *root;
564 struct context_entry *context;
565 unsigned long phy_addr;
566 unsigned long flags;
568 spin_lock_irqsave(&iommu->lock, flags);
569 root = &iommu->root_entry[bus];
570 context = get_context_addr_from_root(root);
571 if (!context) {
572 context = (struct context_entry *)alloc_pgtable_page();
573 if (!context) {
574 spin_unlock_irqrestore(&iommu->lock, flags);
575 return NULL;
577 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
578 phy_addr = virt_to_phys((void *)context);
579 set_root_value(root, phy_addr);
580 set_root_present(root);
581 __iommu_flush_cache(iommu, root, sizeof(*root));
583 spin_unlock_irqrestore(&iommu->lock, flags);
584 return &context[devfn];
587 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
589 struct root_entry *root;
590 struct context_entry *context;
591 int ret;
592 unsigned long flags;
594 spin_lock_irqsave(&iommu->lock, flags);
595 root = &iommu->root_entry[bus];
596 context = get_context_addr_from_root(root);
597 if (!context) {
598 ret = 0;
599 goto out;
601 ret = context_present(&context[devfn]);
602 out:
603 spin_unlock_irqrestore(&iommu->lock, flags);
604 return ret;
607 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
609 struct root_entry *root;
610 struct context_entry *context;
611 unsigned long flags;
613 spin_lock_irqsave(&iommu->lock, flags);
614 root = &iommu->root_entry[bus];
615 context = get_context_addr_from_root(root);
616 if (context) {
617 context_clear_entry(&context[devfn]);
618 __iommu_flush_cache(iommu, &context[devfn], \
619 sizeof(*context));
621 spin_unlock_irqrestore(&iommu->lock, flags);
624 static void free_context_table(struct intel_iommu *iommu)
626 struct root_entry *root;
627 int i;
628 unsigned long flags;
629 struct context_entry *context;
631 spin_lock_irqsave(&iommu->lock, flags);
632 if (!iommu->root_entry) {
633 goto out;
635 for (i = 0; i < ROOT_ENTRY_NR; i++) {
636 root = &iommu->root_entry[i];
637 context = get_context_addr_from_root(root);
638 if (context)
639 free_pgtable_page(context);
641 free_pgtable_page(iommu->root_entry);
642 iommu->root_entry = NULL;
643 out:
644 spin_unlock_irqrestore(&iommu->lock, flags);
647 /* page table handling */
648 #define LEVEL_STRIDE (9)
649 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
651 static inline int agaw_to_level(int agaw)
653 return agaw + 2;
656 static inline int agaw_to_width(int agaw)
658 return 30 + agaw * LEVEL_STRIDE;
662 static inline int width_to_agaw(int width)
664 return (width - 30) / LEVEL_STRIDE;
667 static inline unsigned int level_to_offset_bits(int level)
669 return (level - 1) * LEVEL_STRIDE;
672 static inline int pfn_level_offset(unsigned long pfn, int level)
674 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
677 static inline unsigned long level_mask(int level)
679 return -1UL << level_to_offset_bits(level);
682 static inline unsigned long level_size(int level)
684 return 1UL << level_to_offset_bits(level);
687 static inline unsigned long align_to_level(unsigned long pfn, int level)
689 return (pfn + level_size(level) - 1) & level_mask(level);
692 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
693 unsigned long pfn)
695 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
696 struct dma_pte *parent, *pte = NULL;
697 int level = agaw_to_level(domain->agaw);
698 int offset;
699 unsigned long flags;
701 BUG_ON(!domain->pgd);
702 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
703 parent = domain->pgd;
705 spin_lock_irqsave(&domain->mapping_lock, flags);
706 while (level > 0) {
707 void *tmp_page;
709 offset = pfn_level_offset(pfn, level);
710 pte = &parent[offset];
711 if (level == 1)
712 break;
714 if (!dma_pte_present(pte)) {
715 tmp_page = alloc_pgtable_page();
717 if (!tmp_page) {
718 spin_unlock_irqrestore(&domain->mapping_lock,
719 flags);
720 return NULL;
722 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
723 dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
725 * high level table always sets r/w, last level page
726 * table control read/write
728 dma_set_pte_readable(pte);
729 dma_set_pte_writable(pte);
730 domain_flush_cache(domain, pte, sizeof(*pte));
732 parent = phys_to_virt(dma_pte_addr(pte));
733 level--;
736 spin_unlock_irqrestore(&domain->mapping_lock, flags);
737 return pte;
740 /* return address's pte at specific level */
741 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
742 unsigned long pfn,
743 int level)
745 struct dma_pte *parent, *pte = NULL;
746 int total = agaw_to_level(domain->agaw);
747 int offset;
749 parent = domain->pgd;
750 while (level <= total) {
751 offset = pfn_level_offset(pfn, total);
752 pte = &parent[offset];
753 if (level == total)
754 return pte;
756 if (!dma_pte_present(pte))
757 break;
758 parent = phys_to_virt(dma_pte_addr(pte));
759 total--;
761 return NULL;
764 /* clear last level pte, a tlb flush should be followed */
765 static void dma_pte_clear_range(struct dmar_domain *domain,
766 unsigned long start_pfn,
767 unsigned long last_pfn)
769 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
770 struct dma_pte *first_pte, *pte;
772 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
773 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
775 /* we don't need lock here; nobody else touches the iova range */
776 while (start_pfn <= last_pfn) {
777 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
778 if (!pte) {
779 start_pfn = align_to_level(start_pfn + 1, 2);
780 continue;
782 while (start_pfn <= last_pfn &&
783 (unsigned long)pte >> VTD_PAGE_SHIFT ==
784 (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
785 dma_clear_pte(pte);
786 start_pfn++;
787 pte++;
789 domain_flush_cache(domain, first_pte,
790 (void *)pte - (void *)first_pte);
794 /* free page table pages. last level pte should already be cleared */
795 static void dma_pte_free_pagetable(struct dmar_domain *domain,
796 unsigned long start_pfn,
797 unsigned long last_pfn)
799 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
800 struct dma_pte *pte;
801 int total = agaw_to_level(domain->agaw);
802 int level;
803 unsigned long tmp;
805 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
806 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
808 /* we don't need lock here, nobody else touches the iova range */
809 level = 2;
810 while (level <= total) {
811 tmp = align_to_level(start_pfn, level);
813 /* Only clear this pte/pmd if we're asked to clear its
814 _whole_ range */
815 if (tmp + level_size(level) - 1 > last_pfn)
816 return;
818 while (tmp <= last_pfn) {
819 pte = dma_pfn_level_pte(domain, tmp, level);
820 if (pte) {
821 free_pgtable_page(
822 phys_to_virt(dma_pte_addr(pte)));
823 dma_clear_pte(pte);
824 domain_flush_cache(domain, pte, sizeof(*pte));
826 tmp += level_size(level);
828 level++;
830 /* free pgd */
831 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
832 free_pgtable_page(domain->pgd);
833 domain->pgd = NULL;
837 /* iommu handling */
838 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
840 struct root_entry *root;
841 unsigned long flags;
843 root = (struct root_entry *)alloc_pgtable_page();
844 if (!root)
845 return -ENOMEM;
847 __iommu_flush_cache(iommu, root, ROOT_SIZE);
849 spin_lock_irqsave(&iommu->lock, flags);
850 iommu->root_entry = root;
851 spin_unlock_irqrestore(&iommu->lock, flags);
853 return 0;
856 static void iommu_set_root_entry(struct intel_iommu *iommu)
858 void *addr;
859 u32 sts;
860 unsigned long flag;
862 addr = iommu->root_entry;
864 spin_lock_irqsave(&iommu->register_lock, flag);
865 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
867 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
869 /* Make sure hardware complete it */
870 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
871 readl, (sts & DMA_GSTS_RTPS), sts);
873 spin_unlock_irqrestore(&iommu->register_lock, flag);
876 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
878 u32 val;
879 unsigned long flag;
881 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
882 return;
884 spin_lock_irqsave(&iommu->register_lock, flag);
885 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
887 /* Make sure hardware complete it */
888 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
889 readl, (!(val & DMA_GSTS_WBFS)), val);
891 spin_unlock_irqrestore(&iommu->register_lock, flag);
894 /* return value determine if we need a write buffer flush */
895 static void __iommu_flush_context(struct intel_iommu *iommu,
896 u16 did, u16 source_id, u8 function_mask,
897 u64 type)
899 u64 val = 0;
900 unsigned long flag;
902 switch (type) {
903 case DMA_CCMD_GLOBAL_INVL:
904 val = DMA_CCMD_GLOBAL_INVL;
905 break;
906 case DMA_CCMD_DOMAIN_INVL:
907 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
908 break;
909 case DMA_CCMD_DEVICE_INVL:
910 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
911 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
912 break;
913 default:
914 BUG();
916 val |= DMA_CCMD_ICC;
918 spin_lock_irqsave(&iommu->register_lock, flag);
919 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
921 /* Make sure hardware complete it */
922 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
923 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
925 spin_unlock_irqrestore(&iommu->register_lock, flag);
928 /* return value determine if we need a write buffer flush */
929 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
930 u64 addr, unsigned int size_order, u64 type)
932 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
933 u64 val = 0, val_iva = 0;
934 unsigned long flag;
936 switch (type) {
937 case DMA_TLB_GLOBAL_FLUSH:
938 /* global flush doesn't need set IVA_REG */
939 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
940 break;
941 case DMA_TLB_DSI_FLUSH:
942 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
943 break;
944 case DMA_TLB_PSI_FLUSH:
945 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
946 /* Note: always flush non-leaf currently */
947 val_iva = size_order | addr;
948 break;
949 default:
950 BUG();
952 /* Note: set drain read/write */
953 #if 0
955 * This is probably to be super secure.. Looks like we can
956 * ignore it without any impact.
