4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* This context's GFP mask */
63 /* Can pages be swapped as part of reclaim? */
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
74 int all_unreclaimable
;
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup
*mem_cgroup
;
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
83 unsigned long *scanned
, int order
, int mode
,
84 struct zone
*z
, struct mem_cgroup
*mem_cont
,
85 int active
, int file
);
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field) \
93 if ((_page)->lru.prev != _base) { \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field) \
107 if ((_page)->lru.prev != _base) { \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
119 * From 0 .. 100. Higher means more swappy.
121 int vm_swappiness
= 60;
122 long vm_total_pages
; /* The total number of pages which the VM controls */
124 static LIST_HEAD(shrinker_list
);
125 static DECLARE_RWSEM(shrinker_rwsem
);
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
130 #define scanning_global_lru(sc) (1)
133 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
134 struct scan_control
*sc
)
136 if (!scanning_global_lru(sc
))
137 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
139 return &zone
->reclaim_stat
;
142 static unsigned long zone_nr_pages(struct zone
*zone
, struct scan_control
*sc
,
145 if (!scanning_global_lru(sc
))
146 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
148 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
153 * Add a shrinker callback to be called from the vm
155 void register_shrinker(struct shrinker
*shrinker
)
158 down_write(&shrinker_rwsem
);
159 list_add_tail(&shrinker
->list
, &shrinker_list
);
160 up_write(&shrinker_rwsem
);
162 EXPORT_SYMBOL(register_shrinker
);
167 void unregister_shrinker(struct shrinker
*shrinker
)
169 down_write(&shrinker_rwsem
);
170 list_del(&shrinker
->list
);
171 up_write(&shrinker_rwsem
);
173 EXPORT_SYMBOL(unregister_shrinker
);
175 #define SHRINK_BATCH 128
177 * Call the shrink functions to age shrinkable caches
179 * Here we assume it costs one seek to replace a lru page and that it also
180 * takes a seek to recreate a cache object. With this in mind we age equal
181 * percentages of the lru and ageable caches. This should balance the seeks
182 * generated by these structures.
184 * If the vm encountered mapped pages on the LRU it increase the pressure on
185 * slab to avoid swapping.
187 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
189 * `lru_pages' represents the number of on-LRU pages in all the zones which
190 * are eligible for the caller's allocation attempt. It is used for balancing
191 * slab reclaim versus page reclaim.
193 * Returns the number of slab objects which we shrunk.
195 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
196 unsigned long lru_pages
)
198 struct shrinker
*shrinker
;
199 unsigned long ret
= 0;
202 scanned
= SWAP_CLUSTER_MAX
;
204 if (!down_read_trylock(&shrinker_rwsem
))
205 return 1; /* Assume we'll be able to shrink next time */
207 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
208 unsigned long long delta
;
209 unsigned long total_scan
;
210 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
212 delta
= (4 * scanned
) / shrinker
->seeks
;
214 do_div(delta
, lru_pages
+ 1);
215 shrinker
->nr
+= delta
;
216 if (shrinker
->nr
< 0) {
217 printk(KERN_ERR
"%s: nr=%ld\n",
218 __func__
, shrinker
->nr
);
219 shrinker
->nr
= max_pass
;
223 * Avoid risking looping forever due to too large nr value:
224 * never try to free more than twice the estimate number of
227 if (shrinker
->nr
> max_pass
* 2)
228 shrinker
->nr
= max_pass
* 2;
230 total_scan
= shrinker
->nr
;
233 while (total_scan
>= SHRINK_BATCH
) {
234 long this_scan
= SHRINK_BATCH
;
238 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
239 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
240 if (shrink_ret
== -1)
242 if (shrink_ret
< nr_before
)
243 ret
+= nr_before
- shrink_ret
;
244 count_vm_events(SLABS_SCANNED
, this_scan
);
245 total_scan
-= this_scan
;
250 shrinker
->nr
+= total_scan
;
252 up_read(&shrinker_rwsem
);
256 /* Called without lock on whether page is mapped, so answer is unstable */
257 static inline int page_mapping_inuse(struct page
*page
)
259 struct address_space
*mapping
;
261 /* Page is in somebody's page tables. */
262 if (page_mapped(page
))
265 /* Be more reluctant to reclaim swapcache than pagecache */
266 if (PageSwapCache(page
))
269 mapping
= page_mapping(page
);
273 /* File is mmap'd by somebody? */
274 return mapping_mapped(mapping
);
277 static inline int is_page_cache_freeable(struct page
*page
)
279 return page_count(page
) - !!PagePrivate(page
) == 2;
282 static int may_write_to_queue(struct backing_dev_info
*bdi
)
284 if (current
->flags
& PF_SWAPWRITE
)
286 if (!bdi_write_congested(bdi
))
288 if (bdi
== current
->backing_dev_info
)
294 * We detected a synchronous write error writing a page out. Probably
295 * -ENOSPC. We need to propagate that into the address_space for a subsequent
296 * fsync(), msync() or close().
298 * The tricky part is that after writepage we cannot touch the mapping: nothing
299 * prevents it from being freed up. But we have a ref on the page and once
300 * that page is locked, the mapping is pinned.
302 * We're allowed to run sleeping lock_page() here because we know the caller has
305 static void handle_write_error(struct address_space
*mapping
,
306 struct page
*page
, int error
)
309 if (page_mapping(page
) == mapping
)
310 mapping_set_error(mapping
, error
);
314 /* Request for sync pageout. */
320 /* possible outcome of pageout() */
322 /* failed to write page out, page is locked */
324 /* move page to the active list, page is locked */
326 /* page has been sent to the disk successfully, page is unlocked */
328 /* page is clean and locked */
333 * pageout is called by shrink_page_list() for each dirty page.
334 * Calls ->writepage().
336 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
337 enum pageout_io sync_writeback
)
340 * If the page is dirty, only perform writeback if that write
341 * will be non-blocking. To prevent this allocation from being
342 * stalled by pagecache activity. But note that there may be
343 * stalls if we need to run get_block(). We could test
344 * PagePrivate for that.
346 * If this process is currently in generic_file_write() against
347 * this page's queue, we can perform writeback even if that
350 * If the page is swapcache, write it back even if that would
351 * block, for some throttling. This happens by accident, because
352 * swap_backing_dev_info is bust: it doesn't reflect the
353 * congestion state of the swapdevs. Easy to fix, if needed.
354 * See swapfile.c:page_queue_congested().
356 if (!is_page_cache_freeable(page
))
360 * Some data journaling orphaned pages can have
361 * page->mapping == NULL while being dirty with clean buffers.
363 if (PagePrivate(page
)) {
364 if (try_to_free_buffers(page
)) {
365 ClearPageDirty(page
);
366 printk("%s: orphaned page\n", __func__
);
372 if (mapping
->a_ops
->writepage
== NULL
)
373 return PAGE_ACTIVATE
;
374 if (!may_write_to_queue(mapping
->backing_dev_info
))
377 if (clear_page_dirty_for_io(page
)) {
379 struct writeback_control wbc
= {
380 .sync_mode
= WB_SYNC_NONE
,
381 .nr_to_write
= SWAP_CLUSTER_MAX
,
383 .range_end
= LLONG_MAX
,
388 SetPageReclaim(page
);
389 res
= mapping
->a_ops
->writepage(page
, &wbc
);
391 handle_write_error(mapping
, page
, res
);
392 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
393 ClearPageReclaim(page
);
394 return PAGE_ACTIVATE
;
398 * Wait on writeback if requested to. This happens when
399 * direct reclaiming a large contiguous area and the
400 * first attempt to free a range of pages fails.
