4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
171 unsigned long shares
;
172 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
182 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
183 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group
= {
189 .se
= init_sched_entity_p
,
190 .cfs_rq
= init_cfs_rq_p
,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
201 /* return group to which a task belongs */
202 static inline struct task_group
*task_group(struct task_struct
*p
)
204 struct task_group
*tg
;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
210 struct task_group
, css
);
212 tg
= &init_task_group
;
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
)
221 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
222 p
->se
.parent
= task_group(p
)->se
[cpu
];
227 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
) { }
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
231 /* CFS-related fields in a runqueue */
233 struct load_weight load
;
234 unsigned long nr_running
;
239 struct rb_root tasks_timeline
;
240 struct rb_node
*rb_leftmost
;
241 struct rb_node
*rb_load_balance_curr
;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
245 struct sched_entity
*curr
;
247 unsigned long nr_spread_over
;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
260 struct task_group
*tg
; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active
;
267 int rt_load_balance_idx
;
268 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running
;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
289 unsigned char idle_at_tick
;
291 unsigned char in_nohz_recently
;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load
;
295 unsigned long nr_load_updates
;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list
;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible
;
313 struct task_struct
*curr
, *idle
;
314 unsigned long next_balance
;
315 struct mm_struct
*prev_mm
;
317 u64 clock
, prev_clock_raw
;
320 unsigned int clock_warps
, clock_overflows
;
322 unsigned int clock_deep_idle_events
;
328 struct sched_domain
*sd
;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct
*migration_thread
;
337 struct list_head migration_queue
;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info
;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty
;
346 unsigned int yld_act_empty
;
347 unsigned int yld_both_empty
;
348 unsigned int yld_count
;
350 /* schedule() stats */
351 unsigned int sched_switch
;
352 unsigned int sched_count
;
353 unsigned int sched_goidle
;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count
;
357 unsigned int ttwu_local
;
360 unsigned int bkl_count
;
362 struct lock_class_key rq_lock_key
;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
366 static DEFINE_MUTEX(sched_hotcpu_mutex
);
368 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
370 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
373 static inline int cpu_of(struct rq
*rq
)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq
*rq
)
388 u64 prev_raw
= rq
->prev_clock_raw
;
389 u64 now
= sched_clock();
390 s64 delta
= now
- prev_raw
;
391 u64 clock
= rq
->clock
;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta
< 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
407 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
408 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
411 rq
->clock_overflows
++;
413 if (unlikely(delta
> rq
->clock_max_delta
))
414 rq
->clock_max_delta
= delta
;
419 rq
->prev_clock_raw
= now
;
423 static void update_rq_clock(struct rq
*rq
)
425 if (likely(smp_processor_id() == cpu_of(rq
)))
426 __update_rq_clock(rq
);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
458 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
459 SCHED_FEAT_START_DEBIT
= 4,
460 SCHED_FEAT_TREE_AVG
= 8,
461 SCHED_FEAT_APPROX_AVG
= 16,
464 const_debug
unsigned int sysctl_sched_features
=
465 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
467 SCHED_FEAT_START_DEBIT
* 1 |
468 SCHED_FEAT_TREE_AVG
* 0 |
469 SCHED_FEAT_APPROX_AVG
* 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu
)
485 unsigned long long now
;
489 local_irq_save(flags
);
493 local_irq_restore(flags
);
497 EXPORT_SYMBOL_GPL(cpu_clock
);
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
509 return rq
->curr
== p
;
512 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
516 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq
->lock
.owner
= current
;
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
527 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
529 spin_unlock_irq(&rq
->lock
);
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
538 return rq
->curr
== p
;
542 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq
->lock
);
555 spin_unlock(&rq
->lock
);
559 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
580 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
584 struct rq
*rq
= task_rq(p
);
585 spin_lock(&rq
->lock
);
586 if (likely(rq
== task_rq(p
)))
588 spin_unlock(&rq
->lock
);
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
597 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
603 local_irq_save(*flags
);
605 spin_lock(&rq
->lock
);
606 if (likely(rq
== task_rq(p
)))
608 spin_unlock_irqrestore(&rq
->lock
, *flags
);
612 static void __task_rq_unlock(struct rq
*rq
)
615 spin_unlock(&rq
->lock
);
618 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
621 spin_unlock_irqrestore(&rq
->lock
, *flags
);
625 * this_rq_lock - lock this runqueue and disable interrupts.
627 static struct rq
*this_rq_lock(void)
634 spin_lock(&rq
->lock
);
640 * We are going deep-idle (irqs are disabled):
642 void sched_clock_idle_sleep_event(void)
644 struct rq
*rq
= cpu_rq(smp_processor_id());
646 spin_lock(&rq
->lock
);
647 __update_rq_clock(rq
);
648 spin_unlock(&rq
->lock
);
649 rq
->clock_deep_idle_events
++;
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
654 * We just idled delta nanoseconds (called with irqs disabled):
656 void sched_clock_idle_wakeup_event(u64 delta_ns
)
658 struct rq
*rq
= cpu_rq(smp_processor_id());
659 u64 now
= sched_clock();
661 rq
->idle_clock
+= delta_ns
;
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
668 spin_lock(&rq
->lock
);
669 rq
->prev_clock_raw
= now
;
670 rq
->clock
+= delta_ns
;
671 spin_unlock(&rq
->lock
);
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
676 * resched_task - mark a task 'to be rescheduled now'.
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
688 static void resched_task(struct task_struct
*p
)
692 assert_spin_locked(&task_rq(p
)->lock
);
694 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
697 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
700 if (cpu
== smp_processor_id())
703 /* NEED_RESCHED must be visible before we test polling */
705 if (!tsk_is_polling(p
))
706 smp_send_reschedule(cpu
);
709 static void resched_cpu(int cpu
)
711 struct rq
*rq
= cpu_rq(cpu
);
714 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
716 resched_task(cpu_curr(cpu
));
717 spin_unlock_irqrestore(&rq
->lock
, flags
);
720 static inline void resched_task(struct task_struct
*p
)
722 assert_spin_locked(&task_rq(p
)->lock
);
723 set_tsk_need_resched(p
);
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
730 # define WMULT_CONST (1UL << 32)
733 #define WMULT_SHIFT 32
736 * Shift right and round:
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
741 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
742 struct load_weight
*lw
)
746 if (unlikely(!lw
->inv_weight
))
747 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
749 tmp
= (u64
)delta_exec
* weight
;
751 * Check whether we'd overflow the 64-bit multiplication:
753 if (unlikely(tmp
> WMULT_CONST
))
754 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
757 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
759 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
765 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
768 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
773 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
802 static const int prio_to_weight
[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
820 static const u32 prio_to_wmult
[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
840 struct task_struct
*(*start
)(void *);
841 struct task_struct
*(*next
)(void *);
846 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
847 unsigned long max_load_move
, struct sched_domain
*sd
,
848 enum cpu_idle_type idle
, int *all_pinned
,
849 int *this_best_prio
, struct rq_iterator
*iterator
);
852 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
853 struct sched_domain
*sd
, enum cpu_idle_type idle
,
854 struct rq_iterator
*iterator
);
857 #include "sched_stats.h"
858 #include "sched_idletask.c"
859 #include "sched_fair.c"
860 #include "sched_rt.c"
861 #ifdef CONFIG_SCHED_DEBUG
862 # include "sched_debug.c"
865 #define sched_class_highest (&rt_sched_class)
868 * Update delta_exec, delta_fair fields for rq.
870 * delta_fair clock advances at a rate inversely proportional to
871 * total load (rq->load.weight) on the runqueue, while
872 * delta_exec advances at the same rate as wall-clock (provided
875 * delta_exec / delta_fair is a measure of the (smoothened) load on this
876 * runqueue over any given interval. This (smoothened) load is used
877 * during load balance.
879 * This function is called /before/ updating rq->load
880 * and when switching tasks.
882 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
884 update_load_add(&rq
->load
, p
->se
.load
.weight
);
887 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
889 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
892 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
898 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
904 static void set_load_weight(struct task_struct
*p
)
906 if (task_has_rt_policy(p
)) {
907 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
908 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
913 * SCHED_IDLE tasks get minimal weight:
915 if (p
->policy
== SCHED_IDLE
) {
916 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
917 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
921 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
922 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
925 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
927 sched_info_queued(p
);
928 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
932 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
934 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
939 * __normal_prio - return the priority that is based on the static prio
941 static inline int __normal_prio(struct task_struct
*p
)
943 return p
->static_prio
;
947 * Calculate the expected normal priority: i.e. priority
948 * without taking RT-inheritance into account. Might be
949 * boosted by interactivity modifiers. Changes upon fork,
950 * setprio syscalls, and whenever the interactivity
951 * estimator recalculates.
953 static inline int normal_prio(struct task_struct
*p
)
957 if (task_has_rt_policy(p
))
958 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
960 prio
= __normal_prio(p
);
965 * Calculate the current priority, i.e. the priority
966 * taken into account by the scheduler. This value might
967 * be boosted by RT tasks, or might be boosted by
968 * interactivity modifiers. Will be RT if the task got
969 * RT-boosted. If not then it returns p->normal_prio.
971 static int effective_prio(struct task_struct
*p
)
973 p
->normal_prio
= normal_prio(p
);
975 * If we are RT tasks or we were boosted to RT priority,
976 * keep the priority unchanged. Otherwise, update priority
977 * to the normal priority:
979 if (!rt_prio(p
->prio
))
980 return p
->normal_prio
;
985 * activate_task - move a task to the runqueue.
987 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
989 if (p
->state
== TASK_UNINTERRUPTIBLE
)
990 rq
->nr_uninterruptible
--;
992 enqueue_task(rq
, p
, wakeup
);
993 inc_nr_running(p
, rq
);
997 * deactivate_task - remove a task from the runqueue.
999 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1001 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1002 rq
->nr_uninterruptible
++;
1004 dequeue_task(rq
, p
, sleep
);
1005 dec_nr_running(p
, rq
);
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1012 inline int task_curr(const struct task_struct
*p
)
1014 return cpu_curr(task_cpu(p
)) == p
;
1017 /* Used instead of source_load when we know the type == 0 */
1018 unsigned long weighted_cpuload(const int cpu
)
1020 return cpu_rq(cpu
)->load
.weight
;
1023 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1025 set_task_cfs_rq(p
, cpu
);
1028 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029 * successfuly executed on another CPU. We must ensure that updates of
1030 * per-task data have been completed by this moment.
1033 task_thread_info(p
)->cpu
= cpu
;
1040 * Is this task likely cache-hot:
1043 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1047 if (p
->sched_class
!= &fair_sched_class
)
1050 if (sysctl_sched_migration_cost
== -1)
1052 if (sysctl_sched_migration_cost
== 0)
1055 delta
= now
- p
->se
.exec_start
;
1057 return delta
< (s64
)sysctl_sched_migration_cost
;
1061 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1063 int old_cpu
= task_cpu(p
);
1064 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1065 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1066 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1069 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1071 #ifdef CONFIG_SCHEDSTATS
1072 if (p
->se
.wait_start
)
1073 p
->se
.wait_start
-= clock_offset
;
1074 if (p
->se
.sleep_start
)
1075 p
->se
.sleep_start
-= clock_offset
;
1076 if (p
->se
.block_start
)
1077 p
->se
.block_start
-= clock_offset
;
1078 if (old_cpu
!= new_cpu
) {
1079 schedstat_inc(p
, se
.nr_migrations
);
1080 if (task_hot(p
, old_rq
->clock
, NULL
))
1081 schedstat_inc(p
, se
.nr_forced2_migrations
);
1084 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1085 new_cfsrq
->min_vruntime
;
1087 __set_task_cpu(p
, new_cpu
);
1090 struct migration_req
{
1091 struct list_head list
;
1093 struct task_struct
*task
;
1096 struct completion done
;
1100 * The task's runqueue lock must be held.