958 if (cap_read_drain(iommu->cap))
959 val |= DMA_TLB_READ_DRAIN;
960 #endif
961 if (cap_write_drain(iommu->cap))
962 val |= DMA_TLB_WRITE_DRAIN;
964 spin_lock_irqsave(&iommu->register_lock, flag);
965 /* Note: Only uses first TLB reg currently */
966 if (val_iva)
967 dmar_writeq(iommu->reg + tlb_offset, val_iva);
968 dmar_writeq(iommu->reg + tlb_offset + 8, val);
970 /* Make sure hardware complete it */
971 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
972 dmar_readq, (!(val & DMA_TLB_IVT)), val);
974 spin_unlock_irqrestore(&iommu->register_lock, flag);
976 /* check IOTLB invalidation granularity */
977 if (DMA_TLB_IAIG(val) == 0)
978 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
979 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
980 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
981 (unsigned long long)DMA_TLB_IIRG(type),
982 (unsigned long long)DMA_TLB_IAIG(val));
985 static struct device_domain_info *iommu_support_dev_iotlb(
986 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
988 int found = 0;
989 unsigned long flags;
990 struct device_domain_info *info;
991 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
993 if (!ecap_dev_iotlb_support(iommu->ecap))
994 return NULL;
996 if (!iommu->qi)
997 return NULL;
999 spin_lock_irqsave(&device_domain_lock, flags);
1000 list_for_each_entry(info, &domain->devices, link)
1001 if (info->bus == bus && info->devfn == devfn) {
1002 found = 1;
1003 break;
1005 spin_unlock_irqrestore(&device_domain_lock, flags);
1007 if (!found || !info->dev)
1008 return NULL;
1010 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1011 return NULL;
1013 if (!dmar_find_matched_atsr_unit(info->dev))
1014 return NULL;
1016 info->iommu = iommu;
1018 return info;
1021 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1023 if (!info)
1024 return;
1026 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1029 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1031 if (!info->dev || !pci_ats_enabled(info->dev))
1032 return;
1034 pci_disable_ats(info->dev);
1037 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1038 u64 addr, unsigned mask)
1040 u16 sid, qdep;
1041 unsigned long flags;
1042 struct device_domain_info *info;
1044 spin_lock_irqsave(&device_domain_lock, flags);
1045 list_for_each_entry(info, &domain->devices, link) {
1046 if (!info->dev || !pci_ats_enabled(info->dev))
1047 continue;
1049 sid = info->bus << 8 | info->devfn;
1050 qdep = pci_ats_queue_depth(info->dev);
1051 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1053 spin_unlock_irqrestore(&device_domain_lock, flags);
1056 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1057 unsigned long pfn, unsigned int pages)
1059 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1060 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1062 BUG_ON(pages == 0);
1065 * Fallback to domain selective flush if no PSI support or the size is
1066 * too big.
1067 * PSI requires page size to be 2 ^ x, and the base address is naturally
1068 * aligned to the size
1070 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1071 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1072 DMA_TLB_DSI_FLUSH);
1073 else
1074 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1075 DMA_TLB_PSI_FLUSH);
1078 * In caching mode, domain ID 0 is reserved for non-present to present
1079 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1081 if (!cap_caching_mode(iommu->cap) || did)
1082 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1085 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1087 u32 pmen;
1088 unsigned long flags;
1090 spin_lock_irqsave(&iommu->register_lock, flags);
1091 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1092 pmen &= ~DMA_PMEN_EPM;
1093 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1095 /* wait for the protected region status bit to clear */
1096 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1097 readl, !(pmen & DMA_PMEN_PRS), pmen);
1099 spin_unlock_irqrestore(&iommu->register_lock, flags);
1102 static int iommu_enable_translation(struct intel_iommu *iommu)
1104 u32 sts;
1105 unsigned long flags;
1107 spin_lock_irqsave(&iommu->register_lock, flags);
1108 iommu->gcmd |= DMA_GCMD_TE;
1109 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1111 /* Make sure hardware complete it */
1112 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1113 readl, (sts & DMA_GSTS_TES), sts);
1115 spin_unlock_irqrestore(&iommu->register_lock, flags);
1116 return 0;
1119 static int iommu_disable_translation(struct intel_iommu *iommu)
1121 u32 sts;
1122 unsigned long flag;
1124 spin_lock_irqsave(&iommu->register_lock, flag);
1125 iommu->gcmd &= ~DMA_GCMD_TE;
1126 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1128 /* Make sure hardware complete it */
1129 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1130 readl, (!(sts & DMA_GSTS_TES)), sts);
1132 spin_unlock_irqrestore(&iommu->register_lock, flag);
1133 return 0;
1137 static int iommu_init_domains(struct intel_iommu *iommu)
1139 unsigned long ndomains;
1140 unsigned long nlongs;
1142 ndomains = cap_ndoms(iommu->cap);
1143 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1144 nlongs = BITS_TO_LONGS(ndomains);
1146 /* TBD: there might be 64K domains,
1147 * consider other allocation for future chip
1149 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1150 if (!iommu->domain_ids) {
1151 printk(KERN_ERR "Allocating domain id array failed\n");
1152 return -ENOMEM;
1154 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1155 GFP_KERNEL);
1156 if (!iommu->domains) {
1157 printk(KERN_ERR "Allocating domain array failed\n");
1158 kfree(iommu->domain_ids);
1159 return -ENOMEM;
1162 spin_lock_init(&iommu->lock);
1165 * if Caching mode is set, then invalid translations are tagged
1166 * with domainid 0. Hence we need to pre-allocate it.
1168 if (cap_caching_mode(iommu->cap))
1169 set_bit(0, iommu->domain_ids);
1170 return 0;
1174 static void domain_exit(struct dmar_domain *domain);
1175 static void vm_domain_exit(struct dmar_domain *domain);
1177 void free_dmar_iommu(struct intel_iommu *iommu)
1179 struct dmar_domain *domain;
1180 int i;
1181 unsigned long flags;
1183 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1184 for (; i < cap_ndoms(iommu->cap); ) {
1185 domain = iommu->domains[i];
1186 clear_bit(i, iommu->domain_ids);
1188 spin_lock_irqsave(&domain->iommu_lock, flags);
1189 if (--domain->iommu_count == 0) {
1190 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1191 vm_domain_exit(domain);
1192 else
1193 domain_exit(domain);
1195 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1197 i = find_next_bit(iommu->domain_ids,
1198 cap_ndoms(iommu->cap), i+1);
1201 if (iommu->gcmd & DMA_GCMD_TE)
1202 iommu_disable_translation(iommu);
1204 if (iommu->irq) {
1205 set_irq_data(iommu->irq, NULL);
1206 /* This will mask the irq */
1207 free_irq(iommu->irq, iommu);
1208 destroy_irq(iommu->irq);
1211 kfree(iommu->domains);
1212 kfree(iommu->domain_ids);
1214 g_iommus[iommu->seq_id] = NULL;
1216 /* if all iommus are freed, free g_iommus */
1217 for (i = 0; i < g_num_of_iommus; i++) {
1218 if (g_iommus[i])
1219 break;
1222 if (i == g_num_of_iommus)
1223 kfree(g_iommus);
1225 /* free context mapping */
1226 free_context_table(iommu);
1229 static struct dmar_domain *alloc_domain(void)
1231 struct dmar_domain *domain;
1233 domain = alloc_domain_mem();
1234 if (!domain)
1235 return NULL;
1237 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1238 domain->flags = 0;
1240 return domain;
1243 static int iommu_attach_domain(struct dmar_domain *domain,
1244 struct intel_iommu *iommu)
1246 int num;
1247 unsigned long ndomains;
1248 unsigned long flags;
1250 ndomains = cap_ndoms(iommu->cap);
1252 spin_lock_irqsave(&iommu->lock, flags);
1254 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1255 if (num >= ndomains) {
1256 spin_unlock_irqrestore(&iommu->lock, flags);
1257 printk(KERN_ERR "IOMMU: no free domain ids\n");
1258 return -ENOMEM;
1261 domain->id = num;
1262 set_bit(num, iommu->domain_ids);
1263 set_bit(iommu->seq_id, &domain->iommu_bmp);
1264 iommu->domains[num] = domain;
1265 spin_unlock_irqrestore(&iommu->lock, flags);
1267 return 0;
1270 static void iommu_detach_domain(struct dmar_domain *domain,
1271 struct intel_iommu *iommu)
1273 unsigned long flags;
1274 int num, ndomains;
1275 int found = 0;
1277 spin_lock_irqsave(&iommu->lock, flags);
1278 ndomains = cap_ndoms(iommu->cap);
1279 num = find_first_bit(iommu->domain_ids, ndomains);
1280 for (; num < ndomains; ) {
1281 if (iommu->domains[num] == domain) {
1282 found = 1;
1283 break;
1285 num = find_next_bit(iommu->domain_ids,
1286 cap_ndoms(iommu->cap), num+1);
1289 if (found) {
1290 clear_bit(num, iommu->domain_ids);
1291 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1292 iommu->domains[num] = NULL;
1294 spin_unlock_irqrestore(&iommu->lock, flags);
1297 static struct iova_domain reserved_iova_list;
1298 static struct lock_class_key reserved_alloc_key;
1299 static struct lock_class_key reserved_rbtree_key;
1301 static void dmar_init_reserved_ranges(void)
1303 struct pci_dev *pdev = NULL;
1304 struct iova *iova;
1305 int i;
1307 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1309 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1310 &reserved_alloc_key);
1311 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1312 &reserved_rbtree_key);
1314 /* IOAPIC ranges shouldn't be accessed by DMA */
1315 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1316 IOVA_PFN(IOAPIC_RANGE_END));
1317 if (!iova)
1318 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1320 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1321 for_each_pci_dev(pdev) {
1322 struct resource *r;
1324 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1325 r = &pdev->resource[i];
1326 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1327 continue;