402 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
403 wait_on_page_writeback(page
);
405 if (!PageWriteback(page
)) {
406 /* synchronous write or broken a_ops? */
407 ClearPageReclaim(page
);
409 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
417 * Same as remove_mapping, but if the page is removed from the mapping, it
418 * gets returned with a refcount of 0.
420 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
422 BUG_ON(!PageLocked(page
));
423 BUG_ON(mapping
!= page_mapping(page
));
425 spin_lock_irq(&mapping
->tree_lock
);
427 * The non racy check for a busy page.
429 * Must be careful with the order of the tests. When someone has
430 * a ref to the page, it may be possible that they dirty it then
431 * drop the reference. So if PageDirty is tested before page_count
432 * here, then the following race may occur:
434 * get_user_pages(&page);
435 * [user mapping goes away]
437 * !PageDirty(page) [good]
438 * SetPageDirty(page);
440 * !page_count(page) [good, discard it]
442 * [oops, our write_to data is lost]
444 * Reversing the order of the tests ensures such a situation cannot
445 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
446 * load is not satisfied before that of page->_count.
448 * Note that if SetPageDirty is always performed via set_page_dirty,
449 * and thus under tree_lock, then this ordering is not required.
451 if (!page_freeze_refs(page
, 2))
453 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
454 if (unlikely(PageDirty(page
))) {
455 page_unfreeze_refs(page
, 2);
459 if (PageSwapCache(page
)) {
460 swp_entry_t swap
= { .val
= page_private(page
) };
461 __delete_from_swap_cache(page
);
462 spin_unlock_irq(&mapping
->tree_lock
);
465 __remove_from_page_cache(page
);
466 spin_unlock_irq(&mapping
->tree_lock
);
472 spin_unlock_irq(&mapping
->tree_lock
);
477 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
478 * someone else has a ref on the page, abort and return 0. If it was
479 * successfully detached, return 1. Assumes the caller has a single ref on
482 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
484 if (__remove_mapping(mapping
, page
)) {
486 * Unfreezing the refcount with 1 rather than 2 effectively
487 * drops the pagecache ref for us without requiring another
490 page_unfreeze_refs(page
, 1);
497 * putback_lru_page - put previously isolated page onto appropriate LRU list
498 * @page: page to be put back to appropriate lru list
500 * Add previously isolated @page to appropriate LRU list.
501 * Page may still be unevictable for other reasons.
503 * lru_lock must not be held, interrupts must be enabled.
505 #ifdef CONFIG_UNEVICTABLE_LRU
506 void putback_lru_page(struct page
*page
)
509 int active
= !!TestClearPageActive(page
);
510 int was_unevictable
= PageUnevictable(page
);
512 VM_BUG_ON(PageLRU(page
));
515 ClearPageUnevictable(page
);
517 if (page_evictable(page
, NULL
)) {
519 * For evictable pages, we can use the cache.
520 * In event of a race, worst case is we end up with an
521 * unevictable page on [in]active list.
522 * We know how to handle that.
524 lru
= active
+ page_is_file_cache(page
);
525 lru_cache_add_lru(page
, lru
);
528 * Put unevictable pages directly on zone's unevictable
531 lru
= LRU_UNEVICTABLE
;
532 add_page_to_unevictable_list(page
);
536 * page's status can change while we move it among lru. If an evictable
537 * page is on unevictable list, it never be freed. To avoid that,
538 * check after we added it to the list, again.
540 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
541 if (!isolate_lru_page(page
)) {
545 /* This means someone else dropped this page from LRU
546 * So, it will be freed or putback to LRU again. There is
547 * nothing to do here.
551 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
552 count_vm_event(UNEVICTABLE_PGRESCUED
);
553 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
554 count_vm_event(UNEVICTABLE_PGCULLED
);
556 put_page(page
); /* drop ref from isolate */
559 #else /* CONFIG_UNEVICTABLE_LRU */
561 void putback_lru_page(struct page
*page
)
564 VM_BUG_ON(PageLRU(page
));
566 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
567 lru_cache_add_lru(page
, lru
);
570 #endif /* CONFIG_UNEVICTABLE_LRU */
574 * shrink_page_list() returns the number of reclaimed pages
576 static unsigned long shrink_page_list(struct list_head
*page_list
,
577 struct scan_control
*sc
,
578 enum pageout_io sync_writeback
)
580 LIST_HEAD(ret_pages
);
581 struct pagevec freed_pvec
;
583 unsigned long nr_reclaimed
= 0;
587 pagevec_init(&freed_pvec
, 1);
588 while (!list_empty(page_list
)) {
589 struct address_space
*mapping
;
596 page
= lru_to_page(page_list
);
597 list_del(&page
->lru
);
599 if (!trylock_page(page
))
602 VM_BUG_ON(PageActive(page
));
606 if (unlikely(!page_evictable(page
, NULL
)))
609 if (!sc
->may_swap
&& page_mapped(page
))
612 /* Double the slab pressure for mapped and swapcache pages */
613 if (page_mapped(page
) || PageSwapCache(page
))
616 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
617 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
619 if (PageWriteback(page
)) {
621 * Synchronous reclaim is performed in two passes,
622 * first an asynchronous pass over the list to
623 * start parallel writeback, and a second synchronous
624 * pass to wait for the IO to complete. Wait here
625 * for any page for which writeback has already
628 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
629 wait_on_page_writeback(page
);
634 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
635 /* In active use or really unfreeable? Activate it. */
636 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
637 referenced
&& page_mapping_inuse(page
))
638 goto activate_locked
;
641 * Anonymous process memory has backing store?
642 * Try to allocate it some swap space here.
644 if (PageAnon(page
) && !PageSwapCache(page
)) {
645 if (!(sc
->gfp_mask
& __GFP_IO
))
647 if (!add_to_swap(page
))
648 goto activate_locked
;
652 mapping
= page_mapping(page
);
655 * The page is mapped into the page tables of one or more
656 * processes. Try to unmap it here.
658 if (page_mapped(page
) && mapping
) {
659 switch (try_to_unmap(page
, 0)) {
661 goto activate_locked
;
667 ; /* try to free the page below */
671 if (PageDirty(page
)) {
672 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
676 if (!sc
->may_writepage
)
679 /* Page is dirty, try to write it out here */
680 switch (pageout(page
, mapping
, sync_writeback
)) {
684 goto activate_locked
;
686 if (PageWriteback(page
) || PageDirty(page
))
689 * A synchronous write - probably a ramdisk. Go
690 * ahead and try to reclaim the page.
692 if (!trylock_page(page
))
694 if (PageDirty(page
) || PageWriteback(page
))
696 mapping
= page_mapping(page
);
698 ; /* try to free the page below */
703 * If the page has buffers, try to free the buffer mappings
704 * associated with this page. If we succeed we try to free
707 * We do this even if the page is PageDirty().
708 * try_to_release_page() does not perform I/O, but it is
709 * possible for a page to have PageDirty set, but it is actually
710 * clean (all its buffers are clean). This happens if the
711 * buffers were written out directly, with submit_bh(). ext3
712 * will do this, as well as the blockdev mapping.
713 * try_to_release_page() will discover that cleanness and will
714 * drop the buffers and mark the page clean - it can be freed.
716 * Rarely, pages can have buffers and no ->mapping. These are
717 * the pages which were not successfully invalidated in
718 * truncate_complete_page(). We try to drop those buffers here
719 * and if that worked, and the page is no longer mapped into
720 * process address space (page_count == 1) it can be freed.
721 * Otherwise, leave the page on the LRU so it is swappable.