1101 * Returns true if you have to wait for migration thread.
1104 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1106 struct rq
*rq
= task_rq(p
);
1109 * If the task is not on a runqueue (and not running), then
1110 * it is sufficient to simply update the task's cpu field.
1112 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1113 set_task_cpu(p
, dest_cpu
);
1117 init_completion(&req
->done
);
1119 req
->dest_cpu
= dest_cpu
;
1120 list_add(&req
->list
, &rq
->migration_queue
);
1126 * wait_task_inactive - wait for a thread to unschedule.
1128 * The caller must ensure that the task *will* unschedule sometime soon,
1129 * else this function might spin for a *long* time. This function can't
1130 * be called with interrupts off, or it may introduce deadlock with
1131 * smp_call_function() if an IPI is sent by the same process we are
1132 * waiting to become inactive.
1134 void wait_task_inactive(struct task_struct
*p
)
1136 unsigned long flags
;
1142 * We do the initial early heuristics without holding
1143 * any task-queue locks at all. We'll only try to get
1144 * the runqueue lock when things look like they will
1150 * If the task is actively running on another CPU
1151 * still, just relax and busy-wait without holding
1154 * NOTE! Since we don't hold any locks, it's not
1155 * even sure that "rq" stays as the right runqueue!
1156 * But we don't care, since "task_running()" will
1157 * return false if the runqueue has changed and p
1158 * is actually now running somewhere else!
1160 while (task_running(rq
, p
))
1164 * Ok, time to look more closely! We need the rq
1165 * lock now, to be *sure*. If we're wrong, we'll
1166 * just go back and repeat.
1168 rq
= task_rq_lock(p
, &flags
);
1169 running
= task_running(rq
, p
);
1170 on_rq
= p
->se
.on_rq
;
1171 task_rq_unlock(rq
, &flags
);
1174 * Was it really running after all now that we
1175 * checked with the proper locks actually held?
1177 * Oops. Go back and try again..
1179 if (unlikely(running
)) {
1185 * It's not enough that it's not actively running,
1186 * it must be off the runqueue _entirely_, and not
1189 * So if it wa still runnable (but just not actively
1190 * running right now), it's preempted, and we should
1191 * yield - it could be a while.
1193 if (unlikely(on_rq
)) {
1194 schedule_timeout_uninterruptible(1);
1199 * Ahh, all good. It wasn't running, and it wasn't
1200 * runnable, which means that it will never become
1201 * running in the future either. We're all done!
1208 * kick_process - kick a running thread to enter/exit the kernel
1209 * @p: the to-be-kicked thread
1211 * Cause a process which is running on another CPU to enter
1212 * kernel-mode, without any delay. (to get signals handled.)
1214 * NOTE: this function doesnt have to take the runqueue lock,
1215 * because all it wants to ensure is that the remote task enters
1216 * the kernel. If the IPI races and the task has been migrated
1217 * to another CPU then no harm is done and the purpose has been
1220 void kick_process(struct task_struct
*p
)
1226 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1227 smp_send_reschedule(cpu
);
1232 * Return a low guess at the load of a migration-source cpu weighted
1233 * according to the scheduling class and "nice" value.
1235 * We want to under-estimate the load of migration sources, to
1236 * balance conservatively.
1238 static unsigned long source_load(int cpu
, int type
)
1240 struct rq
*rq
= cpu_rq(cpu
);
1241 unsigned long total
= weighted_cpuload(cpu
);
1246 return min(rq
->cpu_load
[type
-1], total
);
1250 * Return a high guess at the load of a migration-target cpu weighted
1251 * according to the scheduling class and "nice" value.
1253 static unsigned long target_load(int cpu
, int type
)
1255 struct rq
*rq
= cpu_rq(cpu
);
1256 unsigned long total
= weighted_cpuload(cpu
);
1261 return max(rq
->cpu_load
[type
-1], total
);
1265 * Return the average load per task on the cpu's run queue
1267 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1269 struct rq
*rq
= cpu_rq(cpu
);
1270 unsigned long total
= weighted_cpuload(cpu
);
1271 unsigned long n
= rq
->nr_running
;
1273 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1277 * find_idlest_group finds and returns the least busy CPU group within the
1280 static struct sched_group
*
1281 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1283 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1284 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1285 int load_idx
= sd
->forkexec_idx
;
1286 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1289 unsigned long load
, avg_load
;
1293 /* Skip over this group if it has no CPUs allowed */
1294 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1297 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1299 /* Tally up the load of all CPUs in the group */
1302 for_each_cpu_mask(i
, group
->cpumask
) {
1303 /* Bias balancing toward cpus of our domain */
1305 load
= source_load(i
, load_idx
);
1307 load
= target_load(i
, load_idx
);
1312 /* Adjust by relative CPU power of the group */
1313 avg_load
= sg_div_cpu_power(group
,
1314 avg_load
* SCHED_LOAD_SCALE
);
1317 this_load
= avg_load
;
1319 } else if (avg_load
< min_load
) {
1320 min_load
= avg_load
;
1323 } while (group
= group
->next
, group
!= sd
->groups
);
1325 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1331 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1334 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1337 unsigned long load
, min_load
= ULONG_MAX
;
1341 /* Traverse only the allowed CPUs */
1342 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1344 for_each_cpu_mask(i
, tmp
) {
1345 load
= weighted_cpuload(i
);
1347 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1357 * sched_balance_self: balance the current task (running on cpu) in domains
1358 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1361 * Balance, ie. select the least loaded group.
1363 * Returns the target CPU number, or the same CPU if no balancing is needed.
1365 * preempt must be disabled.
1367 static int sched_balance_self(int cpu
, int flag
)
1369 struct task_struct
*t
= current
;
1370 struct sched_domain
*tmp
, *sd
= NULL
;
1372 for_each_domain(cpu
, tmp
) {
1374 * If power savings logic is enabled for a domain, stop there.
1376 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1378 if (tmp
->flags
& flag
)
1384 struct sched_group
*group
;
1385 int new_cpu
, weight
;
1387 if (!(sd
->flags
& flag
)) {
1393 group
= find_idlest_group(sd
, t
, cpu
);
1399 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1400 if (new_cpu
== -1 || new_cpu
== cpu
) {
1401 /* Now try balancing at a lower domain level of cpu */
1406 /* Now try balancing at a lower domain level of new_cpu */
1409 weight
= cpus_weight(span
);
1410 for_each_domain(cpu
, tmp
) {
1411 if (weight
<= cpus_weight(tmp
->span
))
1413 if (tmp
->flags
& flag
)
1416 /* while loop will break here if sd == NULL */
1422 #endif /* CONFIG_SMP */
1425 * wake_idle() will wake a task on an idle cpu if task->cpu is
1426 * not idle and an idle cpu is available. The span of cpus to
1427 * search starts with cpus closest then further out as needed,
1428 * so we always favor a closer, idle cpu.
1430 * Returns the CPU we should wake onto.
1432 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1433 static int wake_idle(int cpu
, struct task_struct
*p
)
1436 struct sched_domain
*sd
;
1440 * If it is idle, then it is the best cpu to run this task.
1442 * This cpu is also the best, if it has more than one task already.
1443 * Siblings must be also busy(in most cases) as they didn't already
1444 * pickup the extra load from this cpu and hence we need not check
1445 * sibling runqueue info. This will avoid the checks and cache miss
1446 * penalities associated with that.
1448 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1451 for_each_domain(cpu
, sd
) {
1452 if (sd
->flags
& SD_WAKE_IDLE
) {
1453 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1454 for_each_cpu_mask(i
, tmp
) {
1456 if (i
!= task_cpu(p
)) {
1458 se
.nr_wakeups_idle
);
1470 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1477 * try_to_wake_up - wake up a thread
1478 * @p: the to-be-woken-up thread
1479 * @state: the mask of task states that can be woken
1480 * @sync: do a synchronous wakeup?
1482 * Put it on the run-queue if it's not already there. The "current"
1483 * thread is always on the run-queue (except when the actual
1484 * re-schedule is in progress), and as such you're allowed to do
1485 * the simpler "current->state = TASK_RUNNING" to mark yourself
1486 * runnable without the overhead of this.
1488 * returns failure only if the task is already active.
1490 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1492 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1493 unsigned long flags
;
1497 struct sched_domain
*sd
, *this_sd
= NULL
;
1498 unsigned long load
, this_load
;
1502 rq
= task_rq_lock(p
, &flags
);
1503 old_state
= p
->state
;
1504 if (!(old_state
& state
))
1512 this_cpu
= smp_processor_id();
1515 if (unlikely(task_running(rq
, p
)))
1520 schedstat_inc(rq
, ttwu_count
);
1521 if (cpu
== this_cpu
) {
1522 schedstat_inc(rq
, ttwu_local
);
1526 for_each_domain(this_cpu
, sd
) {
1527 if (cpu_isset(cpu
, sd
->span
)) {
1528 schedstat_inc(sd
, ttwu_wake_remote
);
1534 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1538 * Check for affine wakeup and passive balancing possibilities.
1541 int idx
= this_sd
->wake_idx
;
1542 unsigned int imbalance
;
1544 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1546 load
= source_load(cpu
, idx
);
1547 this_load
= target_load(this_cpu
, idx
);
1549 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1551 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1552 unsigned long tl
= this_load
;
1553 unsigned long tl_per_task
;
1556 * Attract cache-cold tasks on sync wakeups:
1558 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1561 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1562 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1565 * If sync wakeup then subtract the (maximum possible)
1566 * effect of the currently running task from the load
1567 * of the current CPU:
1570 tl
-= current
->se
.load
.weight
;
1573 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1574 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1576 * This domain has SD_WAKE_AFFINE and
1577 * p is cache cold in this domain, and
1578 * there is no bad imbalance.
1580 schedstat_inc(this_sd
, ttwu_move_affine
);
1581 schedstat_inc(p
, se
.nr_wakeups_affine
);
1587 * Start passive balancing when half the imbalance_pct
1590 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1591 if (imbalance
*this_load
<= 100*load
) {
1592 schedstat_inc(this_sd
, ttwu_move_balance
);
1593 schedstat_inc(p
, se
.nr_wakeups_passive
);
1599 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1601 new_cpu
= wake_idle(new_cpu
, p
);
1602 if (new_cpu
!= cpu
) {
1603 set_task_cpu(p
, new_cpu
);
1604 task_rq_unlock(rq
, &flags
);
1605 /* might preempt at this point */
1606 rq
= task_rq_lock(p
, &flags
);
1607 old_state
= p
->state
;
1608 if (!(old_state
& state
))
1613 this_cpu
= smp_processor_id();
1618 #endif /* CONFIG_SMP */
1619 schedstat_inc(p
, se
.nr_wakeups
);
1621 schedstat_inc(p
, se
.nr_wakeups_sync
);
1622 if (orig_cpu
!= cpu
)
1623 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1624 if (cpu
== this_cpu
)
1625 schedstat_inc(p
, se
.nr_wakeups_local
);
1627 schedstat_inc(p
, se
.nr_wakeups_remote
);
1628 update_rq_clock(rq
);
1629 activate_task(rq
, p
, 1);
1630 check_preempt_curr(rq
, p
);
1634 p
->state
= TASK_RUNNING
;
1636 task_rq_unlock(rq
, &flags
);
1641 int fastcall
wake_up_process(struct task_struct
*p
)
1643 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1644 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1646 EXPORT_SYMBOL(wake_up_process
);
1648 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1650 return try_to_wake_up(p
, state
, 0);
1654 * Perform scheduler related setup for a newly forked process p.