1328 iova = reserve_iova(&reserved_iova_list,
1329 IOVA_PFN(r->start),
1330 IOVA_PFN(r->end));
1331 if (!iova)
1332 printk(KERN_ERR "Reserve iova failed\n");
1338 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1340 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1343 static inline int guestwidth_to_adjustwidth(int gaw)
1345 int agaw;
1346 int r = (gaw - 12) % 9;
1348 if (r == 0)
1349 agaw = gaw;
1350 else
1351 agaw = gaw + 9 - r;
1352 if (agaw > 64)
1353 agaw = 64;
1354 return agaw;
1357 static int domain_init(struct dmar_domain *domain, int guest_width)
1359 struct intel_iommu *iommu;
1360 int adjust_width, agaw;
1361 unsigned long sagaw;
1363 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1364 spin_lock_init(&domain->mapping_lock);
1365 spin_lock_init(&domain->iommu_lock);
1367 domain_reserve_special_ranges(domain);
1369 /* calculate AGAW */
1370 iommu = domain_get_iommu(domain);
1371 if (guest_width > cap_mgaw(iommu->cap))
1372 guest_width = cap_mgaw(iommu->cap);
1373 domain->gaw = guest_width;
1374 adjust_width = guestwidth_to_adjustwidth(guest_width);
1375 agaw = width_to_agaw(adjust_width);
1376 sagaw = cap_sagaw(iommu->cap);
1377 if (!test_bit(agaw, &sagaw)) {
1378 /* hardware doesn't support it, choose a bigger one */
1379 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1380 agaw = find_next_bit(&sagaw, 5, agaw);
1381 if (agaw >= 5)
1382 return -ENODEV;
1384 domain->agaw = agaw;
1385 INIT_LIST_HEAD(&domain->devices);
1387 if (ecap_coherent(iommu->ecap))
1388 domain->iommu_coherency = 1;
1389 else
1390 domain->iommu_coherency = 0;
1392 if (ecap_sc_support(iommu->ecap))
1393 domain->iommu_snooping = 1;
1394 else
1395 domain->iommu_snooping = 0;
1397 domain->iommu_count = 1;
1399 /* always allocate the top pgd */
1400 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1401 if (!domain->pgd)
1402 return -ENOMEM;
1403 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1404 return 0;
1407 static void domain_exit(struct dmar_domain *domain)
1409 struct dmar_drhd_unit *drhd;
1410 struct intel_iommu *iommu;
1412 /* Domain 0 is reserved, so dont process it */
1413 if (!domain)
1414 return;
1416 domain_remove_dev_info(domain);
1417 /* destroy iovas */
1418 put_iova_domain(&domain->iovad);
1420 /* clear ptes */
1421 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1423 /* free page tables */
1424 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1426 for_each_active_iommu(iommu, drhd)
1427 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1428 iommu_detach_domain(domain, iommu);
1430 free_domain_mem(domain);
1433 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1434 u8 bus, u8 devfn, int translation)
1436 struct context_entry *context;
1437 unsigned long flags;
1438 struct intel_iommu *iommu;
1439 struct dma_pte *pgd;
1440 unsigned long num;
1441 unsigned long ndomains;
1442 int id;
1443 int agaw;
1444 struct device_domain_info *info = NULL;
1446 pr_debug("Set context mapping for %02x:%02x.%d\n",
1447 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1449 BUG_ON(!domain->pgd);
1450 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1451 translation != CONTEXT_TT_MULTI_LEVEL);
1453 iommu = device_to_iommu(segment, bus, devfn);
1454 if (!iommu)
1455 return -ENODEV;
1457 context = device_to_context_entry(iommu, bus, devfn);
1458 if (!context)
1459 return -ENOMEM;
1460 spin_lock_irqsave(&iommu->lock, flags);
1461 if (context_present(context)) {
1462 spin_unlock_irqrestore(&iommu->lock, flags);
1463 return 0;
1466 id = domain->id;
1467 pgd = domain->pgd;
1469 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1470 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1471 int found = 0;
1473 /* find an available domain id for this device in iommu */
1474 ndomains = cap_ndoms(iommu->cap);
1475 num = find_first_bit(iommu->domain_ids, ndomains);
1476 for (; num < ndomains; ) {
1477 if (iommu->domains[num] == domain) {
1478 id = num;
1479 found = 1;
1480 break;
1482 num = find_next_bit(iommu->domain_ids,
1483 cap_ndoms(iommu->cap), num+1);
1486 if (found == 0) {
1487 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1488 if (num >= ndomains) {
1489 spin_unlock_irqrestore(&iommu->lock, flags);
1490 printk(KERN_ERR "IOMMU: no free domain ids\n");
1491 return -EFAULT;
1494 set_bit(num, iommu->domain_ids);
1495 set_bit(iommu->seq_id, &domain->iommu_bmp);
1496 iommu->domains[num] = domain;
1497 id = num;
1500 /* Skip top levels of page tables for
1501 * iommu which has less agaw than default.
1503 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1504 pgd = phys_to_virt(dma_pte_addr(pgd));
1505 if (!dma_pte_present(pgd)) {
1506 spin_unlock_irqrestore(&iommu->lock, flags);
1507 return -ENOMEM;
1512 context_set_domain_id(context, id);
1514 if (translation != CONTEXT_TT_PASS_THROUGH) {
1515 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1516 translation = info ? CONTEXT_TT_DEV_IOTLB :
1517 CONTEXT_TT_MULTI_LEVEL;
1520 * In pass through mode, AW must be programmed to indicate the largest
1521 * AGAW value supported by hardware. And ASR is ignored by hardware.
1523 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1524 context_set_address_width(context, iommu->msagaw);
1525 else {
1526 context_set_address_root(context, virt_to_phys(pgd));
1527 context_set_address_width(context, iommu->agaw);
1530 context_set_translation_type(context, translation);
1531 context_set_fault_enable(context);
1532 context_set_present(context);
1533 domain_flush_cache(domain, context, sizeof(*context));
1536 * It's a non-present to present mapping. If hardware doesn't cache
1537 * non-present entry we only need to flush the write-buffer. If the
1538 * _does_ cache non-present entries, then it does so in the special
1539 * domain #0, which we have to flush:
1541 if (cap_caching_mode(iommu->cap)) {
1542 iommu->flush.flush_context(iommu, 0,
1543 (((u16)bus) << 8) | devfn,
1544 DMA_CCMD_MASK_NOBIT,
1545 DMA_CCMD_DEVICE_INVL);
1546 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1547 } else {
1548 iommu_flush_write_buffer(iommu);
1550 iommu_enable_dev_iotlb(info);
1551 spin_unlock_irqrestore(&iommu->lock, flags);
1553 spin_lock_irqsave(&domain->iommu_lock, flags);
1554 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1555 domain->iommu_count++;
1556 domain_update_iommu_cap(domain);
1558 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1559 return 0;
1562 static int
1563 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1564 int translation)
1566 int ret;
1567 struct pci_dev *tmp, *parent;
1569 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1570 pdev->bus->number, pdev->devfn,
1571 translation);
1572 if (ret)
1573 return ret;
1575 /* dependent device mapping */
1576 tmp = pci_find_upstream_pcie_bridge(pdev);
1577 if (!tmp)
1578 return 0;
1579 /* Secondary interface's bus number and devfn 0 */
1580 parent = pdev->bus->self;
1581 while (parent != tmp) {
1582 ret = domain_context_mapping_one(domain,
1583 pci_domain_nr(parent->bus),
1584 parent->bus->number,
1585 parent->devfn, translation);
1586 if (ret)
1587 return ret;
1588 parent = parent->bus->self;
1590 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1591 return domain_context_mapping_one(domain,
1592 pci_domain_nr(tmp->subordinate),
1593 tmp->subordinate->number, 0,
1594 translation);
1595 else /* this is a legacy PCI bridge */
1596 return domain_context_mapping_one(domain,
1597 pci_domain_nr(tmp->bus),
1598 tmp->bus->number,
1599 tmp->devfn,
1600 translation);
1603 static int domain_context_mapped(struct pci_dev *pdev)
1605 int ret;
1606 struct pci_dev *tmp, *parent;
1607 struct intel_iommu *iommu;
1609 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1610 pdev->devfn);
1611 if (!iommu)
1612 return -ENODEV;
1614 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1615 if (!ret)
1616 return ret;
1617 /* dependent device mapping */
1618 tmp = pci_find_upstream_pcie_bridge(pdev);
1619 if (!tmp)
1620 return ret;
1621 /* Secondary interface's bus number and devfn 0 */
1622 parent = pdev->bus->self;
1623 while (parent != tmp) {
1624 ret = device_context_mapped(iommu, parent->bus->number,
1625 parent->devfn);
1626 if (!ret)
1627 return ret;
1628 parent = parent->bus->self;
1630 if (tmp->is_pcie)
1631 return device_context_mapped(iommu, tmp->subordinate->number,
1633 else
1634 return device_context_mapped(iommu, tmp->bus->number,
1635 tmp->devfn);
1638 static int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1639 unsigned long phys_pfn, unsigned long nr_pages,
1640 int prot)
1642 struct dma_pte *first_pte = NULL, *pte = NULL;
1643 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1645 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1647 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1648 return -EINVAL;
1650 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1652 while (nr_pages--) {
1653 if (!pte) {
1654 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1655 if (!pte)
1656 return -ENOMEM;
1658 /* We don't need lock here, nobody else
1659 * touches the iova range
1661 BUG_ON(dma_pte_addr(pte));
1662 pte->val = (phys_pfn << VTD_PAGE_SHIFT) | prot;
1663 pte++;
1664 if (!nr_pages ||
1665 (unsigned long)pte >> VTD_PAGE_SHIFT !=
1666 (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
1667 domain_flush_cache(domain, first_pte,
1668 (void *)pte - (void *)first_pte);
1669 pte = NULL;
1671 iov_pfn++;
1672 phys_pfn++;
1674 return 0;
1677 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1679 if (!iommu)
1680 return;
1682 clear_context_table(iommu, bus, devfn);
1683 iommu->flush.flush_context(iommu, 0, 0, 0,
1684 DMA_CCMD_GLOBAL_INVL);
1685 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1688 static void domain_remove_dev_info(struct dmar_domain *domain)
1690 struct device_domain_info *info;
1691 unsigned long flags;
1692 struct intel_iommu *iommu;
1694 spin_lock_irqsave(&device_domain_lock, flags);