723 if (PagePrivate(page
)) {
724 if (!try_to_release_page(page
, sc
->gfp_mask
))
725 goto activate_locked
;
726 if (!mapping
&& page_count(page
) == 1) {
728 if (put_page_testzero(page
))
732 * rare race with speculative reference.
733 * the speculative reference will free
734 * this page shortly, so we may
735 * increment nr_reclaimed here (and
736 * leave it off the LRU).
744 if (!mapping
|| !__remove_mapping(mapping
, page
))
748 * At this point, we have no other references and there is
749 * no way to pick any more up (removed from LRU, removed
750 * from pagecache). Can use non-atomic bitops now (and
751 * we obviously don't have to worry about waking up a process
752 * waiting on the page lock, because there are no references.
754 __clear_page_locked(page
);
757 if (!pagevec_add(&freed_pvec
, page
)) {
758 __pagevec_free(&freed_pvec
);
759 pagevec_reinit(&freed_pvec
);
764 if (PageSwapCache(page
))
765 try_to_free_swap(page
);
767 putback_lru_page(page
);
771 /* Not a candidate for swapping, so reclaim swap space. */
772 if (PageSwapCache(page
) && vm_swap_full())
773 try_to_free_swap(page
);
774 VM_BUG_ON(PageActive(page
));
780 list_add(&page
->lru
, &ret_pages
);
781 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
783 list_splice(&ret_pages
, page_list
);
784 if (pagevec_count(&freed_pvec
))
785 __pagevec_free(&freed_pvec
);
786 count_vm_events(PGACTIVATE
, pgactivate
);
790 /* LRU Isolation modes. */
791 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
792 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
793 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
796 * Attempt to remove the specified page from its LRU. Only take this page
797 * if it is of the appropriate PageActive status. Pages which are being
798 * freed elsewhere are also ignored.
800 * page: page to consider
801 * mode: one of the LRU isolation modes defined above
803 * returns 0 on success, -ve errno on failure.
805 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
809 /* Only take pages on the LRU. */
814 * When checking the active state, we need to be sure we are
815 * dealing with comparible boolean values. Take the logical not
818 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
821 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
825 * When this function is being called for lumpy reclaim, we
826 * initially look into all LRU pages, active, inactive and
827 * unevictable; only give shrink_page_list evictable pages.
829 if (PageUnevictable(page
))
834 if (likely(get_page_unless_zero(page
))) {
836 * Be careful not to clear PageLRU until after we're
837 * sure the page is not being freed elsewhere -- the
838 * page release code relies on it.
842 mem_cgroup_del_lru(page
);
849 * zone->lru_lock is heavily contended. Some of the functions that
850 * shrink the lists perform better by taking out a batch of pages
851 * and working on them outside the LRU lock.
853 * For pagecache intensive workloads, this function is the hottest
854 * spot in the kernel (apart from copy_*_user functions).
856 * Appropriate locks must be held before calling this function.
858 * @nr_to_scan: The number of pages to look through on the list.
859 * @src: The LRU list to pull pages off.
860 * @dst: The temp list to put pages on to.
861 * @scanned: The number of pages that were scanned.
862 * @order: The caller's attempted allocation order
863 * @mode: One of the LRU isolation modes
864 * @file: True [1] if isolating file [!anon] pages
866 * returns how many pages were moved onto *@dst.
868 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
869 struct list_head
*src
, struct list_head
*dst
,
870 unsigned long *scanned
, int order
, int mode
, int file
)
872 unsigned long nr_taken
= 0;
875 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
878 unsigned long end_pfn
;
879 unsigned long page_pfn
;
882 page
= lru_to_page(src
);
883 prefetchw_prev_lru_page(page
, src
, flags
);
885 VM_BUG_ON(!PageLRU(page
));
887 switch (__isolate_lru_page(page
, mode
, file
)) {
889 list_move(&page
->lru
, dst
);
894 /* else it is being freed elsewhere */
895 list_move(&page
->lru
, src
);
906 * Attempt to take all pages in the order aligned region
907 * surrounding the tag page. Only take those pages of
908 * the same active state as that tag page. We may safely
909 * round the target page pfn down to the requested order
910 * as the mem_map is guarenteed valid out to MAX_ORDER,
911 * where that page is in a different zone we will detect
912 * it from its zone id and abort this block scan.
914 zone_id
= page_zone_id(page
);
915 page_pfn
= page_to_pfn(page
);
916 pfn
= page_pfn
& ~((1 << order
) - 1);
917 end_pfn
= pfn
+ (1 << order
);
918 for (; pfn
< end_pfn
; pfn
++) {
919 struct page
*cursor_page
;
921 /* The target page is in the block, ignore it. */
922 if (unlikely(pfn
== page_pfn
))
925 /* Avoid holes within the zone. */
926 if (unlikely(!pfn_valid_within(pfn
)))
929 cursor_page
= pfn_to_page(pfn
);
931 /* Check that we have not crossed a zone boundary. */
932 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
934 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
936 list_move(&cursor_page
->lru
, dst
);
942 /* else it is being freed elsewhere */
943 list_move(&cursor_page
->lru
, src
);
945 break; /* ! on LRU or wrong list */
954 static unsigned long isolate_pages_global(unsigned long nr
,
955 struct list_head
*dst
,
956 unsigned long *scanned
, int order
,
957 int mode
, struct zone
*z
,
958 struct mem_cgroup
*mem_cont
,
959 int active
, int file
)
966 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
971 * clear_active_flags() is a helper for shrink_active_list(), clearing
972 * any active bits from the pages in the list.
974 static unsigned long clear_active_flags(struct list_head
*page_list
,
981 list_for_each_entry(page
, page_list
, lru
) {
982 lru
= page_is_file_cache(page
);
983 if (PageActive(page
)) {
985 ClearPageActive(page
);
995 * isolate_lru_page - tries to isolate a page from its LRU list
996 * @page: page to isolate from its LRU list
998 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
999 * vmstat statistic corresponding to whatever LRU list the page was on.
1001 * Returns 0 if the page was removed from an LRU list.
1002 * Returns -EBUSY if the page was not on an LRU list.
1004 * The returned page will have PageLRU() cleared. If it was found on
1005 * the active list, it will have PageActive set. If it was found on
1006 * the unevictable list, it will have the PageUnevictable bit set. That flag
1007 * may need to be cleared by the caller before letting the page go.
1009 * The vmstat statistic corresponding to the list on which the page was
1010 * found will be decremented.
1013 * (1) Must be called with an elevated refcount on the page. This is a
1014 * fundamentnal difference from isolate_lru_pages (which is called
1015 * without a stable reference).
1016 * (2) the lru_lock must not be held.
1017 * (3) interrupts must be enabled.
1019 int isolate_lru_page(struct page
*page
)
1023 if (PageLRU(page
)) {
1024 struct zone
*zone
= page_zone(page
);
1026 spin_lock_irq(&zone
->lru_lock
);
1027 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1028 int lru
= page_lru(page
);
1032 del_page_from_lru_list(zone
, page
, lru
);
1034 spin_unlock_irq(&zone
->lru_lock
);
1040 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1041 * of reclaimed pages
1043 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1044 struct zone
*zone
, struct scan_control
*sc
,
1045 int priority
, int file
)
1047 LIST_HEAD(page_list
);
1048 struct pagevec pvec
;
1049 unsigned long nr_scanned
= 0;
1050 unsigned long nr_reclaimed
= 0;
1051 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1053 pagevec_init(&pvec
, 1);
1056 spin_lock_irq(&zone
->lru_lock
);
1059 unsigned long nr_taken
;
1060 unsigned long nr_scan
;
1061 unsigned long nr_freed
;
1062 unsigned long nr_active
;
1063 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1064 int mode
= ISOLATE_INACTIVE
;
1067 * If we need a large contiguous chunk of memory, or have
1068 * trouble getting a small set of contiguous pages, we
1069 * will reclaim both active and inactive pages.