1655 * p is forked by current.
1657 * __sched_fork() is basic setup used by init_idle() too:
1659 static void __sched_fork(struct task_struct
*p
)
1661 p
->se
.exec_start
= 0;
1662 p
->se
.sum_exec_runtime
= 0;
1663 p
->se
.prev_sum_exec_runtime
= 0;
1665 #ifdef CONFIG_SCHEDSTATS
1666 p
->se
.wait_start
= 0;
1667 p
->se
.sum_sleep_runtime
= 0;
1668 p
->se
.sleep_start
= 0;
1669 p
->se
.block_start
= 0;
1670 p
->se
.sleep_max
= 0;
1671 p
->se
.block_max
= 0;
1673 p
->se
.slice_max
= 0;
1677 INIT_LIST_HEAD(&p
->run_list
);
1680 #ifdef CONFIG_PREEMPT_NOTIFIERS
1681 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1685 * We mark the process as running here, but have not actually
1686 * inserted it onto the runqueue yet. This guarantees that
1687 * nobody will actually run it, and a signal or other external
1688 * event cannot wake it up and insert it on the runqueue either.
1690 p
->state
= TASK_RUNNING
;
1694 * fork()/clone()-time setup:
1696 void sched_fork(struct task_struct
*p
, int clone_flags
)
1698 int cpu
= get_cpu();
1703 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1705 set_task_cpu(p
, cpu
);
1708 * Make sure we do not leak PI boosting priority to the child:
1710 p
->prio
= current
->normal_prio
;
1711 if (!rt_prio(p
->prio
))
1712 p
->sched_class
= &fair_sched_class
;
1714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1715 if (likely(sched_info_on()))
1716 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1718 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1721 #ifdef CONFIG_PREEMPT
1722 /* Want to start with kernel preemption disabled. */
1723 task_thread_info(p
)->preempt_count
= 1;
1729 * wake_up_new_task - wake up a newly created task for the first time.
1731 * This function will do some initial scheduler statistics housekeeping
1732 * that must be done for every newly created context, then puts the task
1733 * on the runqueue and wakes it.
1735 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1737 unsigned long flags
;
1740 rq
= task_rq_lock(p
, &flags
);
1741 BUG_ON(p
->state
!= TASK_RUNNING
);
1742 update_rq_clock(rq
);
1744 p
->prio
= effective_prio(p
);
1746 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1747 activate_task(rq
, p
, 0);
1750 * Let the scheduling class do new task startup
1751 * management (if any):
1753 p
->sched_class
->task_new(rq
, p
);
1754 inc_nr_running(p
, rq
);
1756 check_preempt_curr(rq
, p
);
1757 task_rq_unlock(rq
, &flags
);
1760 #ifdef CONFIG_PREEMPT_NOTIFIERS
1763 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1764 * @notifier: notifier struct to register
1766 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1768 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1770 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1773 * preempt_notifier_unregister - no longer interested in preemption notifications
1774 * @notifier: notifier struct to unregister
1776 * This is safe to call from within a preemption notifier.
1778 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1780 hlist_del(¬ifier
->link
);
1782 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1784 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1786 struct preempt_notifier
*notifier
;
1787 struct hlist_node
*node
;
1789 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1790 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1794 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1795 struct task_struct
*next
)
1797 struct preempt_notifier
*notifier
;
1798 struct hlist_node
*node
;
1800 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1801 notifier
->ops
->sched_out(notifier
, next
);
1806 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1811 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1812 struct task_struct
*next
)
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
1821 * @prev: the current task that is being switched out
1822 * @next: the task we are going to switch to.
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1828 * prepare_task_switch sets up locking and calls architecture specific
1832 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1833 struct task_struct
*next
)
1835 fire_sched_out_preempt_notifiers(prev
, next
);
1836 prepare_lock_switch(rq
, next
);
1837 prepare_arch_switch(next
);
1841 * finish_task_switch - clean up after a task-switch
1842 * @rq: runqueue associated with task-switch
1843 * @prev: the thread we just switched away from.
1845 * finish_task_switch must be called after the context switch, paired
1846 * with a prepare_task_switch call before the context switch.
1847 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1848 * and do any other architecture-specific cleanup actions.
1850 * Note that we may have delayed dropping an mm in context_switch(). If
1851 * so, we finish that here outside of the runqueue lock. (Doing it
1852 * with the lock held can cause deadlocks; see schedule() for
1855 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1856 __releases(rq
->lock
)
1858 struct mm_struct
*mm
= rq
->prev_mm
;
1864 * A task struct has one reference for the use as "current".
1865 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1866 * schedule one last time. The schedule call will never return, and
1867 * the scheduled task must drop that reference.
1868 * The test for TASK_DEAD must occur while the runqueue locks are
1869 * still held, otherwise prev could be scheduled on another cpu, die
1870 * there before we look at prev->state, and then the reference would
1872 * Manfred Spraul <manfred@colorfullife.com>
1874 prev_state
= prev
->state
;
1875 finish_arch_switch(prev
);
1876 finish_lock_switch(rq
, prev
);
1877 fire_sched_in_preempt_notifiers(current
);
1880 if (unlikely(prev_state
== TASK_DEAD
)) {
1882 * Remove function-return probe instances associated with this
1883 * task and put them back on the free list.
1885 kprobe_flush_task(prev
);
1886 put_task_struct(prev
);
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1894 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1895 __releases(rq
->lock
)
1897 struct rq
*rq
= this_rq();
1899 finish_task_switch(rq
, prev
);
1900 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1901 /* In this case, finish_task_switch does not reenable preemption */
1904 if (current
->set_child_tid
)
1905 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1909 * context_switch - switch to the new MM and the new
1910 * thread's register state.
1913 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1914 struct task_struct
*next
)
1916 struct mm_struct
*mm
, *oldmm
;
1918 prepare_task_switch(rq
, prev
, next
);
1920 oldmm
= prev
->active_mm
;
1922 * For paravirt, this is coupled with an exit in switch_to to
1923 * combine the page table reload and the switch backend into
1926 arch_enter_lazy_cpu_mode();
1928 if (unlikely(!mm
)) {
1929 next
->active_mm
= oldmm
;
1930 atomic_inc(&oldmm
->mm_count
);
1931 enter_lazy_tlb(oldmm
, next
);
1933 switch_mm(oldmm
, mm
, next
);
1935 if (unlikely(!prev
->mm
)) {
1936 prev
->active_mm
= NULL
;
1937 rq
->prev_mm
= oldmm
;
1940 * Since the runqueue lock will be released by the next
1941 * task (which is an invalid locking op but in the case
1942 * of the scheduler it's an obvious special-case), so we
1943 * do an early lockdep release here:
1945 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1946 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1949 /* Here we just switch the register state and the stack. */
1950 switch_to(prev
, next
, prev
);
1954 * this_rq must be evaluated again because prev may have moved
1955 * CPUs since it called schedule(), thus the 'rq' on its stack
1956 * frame will be invalid.
1958 finish_task_switch(this_rq(), prev
);
1962 * nr_running, nr_uninterruptible and nr_context_switches:
1964 * externally visible scheduler statistics: current number of runnable
1965 * threads, current number of uninterruptible-sleeping threads, total
1966 * number of context switches performed since bootup.
1968 unsigned long nr_running(void)
1970 unsigned long i
, sum
= 0;
1972 for_each_online_cpu(i
)
1973 sum
+= cpu_rq(i
)->nr_running
;
1978 unsigned long nr_uninterruptible(void)
1980 unsigned long i
, sum
= 0;
1982 for_each_possible_cpu(i
)
1983 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1986 * Since we read the counters lockless, it might be slightly
1987 * inaccurate. Do not allow it to go below zero though:
1989 if (unlikely((long)sum
< 0))
1995 unsigned long long nr_context_switches(void)
1998 unsigned long long sum
= 0;
2000 for_each_possible_cpu(i
)
2001 sum
+= cpu_rq(i
)->nr_switches
;
2006 unsigned long nr_iowait(void)
2008 unsigned long i
, sum
= 0;
2010 for_each_possible_cpu(i
)
2011 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2016 unsigned long nr_active(void)
2018 unsigned long i
, running
= 0, uninterruptible
= 0;
2020 for_each_online_cpu(i
) {
2021 running
+= cpu_rq(i
)->nr_running
;
2022 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2025 if (unlikely((long)uninterruptible
< 0))
2026 uninterruptible
= 0;
2028 return running
+ uninterruptible
;
2032 * Update rq->cpu_load[] statistics. This function is usually called every
2033 * scheduler tick (TICK_NSEC).
2035 static void update_cpu_load(struct rq
*this_rq
)
2037 unsigned long this_load
= this_rq
->load
.weight
;
2040 this_rq
->nr_load_updates
++;
2042 /* Update our load: */
2043 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2044 unsigned long old_load
, new_load
;
2046 /* scale is effectively 1 << i now, and >> i divides by scale */
2048 old_load
= this_rq
->cpu_load
[i
];
2049 new_load
= this_load
;
2051 * Round up the averaging division if load is increasing. This
2052 * prevents us from getting stuck on 9 if the load is 10, for
2055 if (new_load
> old_load
)
2056 new_load
+= scale
-1;
2057 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2064 * double_rq_lock - safely lock two runqueues
2066 * Note this does not disable interrupts like task_rq_lock,
2067 * you need to do so manually before calling.
2069 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2070 __acquires(rq1
->lock
)
2071 __acquires(rq2
->lock
)
2073 BUG_ON(!irqs_disabled());
2075 spin_lock(&rq1
->lock
);
2076 __acquire(rq2
->lock
); /* Fake it out ;) */
2079 spin_lock(&rq1
->lock
);
2080 spin_lock(&rq2
->lock
);
2082 spin_lock(&rq2
->lock
);
2083 spin_lock(&rq1
->lock
);
2086 update_rq_clock(rq1
);
2087 update_rq_clock(rq2
);
2091 * double_rq_unlock - safely unlock two runqueues
2093 * Note this does not restore interrupts like task_rq_unlock,
2094 * you need to do so manually after calling.
2096 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2097 __releases(rq1
->lock
)
2098 __releases(rq2
->lock
)
2100 spin_unlock(&rq1
->lock
);
2102 spin_unlock(&rq2
->lock
);
2104 __release(rq2
->lock
);
2108 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2110 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2111 __releases(this_rq
->lock
)
2112 __acquires(busiest
->lock
)
2113 __acquires(this_rq
->lock
)
2115 if (unlikely(!irqs_disabled())) {
2116 /* printk() doesn't work good under rq->lock */
2117 spin_unlock(&this_rq
->lock
);
2120 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2121 if (busiest
< this_rq
) {
2122 spin_unlock(&this_rq
->lock
);
2123 spin_lock(&busiest
->lock
);
2124 spin_lock(&this_rq
->lock
);
2126 spin_lock(&busiest
->lock
);
2131 * If dest_cpu is allowed for this process, migrate the task to it.
2132 * This is accomplished by forcing the cpu_allowed mask to only
2133 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2134 * the cpu_allowed mask is restored.