1695 while (!list_empty(&domain->devices)) {
1696 info = list_entry(domain->devices.next,
1697 struct device_domain_info, link);
1698 list_del(&info->link);
1699 list_del(&info->global);
1700 if (info->dev)
1701 info->dev->dev.archdata.iommu = NULL;
1702 spin_unlock_irqrestore(&device_domain_lock, flags);
1704 iommu_disable_dev_iotlb(info);
1705 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1706 iommu_detach_dev(iommu, info->bus, info->devfn);
1707 free_devinfo_mem(info);
1709 spin_lock_irqsave(&device_domain_lock, flags);
1711 spin_unlock_irqrestore(&device_domain_lock, flags);
1715 * find_domain
1716 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1718 static struct dmar_domain *
1719 find_domain(struct pci_dev *pdev)
1721 struct device_domain_info *info;
1723 /* No lock here, assumes no domain exit in normal case */
1724 info = pdev->dev.archdata.iommu;
1725 if (info)
1726 return info->domain;
1727 return NULL;
1730 /* domain is initialized */
1731 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1733 struct dmar_domain *domain, *found = NULL;
1734 struct intel_iommu *iommu;
1735 struct dmar_drhd_unit *drhd;
1736 struct device_domain_info *info, *tmp;
1737 struct pci_dev *dev_tmp;
1738 unsigned long flags;
1739 int bus = 0, devfn = 0;
1740 int segment;
1741 int ret;
1743 domain = find_domain(pdev);
1744 if (domain)
1745 return domain;
1747 segment = pci_domain_nr(pdev->bus);
1749 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1750 if (dev_tmp) {
1751 if (dev_tmp->is_pcie) {
1752 bus = dev_tmp->subordinate->number;
1753 devfn = 0;
1754 } else {
1755 bus = dev_tmp->bus->number;
1756 devfn = dev_tmp->devfn;
1758 spin_lock_irqsave(&device_domain_lock, flags);
1759 list_for_each_entry(info, &device_domain_list, global) {
1760 if (info->segment == segment &&
1761 info->bus == bus && info->devfn == devfn) {
1762 found = info->domain;
1763 break;
1766 spin_unlock_irqrestore(&device_domain_lock, flags);
1767 /* pcie-pci bridge already has a domain, uses it */
1768 if (found) {
1769 domain = found;
1770 goto found_domain;
1774 domain = alloc_domain();
1775 if (!domain)
1776 goto error;
1778 /* Allocate new domain for the device */
1779 drhd = dmar_find_matched_drhd_unit(pdev);
1780 if (!drhd) {
1781 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1782 pci_name(pdev));
1783 return NULL;
1785 iommu = drhd->iommu;
1787 ret = iommu_attach_domain(domain, iommu);
1788 if (ret) {
1789 domain_exit(domain);
1790 goto error;
1793 if (domain_init(domain, gaw)) {
1794 domain_exit(domain);
1795 goto error;
1798 /* register pcie-to-pci device */
1799 if (dev_tmp) {
1800 info = alloc_devinfo_mem();
1801 if (!info) {
1802 domain_exit(domain);
1803 goto error;
1805 info->segment = segment;
1806 info->bus = bus;
1807 info->devfn = devfn;
1808 info->dev = NULL;
1809 info->domain = domain;
1810 /* This domain is shared by devices under p2p bridge */
1811 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1813 /* pcie-to-pci bridge already has a domain, uses it */
1814 found = NULL;
1815 spin_lock_irqsave(&device_domain_lock, flags);
1816 list_for_each_entry(tmp, &device_domain_list, global) {
1817 if (tmp->segment == segment &&
1818 tmp->bus == bus && tmp->devfn == devfn) {
1819 found = tmp->domain;
1820 break;
1823 if (found) {
1824 free_devinfo_mem(info);
1825 domain_exit(domain);
1826 domain = found;
1827 } else {
1828 list_add(&info->link, &domain->devices);
1829 list_add(&info->global, &device_domain_list);
1831 spin_unlock_irqrestore(&device_domain_lock, flags);
1834 found_domain:
1835 info = alloc_devinfo_mem();
1836 if (!info)
1837 goto error;
1838 info->segment = segment;
1839 info->bus = pdev->bus->number;
1840 info->devfn = pdev->devfn;
1841 info->dev = pdev;
1842 info->domain = domain;
1843 spin_lock_irqsave(&device_domain_lock, flags);
1844 /* somebody is fast */
1845 found = find_domain(pdev);
1846 if (found != NULL) {
1847 spin_unlock_irqrestore(&device_domain_lock, flags);
1848 if (found != domain) {
1849 domain_exit(domain);
1850 domain = found;
1852 free_devinfo_mem(info);
1853 return domain;
1855 list_add(&info->link, &domain->devices);
1856 list_add(&info->global, &device_domain_list);
1857 pdev->dev.archdata.iommu = info;
1858 spin_unlock_irqrestore(&device_domain_lock, flags);
1859 return domain;
1860 error:
1861 /* recheck it here, maybe others set it */
1862 return find_domain(pdev);
1865 static int iommu_identity_mapping;
1867 static int iommu_domain_identity_map(struct dmar_domain *domain,
1868 unsigned long long start,
1869 unsigned long long end)
1871 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1872 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1874 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1875 dma_to_mm_pfn(last_vpfn))) {
1876 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1877 return -ENOMEM;
1880 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1881 start, end, domain->id);
1883 * RMRR range might have overlap with physical memory range,
1884 * clear it first
1886 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1888 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1889 last_vpfn - first_vpfn + 1,
1890 DMA_PTE_READ|DMA_PTE_WRITE);
1893 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1894 unsigned long long start,
1895 unsigned long long end)
1897 struct dmar_domain *domain;
1898 int ret;
1900 printk(KERN_INFO
1901 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1902 pci_name(pdev), start, end);
1904 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1905 if (!domain)
1906 return -ENOMEM;
1908 ret = iommu_domain_identity_map(domain, start, end);
1909 if (ret)
1910 goto error;
1912 /* context entry init */
1913 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1914 if (ret)
1915 goto error;
1917 return 0;
1919 error:
1920 domain_exit(domain);
1921 return ret;
1924 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1925 struct pci_dev *pdev)
1927 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1928 return 0;
1929 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1930 rmrr->end_address + 1);
1933 #ifdef CONFIG_DMAR_FLOPPY_WA
1934 static inline void iommu_prepare_isa(void)
1936 struct pci_dev *pdev;
1937 int ret;
1939 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1940 if (!pdev)
1941 return;
1943 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1944 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1946 if (ret)
1947 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1948 "floppy might not work\n");
1951 #else
1952 static inline void iommu_prepare_isa(void)
1954 return;
1956 #endif /* !CONFIG_DMAR_FLPY_WA */
1958 /* Initialize each context entry as pass through.*/
1959 static int __init init_context_pass_through(void)
1961 struct pci_dev *pdev = NULL;
1962 struct dmar_domain *domain;
1963 int ret;
1965 for_each_pci_dev(pdev) {
1966 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1967 ret = domain_context_mapping(domain, pdev,
1968 CONTEXT_TT_PASS_THROUGH);
1969 if (ret)
1970 return ret;
1972 return 0;
1975 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1977 static int __init si_domain_work_fn(unsigned long start_pfn,
1978 unsigned long end_pfn, void *datax)
1980 int *ret = datax;
1982 *ret = iommu_domain_identity_map(si_domain,
1983 (uint64_t)start_pfn << PAGE_SHIFT,
1984 (uint64_t)end_pfn << PAGE_SHIFT);
1985 return *ret;
1989 static int si_domain_init(void)
1991 struct dmar_drhd_unit *drhd;
1992 struct intel_iommu *iommu;
1993 int nid, ret = 0;
1995 si_domain = alloc_domain();
1996 if (!si_domain)
1997 return -EFAULT;
1999 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2001 for_each_active_iommu(iommu, drhd) {
2002 ret = iommu_attach_domain(si_domain, iommu);
2003 if (ret) {
2004 domain_exit(si_domain);
2005 return -EFAULT;
2009 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2010 domain_exit(si_domain);
2011 return -EFAULT;
2014 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2016 for_each_online_node(nid) {
2017 work_with_active_regions(nid, si_domain_work_fn, &ret);
2018 if (ret)
2019 return ret;
2022 return 0;
2025 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2026 struct pci_dev *pdev);
2027 static int identity_mapping(struct pci_dev *pdev)
2029 struct device_domain_info *info;
2031 if (likely(!iommu_identity_mapping))
2032 return 0;
2035 list_for_each_entry(info, &si_domain->devices, link)
2036 if (info->dev == pdev)
2037 return 1;
2038 return 0;
2041 static int domain_add_dev_info(struct dmar_domain *domain,
2042 struct pci_dev *pdev)
2044 struct device_domain_info *info;
2045 unsigned long flags;
2047 info = alloc_devinfo_mem();
2048 if (!info)
2049 return -ENOMEM;
2051 info->segment = pci_domain_nr(pdev->bus);
2052 info->bus = pdev->bus->number;
2053 info->devfn = pdev->devfn;
2054 info->dev = pdev;
2055 info->domain = domain;
2057 spin_lock_irqsave(&device_domain_lock, flags);
2058 list_add(&info->link, &domain->devices);
2059 list_add(&info->global, &device_domain_list);
2060 pdev->dev.archdata.iommu = info;
2061 spin_unlock_irqrestore(&device_domain_lock, flags);
2063 return 0;
2066 static int iommu_prepare_static_identity_mapping(void)
2068 struct pci_dev *pdev = NULL;
2069 int ret;
2071 ret = si_domain_init();
2072 if (ret)
2073 return -EFAULT;
2075 for_each_pci_dev(pdev) {
2076 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2077 pci_name(pdev));
2079 ret = domain_context_mapping(si_domain, pdev,
2080 CONTEXT_TT_MULTI_LEVEL);
2081 if (ret)
2082 return ret;
2083 ret = domain_add_dev_info(si_domain, pdev);
2084 if (ret)
2085 return ret;
2088 return 0;
2091 int __init init_dmars(void)
2093 struct dmar_drhd_unit *drhd;
2094 struct dmar_rmrr_unit *rmrr;
2095 struct pci_dev *pdev;
2096 struct intel_iommu *iommu;
2097 int i, ret;
2098 int pass_through = 1;
2101 * In case pass through can not be enabled, iommu tries to use identity
2102 * mapping.