1071 * We use the same threshold as pageout congestion_wait below.
1073 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1074 mode
= ISOLATE_BOTH
;
1075 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1076 mode
= ISOLATE_BOTH
;
1078 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1079 &page_list
, &nr_scan
, sc
->order
, mode
,
1080 zone
, sc
->mem_cgroup
, 0, file
);
1081 nr_active
= clear_active_flags(&page_list
, count
);
1082 __count_vm_events(PGDEACTIVATE
, nr_active
);
1084 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1085 -count
[LRU_ACTIVE_FILE
]);
1086 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1087 -count
[LRU_INACTIVE_FILE
]);
1088 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1089 -count
[LRU_ACTIVE_ANON
]);
1090 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1091 -count
[LRU_INACTIVE_ANON
]);
1093 if (scanning_global_lru(sc
))
1094 zone
->pages_scanned
+= nr_scan
;
1096 reclaim_stat
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1097 reclaim_stat
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1098 reclaim_stat
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1099 reclaim_stat
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1101 spin_unlock_irq(&zone
->lru_lock
);
1103 nr_scanned
+= nr_scan
;
1104 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1107 * If we are direct reclaiming for contiguous pages and we do
1108 * not reclaim everything in the list, try again and wait
1109 * for IO to complete. This will stall high-order allocations
1110 * but that should be acceptable to the caller
1112 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1113 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1114 congestion_wait(WRITE
, HZ
/10);
1117 * The attempt at page out may have made some
1118 * of the pages active, mark them inactive again.
1120 nr_active
= clear_active_flags(&page_list
, count
);
1121 count_vm_events(PGDEACTIVATE
, nr_active
);
1123 nr_freed
+= shrink_page_list(&page_list
, sc
,
1127 nr_reclaimed
+= nr_freed
;
1128 local_irq_disable();
1129 if (current_is_kswapd()) {
1130 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1131 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1132 } else if (scanning_global_lru(sc
))
1133 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1135 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1140 spin_lock(&zone
->lru_lock
);
1142 * Put back any unfreeable pages.
1144 while (!list_empty(&page_list
)) {
1146 page
= lru_to_page(&page_list
);
1147 VM_BUG_ON(PageLRU(page
));
1148 list_del(&page
->lru
);
1149 if (unlikely(!page_evictable(page
, NULL
))) {
1150 spin_unlock_irq(&zone
->lru_lock
);
1151 putback_lru_page(page
);
1152 spin_lock_irq(&zone
->lru_lock
);
1156 lru
= page_lru(page
);
1157 add_page_to_lru_list(zone
, page
, lru
);
1158 if (PageActive(page
)) {
1159 int file
= !!page_is_file_cache(page
);
1160 reclaim_stat
->recent_rotated
[file
]++;
1162 if (!pagevec_add(&pvec
, page
)) {
1163 spin_unlock_irq(&zone
->lru_lock
);
1164 __pagevec_release(&pvec
);
1165 spin_lock_irq(&zone
->lru_lock
);
1168 } while (nr_scanned
< max_scan
);
1169 spin_unlock(&zone
->lru_lock
);
1172 pagevec_release(&pvec
);
1173 return nr_reclaimed
;
1177 * We are about to scan this zone at a certain priority level. If that priority
1178 * level is smaller (ie: more urgent) than the previous priority, then note
1179 * that priority level within the zone. This is done so that when the next
1180 * process comes in to scan this zone, it will immediately start out at this
1181 * priority level rather than having to build up its own scanning priority.
1182 * Here, this priority affects only the reclaim-mapped threshold.
1184 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1186 if (priority
< zone
->prev_priority
)
1187 zone
->prev_priority
= priority
;
1191 * This moves pages from the active list to the inactive list.
1193 * We move them the other way if the page is referenced by one or more
1194 * processes, from rmap.
1196 * If the pages are mostly unmapped, the processing is fast and it is
1197 * appropriate to hold zone->lru_lock across the whole operation. But if
1198 * the pages are mapped, the processing is slow (page_referenced()) so we
1199 * should drop zone->lru_lock around each page. It's impossible to balance
1200 * this, so instead we remove the pages from the LRU while processing them.
1201 * It is safe to rely on PG_active against the non-LRU pages in here because
1202 * nobody will play with that bit on a non-LRU page.
1204 * The downside is that we have to touch page->_count against each page.
1205 * But we had to alter page->flags anyway.
1209 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1210 struct scan_control
*sc
, int priority
, int file
)
1212 unsigned long pgmoved
;
1213 int pgdeactivate
= 0;
1214 unsigned long pgscanned
;
1215 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1216 LIST_HEAD(l_inactive
);
1218 struct pagevec pvec
;
1220 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1223 spin_lock_irq(&zone
->lru_lock
);
1224 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1225 ISOLATE_ACTIVE
, zone
,
1226 sc
->mem_cgroup
, 1, file
);
1228 * zone->pages_scanned is used for detect zone's oom
1229 * mem_cgroup remembers nr_scan by itself.
1231 if (scanning_global_lru(sc
)) {
1232 zone
->pages_scanned
+= pgscanned
;
1234 reclaim_stat
->recent_scanned
[!!file
] += pgmoved
;
1237 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1239 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1240 spin_unlock_irq(&zone
->lru_lock
);
1243 while (!list_empty(&l_hold
)) {
1245 page
= lru_to_page(&l_hold
);
1246 list_del(&page
->lru
);
1248 if (unlikely(!page_evictable(page
, NULL
))) {
1249 putback_lru_page(page
);
1253 /* page_referenced clears PageReferenced */
1254 if (page_mapping_inuse(page
) &&
1255 page_referenced(page
, 0, sc
->mem_cgroup
))
1258 list_add(&page
->lru
, &l_inactive
);
1262 * Move the pages to the [file or anon] inactive list.
1264 pagevec_init(&pvec
, 1);
1266 lru
= LRU_BASE
+ file
* LRU_FILE
;
1268 spin_lock_irq(&zone
->lru_lock
);
1270 * Count referenced pages from currently used mappings as
1271 * rotated, even though they are moved to the inactive list.
1272 * This helps balance scan pressure between file and anonymous
1273 * pages in get_scan_ratio.
1275 reclaim_stat
->recent_rotated
[!!file
] += pgmoved
;
1277 while (!list_empty(&l_inactive
)) {
1278 page
= lru_to_page(&l_inactive
);
1279 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1280 VM_BUG_ON(PageLRU(page
));
1282 VM_BUG_ON(!PageActive(page
));
1283 ClearPageActive(page
);
1285 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1286 mem_cgroup_add_lru_list(page
, lru
);
1288 if (!pagevec_add(&pvec
, page
)) {
1289 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1290 spin_unlock_irq(&zone
->lru_lock
);
1291 pgdeactivate
+= pgmoved
;
1293 if (buffer_heads_over_limit
)
1294 pagevec_strip(&pvec
);
1295 __pagevec_release(&pvec
);
1296 spin_lock_irq(&zone
->lru_lock
);
1299 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1300 pgdeactivate
+= pgmoved
;
1301 if (buffer_heads_over_limit
) {
1302 spin_unlock_irq(&zone
->lru_lock
);
1303 pagevec_strip(&pvec
);
1304 spin_lock_irq(&zone
->lru_lock
);
1306 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1307 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1308 spin_unlock_irq(&zone
->lru_lock
);
1310 pagevec_swap_free(&pvec
);
1312 pagevec_release(&pvec
);
1315 static int inactive_anon_is_low_global(struct zone
*zone
)
1317 unsigned long active
, inactive
;
1319 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1320 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1322 if (inactive
* zone
->inactive_ratio
< active
)
1329 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1330 * @zone: zone to check
1331 * @sc: scan control of this context
1333 * Returns true if the zone does not have enough inactive anon pages,
1334 * meaning some active anon pages need to be deactivated.