2136 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2138 struct migration_req req
;
2139 unsigned long flags
;
2142 rq
= task_rq_lock(p
, &flags
);
2143 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2144 || unlikely(cpu_is_offline(dest_cpu
)))
2147 /* force the process onto the specified CPU */
2148 if (migrate_task(p
, dest_cpu
, &req
)) {
2149 /* Need to wait for migration thread (might exit: take ref). */
2150 struct task_struct
*mt
= rq
->migration_thread
;
2152 get_task_struct(mt
);
2153 task_rq_unlock(rq
, &flags
);
2154 wake_up_process(mt
);
2155 put_task_struct(mt
);
2156 wait_for_completion(&req
.done
);
2161 task_rq_unlock(rq
, &flags
);
2165 * sched_exec - execve() is a valuable balancing opportunity, because at
2166 * this point the task has the smallest effective memory and cache footprint.
2168 void sched_exec(void)
2170 int new_cpu
, this_cpu
= get_cpu();
2171 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2173 if (new_cpu
!= this_cpu
)
2174 sched_migrate_task(current
, new_cpu
);
2178 * pull_task - move a task from a remote runqueue to the local runqueue.
2179 * Both runqueues must be locked.
2181 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2182 struct rq
*this_rq
, int this_cpu
)
2184 deactivate_task(src_rq
, p
, 0);
2185 set_task_cpu(p
, this_cpu
);
2186 activate_task(this_rq
, p
, 0);
2188 * Note that idle threads have a prio of MAX_PRIO, for this test
2189 * to be always true for them.
2191 check_preempt_curr(this_rq
, p
);
2195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2198 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2199 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2203 * We do not migrate tasks that are:
2204 * 1) running (obviously), or
2205 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2206 * 3) are cache-hot on their current CPU.
2208 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2209 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2214 if (task_running(rq
, p
)) {
2215 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2220 * Aggressive migration if:
2221 * 1) task is cache cold, or
2222 * 2) too many balance attempts have failed.
2225 if (!task_hot(p
, rq
->clock
, sd
) ||
2226 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2227 #ifdef CONFIG_SCHEDSTATS
2228 if (task_hot(p
, rq
->clock
, sd
)) {
2229 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2230 schedstat_inc(p
, se
.nr_forced_migrations
);
2236 if (task_hot(p
, rq
->clock
, sd
)) {
2237 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2243 static unsigned long
2244 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2245 unsigned long max_load_move
, struct sched_domain
*sd
,
2246 enum cpu_idle_type idle
, int *all_pinned
,
2247 int *this_best_prio
, struct rq_iterator
*iterator
)
2249 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2250 struct task_struct
*p
;
2251 long rem_load_move
= max_load_move
;
2253 if (max_load_move
== 0)
2259 * Start the load-balancing iterator:
2261 p
= iterator
->start(iterator
->arg
);
2263 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2266 * To help distribute high priority tasks across CPUs we don't
2267 * skip a task if it will be the highest priority task (i.e. smallest
2268 * prio value) on its new queue regardless of its load weight
2270 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2271 SCHED_LOAD_SCALE_FUZZ
;
2272 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2273 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2274 p
= iterator
->next(iterator
->arg
);
2278 pull_task(busiest
, p
, this_rq
, this_cpu
);
2280 rem_load_move
-= p
->se
.load
.weight
;
2283 * We only want to steal up to the prescribed amount of weighted load.
2285 if (rem_load_move
> 0) {
2286 if (p
->prio
< *this_best_prio
)
2287 *this_best_prio
= p
->prio
;
2288 p
= iterator
->next(iterator
->arg
);
2293 * Right now, this is one of only two places pull_task() is called,
2294 * so we can safely collect pull_task() stats here rather than
2295 * inside pull_task().
2297 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2300 *all_pinned
= pinned
;
2302 return max_load_move
- rem_load_move
;
2306 * move_tasks tries to move up to max_load_move weighted load from busiest to
2307 * this_rq, as part of a balancing operation within domain "sd".
2308 * Returns 1 if successful and 0 otherwise.
2310 * Called with both runqueues locked.
2312 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2313 unsigned long max_load_move
,
2314 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2317 const struct sched_class
*class = sched_class_highest
;
2318 unsigned long total_load_moved
= 0;
2319 int this_best_prio
= this_rq
->curr
->prio
;
2323 class->load_balance(this_rq
, this_cpu
, busiest
,
2324 max_load_move
- total_load_moved
,
2325 sd
, idle
, all_pinned
, &this_best_prio
);
2326 class = class->next
;
2327 } while (class && max_load_move
> total_load_moved
);
2329 return total_load_moved
> 0;
2333 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2334 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2335 struct rq_iterator
*iterator
)
2337 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2341 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2342 pull_task(busiest
, p
, this_rq
, this_cpu
);
2344 * Right now, this is only the second place pull_task()
2345 * is called, so we can safely collect pull_task()
2346 * stats here rather than inside pull_task().
2348 schedstat_inc(sd
, lb_gained
[idle
]);
2352 p
= iterator
->next(iterator
->arg
);
2359 * move_one_task tries to move exactly one task from busiest to this_rq, as
2360 * part of active balancing operations within "domain".
2361 * Returns 1 if successful and 0 otherwise.
2363 * Called with both runqueues locked.
2365 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2366 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2368 const struct sched_class
*class;
2370 for (class = sched_class_highest
; class; class = class->next
)
2371 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2378 * find_busiest_group finds and returns the busiest CPU group within the
2379 * domain. It calculates and returns the amount of weighted load which
2380 * should be moved to restore balance via the imbalance parameter.
2382 static struct sched_group
*
2383 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2384 unsigned long *imbalance
, enum cpu_idle_type idle
,
2385 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2387 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2388 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2389 unsigned long max_pull
;
2390 unsigned long busiest_load_per_task
, busiest_nr_running
;
2391 unsigned long this_load_per_task
, this_nr_running
;
2392 int load_idx
, group_imb
= 0;
2393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2394 int power_savings_balance
= 1;
2395 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2396 unsigned long min_nr_running
= ULONG_MAX
;
2397 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2400 max_load
= this_load
= total_load
= total_pwr
= 0;
2401 busiest_load_per_task
= busiest_nr_running
= 0;
2402 this_load_per_task
= this_nr_running
= 0;
2403 if (idle
== CPU_NOT_IDLE
)
2404 load_idx
= sd
->busy_idx
;
2405 else if (idle
== CPU_NEWLY_IDLE
)
2406 load_idx
= sd
->newidle_idx
;
2408 load_idx
= sd
->idle_idx
;
2411 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2414 int __group_imb
= 0;
2415 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2416 unsigned long sum_nr_running
, sum_weighted_load
;
2418 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2421 balance_cpu
= first_cpu(group
->cpumask
);
2423 /* Tally up the load of all CPUs in the group */
2424 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2426 min_cpu_load
= ~0UL;
2428 for_each_cpu_mask(i
, group
->cpumask
) {
2431 if (!cpu_isset(i
, *cpus
))
2436 if (*sd_idle
&& rq
->nr_running
)
2439 /* Bias balancing toward cpus of our domain */
2441 if (idle_cpu(i
) && !first_idle_cpu
) {
2446 load
= target_load(i
, load_idx
);
2448 load
= source_load(i
, load_idx
);
2449 if (load
> max_cpu_load
)
2450 max_cpu_load
= load
;
2451 if (min_cpu_load
> load
)
2452 min_cpu_load
= load
;
2456 sum_nr_running
+= rq
->nr_running
;
2457 sum_weighted_load
+= weighted_cpuload(i
);
2461 * First idle cpu or the first cpu(busiest) in this sched group
2462 * is eligible for doing load balancing at this and above
2463 * domains. In the newly idle case, we will allow all the cpu's
2464 * to do the newly idle load balance.
2466 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2467 balance_cpu
!= this_cpu
&& balance
) {
2472 total_load
+= avg_load
;
2473 total_pwr
+= group
->__cpu_power
;
2475 /* Adjust by relative CPU power of the group */
2476 avg_load
= sg_div_cpu_power(group
,
2477 avg_load
* SCHED_LOAD_SCALE
);
2479 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2482 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2485 this_load
= avg_load
;
2487 this_nr_running
= sum_nr_running
;
2488 this_load_per_task
= sum_weighted_load
;
2489 } else if (avg_load
> max_load
&&
2490 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2491 max_load
= avg_load
;
2493 busiest_nr_running
= sum_nr_running
;
2494 busiest_load_per_task
= sum_weighted_load
;
2495 group_imb
= __group_imb
;
2498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2500 * Busy processors will not participate in power savings
2503 if (idle
== CPU_NOT_IDLE
||
2504 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2508 * If the local group is idle or completely loaded
2509 * no need to do power savings balance at this domain
2511 if (local_group
&& (this_nr_running
>= group_capacity
||
2513 power_savings_balance
= 0;
2516 * If a group is already running at full capacity or idle,
2517 * don't include that group in power savings calculations
2519 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2524 * Calculate the group which has the least non-idle load.
2525 * This is the group from where we need to pick up the load
2528 if ((sum_nr_running
< min_nr_running
) ||
2529 (sum_nr_running
== min_nr_running
&&
2530 first_cpu(group
->cpumask
) <
2531 first_cpu(group_min
->cpumask
))) {
2533 min_nr_running
= sum_nr_running
;
2534 min_load_per_task
= sum_weighted_load
/
2539 * Calculate the group which is almost near its
2540 * capacity but still has some space to pick up some load
2541 * from other group and save more power
2543 if (sum_nr_running
<= group_capacity
- 1) {
2544 if (sum_nr_running
> leader_nr_running
||
2545 (sum_nr_running
== leader_nr_running
&&
2546 first_cpu(group
->cpumask
) >
2547 first_cpu(group_leader
->cpumask
))) {
2548 group_leader
= group
;
2549 leader_nr_running
= sum_nr_running
;
2554 group
= group
->next
;
2555 } while (group
!= sd
->groups
);
2557 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2560 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2562 if (this_load
>= avg_load
||
2563 100*max_load
<= sd
->imbalance_pct
*this_load
)
2566 busiest_load_per_task
/= busiest_nr_running
;
2568 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2571 * We're trying to get all the cpus to the average_load, so we don't
2572 * want to push ourselves above the average load, nor do we wish to
2573 * reduce the max loaded cpu below the average load, as either of these
2574 * actions would just result in more rebalancing later, and ping-pong
2575 * tasks around. Thus we look for the minimum possible imbalance.
2576 * Negative imbalances (*we* are more loaded than anyone else) will
2577 * be counted as no imbalance for these purposes -- we can't fix that
2578 * by pulling tasks to us. Be careful of negative numbers as they'll
2579 * appear as very large values with unsigned longs.
2581 if (max_load
<= busiest_load_per_task
)
2585 * In the presence of smp nice balancing, certain scenarios can have
2586 * max load less than avg load(as we skip the groups at or below
2587 * its cpu_power, while calculating max_load..)