2104 if (iommu_pass_through)
2105 iommu_identity_mapping = 1;
2108 * for each drhd
2109 * allocate root
2110 * initialize and program root entry to not present
2111 * endfor
2113 for_each_drhd_unit(drhd) {
2114 g_num_of_iommus++;
2116 * lock not needed as this is only incremented in the single
2117 * threaded kernel __init code path all other access are read
2118 * only
2122 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2123 GFP_KERNEL);
2124 if (!g_iommus) {
2125 printk(KERN_ERR "Allocating global iommu array failed\n");
2126 ret = -ENOMEM;
2127 goto error;
2130 deferred_flush = kzalloc(g_num_of_iommus *
2131 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2132 if (!deferred_flush) {
2133 kfree(g_iommus);
2134 ret = -ENOMEM;
2135 goto error;
2138 for_each_drhd_unit(drhd) {
2139 if (drhd->ignored)
2140 continue;
2142 iommu = drhd->iommu;
2143 g_iommus[iommu->seq_id] = iommu;
2145 ret = iommu_init_domains(iommu);
2146 if (ret)
2147 goto error;
2150 * TBD:
2151 * we could share the same root & context tables
2152 * amoung all IOMMU's. Need to Split it later.
2154 ret = iommu_alloc_root_entry(iommu);
2155 if (ret) {
2156 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2157 goto error;
2159 if (!ecap_pass_through(iommu->ecap))
2160 pass_through = 0;
2162 if (iommu_pass_through)
2163 if (!pass_through) {
2164 printk(KERN_INFO
2165 "Pass Through is not supported by hardware.\n");
2166 iommu_pass_through = 0;
2170 * Start from the sane iommu hardware state.
2172 for_each_drhd_unit(drhd) {
2173 if (drhd->ignored)
2174 continue;
2176 iommu = drhd->iommu;
2179 * If the queued invalidation is already initialized by us
2180 * (for example, while enabling interrupt-remapping) then
2181 * we got the things already rolling from a sane state.
2183 if (iommu->qi)
2184 continue;
2187 * Clear any previous faults.
2189 dmar_fault(-1, iommu);
2191 * Disable queued invalidation if supported and already enabled
2192 * before OS handover.
2194 dmar_disable_qi(iommu);
2197 for_each_drhd_unit(drhd) {
2198 if (drhd->ignored)
2199 continue;
2201 iommu = drhd->iommu;
2203 if (dmar_enable_qi(iommu)) {
2205 * Queued Invalidate not enabled, use Register Based
2206 * Invalidate
2208 iommu->flush.flush_context = __iommu_flush_context;
2209 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2210 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2211 "invalidation\n",
2212 (unsigned long long)drhd->reg_base_addr);
2213 } else {
2214 iommu->flush.flush_context = qi_flush_context;
2215 iommu->flush.flush_iotlb = qi_flush_iotlb;
2216 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2217 "invalidation\n",
2218 (unsigned long long)drhd->reg_base_addr);
2223 * If pass through is set and enabled, context entries of all pci
2224 * devices are intialized by pass through translation type.
2226 if (iommu_pass_through) {
2227 ret = init_context_pass_through();
2228 if (ret) {
2229 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2230 iommu_pass_through = 0;
2235 * If pass through is not set or not enabled, setup context entries for
2236 * identity mappings for rmrr, gfx, and isa and may fall back to static
2237 * identity mapping if iommu_identity_mapping is set.
2239 if (!iommu_pass_through) {
2240 if (iommu_identity_mapping)
2241 iommu_prepare_static_identity_mapping();
2243 * For each rmrr
2244 * for each dev attached to rmrr
2245 * do
2246 * locate drhd for dev, alloc domain for dev
2247 * allocate free domain
2248 * allocate page table entries for rmrr
2249 * if context not allocated for bus
2250 * allocate and init context
2251 * set present in root table for this bus
2252 * init context with domain, translation etc
2253 * endfor
2254 * endfor
2256 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2257 for_each_rmrr_units(rmrr) {
2258 for (i = 0; i < rmrr->devices_cnt; i++) {
2259 pdev = rmrr->devices[i];
2261 * some BIOS lists non-exist devices in DMAR
2262 * table.
2264 if (!pdev)
2265 continue;
2266 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2267 if (ret)
2268 printk(KERN_ERR
2269 "IOMMU: mapping reserved region failed\n");
2273 iommu_prepare_isa();
2277 * for each drhd
2278 * enable fault log
2279 * global invalidate context cache
2280 * global invalidate iotlb
2281 * enable translation
2283 for_each_drhd_unit(drhd) {
2284 if (drhd->ignored)
2285 continue;
2286 iommu = drhd->iommu;
2288 iommu_flush_write_buffer(iommu);
2290 ret = dmar_set_interrupt(iommu);
2291 if (ret)
2292 goto error;
2294 iommu_set_root_entry(iommu);
2296 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2297 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2298 iommu_disable_protect_mem_regions(iommu);
2300 ret = iommu_enable_translation(iommu);
2301 if (ret)
2302 goto error;
2305 return 0;
2306 error:
2307 for_each_drhd_unit(drhd) {
2308 if (drhd->ignored)
2309 continue;
2310 iommu = drhd->iommu;
2311 free_iommu(iommu);
2313 kfree(g_iommus);
2314 return ret;
2317 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2318 size_t size)
2320 host_addr &= ~PAGE_MASK;
2321 host_addr += size + PAGE_SIZE - 1;
2323 return host_addr >> VTD_PAGE_SHIFT;
2326 struct iova *
2327 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2329 struct iova *piova;
2331 /* Make sure it's in range */
2332 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2333 if (!size || (IOVA_START_ADDR + size > end))
2334 return NULL;
2336 piova = alloc_iova(&domain->iovad,
2337 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2338 return piova;
2341 static struct iova *
2342 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2343 size_t size, u64 dma_mask)
2345 struct pci_dev *pdev = to_pci_dev(dev);
2346 struct iova *iova = NULL;
2348 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2349 iova = iommu_alloc_iova(domain, size, dma_mask);
2350 else {
2352 * First try to allocate an io virtual address in
2353 * DMA_BIT_MASK(32) and if that fails then try allocating
2354 * from higher range
2356 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2357 if (!iova)
2358 iova = iommu_alloc_iova(domain, size, dma_mask);
2361 if (!iova) {
2362 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2363 return NULL;
2366 return iova;
2369 static struct dmar_domain *
2370 get_valid_domain_for_dev(struct pci_dev *pdev)
2372 struct dmar_domain *domain;
2373 int ret;
2375 domain = get_domain_for_dev(pdev,
2376 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2377 if (!domain) {
2378 printk(KERN_ERR
2379 "Allocating domain for %s failed", pci_name(pdev));
2380 return NULL;
2383 /* make sure context mapping is ok */
2384 if (unlikely(!domain_context_mapped(pdev))) {
2385 ret = domain_context_mapping(domain, pdev,
2386 CONTEXT_TT_MULTI_LEVEL);
2387 if (ret) {
2388 printk(KERN_ERR
2389 "Domain context map for %s failed",
2390 pci_name(pdev));
2391 return NULL;
2395 return domain;
2398 static int iommu_dummy(struct pci_dev *pdev)
2400 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2403 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2404 static int iommu_no_mapping(struct pci_dev *pdev)
2406 int found;
2408 if (!iommu_identity_mapping)
2409 return iommu_dummy(pdev);
2411 found = identity_mapping(pdev);
2412 if (found) {
2413 if (pdev->dma_mask > DMA_BIT_MASK(32))
2414 return 1;
2415 else {
2417 * 32 bit DMA is removed from si_domain and fall back
2418 * to non-identity mapping.
2420 domain_remove_one_dev_info(si_domain, pdev);
2421 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2422 pci_name(pdev));
2423 return 0;
2425 } else {
2427 * In case of a detached 64 bit DMA device from vm, the device
2428 * is put into si_domain for identity mapping.
2430 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2431 int ret;
2432 ret = domain_add_dev_info(si_domain, pdev);
2433 if (!ret) {
2434 printk(KERN_INFO "64bit %s uses identity mapping\n",
2435 pci_name(pdev));
2436 return 1;
2441 return iommu_dummy(pdev);
2444 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2445 size_t size, int dir, u64 dma_mask)
2447 struct pci_dev *pdev = to_pci_dev(hwdev);
2448 struct dmar_domain *domain;
2449 phys_addr_t start_paddr;
2450 struct iova *iova;
2451 int prot = 0;
2452 int ret;
2453 struct intel_iommu *iommu;
2455 BUG_ON(dir == DMA_NONE);
2457 if (iommu_no_mapping(pdev))
2458 return paddr;
2460 domain = get_valid_domain_for_dev(pdev);
2461 if (!domain)
2462 return 0;
2464 iommu = domain_get_iommu(domain);
2465 size = aligned_nrpages(paddr, size);
2467 iova = __intel_alloc_iova(hwdev, domain, size << VTD_PAGE_SHIFT, pdev->dma_mask);
2468 if (!iova)
2469 goto error;
2472 * Check if DMAR supports zero-length reads on write only
2473 * mappings..