1336 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1340 if (scanning_global_lru(sc
))
1341 low
= inactive_anon_is_low_global(zone
);
1343 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1347 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1348 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1350 int file
= is_file_lru(lru
);
1352 if (lru
== LRU_ACTIVE_FILE
) {
1353 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1357 if (lru
== LRU_ACTIVE_ANON
&& inactive_anon_is_low(zone
, sc
)) {
1358 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1361 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1365 * Determine how aggressively the anon and file LRU lists should be
1366 * scanned. The relative value of each set of LRU lists is determined
1367 * by looking at the fraction of the pages scanned we did rotate back
1368 * onto the active list instead of evict.
1370 * percent[0] specifies how much pressure to put on ram/swap backed
1371 * memory, while percent[1] determines pressure on the file LRUs.
1373 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1374 unsigned long *percent
)
1376 unsigned long anon
, file
, free
;
1377 unsigned long anon_prio
, file_prio
;
1378 unsigned long ap
, fp
;
1379 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1381 /* If we have no swap space, do not bother scanning anon pages. */
1382 if (nr_swap_pages
<= 0) {
1388 anon
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1389 zone_nr_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1390 file
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1391 zone_nr_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1393 if (scanning_global_lru(sc
)) {
1394 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1395 /* If we have very few page cache pages,
1396 force-scan anon pages. */
1397 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1405 * OK, so we have swap space and a fair amount of page cache
1406 * pages. We use the recently rotated / recently scanned
1407 * ratios to determine how valuable each cache is.
1409 * Because workloads change over time (and to avoid overflow)
1410 * we keep these statistics as a floating average, which ends
1411 * up weighing recent references more than old ones.
1413 * anon in [0], file in [1]
1415 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1416 spin_lock_irq(&zone
->lru_lock
);
1417 reclaim_stat
->recent_scanned
[0] /= 2;
1418 reclaim_stat
->recent_rotated
[0] /= 2;
1419 spin_unlock_irq(&zone
->lru_lock
);
1422 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1423 spin_lock_irq(&zone
->lru_lock
);
1424 reclaim_stat
->recent_scanned
[1] /= 2;
1425 reclaim_stat
->recent_rotated
[1] /= 2;
1426 spin_unlock_irq(&zone
->lru_lock
);
1430 * With swappiness at 100, anonymous and file have the same priority.
1431 * This scanning priority is essentially the inverse of IO cost.
1433 anon_prio
= sc
->swappiness
;
1434 file_prio
= 200 - sc
->swappiness
;
1437 * The amount of pressure on anon vs file pages is inversely
1438 * proportional to the fraction of recently scanned pages on
1439 * each list that were recently referenced and in active use.
1441 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1442 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1444 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1445 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1447 /* Normalize to percentages */
1448 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1449 percent
[1] = 100 - percent
[0];
1454 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1456 static void shrink_zone(int priority
, struct zone
*zone
,
1457 struct scan_control
*sc
)
1459 unsigned long nr
[NR_LRU_LISTS
];
1460 unsigned long nr_to_scan
;
1461 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1463 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1464 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1466 get_scan_ratio(zone
, sc
, percent
);
1468 for_each_evictable_lru(l
) {
1469 int file
= is_file_lru(l
);
1472 scan
= zone_page_state(zone
, NR_LRU_BASE
+ l
);
1475 scan
= (scan
* percent
[file
]) / 100;
1477 if (scanning_global_lru(sc
)) {
1478 zone
->lru
[l
].nr_scan
+= scan
;
1479 nr
[l
] = zone
->lru
[l
].nr_scan
;
1480 if (nr
[l
] >= swap_cluster_max
)
1481 zone
->lru
[l
].nr_scan
= 0;
1488 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1489 nr
[LRU_INACTIVE_FILE
]) {
1490 for_each_evictable_lru(l
) {
1492 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1493 nr
[l
] -= nr_to_scan
;
1495 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1496 zone
, sc
, priority
);
1500 * On large memory systems, scan >> priority can become
1501 * really large. This is fine for the starting priority;
1502 * we want to put equal scanning pressure on each zone.
1503 * However, if the VM has a harder time of freeing pages,
1504 * with multiple processes reclaiming pages, the total
1505 * freeing target can get unreasonably large.
1507 if (nr_reclaimed
> swap_cluster_max
&&
1508 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1512 sc
->nr_reclaimed
= nr_reclaimed
;
1515 * Even if we did not try to evict anon pages at all, we want to
1516 * rebalance the anon lru active/inactive ratio.
1518 if (inactive_anon_is_low(zone
, sc
))
1519 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1521 throttle_vm_writeout(sc
->gfp_mask
);
1525 * This is the direct reclaim path, for page-allocating processes. We only
1526 * try to reclaim pages from zones which will satisfy the caller's allocation
1529 * We reclaim from a zone even if that zone is over pages_high. Because:
1530 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1532 * b) The zones may be over pages_high but they must go *over* pages_high to
1533 * satisfy the `incremental min' zone defense algorithm.
1535 * If a zone is deemed to be full of pinned pages then just give it a light
1536 * scan then give up on it.
1538 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1539 struct scan_control
*sc
)
1541 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1545 sc
->all_unreclaimable
= 1;
1546 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1547 if (!populated_zone(zone
))
1550 * Take care memory controller reclaiming has small influence
1553 if (scanning_global_lru(sc
)) {
1554 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1556 note_zone_scanning_priority(zone
, priority
);
1558 if (zone_is_all_unreclaimable(zone
) &&
1559 priority
!= DEF_PRIORITY
)
1560 continue; /* Let kswapd poll it */
1561 sc
->all_unreclaimable
= 0;
1564 * Ignore cpuset limitation here. We just want to reduce
1565 * # of used pages by us regardless of memory shortage.
1567 sc
->all_unreclaimable
= 0;
1568 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1572 shrink_zone(priority
, zone
, sc
);
1577 * This is the main entry point to direct page reclaim.
1579 * If a full scan of the inactive list fails to free enough memory then we
1580 * are "out of memory" and something needs to be killed.
1582 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1583 * high - the zone may be full of dirty or under-writeback pages, which this
1584 * caller can't do much about. We kick pdflush and take explicit naps in the
1585 * hope that some of these pages can be written. But if the allocating task
1586 * holds filesystem locks which prevent writeout this might not work, and the
1587 * allocation attempt will fail.
1589 * returns: 0, if no pages reclaimed
1590 * else, the number of pages reclaimed
1592 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1593 struct scan_control
*sc
)
1596 unsigned long ret
= 0;
1597 unsigned long total_scanned
= 0;
1598 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1599 unsigned long lru_pages
= 0;
1602 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1604 delayacct_freepages_start();
1606 if (scanning_global_lru(sc
))
1607 count_vm_event(ALLOCSTALL
);
1609 * mem_cgroup will not do shrink_slab.