2589 if (max_load
< avg_load
) {
2591 goto small_imbalance
;
2594 /* Don't want to pull so many tasks that a group would go idle */
2595 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2597 /* How much load to actually move to equalise the imbalance */
2598 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2599 (avg_load
- this_load
) * this->__cpu_power
)
2603 * if *imbalance is less than the average load per runnable task
2604 * there is no gaurantee that any tasks will be moved so we'll have
2605 * a think about bumping its value to force at least one task to be
2608 if (*imbalance
< busiest_load_per_task
) {
2609 unsigned long tmp
, pwr_now
, pwr_move
;
2613 pwr_move
= pwr_now
= 0;
2615 if (this_nr_running
) {
2616 this_load_per_task
/= this_nr_running
;
2617 if (busiest_load_per_task
> this_load_per_task
)
2620 this_load_per_task
= SCHED_LOAD_SCALE
;
2622 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2623 busiest_load_per_task
* imbn
) {
2624 *imbalance
= busiest_load_per_task
;
2629 * OK, we don't have enough imbalance to justify moving tasks,
2630 * however we may be able to increase total CPU power used by
2634 pwr_now
+= busiest
->__cpu_power
*
2635 min(busiest_load_per_task
, max_load
);
2636 pwr_now
+= this->__cpu_power
*
2637 min(this_load_per_task
, this_load
);
2638 pwr_now
/= SCHED_LOAD_SCALE
;
2640 /* Amount of load we'd subtract */
2641 tmp
= sg_div_cpu_power(busiest
,
2642 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2644 pwr_move
+= busiest
->__cpu_power
*
2645 min(busiest_load_per_task
, max_load
- tmp
);
2647 /* Amount of load we'd add */
2648 if (max_load
* busiest
->__cpu_power
<
2649 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2650 tmp
= sg_div_cpu_power(this,
2651 max_load
* busiest
->__cpu_power
);
2653 tmp
= sg_div_cpu_power(this,
2654 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2655 pwr_move
+= this->__cpu_power
*
2656 min(this_load_per_task
, this_load
+ tmp
);
2657 pwr_move
/= SCHED_LOAD_SCALE
;
2659 /* Move if we gain throughput */
2660 if (pwr_move
> pwr_now
)
2661 *imbalance
= busiest_load_per_task
;
2667 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2668 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2671 if (this == group_leader
&& group_leader
!= group_min
) {
2672 *imbalance
= min_load_per_task
;
2682 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2685 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2686 unsigned long imbalance
, cpumask_t
*cpus
)
2688 struct rq
*busiest
= NULL
, *rq
;
2689 unsigned long max_load
= 0;
2692 for_each_cpu_mask(i
, group
->cpumask
) {
2695 if (!cpu_isset(i
, *cpus
))
2699 wl
= weighted_cpuload(i
);
2701 if (rq
->nr_running
== 1 && wl
> imbalance
)
2704 if (wl
> max_load
) {
2714 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2715 * so long as it is large enough.
2717 #define MAX_PINNED_INTERVAL 512
2720 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2721 * tasks if there is an imbalance.
2723 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2724 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2727 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2728 struct sched_group
*group
;
2729 unsigned long imbalance
;
2731 cpumask_t cpus
= CPU_MASK_ALL
;
2732 unsigned long flags
;
2735 * When power savings policy is enabled for the parent domain, idle
2736 * sibling can pick up load irrespective of busy siblings. In this case,
2737 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2738 * portraying it as CPU_NOT_IDLE.
2740 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2741 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2744 schedstat_inc(sd
, lb_count
[idle
]);
2747 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2754 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2758 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2760 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2764 BUG_ON(busiest
== this_rq
);
2766 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2769 if (busiest
->nr_running
> 1) {
2771 * Attempt to move tasks. If find_busiest_group has found
2772 * an imbalance but busiest->nr_running <= 1, the group is
2773 * still unbalanced. ld_moved simply stays zero, so it is
2774 * correctly treated as an imbalance.
2776 local_irq_save(flags
);
2777 double_rq_lock(this_rq
, busiest
);
2778 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2779 imbalance
, sd
, idle
, &all_pinned
);
2780 double_rq_unlock(this_rq
, busiest
);
2781 local_irq_restore(flags
);
2784 * some other cpu did the load balance for us.
2786 if (ld_moved
&& this_cpu
!= smp_processor_id())
2787 resched_cpu(this_cpu
);
2789 /* All tasks on this runqueue were pinned by CPU affinity */
2790 if (unlikely(all_pinned
)) {
2791 cpu_clear(cpu_of(busiest
), cpus
);
2792 if (!cpus_empty(cpus
))
2799 schedstat_inc(sd
, lb_failed
[idle
]);
2800 sd
->nr_balance_failed
++;
2802 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2804 spin_lock_irqsave(&busiest
->lock
, flags
);
2806 /* don't kick the migration_thread, if the curr
2807 * task on busiest cpu can't be moved to this_cpu
2809 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2810 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2812 goto out_one_pinned
;
2815 if (!busiest
->active_balance
) {
2816 busiest
->active_balance
= 1;
2817 busiest
->push_cpu
= this_cpu
;
2820 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2822 wake_up_process(busiest
->migration_thread
);
2825 * We've kicked active balancing, reset the failure
2828 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2831 sd
->nr_balance_failed
= 0;
2833 if (likely(!active_balance
)) {
2834 /* We were unbalanced, so reset the balancing interval */
2835 sd
->balance_interval
= sd
->min_interval
;
2838 * If we've begun active balancing, start to back off. This
2839 * case may not be covered by the all_pinned logic if there
2840 * is only 1 task on the busy runqueue (because we don't call
2843 if (sd
->balance_interval
< sd
->max_interval
)
2844 sd
->balance_interval
*= 2;
2847 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2848 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2853 schedstat_inc(sd
, lb_balanced
[idle
]);
2855 sd
->nr_balance_failed
= 0;
2858 /* tune up the balancing interval */
2859 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2860 (sd
->balance_interval
< sd
->max_interval
))
2861 sd
->balance_interval
*= 2;
2863 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2864 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2870 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2871 * tasks if there is an imbalance.
2873 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2874 * this_rq is locked.
2877 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2879 struct sched_group
*group
;
2880 struct rq
*busiest
= NULL
;
2881 unsigned long imbalance
;
2885 cpumask_t cpus
= CPU_MASK_ALL
;
2888 * When power savings policy is enabled for the parent domain, idle
2889 * sibling can pick up load irrespective of busy siblings. In this case,
2890 * let the state of idle sibling percolate up as IDLE, instead of
2891 * portraying it as CPU_NOT_IDLE.
2893 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2894 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2897 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2899 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2900 &sd_idle
, &cpus
, NULL
);
2902 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2906 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2909 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2913 BUG_ON(busiest
== this_rq
);
2915 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2918 if (busiest
->nr_running
> 1) {
2919 /* Attempt to move tasks */
2920 double_lock_balance(this_rq
, busiest
);
2921 /* this_rq->clock is already updated */
2922 update_rq_clock(busiest
);
2923 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2924 imbalance
, sd
, CPU_NEWLY_IDLE
,
2926 spin_unlock(&busiest
->lock
);
2928 if (unlikely(all_pinned
)) {
2929 cpu_clear(cpu_of(busiest
), cpus
);
2930 if (!cpus_empty(cpus
))
2936 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2937 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2938 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2941 sd
->nr_balance_failed
= 0;
2946 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2947 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2948 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2950 sd
->nr_balance_failed
= 0;
2956 * idle_balance is called by schedule() if this_cpu is about to become
2957 * idle. Attempts to pull tasks from other CPUs.
2959 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2961 struct sched_domain
*sd
;
2962 int pulled_task
= -1;
2963 unsigned long next_balance
= jiffies
+ HZ
;
2965 for_each_domain(this_cpu
, sd
) {
2966 unsigned long interval
;
2968 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2971 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2972 /* If we've pulled tasks over stop searching: */
2973 pulled_task
= load_balance_newidle(this_cpu
,
2976 interval
= msecs_to_jiffies(sd
->balance_interval
);
2977 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2978 next_balance
= sd
->last_balance
+ interval
;
2982 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2984 * We are going idle. next_balance may be set based on
2985 * a busy processor. So reset next_balance.
2987 this_rq
->next_balance
= next_balance
;
2992 * active_load_balance is run by migration threads. It pushes running tasks
2993 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2994 * running on each physical CPU where possible, and avoids physical /
2995 * logical imbalances.
2997 * Called with busiest_rq locked.
2999 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3001 int target_cpu
= busiest_rq
->push_cpu
;
3002 struct sched_domain
*sd
;
3003 struct rq
*target_rq
;
3005 /* Is there any task to move? */
3006 if (busiest_rq
->nr_running
<= 1)
3009 target_rq
= cpu_rq(target_cpu
);
3012 * This condition is "impossible", if it occurs
3013 * we need to fix it. Originally reported by
3014 * Bjorn Helgaas on a 128-cpu setup.
3016 BUG_ON(busiest_rq
== target_rq
);
3018 /* move a task from busiest_rq to target_rq */
3019 double_lock_balance(busiest_rq
, target_rq
);
3020 update_rq_clock(busiest_rq
);
3021 update_rq_clock(target_rq
);
3023 /* Search for an sd spanning us and the target CPU. */
3024 for_each_domain(target_cpu
, sd
) {
3025 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3026 cpu_isset(busiest_cpu
, sd
->span
))
3031 schedstat_inc(sd
, alb_count
);
3033 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3035 schedstat_inc(sd
, alb_pushed
);
3037 schedstat_inc(sd
, alb_failed
);
3039 spin_unlock(&target_rq
->lock
);
3044 atomic_t load_balancer
;
3046 } nohz ____cacheline_aligned
= {
3047 .load_balancer
= ATOMIC_INIT(-1),
3048 .cpu_mask
= CPU_MASK_NONE
,
3052 * This routine will try to nominate the ilb (idle load balancing)
3053 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3054 * load balancing on behalf of all those cpus. If all the cpus in the system
3055 * go into this tickless mode, then there will be no ilb owner (as there is
3056 * no need for one) and all the cpus will sleep till the next wakeup event
3059 * For the ilb owner, tick is not stopped. And this tick will be used
3060 * for idle load balancing. ilb owner will still be part of
3063 * While stopping the tick, this cpu will become the ilb owner if there
3064 * is no other owner. And will be the owner till that cpu becomes busy
3065 * or if all cpus in the system stop their ticks at which point
3066 * there is no need for ilb owner.
3068 * When the ilb owner becomes busy, it nominates another owner, during the
3069 * next busy scheduler_tick()
3071 int select_nohz_load_balancer(int stop_tick
)
3073 int cpu
= smp_processor_id();
3076 cpu_set(cpu
, nohz
.cpu_mask
);
3077 cpu_rq(cpu
)->in_nohz_recently
= 1;
3080 * If we are going offline and still the leader, give up!
3082 if (cpu_is_offline(cpu
) &&
3083 atomic_read(&nohz
.load_balancer
) == cpu
) {
3084 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3089 /* time for ilb owner also to sleep */
3090 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3091 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3092 atomic_set(&nohz
.load_balancer
, -1);
3096 if (atomic_read(&nohz
.load_balancer
) == -1) {
3097 /* make me the ilb owner */
3098 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3100 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3103 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3106 cpu_clear(cpu
, nohz
.cpu_mask
);
3108 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3109 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3116 static DEFINE_SPINLOCK(balancing
);
3119 * It checks each scheduling domain to see if it is due to be balanced,
3120 * and initiates a balancing operation if so.
3122 * Balancing parameters are set up in arch_init_sched_domains.
3124 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3127 struct rq
*rq
= cpu_rq(cpu
);
3128 unsigned long interval
;
3129 struct sched_domain
*sd
;
3130 /* Earliest time when we have to do rebalance again */
3131 unsigned long next_balance
= jiffies
+ 60*HZ
;
3132 int update_next_balance
= 0;
3134 for_each_domain(cpu
, sd
) {
3135 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3138 interval
= sd
->balance_interval
;
3139 if (idle
!= CPU_IDLE
)
3140 interval
*= sd
->busy_factor
;
3142 /* scale ms to jiffies */
3143 interval
= msecs_to_jiffies(interval
);
3144 if (unlikely(!interval
))
3146 if (interval
> HZ
*NR_CPUS
/10)
3147 interval
= HZ
*NR_CPUS
/10;
3150 if (sd
->flags
& SD_SERIALIZE
) {
3151 if (!spin_trylock(&balancing
))
3155 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3156 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3158 * We've pulled tasks over so either we're no
3159 * longer idle, or one of our SMT siblings is
3162 idle
= CPU_NOT_IDLE
;
3164 sd
->last_balance
= jiffies
;
3166 if (sd
->flags
& SD_SERIALIZE
)
3167 spin_unlock(&balancing
);
3169 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3170 next_balance
= sd
->last_balance
+ interval
;
3171 update_next_balance
= 1;
3175 * Stop the load balance at this level. There is another
3176 * CPU in our sched group which is doing load balancing more
3184 * next_balance will be updated only when there is a need.