2475 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2476 !cap_zlr(iommu->cap))
2477 prot |= DMA_PTE_READ;
2478 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2479 prot |= DMA_PTE_WRITE;
2481 * paddr - (paddr + size) might be partial page, we should map the whole
2482 * page. Note: if two part of one page are separately mapped, we
2483 * might have two guest_addr mapping to the same host paddr, but this
2484 * is not a big problem
2486 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2487 paddr >> VTD_PAGE_SHIFT, size, prot);
2488 if (ret)
2489 goto error;
2491 /* it's a non-present to present mapping. Only flush if caching mode */
2492 if (cap_caching_mode(iommu->cap))
2493 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2494 else
2495 iommu_flush_write_buffer(iommu);
2497 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2498 start_paddr += paddr & ~PAGE_MASK;
2499 return start_paddr;
2501 error:
2502 if (iova)
2503 __free_iova(&domain->iovad, iova);
2504 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2505 pci_name(pdev), size, (unsigned long long)paddr, dir);
2506 return 0;
2509 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2510 unsigned long offset, size_t size,
2511 enum dma_data_direction dir,
2512 struct dma_attrs *attrs)
2514 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2515 dir, to_pci_dev(dev)->dma_mask);
2518 static void flush_unmaps(void)
2520 int i, j;
2522 timer_on = 0;
2524 /* just flush them all */
2525 for (i = 0; i < g_num_of_iommus; i++) {
2526 struct intel_iommu *iommu = g_iommus[i];
2527 if (!iommu)
2528 continue;
2530 if (!deferred_flush[i].next)
2531 continue;
2533 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2534 DMA_TLB_GLOBAL_FLUSH);
2535 for (j = 0; j < deferred_flush[i].next; j++) {
2536 unsigned long mask;
2537 struct iova *iova = deferred_flush[i].iova[j];
2539 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2540 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2541 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2542 iova->pfn_lo << PAGE_SHIFT, mask);
2543 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2545 deferred_flush[i].next = 0;
2548 list_size = 0;
2551 static void flush_unmaps_timeout(unsigned long data)
2553 unsigned long flags;
2555 spin_lock_irqsave(&async_umap_flush_lock, flags);
2556 flush_unmaps();
2557 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2560 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2562 unsigned long flags;
2563 int next, iommu_id;
2564 struct intel_iommu *iommu;
2566 spin_lock_irqsave(&async_umap_flush_lock, flags);
2567 if (list_size == HIGH_WATER_MARK)
2568 flush_unmaps();
2570 iommu = domain_get_iommu(dom);
2571 iommu_id = iommu->seq_id;
2573 next = deferred_flush[iommu_id].next;
2574 deferred_flush[iommu_id].domain[next] = dom;
2575 deferred_flush[iommu_id].iova[next] = iova;
2576 deferred_flush[iommu_id].next++;
2578 if (!timer_on) {
2579 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2580 timer_on = 1;
2582 list_size++;
2583 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2586 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2587 size_t size, enum dma_data_direction dir,
2588 struct dma_attrs *attrs)
2590 struct pci_dev *pdev = to_pci_dev(dev);
2591 struct dmar_domain *domain;
2592 unsigned long start_pfn, last_pfn;
2593 struct iova *iova;
2594 struct intel_iommu *iommu;
2596 if (iommu_no_mapping(pdev))
2597 return;
2599 domain = find_domain(pdev);
2600 BUG_ON(!domain);
2602 iommu = domain_get_iommu(domain);
2604 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2605 if (!iova)
2606 return;
2608 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2609 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2611 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2612 pci_name(pdev), start_pfn, last_pfn);
2614 /* clear the whole page */
2615 dma_pte_clear_range(domain, start_pfn, last_pfn);
2617 /* free page tables */
2618 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2620 if (intel_iommu_strict) {
2621 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2622 last_pfn - start_pfn + 1);
2623 /* free iova */
2624 __free_iova(&domain->iovad, iova);
2625 } else {
2626 add_unmap(domain, iova);
2628 * queue up the release of the unmap to save the 1/6th of the
2629 * cpu used up by the iotlb flush operation...
2634 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2635 int dir)
2637 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2640 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2641 dma_addr_t *dma_handle, gfp_t flags)
2643 void *vaddr;
2644 int order;
2646 size = PAGE_ALIGN(size);
2647 order = get_order(size);
2648 flags &= ~(GFP_DMA | GFP_DMA32);
2650 vaddr = (void *)__get_free_pages(flags, order);
2651 if (!vaddr)
2652 return NULL;
2653 memset(vaddr, 0, size);
2655 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2656 DMA_BIDIRECTIONAL,
2657 hwdev->coherent_dma_mask);
2658 if (*dma_handle)
2659 return vaddr;
2660 free_pages((unsigned long)vaddr, order);
2661 return NULL;
2664 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2665 dma_addr_t dma_handle)
2667 int order;
2669 size = PAGE_ALIGN(size);
2670 order = get_order(size);
2672 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2673 free_pages((unsigned long)vaddr, order);
2676 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2677 int nelems, enum dma_data_direction dir,
2678 struct dma_attrs *attrs)
2680 struct pci_dev *pdev = to_pci_dev(hwdev);
2681 struct dmar_domain *domain;
2682 unsigned long start_pfn, last_pfn;
2683 struct iova *iova;
2684 struct intel_iommu *iommu;
2686 if (iommu_no_mapping(pdev))
2687 return;
2689 domain = find_domain(pdev);
2690 BUG_ON(!domain);
2692 iommu = domain_get_iommu(domain);
2694 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2695 if (!iova)
2696 return;
2698 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2699 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2701 /* clear the whole page */
2702 dma_pte_clear_range(domain, start_pfn, last_pfn);
2704 /* free page tables */
2705 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2707 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2708 (last_pfn - start_pfn + 1));
2710 /* free iova */
2711 __free_iova(&domain->iovad, iova);
2714 static int intel_nontranslate_map_sg(struct device *hddev,
2715 struct scatterlist *sglist, int nelems, int dir)
2717 int i;
2718 struct scatterlist *sg;
2720 for_each_sg(sglist, sg, nelems, i) {
2721 BUG_ON(!sg_page(sg));
2722 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2723 sg->dma_length = sg->length;
2725 return nelems;
2728 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2729 enum dma_data_direction dir, struct dma_attrs *attrs)
2731 int i;
2732 struct pci_dev *pdev = to_pci_dev(hwdev);
2733 struct dmar_domain *domain;
2734 size_t size = 0;
2735 int prot = 0;
2736 size_t offset_pfn = 0;
2737 struct iova *iova = NULL;
2738 int ret;
2739 struct scatterlist *sg;
2740 unsigned long start_vpfn;
2741 struct intel_iommu *iommu;
2743 BUG_ON(dir == DMA_NONE);
2744 if (iommu_no_mapping(pdev))
2745 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2747 domain = get_valid_domain_for_dev(pdev);
2748 if (!domain)
2749 return 0;
2751 iommu = domain_get_iommu(domain);
2753 for_each_sg(sglist, sg, nelems, i)
2754 size += aligned_nrpages(sg->offset, sg->length);
2756 iova = __intel_alloc_iova(hwdev, domain, size << VTD_PAGE_SHIFT,
2757 pdev->dma_mask);
2758 if (!iova) {
2759 sglist->dma_length = 0;
2760 return 0;
2764 * Check if DMAR supports zero-length reads on write only
2765 * mappings..