1611 if (scanning_global_lru(sc
)) {
1612 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1614 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1617 lru_pages
+= zone_lru_pages(zone
);
1621 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1624 disable_swap_token();
1625 shrink_zones(priority
, zonelist
, sc
);
1627 * Don't shrink slabs when reclaiming memory from
1628 * over limit cgroups
1630 if (scanning_global_lru(sc
)) {
1631 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1632 if (reclaim_state
) {
1633 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1634 reclaim_state
->reclaimed_slab
= 0;
1637 total_scanned
+= sc
->nr_scanned
;
1638 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1639 ret
= sc
->nr_reclaimed
;
1644 * Try to write back as many pages as we just scanned. This
1645 * tends to cause slow streaming writers to write data to the
1646 * disk smoothly, at the dirtying rate, which is nice. But
1647 * that's undesirable in laptop mode, where we *want* lumpy
1648 * writeout. So in laptop mode, write out the whole world.
1650 if (total_scanned
> sc
->swap_cluster_max
+
1651 sc
->swap_cluster_max
/ 2) {
1652 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1653 sc
->may_writepage
= 1;
1656 /* Take a nap, wait for some writeback to complete */
1657 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1658 congestion_wait(WRITE
, HZ
/10);
1660 /* top priority shrink_zones still had more to do? don't OOM, then */
1661 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1662 ret
= sc
->nr_reclaimed
;
1665 * Now that we've scanned all the zones at this priority level, note
1666 * that level within the zone so that the next thread which performs
1667 * scanning of this zone will immediately start out at this priority
1668 * level. This affects only the decision whether or not to bring
1669 * mapped pages onto the inactive list.
1674 if (scanning_global_lru(sc
)) {
1675 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1677 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1680 zone
->prev_priority
= priority
;
1683 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1685 delayacct_freepages_end();
1690 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1693 struct scan_control sc
= {
1694 .gfp_mask
= gfp_mask
,
1695 .may_writepage
= !laptop_mode
,
1696 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1698 .swappiness
= vm_swappiness
,
1701 .isolate_pages
= isolate_pages_global
,
1704 return do_try_to_free_pages(zonelist
, &sc
);
1707 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1709 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1712 unsigned int swappiness
)
1714 struct scan_control sc
= {
1715 .may_writepage
= !laptop_mode
,
1717 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1718 .swappiness
= swappiness
,
1720 .mem_cgroup
= mem_cont
,
1721 .isolate_pages
= mem_cgroup_isolate_pages
,
1723 struct zonelist
*zonelist
;
1728 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1729 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1730 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1731 return do_try_to_free_pages(zonelist
, &sc
);
1736 * For kswapd, balance_pgdat() will work across all this node's zones until
1737 * they are all at pages_high.
1739 * Returns the number of pages which were actually freed.
1741 * There is special handling here for zones which are full of pinned pages.
1742 * This can happen if the pages are all mlocked, or if they are all used by
1743 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1744 * What we do is to detect the case where all pages in the zone have been
1745 * scanned twice and there has been zero successful reclaim. Mark the zone as
1746 * dead and from now on, only perform a short scan. Basically we're polling
1747 * the zone for when the problem goes away.
1749 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1750 * zones which have free_pages > pages_high, but once a zone is found to have
1751 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1752 * of the number of free pages in the lower zones. This interoperates with
1753 * the page allocator fallback scheme to ensure that aging of pages is balanced
1756 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1761 unsigned long total_scanned
;
1762 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1763 struct scan_control sc
= {
1764 .gfp_mask
= GFP_KERNEL
,
1766 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1767 .swappiness
= vm_swappiness
,
1770 .isolate_pages
= isolate_pages_global
,
1773 * temp_priority is used to remember the scanning priority at which
1774 * this zone was successfully refilled to free_pages == pages_high.
1776 int temp_priority
[MAX_NR_ZONES
];
1780 sc
.nr_reclaimed
= 0;
1781 sc
.may_writepage
= !laptop_mode
;
1782 count_vm_event(PAGEOUTRUN
);
1784 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1785 temp_priority
[i
] = DEF_PRIORITY
;
1787 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1788 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1789 unsigned long lru_pages
= 0;
1791 /* The swap token gets in the way of swapout... */
1793 disable_swap_token();
1798 * Scan in the highmem->dma direction for the highest
1799 * zone which needs scanning
1801 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1802 struct zone
*zone
= pgdat
->node_zones
+ i
;
1804 if (!populated_zone(zone
))
1807 if (zone_is_all_unreclaimable(zone
) &&
1808 priority
!= DEF_PRIORITY
)
1812 * Do some background aging of the anon list, to give
1813 * pages a chance to be referenced before reclaiming.
1815 if (inactive_anon_is_low(zone
, &sc
))
1816 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1819 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1828 for (i
= 0; i
<= end_zone
; i
++) {
1829 struct zone
*zone
= pgdat
->node_zones
+ i
;
1831 lru_pages
+= zone_lru_pages(zone
);
1835 * Now scan the zone in the dma->highmem direction, stopping
1836 * at the last zone which needs scanning.
1838 * We do this because the page allocator works in the opposite
1839 * direction. This prevents the page allocator from allocating
1840 * pages behind kswapd's direction of progress, which would
1841 * cause too much scanning of the lower zones.
1843 for (i
= 0; i
<= end_zone
; i
++) {
1844 struct zone
*zone
= pgdat
->node_zones
+ i
;
1847 if (!populated_zone(zone
))
1850 if (zone_is_all_unreclaimable(zone
) &&
1851 priority
!= DEF_PRIORITY
)
1854 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1857 temp_priority
[i
] = priority
;
1859 note_zone_scanning_priority(zone
, priority
);
1861 * We put equal pressure on every zone, unless one
1862 * zone has way too many pages free already.
1864 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1866 shrink_zone(priority
, zone
, &sc
);
1867 reclaim_state
->reclaimed_slab
= 0;
1868 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1870 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1871 total_scanned
+= sc
.nr_scanned
;
1872 if (zone_is_all_unreclaimable(zone
))
1874 if (nr_slab
== 0 && zone
->pages_scanned
>=
1875 (zone_lru_pages(zone
) * 6))
1877 ZONE_ALL_UNRECLAIMABLE
);
1879 * If we've done a decent amount of scanning and
1880 * the reclaim ratio is low, start doing writepage
1881 * even in laptop mode
1883 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1884 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1885 sc
.may_writepage
= 1;
1888 break; /* kswapd: all done */
1890 * OK, kswapd is getting into trouble. Take a nap, then take
1891 * another pass across the zones.
1893 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1894 congestion_wait(WRITE
, HZ
/10);
1897 * We do this so kswapd doesn't build up large priorities for
1898 * example when it is freeing in parallel with allocators. It
1899 * matches the direct reclaim path behaviour in terms of impact
1900 * on zone->*_priority.
1902 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1907 * Note within each zone the priority level at which this zone was
1908 * brought into a happy state. So that the next thread which scans this
1909 * zone will start out at that priority level.
1911 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1912 struct zone
*zone
= pgdat
->node_zones
+ i
;
1914 zone
->prev_priority
= temp_priority
[i
];
1916 if (!all_zones_ok
) {
1922 * Fragmentation may mean that the system cannot be
1923 * rebalanced for high-order allocations in all zones.
1924 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1925 * it means the zones have been fully scanned and are still
1926 * not balanced. For high-order allocations, there is
1927 * little point trying all over again as kswapd may
1930 * Instead, recheck all watermarks at order-0 as they
1931 * are the most important. If watermarks are ok, kswapd will go
1932 * back to sleep. High-order users can still perform direct
1933 * reclaim if they wish.
1935 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
1936 order
= sc
.order
= 0;
1941 return sc
.nr_reclaimed
;
1945 * The background pageout daemon, started as a kernel thread
1946 * from the init process.
1948 * This basically trickles out pages so that we have _some_
1949 * free memory available even if there is no other activity
1950 * that frees anything up. This is needed for things like routing
1951 * etc, where we otherwise might have all activity going on in
1952 * asynchronous contexts that cannot page things out.