3185 * When the cpu is attached to null domain for ex, it will not be
3188 if (likely(update_next_balance
))
3189 rq
->next_balance
= next_balance
;
3193 * run_rebalance_domains is triggered when needed from the scheduler tick.
3194 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3195 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3197 static void run_rebalance_domains(struct softirq_action
*h
)
3199 int this_cpu
= smp_processor_id();
3200 struct rq
*this_rq
= cpu_rq(this_cpu
);
3201 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3202 CPU_IDLE
: CPU_NOT_IDLE
;
3204 rebalance_domains(this_cpu
, idle
);
3208 * If this cpu is the owner for idle load balancing, then do the
3209 * balancing on behalf of the other idle cpus whose ticks are
3212 if (this_rq
->idle_at_tick
&&
3213 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3214 cpumask_t cpus
= nohz
.cpu_mask
;
3218 cpu_clear(this_cpu
, cpus
);
3219 for_each_cpu_mask(balance_cpu
, cpus
) {
3221 * If this cpu gets work to do, stop the load balancing
3222 * work being done for other cpus. Next load
3223 * balancing owner will pick it up.
3228 rebalance_domains(balance_cpu
, CPU_IDLE
);
3230 rq
= cpu_rq(balance_cpu
);
3231 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3232 this_rq
->next_balance
= rq
->next_balance
;
3239 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3241 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3242 * idle load balancing owner or decide to stop the periodic load balancing,
3243 * if the whole system is idle.
3245 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3249 * If we were in the nohz mode recently and busy at the current
3250 * scheduler tick, then check if we need to nominate new idle
3253 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3254 rq
->in_nohz_recently
= 0;
3256 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3257 cpu_clear(cpu
, nohz
.cpu_mask
);
3258 atomic_set(&nohz
.load_balancer
, -1);
3261 if (atomic_read(&nohz
.load_balancer
) == -1) {
3263 * simple selection for now: Nominate the
3264 * first cpu in the nohz list to be the next
3267 * TBD: Traverse the sched domains and nominate
3268 * the nearest cpu in the nohz.cpu_mask.
3270 int ilb
= first_cpu(nohz
.cpu_mask
);
3278 * If this cpu is idle and doing idle load balancing for all the
3279 * cpus with ticks stopped, is it time for that to stop?
3281 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3282 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3288 * If this cpu is idle and the idle load balancing is done by
3289 * someone else, then no need raise the SCHED_SOFTIRQ
3291 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3292 cpu_isset(cpu
, nohz
.cpu_mask
))
3295 if (time_after_eq(jiffies
, rq
->next_balance
))
3296 raise_softirq(SCHED_SOFTIRQ
);
3299 #else /* CONFIG_SMP */
3302 * on UP we do not need to balance between CPUs:
3304 static inline void idle_balance(int cpu
, struct rq
*rq
)
3310 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3312 EXPORT_PER_CPU_SYMBOL(kstat
);
3315 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3316 * that have not yet been banked in case the task is currently running.
3318 unsigned long long task_sched_runtime(struct task_struct
*p
)
3320 unsigned long flags
;
3324 rq
= task_rq_lock(p
, &flags
);
3325 ns
= p
->se
.sum_exec_runtime
;
3326 if (rq
->curr
== p
) {
3327 update_rq_clock(rq
);
3328 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3329 if ((s64
)delta_exec
> 0)
3332 task_rq_unlock(rq
, &flags
);
3338 * Account user cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in user space since the last update
3342 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3344 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3347 p
->utime
= cputime_add(p
->utime
, cputime
);
3349 /* Add user time to cpustat. */
3350 tmp
= cputime_to_cputime64(cputime
);
3351 if (TASK_NICE(p
) > 0)
3352 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3354 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3358 * Account guest cpu time to a process.
3359 * @p: the process that the cpu time gets accounted to
3360 * @cputime: the cpu time spent in virtual machine since the last update
3362 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3365 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3367 tmp
= cputime_to_cputime64(cputime
);
3369 p
->utime
= cputime_add(p
->utime
, cputime
);
3370 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3372 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3373 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3377 * Account scaled user cpu time to a process.
3378 * @p: the process that the cpu time gets accounted to
3379 * @cputime: the cpu time spent in user space since the last update
3381 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3383 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3387 * Account system cpu time to a process.
3388 * @p: the process that the cpu time gets accounted to
3389 * @hardirq_offset: the offset to subtract from hardirq_count()
3390 * @cputime: the cpu time spent in kernel space since the last update
3392 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3395 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3396 struct rq
*rq
= this_rq();
3399 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3400 return account_guest_time(p
, cputime
);
3402 p
->stime
= cputime_add(p
->stime
, cputime
);
3404 /* Add system time to cpustat. */
3405 tmp
= cputime_to_cputime64(cputime
);
3406 if (hardirq_count() - hardirq_offset
)
3407 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3408 else if (softirq_count())
3409 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3410 else if (p
!= rq
->idle
)
3411 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3412 else if (atomic_read(&rq
->nr_iowait
) > 0)
3413 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3415 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3416 /* Account for system time used */
3417 acct_update_integrals(p
);
3421 * Account scaled system cpu time to a process.
3422 * @p: the process that the cpu time gets accounted to
3423 * @hardirq_offset: the offset to subtract from hardirq_count()
3424 * @cputime: the cpu time spent in kernel space since the last update
3426 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3428 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3432 * Account for involuntary wait time.
3433 * @p: the process from which the cpu time has been stolen
3434 * @steal: the cpu time spent in involuntary wait
3436 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3438 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3439 cputime64_t tmp
= cputime_to_cputime64(steal
);
3440 struct rq
*rq
= this_rq();
3442 if (p
== rq
->idle
) {
3443 p
->stime
= cputime_add(p
->stime
, steal
);
3444 if (atomic_read(&rq
->nr_iowait
) > 0)
3445 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3447 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3449 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3453 * This function gets called by the timer code, with HZ frequency.
3454 * We call it with interrupts disabled.
3456 * It also gets called by the fork code, when changing the parent's
3459 void scheduler_tick(void)
3461 int cpu
= smp_processor_id();
3462 struct rq
*rq
= cpu_rq(cpu
);
3463 struct task_struct
*curr
= rq
->curr
;
3464 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3466 spin_lock(&rq
->lock
);
3467 __update_rq_clock(rq
);
3469 * Let rq->clock advance by at least TICK_NSEC:
3471 if (unlikely(rq
->clock
< next_tick
))
3472 rq
->clock
= next_tick
;
3473 rq
->tick_timestamp
= rq
->clock
;
3474 update_cpu_load(rq
);
3475 if (curr
!= rq
->idle
) /* FIXME: needed? */
3476 curr
->sched_class
->task_tick(rq
, curr
);
3477 spin_unlock(&rq
->lock
);
3480 rq
->idle_at_tick
= idle_cpu(cpu
);
3481 trigger_load_balance(rq
, cpu
);
3485 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3487 void fastcall
add_preempt_count(int val
)
3492 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3494 preempt_count() += val
;
3496 * Spinlock count overflowing soon?
3498 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3501 EXPORT_SYMBOL(add_preempt_count
);
3503 void fastcall
sub_preempt_count(int val
)
3508 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3511 * Is the spinlock portion underflowing?
3513 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3514 !(preempt_count() & PREEMPT_MASK
)))
3517 preempt_count() -= val
;
3519 EXPORT_SYMBOL(sub_preempt_count
);
3524 * Print scheduling while atomic bug:
3526 static noinline
void __schedule_bug(struct task_struct
*prev
)
3528 struct pt_regs
*regs
= get_irq_regs();
3530 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3531 prev
->comm
, prev
->pid
, preempt_count());
3533 debug_show_held_locks(prev
);
3534 if (irqs_disabled())
3535 print_irqtrace_events(prev
);
3544 * Various schedule()-time debugging checks and statistics:
3546 static inline void schedule_debug(struct task_struct
*prev
)
3549 * Test if we are atomic. Since do_exit() needs to call into
3550 * schedule() atomically, we ignore that path for now.
3551 * Otherwise, whine if we are scheduling when we should not be.
3553 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3554 __schedule_bug(prev
);
3556 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3558 schedstat_inc(this_rq(), sched_count
);
3559 #ifdef CONFIG_SCHEDSTATS
3560 if (unlikely(prev
->lock_depth
>= 0)) {
3561 schedstat_inc(this_rq(), bkl_count
);
3562 schedstat_inc(prev
, sched_info
.bkl_count
);
3568 * Pick up the highest-prio task:
3570 static inline struct task_struct
*
3571 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3573 const struct sched_class
*class;
3574 struct task_struct
*p
;
3577 * Optimization: we know that if all tasks are in
3578 * the fair class we can call that function directly:
3580 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3581 p
= fair_sched_class
.pick_next_task(rq
);
3586 class = sched_class_highest
;
3588 p
= class->pick_next_task(rq
);
3592 * Will never be NULL as the idle class always
3593 * returns a non-NULL p:
3595 class = class->next
;
3600 * schedule() is the main scheduler function.
3602 asmlinkage
void __sched
schedule(void)
3604 struct task_struct
*prev
, *next
;
3611 cpu
= smp_processor_id();
3615 switch_count
= &prev
->nivcsw
;
3617 release_kernel_lock(prev
);
3618 need_resched_nonpreemptible
:
3620 schedule_debug(prev
);
3623 * Do the rq-clock update outside the rq lock:
3625 local_irq_disable();
3626 __update_rq_clock(rq
);
3627 spin_lock(&rq
->lock
);
3628 clear_tsk_need_resched(prev
);
3630 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3631 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3632 unlikely(signal_pending(prev
)))) {
3633 prev
->state
= TASK_RUNNING
;
3635 deactivate_task(rq
, prev
, 1);
3637 switch_count
= &prev
->nvcsw
;
3640 if (unlikely(!rq
->nr_running
))
3641 idle_balance(cpu
, rq
);
3643 prev
->sched_class
->put_prev_task(rq
, prev
);
3644 next
= pick_next_task(rq
, prev
);
3646 sched_info_switch(prev
, next
);
3648 if (likely(prev
!= next
)) {
3653 context_switch(rq
, prev
, next
); /* unlocks the rq */
3655 spin_unlock_irq(&rq
->lock
);
3657 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3658 cpu
= smp_processor_id();
3660 goto need_resched_nonpreemptible
;
3662 preempt_enable_no_resched();
3663 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3666 EXPORT_SYMBOL(schedule
);
3668 #ifdef CONFIG_PREEMPT
3670 * this is the entry point to schedule() from in-kernel preemption
3671 * off of preempt_enable. Kernel preemptions off return from interrupt
3672 * occur there and call schedule directly.
3674 asmlinkage
void __sched
preempt_schedule(void)
3676 struct thread_info
*ti
= current_thread_info();
3677 #ifdef CONFIG_PREEMPT_BKL
3678 struct task_struct
*task
= current
;
3679 int saved_lock_depth
;
3682 * If there is a non-zero preempt_count or interrupts are disabled,
3683 * we do not want to preempt the current task. Just return..