2767 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2768 !cap_zlr(iommu->cap))
2769 prot |= DMA_PTE_READ;
2770 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2771 prot |= DMA_PTE_WRITE;
2773 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2774 offset_pfn = 0;
2775 for_each_sg(sglist, sg, nelems, i) {
2776 int nr_pages = aligned_nrpages(sg->offset, sg->length);
2777 ret = domain_pfn_mapping(domain, start_vpfn + offset_pfn,
2778 page_to_dma_pfn(sg_page(sg)),
2779 nr_pages, prot);
2780 if (ret) {
2781 /* clear the page */
2782 dma_pte_clear_range(domain, start_vpfn,
2783 start_vpfn + offset_pfn);
2784 /* free page tables */
2785 dma_pte_free_pagetable(domain, start_vpfn,
2786 start_vpfn + offset_pfn);
2787 /* free iova */
2788 __free_iova(&domain->iovad, iova);
2789 return 0;
2791 sg->dma_address = ((dma_addr_t)(start_vpfn + offset_pfn)
2792 << VTD_PAGE_SHIFT) + sg->offset;
2793 sg->dma_length = sg->length;
2794 offset_pfn += nr_pages;
2797 /* it's a non-present to present mapping. Only flush if caching mode */
2798 if (cap_caching_mode(iommu->cap))
2799 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2800 else
2801 iommu_flush_write_buffer(iommu);
2803 return nelems;
2806 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2808 return !dma_addr;
2811 struct dma_map_ops intel_dma_ops = {
2812 .alloc_coherent = intel_alloc_coherent,
2813 .free_coherent = intel_free_coherent,
2814 .map_sg = intel_map_sg,
2815 .unmap_sg = intel_unmap_sg,
2816 .map_page = intel_map_page,
2817 .unmap_page = intel_unmap_page,
2818 .mapping_error = intel_mapping_error,
2821 static inline int iommu_domain_cache_init(void)
2823 int ret = 0;
2825 iommu_domain_cache = kmem_cache_create("iommu_domain",
2826 sizeof(struct dmar_domain),
2828 SLAB_HWCACHE_ALIGN,
2830 NULL);
2831 if (!iommu_domain_cache) {
2832 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2833 ret = -ENOMEM;
2836 return ret;
2839 static inline int iommu_devinfo_cache_init(void)
2841 int ret = 0;
2843 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2844 sizeof(struct device_domain_info),
2846 SLAB_HWCACHE_ALIGN,
2847 NULL);
2848 if (!iommu_devinfo_cache) {
2849 printk(KERN_ERR "Couldn't create devinfo cache\n");
2850 ret = -ENOMEM;
2853 return ret;
2856 static inline int iommu_iova_cache_init(void)
2858 int ret = 0;
2860 iommu_iova_cache = kmem_cache_create("iommu_iova",
2861 sizeof(struct iova),
2863 SLAB_HWCACHE_ALIGN,
2864 NULL);
2865 if (!iommu_iova_cache) {
2866 printk(KERN_ERR "Couldn't create iova cache\n");
2867 ret = -ENOMEM;
2870 return ret;
2873 static int __init iommu_init_mempool(void)
2875 int ret;
2876 ret = iommu_iova_cache_init();
2877 if (ret)
2878 return ret;
2880 ret = iommu_domain_cache_init();
2881 if (ret)
2882 goto domain_error;
2884 ret = iommu_devinfo_cache_init();
2885 if (!ret)
2886 return ret;
2888 kmem_cache_destroy(iommu_domain_cache);
2889 domain_error:
2890 kmem_cache_destroy(iommu_iova_cache);
2892 return -ENOMEM;
2895 static void __init iommu_exit_mempool(void)
2897 kmem_cache_destroy(iommu_devinfo_cache);
2898 kmem_cache_destroy(iommu_domain_cache);
2899 kmem_cache_destroy(iommu_iova_cache);
2903 static void __init init_no_remapping_devices(void)
2905 struct dmar_drhd_unit *drhd;
2907 for_each_drhd_unit(drhd) {
2908 if (!drhd->include_all) {
2909 int i;
2910 for (i = 0; i < drhd->devices_cnt; i++)
2911 if (drhd->devices[i] != NULL)
2912 break;
2913 /* ignore DMAR unit if no pci devices exist */
2914 if (i == drhd->devices_cnt)
2915 drhd->ignored = 1;
2919 if (dmar_map_gfx)
2920 return;
2922 for_each_drhd_unit(drhd) {
2923 int i;
2924 if (drhd->ignored || drhd->include_all)
2925 continue;
2927 for (i = 0; i < drhd->devices_cnt; i++)
2928 if (drhd->devices[i] &&
2929 !IS_GFX_DEVICE(drhd->devices[i]))
2930 break;
2932 if (i < drhd->devices_cnt)
2933 continue;
2935 /* bypass IOMMU if it is just for gfx devices */
2936 drhd->ignored = 1;
2937 for (i = 0; i < drhd->devices_cnt; i++) {
2938 if (!drhd->devices[i])
2939 continue;
2940 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2945 #ifdef CONFIG_SUSPEND
2946 static int init_iommu_hw(void)
2948 struct dmar_drhd_unit *drhd;
2949 struct intel_iommu *iommu = NULL;
2951 for_each_active_iommu(iommu, drhd)
2952 if (iommu->qi)
2953 dmar_reenable_qi(iommu);
2955 for_each_active_iommu(iommu, drhd) {
2956 iommu_flush_write_buffer(iommu);
2958 iommu_set_root_entry(iommu);
2960 iommu->flush.flush_context(iommu, 0, 0, 0,
2961 DMA_CCMD_GLOBAL_INVL);
2962 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2963 DMA_TLB_GLOBAL_FLUSH);
2964 iommu_disable_protect_mem_regions(iommu);
2965 iommu_enable_translation(iommu);
2968 return 0;
2971 static void iommu_flush_all(void)
2973 struct dmar_drhd_unit *drhd;
2974 struct intel_iommu *iommu;
2976 for_each_active_iommu(iommu, drhd) {
2977 iommu->flush.flush_context(iommu, 0, 0, 0,
2978 DMA_CCMD_GLOBAL_INVL);
2979 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2980 DMA_TLB_GLOBAL_FLUSH);
2984 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2986 struct dmar_drhd_unit *drhd;
2987 struct intel_iommu *iommu = NULL;
2988 unsigned long flag;
2990 for_each_active_iommu(iommu, drhd) {
2991 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2992 GFP_ATOMIC);
2993 if (!iommu->iommu_state)
2994 goto nomem;
2997 iommu_flush_all();
2999 for_each_active_iommu(iommu, drhd) {
3000 iommu_disable_translation(iommu);
3002 spin_lock_irqsave(&iommu->register_lock, flag);
3004 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3005 readl(iommu->reg + DMAR_FECTL_REG);
3006 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3007 readl(iommu->reg + DMAR_FEDATA_REG);
3008 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3009 readl(iommu->reg + DMAR_FEADDR_REG);
3010 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3011 readl(iommu->reg + DMAR_FEUADDR_REG);
3013 spin_unlock_irqrestore(&iommu->register_lock, flag);
3015 return 0;
3017 nomem:
3018 for_each_active_iommu(iommu, drhd)
3019 kfree(iommu->iommu_state);
3021 return -ENOMEM;
3024 static int iommu_resume(struct sys_device *dev)
3026 struct dmar_drhd_unit *drhd;
3027 struct intel_iommu *iommu = NULL;
3028 unsigned long flag;
3030 if (init_iommu_hw()) {
3031 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3032 return -EIO;
3035 for_each_active_iommu(iommu, drhd) {
3037 spin_lock_irqsave(&iommu->register_lock, flag);
3039 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3040 iommu->reg + DMAR_FECTL_REG);
3041 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3042 iommu->reg + DMAR_FEDATA_REG);
3043 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3044 iommu->reg + DMAR_FEADDR_REG);
3045 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3046 iommu->reg + DMAR_FEUADDR_REG);
3048 spin_unlock_irqrestore(&iommu->register_lock, flag);
3051 for_each_active_iommu(iommu, drhd)
3052 kfree(iommu->iommu_state);
3054 return 0;
3057 static struct sysdev_class iommu_sysclass = {
3058 .name = "iommu",
3059 .resume = iommu_resume,
3060 .suspend = iommu_suspend,
3063 static struct sys_device device_iommu = {
3064 .cls = &iommu_sysclass,
3067 static int __init init_iommu_sysfs(void)
3069 int error;
3071 error = sysdev_class_register(&iommu_sysclass);
3072 if (error)
3073 return error;
3075 error = sysdev_register(&device_iommu);
3076 if (error)
3077 sysdev_class_unregister(&iommu_sysclass);
3079 return error;
3082 #else
3083 static int __init init_iommu_sysfs(void)
3085 return 0;
3087 #endif /* CONFIG_PM */
3089 int __init intel_iommu_init(void)
3091 int ret = 0;
3093 if (dmar_table_init())
3094 return -ENODEV;
3096 if (dmar_dev_scope_init())
3097 return -ENODEV;
3100 * Check the need for DMA-remapping initialization now.
3101 * Above initialization will also be used by Interrupt-remapping.
3103 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3104 return -ENODEV;
3106 iommu_init_mempool();
3107 dmar_init_reserved_ranges();
3109 init_no_remapping_devices();
3111 ret = init_dmars();
3112 if (ret) {
3113 printk(KERN_ERR "IOMMU: dmar init failed\n");
3114 put_iova_domain(&reserved_iova_list);
3115 iommu_exit_mempool();
3116 return ret;
3118 printk(KERN_INFO
3119 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3121 init_timer(&unmap_timer);
3122 force_iommu = 1;
3124 if (!iommu_pass_through) {
3125 printk(KERN_INFO
3126 "Multi-level page-table translation for DMAR.\n");
3127 dma_ops = &intel_dma_ops;
3128 } else
3129 printk(KERN_INFO
3130 "DMAR: Pass through translation for DMAR.\n");
3132 init_iommu_sysfs();
3134 register_iommu(&intel_iommu_ops);
3136 return 0;
3139 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3140 struct pci_dev *pdev)
3142 struct pci_dev *tmp, *parent;
3144 if (!iommu || !pdev)
3145 return;
3147 /* dependent device detach */
3148 tmp = pci_find_upstream_pcie_bridge(pdev);
3149 /* Secondary interface's bus number and devfn 0 */
3150 if (tmp) {
3151 parent = pdev->bus->self;
3152 while (parent != tmp) {
3153 iommu_detach_dev(iommu, parent->bus->number,
3154 parent->devfn);
3155 parent = parent->bus->self;
3157 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3158 iommu_detach_dev(iommu,
3159 tmp->subordinate->number, 0);
3160 else /* this is a legacy PCI bridge */
3161 iommu_detach_dev(iommu, tmp->bus->number,
3162 tmp->devfn);
3166 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3167 struct pci_dev *pdev)
3169 struct device_domain_info *info;
3170 struct intel_iommu *iommu;
3171 unsigned long flags;
3172 int found = 0;
3173 struct list_head *entry, *tmp;
3175 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3176 pdev->devfn);
3177 if (!iommu)
3178 return;
3180 spin_lock_irqsave(&device_domain_lock, flags);
3181 list_for_each_safe(entry, tmp, &domain->devices) {
3182 info = list_entry(entry, struct device_domain_info, link);
3183 /* No need to compare PCI domain; it has to be the same */
3184 if (info->bus == pdev->bus->number &&
3185 info->devfn == pdev->devfn) {
3186 list_del(&info->link);
3187 list_del(&info->global);
3188 if (info->dev)
3189 info->dev->dev.archdata.iommu = NULL;