1954 * If there are applications that are active memory-allocators
1955 * (most normal use), this basically shouldn't matter.
1957 static int kswapd(void *p
)
1959 unsigned long order
;
1960 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1961 struct task_struct
*tsk
= current
;
1963 struct reclaim_state reclaim_state
= {
1964 .reclaimed_slab
= 0,
1966 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1968 if (!cpumask_empty(cpumask
))
1969 set_cpus_allowed_ptr(tsk
, cpumask
);
1970 current
->reclaim_state
= &reclaim_state
;
1973 * Tell the memory management that we're a "memory allocator",
1974 * and that if we need more memory we should get access to it
1975 * regardless (see "__alloc_pages()"). "kswapd" should
1976 * never get caught in the normal page freeing logic.
1978 * (Kswapd normally doesn't need memory anyway, but sometimes
1979 * you need a small amount of memory in order to be able to
1980 * page out something else, and this flag essentially protects
1981 * us from recursively trying to free more memory as we're
1982 * trying to free the first piece of memory in the first place).
1984 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1989 unsigned long new_order
;
1991 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1992 new_order
= pgdat
->kswapd_max_order
;
1993 pgdat
->kswapd_max_order
= 0;
1994 if (order
< new_order
) {
1996 * Don't sleep if someone wants a larger 'order'
2001 if (!freezing(current
))
2004 order
= pgdat
->kswapd_max_order
;
2006 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2008 if (!try_to_freeze()) {
2009 /* We can speed up thawing tasks if we don't call
2010 * balance_pgdat after returning from the refrigerator
2012 balance_pgdat(pgdat
, order
);
2019 * A zone is low on free memory, so wake its kswapd task to service it.
2021 void wakeup_kswapd(struct zone
*zone
, int order
)
2025 if (!populated_zone(zone
))
2028 pgdat
= zone
->zone_pgdat
;
2029 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
2031 if (pgdat
->kswapd_max_order
< order
)
2032 pgdat
->kswapd_max_order
= order
;
2033 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2035 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2037 wake_up_interruptible(&pgdat
->kswapd_wait
);
2040 unsigned long global_lru_pages(void)
2042 return global_page_state(NR_ACTIVE_ANON
)
2043 + global_page_state(NR_ACTIVE_FILE
)
2044 + global_page_state(NR_INACTIVE_ANON
)
2045 + global_page_state(NR_INACTIVE_FILE
);
2050 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2051 * from LRU lists system-wide, for given pass and priority, and returns the
2052 * number of reclaimed pages
2054 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2056 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
2057 int pass
, struct scan_control
*sc
)
2060 unsigned long ret
= 0;
2062 for_each_zone(zone
) {
2065 if (!populated_zone(zone
))
2067 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2070 for_each_evictable_lru(l
) {
2071 enum zone_stat_item ls
= NR_LRU_BASE
+ l
;
2072 unsigned long lru_pages
= zone_page_state(zone
, ls
);
2074 /* For pass = 0, we don't shrink the active list */
2075 if (pass
== 0 && (l
== LRU_ACTIVE_ANON
||
2076 l
== LRU_ACTIVE_FILE
))
2079 zone
->lru
[l
].nr_scan
+= (lru_pages
>> prio
) + 1;
2080 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2081 unsigned long nr_to_scan
;
2083 zone
->lru
[l
].nr_scan
= 0;
2084 nr_to_scan
= min(nr_pages
, lru_pages
);
2085 ret
+= shrink_list(l
, nr_to_scan
, zone
,
2087 if (ret
>= nr_pages
)
2096 * Try to free `nr_pages' of memory, system-wide, and return the number of
2099 * Rather than trying to age LRUs the aim is to preserve the overall
2100 * LRU order by reclaiming preferentially
2101 * inactive > active > active referenced > active mapped
2103 unsigned long shrink_all_memory(unsigned long nr_pages
)
2105 unsigned long lru_pages
, nr_slab
;
2106 unsigned long ret
= 0;
2108 struct reclaim_state reclaim_state
;
2109 struct scan_control sc
= {
2110 .gfp_mask
= GFP_KERNEL
,
2112 .swap_cluster_max
= nr_pages
,
2114 .isolate_pages
= isolate_pages_global
,
2117 current
->reclaim_state
= &reclaim_state
;
2119 lru_pages
= global_lru_pages();
2120 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2121 /* If slab caches are huge, it's better to hit them first */
2122 while (nr_slab
>= lru_pages
) {
2123 reclaim_state
.reclaimed_slab
= 0;
2124 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2125 if (!reclaim_state
.reclaimed_slab
)
2128 ret
+= reclaim_state
.reclaimed_slab
;
2129 if (ret
>= nr_pages
)
2132 nr_slab
-= reclaim_state
.reclaimed_slab
;
2136 * We try to shrink LRUs in 5 passes:
2137 * 0 = Reclaim from inactive_list only
2138 * 1 = Reclaim from active list but don't reclaim mapped
2139 * 2 = 2nd pass of type 1
2140 * 3 = Reclaim mapped (normal reclaim)
2141 * 4 = 2nd pass of type 3
2143 for (pass
= 0; pass
< 5; pass
++) {
2146 /* Force reclaiming mapped pages in the passes #3 and #4 */
2150 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2151 unsigned long nr_to_scan
= nr_pages
- ret
;
2154 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2155 if (ret
>= nr_pages
)
2158 reclaim_state
.reclaimed_slab
= 0;
2159 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2160 global_lru_pages());
2161 ret
+= reclaim_state
.reclaimed_slab
;
2162 if (ret
>= nr_pages
)
2165 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2166 congestion_wait(WRITE
, HZ
/ 10);
2171 * If ret = 0, we could not shrink LRUs, but there may be something
2176 reclaim_state
.reclaimed_slab
= 0;
2177 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2178 ret
+= reclaim_state
.reclaimed_slab
;
2179 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
2183 current
->reclaim_state
= NULL
;
2189 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2190 not required for correctness. So if the last cpu in a node goes
2191 away, we get changed to run anywhere: as the first one comes back,
2192 restore their cpu bindings. */
2193 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2194 unsigned long action
, void *hcpu
)
2198 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2199 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2200 pg_data_t
*pgdat
= NODE_DATA(nid
);
2201 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
2203 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2204 /* One of our CPUs online: restore mask */
2205 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2212 * This kswapd start function will be called by init and node-hot-add.
2213 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2215 int kswapd_run(int nid
)
2217 pg_data_t
*pgdat
= NODE_DATA(nid
);
2223 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2224 if (IS_ERR(pgdat
->kswapd
)) {
2225 /* failure at boot is fatal */
2226 BUG_ON(system_state
== SYSTEM_BOOTING
);
2227 printk("Failed to start kswapd on node %d\n",nid
);
2233 static int __init
kswapd_init(void)
2238 for_each_node_state(nid
, N_HIGH_MEMORY
)
2240 hotcpu_notifier(cpu_callback
, 0);
2244 module_init(kswapd_init
)
2250 * If non-zero call zone_reclaim when the number of free pages falls below
2253 int zone_reclaim_mode __read_mostly
;
2255 #define RECLAIM_OFF 0
2256 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2257 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2258 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2261 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2262 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2265 #define ZONE_RECLAIM_PRIORITY 4
2268 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2271 int sysctl_min_unmapped_ratio
= 1;
2274 * If the number of slab pages in a zone grows beyond this percentage then
2275 * slab reclaim needs to occur.
2277 int sysctl_min_slab_ratio
= 5;
2280 * Try to free up some pages from this zone through reclaim.