3685 if (likely(ti
->preempt_count
|| irqs_disabled()))
3689 add_preempt_count(PREEMPT_ACTIVE
);
3692 * We keep the big kernel semaphore locked, but we
3693 * clear ->lock_depth so that schedule() doesnt
3694 * auto-release the semaphore:
3696 #ifdef CONFIG_PREEMPT_BKL
3697 saved_lock_depth
= task
->lock_depth
;
3698 task
->lock_depth
= -1;
3701 #ifdef CONFIG_PREEMPT_BKL
3702 task
->lock_depth
= saved_lock_depth
;
3704 sub_preempt_count(PREEMPT_ACTIVE
);
3707 * Check again in case we missed a preemption opportunity
3708 * between schedule and now.
3711 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3713 EXPORT_SYMBOL(preempt_schedule
);
3716 * this is the entry point to schedule() from kernel preemption
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3721 asmlinkage
void __sched
preempt_schedule_irq(void)
3723 struct thread_info
*ti
= current_thread_info();
3724 #ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct
*task
= current
;
3726 int saved_lock_depth
;
3728 /* Catch callers which need to be fixed */
3729 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3732 add_preempt_count(PREEMPT_ACTIVE
);
3735 * We keep the big kernel semaphore locked, but we
3736 * clear ->lock_depth so that schedule() doesnt
3737 * auto-release the semaphore:
3739 #ifdef CONFIG_PREEMPT_BKL
3740 saved_lock_depth
= task
->lock_depth
;
3741 task
->lock_depth
= -1;
3745 local_irq_disable();
3746 #ifdef CONFIG_PREEMPT_BKL
3747 task
->lock_depth
= saved_lock_depth
;
3749 sub_preempt_count(PREEMPT_ACTIVE
);
3752 * Check again in case we missed a preemption opportunity
3753 * between schedule and now.
3756 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3759 #endif /* CONFIG_PREEMPT */
3761 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3764 return try_to_wake_up(curr
->private, mode
, sync
);
3766 EXPORT_SYMBOL(default_wake_function
);
3769 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3770 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3771 * number) then we wake all the non-exclusive tasks and one exclusive task.
3773 * There are circumstances in which we can try to wake a task which has already
3774 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3775 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3777 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3778 int nr_exclusive
, int sync
, void *key
)
3780 wait_queue_t
*curr
, *next
;
3782 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3783 unsigned flags
= curr
->flags
;
3785 if (curr
->func(curr
, mode
, sync
, key
) &&
3786 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3792 * __wake_up - wake up threads blocked on a waitqueue.
3794 * @mode: which threads
3795 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3796 * @key: is directly passed to the wakeup function
3798 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3799 int nr_exclusive
, void *key
)
3801 unsigned long flags
;
3803 spin_lock_irqsave(&q
->lock
, flags
);
3804 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3805 spin_unlock_irqrestore(&q
->lock
, flags
);
3807 EXPORT_SYMBOL(__wake_up
);
3810 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3812 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3814 __wake_up_common(q
, mode
, 1, 0, NULL
);
3818 * __wake_up_sync - wake up threads blocked on a waitqueue.
3820 * @mode: which threads
3821 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * The sync wakeup differs that the waker knows that it will schedule
3824 * away soon, so while the target thread will be woken up, it will not
3825 * be migrated to another CPU - ie. the two threads are 'synchronized'
3826 * with each other. This can prevent needless bouncing between CPUs.
3828 * On UP it can prevent extra preemption.
3831 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3833 unsigned long flags
;
3839 if (unlikely(!nr_exclusive
))
3842 spin_lock_irqsave(&q
->lock
, flags
);
3843 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3844 spin_unlock_irqrestore(&q
->lock
, flags
);
3846 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3848 void complete(struct completion
*x
)
3850 unsigned long flags
;
3852 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3854 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3856 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3858 EXPORT_SYMBOL(complete
);
3860 void complete_all(struct completion
*x
)
3862 unsigned long flags
;
3864 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3865 x
->done
+= UINT_MAX
/2;
3866 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3868 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3870 EXPORT_SYMBOL(complete_all
);
3872 static inline long __sched
3873 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3876 DECLARE_WAITQUEUE(wait
, current
);
3878 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3879 __add_wait_queue_tail(&x
->wait
, &wait
);
3881 if (state
== TASK_INTERRUPTIBLE
&&
3882 signal_pending(current
)) {
3883 __remove_wait_queue(&x
->wait
, &wait
);
3884 return -ERESTARTSYS
;
3886 __set_current_state(state
);
3887 spin_unlock_irq(&x
->wait
.lock
);
3888 timeout
= schedule_timeout(timeout
);
3889 spin_lock_irq(&x
->wait
.lock
);
3891 __remove_wait_queue(&x
->wait
, &wait
);
3895 __remove_wait_queue(&x
->wait
, &wait
);
3902 wait_for_common(struct completion
*x
, long timeout
, int state
)
3906 spin_lock_irq(&x
->wait
.lock
);
3907 timeout
= do_wait_for_common(x
, timeout
, state
);
3908 spin_unlock_irq(&x
->wait
.lock
);
3912 void __sched
wait_for_completion(struct completion
*x
)
3914 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3916 EXPORT_SYMBOL(wait_for_completion
);
3918 unsigned long __sched
3919 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3921 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3923 EXPORT_SYMBOL(wait_for_completion_timeout
);
3925 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3927 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3928 if (t
== -ERESTARTSYS
)
3932 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3934 unsigned long __sched
3935 wait_for_completion_interruptible_timeout(struct completion
*x
,
3936 unsigned long timeout
)
3938 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3940 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3943 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3945 unsigned long flags
;
3948 init_waitqueue_entry(&wait
, current
);
3950 __set_current_state(state
);
3952 spin_lock_irqsave(&q
->lock
, flags
);
3953 __add_wait_queue(q
, &wait
);
3954 spin_unlock(&q
->lock
);
3955 timeout
= schedule_timeout(timeout
);
3956 spin_lock_irq(&q
->lock
);
3957 __remove_wait_queue(q
, &wait
);
3958 spin_unlock_irqrestore(&q
->lock
, flags
);
3963 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3965 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3967 EXPORT_SYMBOL(interruptible_sleep_on
);
3970 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3972 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3974 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3976 void __sched
sleep_on(wait_queue_head_t
*q
)
3978 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3980 EXPORT_SYMBOL(sleep_on
);
3982 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3984 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3986 EXPORT_SYMBOL(sleep_on_timeout
);
3988 #ifdef CONFIG_RT_MUTEXES
3991 * rt_mutex_setprio - set the current priority of a task
3993 * @prio: prio value (kernel-internal form)
3995 * This function changes the 'effective' priority of a task. It does
3996 * not touch ->normal_prio like __setscheduler().
3998 * Used by the rt_mutex code to implement priority inheritance logic.
4000 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4002 unsigned long flags
;
4003 int oldprio
, on_rq
, running
;
4006 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4008 rq
= task_rq_lock(p
, &flags
);
4009 update_rq_clock(rq
);
4012 on_rq
= p
->se
.on_rq
;
4013 running
= task_running(rq
, p
);
4015 dequeue_task(rq
, p
, 0);
4017 p
->sched_class
->put_prev_task(rq
, p
);
4021 p
->sched_class
= &rt_sched_class
;
4023 p
->sched_class
= &fair_sched_class
;
4029 p
->sched_class
->set_curr_task(rq
);
4030 enqueue_task(rq
, p
, 0);
4032 * Reschedule if we are currently running on this runqueue and
4033 * our priority decreased, or if we are not currently running on
4034 * this runqueue and our priority is higher than the current's
4037 if (p
->prio
> oldprio
)
4038 resched_task(rq
->curr
);
4040 check_preempt_curr(rq
, p
);
4043 task_rq_unlock(rq
, &flags
);
4048 void set_user_nice(struct task_struct
*p
, long nice
)
4050 int old_prio
, delta
, on_rq
;
4051 unsigned long flags
;
4054 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4057 * We have to be careful, if called from sys_setpriority(),
4058 * the task might be in the middle of scheduling on another CPU.
4060 rq
= task_rq_lock(p
, &flags
);
4061 update_rq_clock(rq
);
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
4066 * SCHED_FIFO/SCHED_RR:
4068 if (task_has_rt_policy(p
)) {
4069 p
->static_prio
= NICE_TO_PRIO(nice
);
4072 on_rq
= p
->se
.on_rq
;
4074 dequeue_task(rq
, p
, 0);
4078 p
->static_prio
= NICE_TO_PRIO(nice
);
4081 p
->prio
= effective_prio(p
);
4082 delta
= p
->prio
- old_prio
;
4085 enqueue_task(rq
, p
, 0);
4088 * If the task increased its priority or is running and
4089 * lowered its priority, then reschedule its CPU:
4091 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4092 resched_task(rq
->curr
);
4095 task_rq_unlock(rq
, &flags
);
4097 EXPORT_SYMBOL(set_user_nice
);
4100 * can_nice - check if a task can reduce its nice value
4104 int can_nice(const struct task_struct
*p
, const int nice
)
4106 /* convert nice value [19,-20] to rlimit style value [1,40] */
4107 int nice_rlim
= 20 - nice
;
4109 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4110 capable(CAP_SYS_NICE
));
4113 #ifdef __ARCH_WANT_SYS_NICE
4116 * sys_nice - change the priority of the current process.
4117 * @increment: priority increment
4119 * sys_setpriority is a more generic, but much slower function that
4120 * does similar things.
4122 asmlinkage
long sys_nice(int increment
)
4127 * Setpriority might change our priority at the same moment.
4128 * We don't have to worry. Conceptually one call occurs first
4129 * and we have a single winner.
4131 if (increment
< -40)
4136 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4142 if (increment
< 0 && !can_nice(current
, nice
))
4145 retval
= security_task_setnice(current
, nice
);
4149 set_user_nice(current
, nice
);
4156 * task_prio - return the priority value of a given task.
4157 * @p: the task in question.
4159 * This is the priority value as seen by users in /proc.
4160 * RT tasks are offset by -200. Normal tasks are centered
4161 * around 0, value goes from -16 to +15.
4163 int task_prio(const struct task_struct
*p
)
4165 return p
->prio
- MAX_RT_PRIO
;
4169 * task_nice - return the nice value of a given task.
4170 * @p: the task in question.
4172 int task_nice(const struct task_struct
*p
)
4174 return TASK_NICE(p
);
4176 EXPORT_SYMBOL_GPL(task_nice
);
4179 * idle_cpu - is a given cpu idle currently?
4180 * @cpu: the processor in question.
4182 int idle_cpu(int cpu
)
4184 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4188 * idle_task - return the idle task for a given cpu.
4189 * @cpu: the processor in question.
4191 struct task_struct
*idle_task(int cpu
)
4193 return cpu_rq(cpu
)->idle
;
4197 * find_process_by_pid - find a process with a matching PID value.
4198 * @pid: the pid in question.
4200 static struct task_struct
*find_process_by_pid(pid_t pid
)
4202 return pid
? find_task_by_vpid(pid
) : current
;
4205 /* Actually do priority change: must hold rq lock. */
4207 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4209 BUG_ON(p
->se
.on_rq
);
4212 switch (p
->policy
) {
4216 p
->sched_class
= &fair_sched_class
;
4220 p
->sched_class
= &rt_sched_class
;
4224 p
->rt_priority
= prio
;
4225 p
->normal_prio
= normal_prio(p
);
4226 /* we are holding p->pi_lock already */
4227 p
->prio
= rt_mutex_getprio(p
);
4232 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4233 * @p: the task in question.