3190 spin_unlock_irqrestore(&device_domain_lock, flags);
3192 iommu_disable_dev_iotlb(info);
3193 iommu_detach_dev(iommu, info->bus, info->devfn);
3194 iommu_detach_dependent_devices(iommu, pdev);
3195 free_devinfo_mem(info);
3197 spin_lock_irqsave(&device_domain_lock, flags);
3199 if (found)
3200 break;
3201 else
3202 continue;
3205 /* if there is no other devices under the same iommu
3206 * owned by this domain, clear this iommu in iommu_bmp
3207 * update iommu count and coherency
3209 if (iommu == device_to_iommu(info->segment, info->bus,
3210 info->devfn))
3211 found = 1;
3214 if (found == 0) {
3215 unsigned long tmp_flags;
3216 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3217 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3218 domain->iommu_count--;
3219 domain_update_iommu_cap(domain);
3220 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3223 spin_unlock_irqrestore(&device_domain_lock, flags);
3226 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3228 struct device_domain_info *info;
3229 struct intel_iommu *iommu;
3230 unsigned long flags1, flags2;
3232 spin_lock_irqsave(&device_domain_lock, flags1);
3233 while (!list_empty(&domain->devices)) {
3234 info = list_entry(domain->devices.next,
3235 struct device_domain_info, link);
3236 list_del(&info->link);
3237 list_del(&info->global);
3238 if (info->dev)
3239 info->dev->dev.archdata.iommu = NULL;
3241 spin_unlock_irqrestore(&device_domain_lock, flags1);
3243 iommu_disable_dev_iotlb(info);
3244 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3245 iommu_detach_dev(iommu, info->bus, info->devfn);
3246 iommu_detach_dependent_devices(iommu, info->dev);
3248 /* clear this iommu in iommu_bmp, update iommu count
3249 * and capabilities
3251 spin_lock_irqsave(&domain->iommu_lock, flags2);
3252 if (test_and_clear_bit(iommu->seq_id,
3253 &domain->iommu_bmp)) {
3254 domain->iommu_count--;
3255 domain_update_iommu_cap(domain);
3257 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3259 free_devinfo_mem(info);
3260 spin_lock_irqsave(&device_domain_lock, flags1);
3262 spin_unlock_irqrestore(&device_domain_lock, flags1);
3265 /* domain id for virtual machine, it won't be set in context */
3266 static unsigned long vm_domid;
3268 static int vm_domain_min_agaw(struct dmar_domain *domain)
3270 int i;
3271 int min_agaw = domain->agaw;
3273 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3274 for (; i < g_num_of_iommus; ) {
3275 if (min_agaw > g_iommus[i]->agaw)
3276 min_agaw = g_iommus[i]->agaw;
3278 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3281 return min_agaw;
3284 static struct dmar_domain *iommu_alloc_vm_domain(void)
3286 struct dmar_domain *domain;
3288 domain = alloc_domain_mem();
3289 if (!domain)
3290 return NULL;
3292 domain->id = vm_domid++;
3293 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3294 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3296 return domain;
3299 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3301 int adjust_width;
3303 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3304 spin_lock_init(&domain->mapping_lock);
3305 spin_lock_init(&domain->iommu_lock);
3307 domain_reserve_special_ranges(domain);
3309 /* calculate AGAW */
3310 domain->gaw = guest_width;
3311 adjust_width = guestwidth_to_adjustwidth(guest_width);
3312 domain->agaw = width_to_agaw(adjust_width);
3314 INIT_LIST_HEAD(&domain->devices);
3316 domain->iommu_count = 0;
3317 domain->iommu_coherency = 0;
3318 domain->max_addr = 0;
3320 /* always allocate the top pgd */
3321 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3322 if (!domain->pgd)
3323 return -ENOMEM;
3324 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3325 return 0;
3328 static void iommu_free_vm_domain(struct dmar_domain *domain)
3330 unsigned long flags;
3331 struct dmar_drhd_unit *drhd;
3332 struct intel_iommu *iommu;
3333 unsigned long i;
3334 unsigned long ndomains;
3336 for_each_drhd_unit(drhd) {
3337 if (drhd->ignored)
3338 continue;
3339 iommu = drhd->iommu;
3341 ndomains = cap_ndoms(iommu->cap);
3342 i = find_first_bit(iommu->domain_ids, ndomains);
3343 for (; i < ndomains; ) {
3344 if (iommu->domains[i] == domain) {
3345 spin_lock_irqsave(&iommu->lock, flags);
3346 clear_bit(i, iommu->domain_ids);
3347 iommu->domains[i] = NULL;
3348 spin_unlock_irqrestore(&iommu->lock, flags);
3349 break;
3351 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3356 static void vm_domain_exit(struct dmar_domain *domain)
3358 /* Domain 0 is reserved, so dont process it */
3359 if (!domain)
3360 return;
3362 vm_domain_remove_all_dev_info(domain);
3363 /* destroy iovas */
3364 put_iova_domain(&domain->iovad);
3366 /* clear ptes */
3367 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3369 /* free page tables */
3370 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3372 iommu_free_vm_domain(domain);
3373 free_domain_mem(domain);
3376 static int intel_iommu_domain_init(struct iommu_domain *domain)
3378 struct dmar_domain *dmar_domain;
3380 dmar_domain = iommu_alloc_vm_domain();
3381 if (!dmar_domain) {
3382 printk(KERN_ERR
3383 "intel_iommu_domain_init: dmar_domain == NULL\n");
3384 return -ENOMEM;
3386 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3387 printk(KERN_ERR
3388 "intel_iommu_domain_init() failed\n");
3389 vm_domain_exit(dmar_domain);
3390 return -ENOMEM;
3392 domain->priv = dmar_domain;
3394 return 0;
3397 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3399 struct dmar_domain *dmar_domain = domain->priv;
3401 domain->priv = NULL;
3402 vm_domain_exit(dmar_domain);
3405 static int intel_iommu_attach_device(struct iommu_domain *domain,
3406 struct device *dev)
3408 struct dmar_domain *dmar_domain = domain->priv;
3409 struct pci_dev *pdev = to_pci_dev(dev);
3410 struct intel_iommu *iommu;
3411 int addr_width;
3412 u64 end;
3413 int ret;
3415 /* normally pdev is not mapped */
3416 if (unlikely(domain_context_mapped(pdev))) {
3417 struct dmar_domain *old_domain;
3419 old_domain = find_domain(pdev);
3420 if (old_domain) {
3421 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3422 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3423 domain_remove_one_dev_info(old_domain, pdev);
3424 else
3425 domain_remove_dev_info(old_domain);
3429 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3430 pdev->devfn);
3431 if (!iommu)
3432 return -ENODEV;
3434 /* check if this iommu agaw is sufficient for max mapped address */
3435 addr_width = agaw_to_width(iommu->agaw);
3436 end = DOMAIN_MAX_ADDR(addr_width);
3437 end = end & VTD_PAGE_MASK;
3438 if (end < dmar_domain->max_addr) {
3439 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3440 "sufficient for the mapped address (%llx)\n",
3441 __func__, iommu->agaw, dmar_domain->max_addr);
3442 return -EFAULT;
3445 ret = domain_add_dev_info(dmar_domain, pdev);
3446 if (ret)
3447 return ret;
3449 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3450 return ret;
3453 static void intel_iommu_detach_device(struct iommu_domain *domain,
3454 struct device *dev)
3456 struct dmar_domain *dmar_domain = domain->priv;
3457 struct pci_dev *pdev = to_pci_dev(dev);
3459 domain_remove_one_dev_info(dmar_domain, pdev);
3462 static int intel_iommu_map_range(struct iommu_domain *domain,
3463 unsigned long iova, phys_addr_t hpa,
3464 size_t size, int iommu_prot)
3466 struct dmar_domain *dmar_domain = domain->priv;
3467 u64 max_addr;
3468 int addr_width;
3469 int prot = 0;
3470 int ret;
3472 if (iommu_prot & IOMMU_READ)
3473 prot |= DMA_PTE_READ;
3474 if (iommu_prot & IOMMU_WRITE)
3475 prot |= DMA_PTE_WRITE;
3476 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3477 prot |= DMA_PTE_SNP;
3479 max_addr = iova + size;
3480 if (dmar_domain->max_addr < max_addr) {
3481 int min_agaw;
3482 u64 end;
3484 /* check if minimum agaw is sufficient for mapped address */
3485 min_agaw = vm_domain_min_agaw(dmar_domain);
3486 addr_width = agaw_to_width(min_agaw);
3487 end = DOMAIN_MAX_ADDR(addr_width);
3488 end = end & VTD_PAGE_MASK;
3489 if (end < max_addr) {
3490 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3491 "sufficient for the mapped address (%llx)\n",
3492 __func__, min_agaw, max_addr);
3493 return -EFAULT;
3495 dmar_domain->max_addr = max_addr;
3497 /* Round up size to next multiple of PAGE_SIZE, if it and
3498 the low bits of hpa would take us onto the next page */
3499 size = aligned_nrpages(hpa, size);
3500 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3501 hpa >> VTD_PAGE_SHIFT, size, prot);
3502 return ret;
3505 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3506 unsigned long iova, size_t size)
3508 struct dmar_domain *dmar_domain = domain->priv;
3510 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3511 (iova + size - 1) >> VTD_PAGE_SHIFT);
3513 if (dmar_domain->max_addr == iova + size)
3514 dmar_domain->max_addr = iova;
3517 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3518 unsigned long iova)
3520 struct dmar_domain *dmar_domain = domain->priv;
3521 struct dma_pte *pte;
3522 u64 phys = 0;
3524 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3525 if (pte)
3526 phys = dma_pte_addr(pte);
3528 return phys;
3531 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3532 unsigned long cap)
3534 struct dmar_domain *dmar_domain = domain->priv;
3536 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3537 return dmar_domain->iommu_snooping;
3539 return 0;
3542 static struct iommu_ops intel_iommu_ops = {
3543 .domain_init = intel_iommu_domain_init,
3544 .domain_destroy = intel_iommu_domain_destroy,
3545 .attach_dev = intel_iommu_attach_device,
3546 .detach_dev = intel_iommu_detach_device,
3547 .map = intel_iommu_map_range,
3548 .unmap = intel_iommu_unmap_range,
3549 .iova_to_phys = intel_iommu_iova_to_phys,
3550 .domain_has_cap = intel_iommu_domain_has_cap,
3553 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3556 * Mobile 4 Series Chipset neglects to set RWBF capability,
3557 * but needs it:
3559 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3560 rwbf_quirk = 1;
3563 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);