2282 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2284 /* Minimum pages needed in order to stay on node */
2285 const unsigned long nr_pages
= 1 << order
;
2286 struct task_struct
*p
= current
;
2287 struct reclaim_state reclaim_state
;
2289 struct scan_control sc
= {
2290 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2291 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2292 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2294 .gfp_mask
= gfp_mask
,
2295 .swappiness
= vm_swappiness
,
2296 .isolate_pages
= isolate_pages_global
,
2298 unsigned long slab_reclaimable
;
2300 disable_swap_token();
2303 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2304 * and we also need to be able to write out pages for RECLAIM_WRITE
2307 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2308 reclaim_state
.reclaimed_slab
= 0;
2309 p
->reclaim_state
= &reclaim_state
;
2311 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2312 zone_page_state(zone
, NR_FILE_MAPPED
) >
2313 zone
->min_unmapped_pages
) {
2315 * Free memory by calling shrink zone with increasing
2316 * priorities until we have enough memory freed.
2318 priority
= ZONE_RECLAIM_PRIORITY
;
2320 note_zone_scanning_priority(zone
, priority
);
2321 shrink_zone(priority
, zone
, &sc
);
2323 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2326 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2327 if (slab_reclaimable
> zone
->min_slab_pages
) {
2329 * shrink_slab() does not currently allow us to determine how
2330 * many pages were freed in this zone. So we take the current
2331 * number of slab pages and shake the slab until it is reduced
2332 * by the same nr_pages that we used for reclaiming unmapped
2335 * Note that shrink_slab will free memory on all zones and may
2338 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2339 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2340 slab_reclaimable
- nr_pages
)
2344 * Update nr_reclaimed by the number of slab pages we
2345 * reclaimed from this zone.
2347 sc
.nr_reclaimed
+= slab_reclaimable
-
2348 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2351 p
->reclaim_state
= NULL
;
2352 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2353 return sc
.nr_reclaimed
>= nr_pages
;
2356 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2362 * Zone reclaim reclaims unmapped file backed pages and
2363 * slab pages if we are over the defined limits.
2365 * A small portion of unmapped file backed pages is needed for
2366 * file I/O otherwise pages read by file I/O will be immediately
2367 * thrown out if the zone is overallocated. So we do not reclaim
2368 * if less than a specified percentage of the zone is used by
2369 * unmapped file backed pages.
2371 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2372 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2373 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2374 <= zone
->min_slab_pages
)
2377 if (zone_is_all_unreclaimable(zone
))
2381 * Do not scan if the allocation should not be delayed.
2383 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2387 * Only run zone reclaim on the local zone or on zones that do not
2388 * have associated processors. This will favor the local processor
2389 * over remote processors and spread off node memory allocations
2390 * as wide as possible.
2392 node_id
= zone_to_nid(zone
);
2393 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2396 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2398 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2399 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2405 #ifdef CONFIG_UNEVICTABLE_LRU
2407 * page_evictable - test whether a page is evictable
2408 * @page: the page to test
2409 * @vma: the VMA in which the page is or will be mapped, may be NULL
2411 * Test whether page is evictable--i.e., should be placed on active/inactive
2412 * lists vs unevictable list. The vma argument is !NULL when called from the
2413 * fault path to determine how to instantate a new page.
2415 * Reasons page might not be evictable:
2416 * (1) page's mapping marked unevictable
2417 * (2) page is part of an mlocked VMA
2420 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2423 if (mapping_unevictable(page_mapping(page
)))
2426 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2433 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2434 * @page: page to check evictability and move to appropriate lru list
2435 * @zone: zone page is in
2437 * Checks a page for evictability and moves the page to the appropriate
2440 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2441 * have PageUnevictable set.
2443 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2445 VM_BUG_ON(PageActive(page
));
2448 ClearPageUnevictable(page
);
2449 if (page_evictable(page
, NULL
)) {
2450 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2452 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2453 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2454 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2455 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2456 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2459 * rotate unevictable list
2461 SetPageUnevictable(page
);
2462 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2463 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2464 if (page_evictable(page
, NULL
))
2470 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2471 * @mapping: struct address_space to scan for evictable pages
2473 * Scan all pages in mapping. Check unevictable pages for
2474 * evictability and move them to the appropriate zone lru list.
2476 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2479 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2482 struct pagevec pvec
;
2484 if (mapping
->nrpages
== 0)
2487 pagevec_init(&pvec
, 0);
2488 while (next
< end
&&
2489 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2495 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2496 struct page
*page
= pvec
.pages
[i
];
2497 pgoff_t page_index
= page
->index
;
2498 struct zone
*pagezone
= page_zone(page
);
2501 if (page_index
> next
)
2505 if (pagezone
!= zone
) {
2507 spin_unlock_irq(&zone
->lru_lock
);
2509 spin_lock_irq(&zone
->lru_lock
);
2512 if (PageLRU(page
) && PageUnevictable(page
))
2513 check_move_unevictable_page(page
, zone
);
2516 spin_unlock_irq(&zone
->lru_lock
);
2517 pagevec_release(&pvec
);
2519 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2525 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2526 * @zone - zone of which to scan the unevictable list
2528 * Scan @zone's unevictable LRU lists to check for pages that have become
2529 * evictable. Move those that have to @zone's inactive list where they
2530 * become candidates for reclaim, unless shrink_inactive_zone() decides
2531 * to reactivate them. Pages that are still unevictable are rotated
2532 * back onto @zone's unevictable list.
2534 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2535 static void scan_zone_unevictable_pages(struct zone
*zone
)
2537 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2539 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2541 while (nr_to_scan
> 0) {
2542 unsigned long batch_size
= min(nr_to_scan
,
2543 SCAN_UNEVICTABLE_BATCH_SIZE
);
2545 spin_lock_irq(&zone
->lru_lock
);
2546 for (scan
= 0; scan
< batch_size
; scan
++) {
2547 struct page
*page
= lru_to_page(l_unevictable
);
2549 if (!trylock_page(page
))
2552 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2554 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2555 check_move_unevictable_page(page
, zone
);
2559 spin_unlock_irq(&zone
->lru_lock
);
2561 nr_to_scan
-= batch_size
;
2567 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2569 * A really big hammer: scan all zones' unevictable LRU lists to check for
2570 * pages that have become evictable. Move those back to the zones'
2571 * inactive list where they become candidates for reclaim.
2572 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2573 * and we add swap to the system. As such, it runs in the context of a task
2574 * that has possibly/probably made some previously unevictable pages
2577 static void scan_all_zones_unevictable_pages(void)
2581 for_each_zone(zone
) {
2582 scan_zone_unevictable_pages(zone
);
2587 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2588 * all nodes' unevictable lists for evictable pages
2590 unsigned long scan_unevictable_pages
;
2592 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2593 struct file
*file
, void __user
*buffer
,
2594 size_t *length
, loff_t
*ppos
)
2596 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2598 if (write
&& *(unsigned long *)table
->data
)
2599 scan_all_zones_unevictable_pages();
2601 scan_unevictable_pages
= 0;
2606 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2607 * a specified node's per zone unevictable lists for evictable pages.
2610 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2611 struct sysdev_attribute
*attr
,
2614 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2617 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2618 struct sysdev_attribute
*attr
,
2619 const char *buf
, size_t count
)
2621 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2624 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2627 return 1; /* zero is no-op */
2629 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2630 if (!populated_zone(zone
))
2632 scan_zone_unevictable_pages(zone
);
2638 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2639 read_scan_unevictable_node
,
2640 write_scan_unevictable_node
);
2642 int scan_unevictable_register_node(struct node
*node
)
2644 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2647 void scan_unevictable_unregister_node(struct node
*node
)
2649 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);