4234 * @policy: new policy.
4235 * @param: structure containing the new RT priority.
4237 * NOTE that the task may be already dead.
4239 int sched_setscheduler(struct task_struct
*p
, int policy
,
4240 struct sched_param
*param
)
4242 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4243 unsigned long flags
;
4246 /* may grab non-irq protected spin_locks */
4247 BUG_ON(in_interrupt());
4249 /* double check policy once rq lock held */
4251 policy
= oldpolicy
= p
->policy
;
4252 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4253 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4254 policy
!= SCHED_IDLE
)
4257 * Valid priorities for SCHED_FIFO and SCHED_RR are
4258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4259 * SCHED_BATCH and SCHED_IDLE is 0.
4261 if (param
->sched_priority
< 0 ||
4262 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4263 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4265 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4269 * Allow unprivileged RT tasks to decrease priority:
4271 if (!capable(CAP_SYS_NICE
)) {
4272 if (rt_policy(policy
)) {
4273 unsigned long rlim_rtprio
;
4275 if (!lock_task_sighand(p
, &flags
))
4277 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4278 unlock_task_sighand(p
, &flags
);
4280 /* can't set/change the rt policy */
4281 if (policy
!= p
->policy
&& !rlim_rtprio
)
4284 /* can't increase priority */
4285 if (param
->sched_priority
> p
->rt_priority
&&
4286 param
->sched_priority
> rlim_rtprio
)
4290 * Like positive nice levels, dont allow tasks to
4291 * move out of SCHED_IDLE either:
4293 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4296 /* can't change other user's priorities */
4297 if ((current
->euid
!= p
->euid
) &&
4298 (current
->euid
!= p
->uid
))
4302 retval
= security_task_setscheduler(p
, policy
, param
);
4306 * make sure no PI-waiters arrive (or leave) while we are
4307 * changing the priority of the task:
4309 spin_lock_irqsave(&p
->pi_lock
, flags
);
4311 * To be able to change p->policy safely, the apropriate
4312 * runqueue lock must be held.
4314 rq
= __task_rq_lock(p
);
4315 /* recheck policy now with rq lock held */
4316 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4317 policy
= oldpolicy
= -1;
4318 __task_rq_unlock(rq
);
4319 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4322 update_rq_clock(rq
);
4323 on_rq
= p
->se
.on_rq
;
4324 running
= task_running(rq
, p
);
4326 deactivate_task(rq
, p
, 0);
4328 p
->sched_class
->put_prev_task(rq
, p
);
4332 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4336 p
->sched_class
->set_curr_task(rq
);
4337 activate_task(rq
, p
, 0);
4339 * Reschedule if we are currently running on this runqueue and
4340 * our priority decreased, or if we are not currently running on
4341 * this runqueue and our priority is higher than the current's
4344 if (p
->prio
> oldprio
)
4345 resched_task(rq
->curr
);
4347 check_preempt_curr(rq
, p
);
4350 __task_rq_unlock(rq
);
4351 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4353 rt_mutex_adjust_pi(p
);
4357 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4360 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4362 struct sched_param lparam
;
4363 struct task_struct
*p
;
4366 if (!param
|| pid
< 0)
4368 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4373 p
= find_process_by_pid(pid
);
4375 retval
= sched_setscheduler(p
, policy
, &lparam
);
4382 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4383 * @pid: the pid in question.
4384 * @policy: new policy.
4385 * @param: structure containing the new RT priority.
4387 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4388 struct sched_param __user
*param
)
4390 /* negative values for policy are not valid */
4394 return do_sched_setscheduler(pid
, policy
, param
);
4398 * sys_sched_setparam - set/change the RT priority of a thread
4399 * @pid: the pid in question.
4400 * @param: structure containing the new RT priority.
4402 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4404 return do_sched_setscheduler(pid
, -1, param
);
4408 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4409 * @pid: the pid in question.
4411 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4413 struct task_struct
*p
;
4420 read_lock(&tasklist_lock
);
4421 p
= find_process_by_pid(pid
);
4423 retval
= security_task_getscheduler(p
);
4427 read_unlock(&tasklist_lock
);
4432 * sys_sched_getscheduler - get the RT priority of a thread
4433 * @pid: the pid in question.
4434 * @param: structure containing the RT priority.
4436 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4438 struct sched_param lp
;
4439 struct task_struct
*p
;
4442 if (!param
|| pid
< 0)
4445 read_lock(&tasklist_lock
);
4446 p
= find_process_by_pid(pid
);
4451 retval
= security_task_getscheduler(p
);
4455 lp
.sched_priority
= p
->rt_priority
;
4456 read_unlock(&tasklist_lock
);
4459 * This one might sleep, we cannot do it with a spinlock held ...
4461 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4466 read_unlock(&tasklist_lock
);
4470 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4472 cpumask_t cpus_allowed
;
4473 struct task_struct
*p
;
4476 mutex_lock(&sched_hotcpu_mutex
);
4477 read_lock(&tasklist_lock
);
4479 p
= find_process_by_pid(pid
);
4481 read_unlock(&tasklist_lock
);
4482 mutex_unlock(&sched_hotcpu_mutex
);
4487 * It is not safe to call set_cpus_allowed with the
4488 * tasklist_lock held. We will bump the task_struct's
4489 * usage count and then drop tasklist_lock.
4492 read_unlock(&tasklist_lock
);
4495 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4496 !capable(CAP_SYS_NICE
))
4499 retval
= security_task_setscheduler(p
, 0, NULL
);
4503 cpus_allowed
= cpuset_cpus_allowed(p
);
4504 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4506 retval
= set_cpus_allowed(p
, new_mask
);
4509 cpus_allowed
= cpuset_cpus_allowed(p
);
4510 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4512 * We must have raced with a concurrent cpuset
4513 * update. Just reset the cpus_allowed to the
4514 * cpuset's cpus_allowed
4516 new_mask
= cpus_allowed
;
4522 mutex_unlock(&sched_hotcpu_mutex
);
4526 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4527 cpumask_t
*new_mask
)
4529 if (len
< sizeof(cpumask_t
)) {
4530 memset(new_mask
, 0, sizeof(cpumask_t
));
4531 } else if (len
> sizeof(cpumask_t
)) {
4532 len
= sizeof(cpumask_t
);
4534 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
4543 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4544 unsigned long __user
*user_mask_ptr
)
4549 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4553 return sched_setaffinity(pid
, new_mask
);
4557 * Represents all cpu's present in the system
4558 * In systems capable of hotplug, this map could dynamically grow
4559 * as new cpu's are detected in the system via any platform specific
4560 * method, such as ACPI for e.g.
4563 cpumask_t cpu_present_map __read_mostly
;
4564 EXPORT_SYMBOL(cpu_present_map
);
4567 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4568 EXPORT_SYMBOL(cpu_online_map
);
4570 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4571 EXPORT_SYMBOL(cpu_possible_map
);
4574 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4576 struct task_struct
*p
;
4579 mutex_lock(&sched_hotcpu_mutex
);
4580 read_lock(&tasklist_lock
);
4583 p
= find_process_by_pid(pid
);
4587 retval
= security_task_getscheduler(p
);
4591 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4594 read_unlock(&tasklist_lock
);
4595 mutex_unlock(&sched_hotcpu_mutex
);
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4606 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4607 unsigned long __user
*user_mask_ptr
)
4612 if (len
< sizeof(cpumask_t
))
4615 ret
= sched_getaffinity(pid
, &mask
);
4619 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4622 return sizeof(cpumask_t
);
4626 * sys_sched_yield - yield the current processor to other threads.
4628 * This function yields the current CPU to other tasks. If there are no
4629 * other threads running on this CPU then this function will return.
4631 asmlinkage
long sys_sched_yield(void)
4633 struct rq
*rq
= this_rq_lock();
4635 schedstat_inc(rq
, yld_count
);
4636 current
->sched_class
->yield_task(rq
);
4639 * Since we are going to call schedule() anyway, there's
4640 * no need to preempt or enable interrupts:
4642 __release(rq
->lock
);
4643 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4644 _raw_spin_unlock(&rq
->lock
);
4645 preempt_enable_no_resched();
4652 static void __cond_resched(void)
4654 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4655 __might_sleep(__FILE__
, __LINE__
);
4658 * The BKS might be reacquired before we have dropped
4659 * PREEMPT_ACTIVE, which could trigger a second
4660 * cond_resched() call.
4663 add_preempt_count(PREEMPT_ACTIVE
);
4665 sub_preempt_count(PREEMPT_ACTIVE
);
4666 } while (need_resched());
4669 int __sched
cond_resched(void)
4671 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4672 system_state
== SYSTEM_RUNNING
) {
4678 EXPORT_SYMBOL(cond_resched
);
4681 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4682 * call schedule, and on return reacquire the lock.
4684 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4685 * operations here to prevent schedule() from being called twice (once via
4686 * spin_unlock(), once by hand).
4688 int cond_resched_lock(spinlock_t
*lock
)
4692 if (need_lockbreak(lock
)) {
4698 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4699 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4700 _raw_spin_unlock(lock
);
4701 preempt_enable_no_resched();
4708 EXPORT_SYMBOL(cond_resched_lock
);
4710 int __sched
cond_resched_softirq(void)
4712 BUG_ON(!in_softirq());
4714 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4722 EXPORT_SYMBOL(cond_resched_softirq
);
4725 * yield - yield the current processor to other threads.
4727 * This is a shortcut for kernel-space yielding - it marks the
4728 * thread runnable and calls sys_sched_yield().
4730 void __sched
yield(void)
4732 set_current_state(TASK_RUNNING
);
4735 EXPORT_SYMBOL(yield
);
4738 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4739 * that process accounting knows that this is a task in IO wait state.
4741 * But don't do that if it is a deliberate, throttling IO wait (this task
4742 * has set its backing_dev_info: the queue against which it should throttle)
4744 void __sched
io_schedule(void)
4746 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4748 delayacct_blkio_start();
4749 atomic_inc(&rq
->nr_iowait
);
4751 atomic_dec(&rq
->nr_iowait
);
4752 delayacct_blkio_end();
4754 EXPORT_SYMBOL(io_schedule
);
4756 long __sched
io_schedule_timeout(long timeout
)
4758 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4761 delayacct_blkio_start();
4762 atomic_inc(&rq
->nr_iowait
);
4763 ret
= schedule_timeout(timeout
);
4764 atomic_dec(&rq
->nr_iowait
);
4765 delayacct_blkio_end();
4770 * sys_sched_get_priority_max - return maximum RT priority.
4771 * @policy: scheduling class.
4773 * this syscall returns the maximum rt_priority that can be used
4774 * by a given scheduling class.
4776 asmlinkage
long sys_sched_get_priority_max(int policy
)
4783 ret
= MAX_USER_RT_PRIO
-1;
4795 * sys_sched_get_priority_min - return minimum RT priority.
4796 * @policy: scheduling class.
4798 * this syscall returns the minimum rt_priority that can be used
4799 * by a given scheduling class.
4801 asmlinkage
long sys_sched_get_priority_min(int policy
)
4819 * sys_sched_rr_get_interval - return the default timeslice of a process.
4820 * @pid: pid of the process.
4821 * @interval: userspace pointer to the timeslice value.
4823 * this syscall writes the default timeslice value of a given process
4824 * into the user-space timespec buffer. A value of '0' means infinity.
4827 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4829 struct task_struct
*p
;
4830 unsigned int time_slice
;
4838 read_lock(&tasklist_lock
);
4839 p
= find_process_by_pid(pid
);
4843 retval
= security_task_getscheduler(p
);
4847 if (p
->policy
== SCHED_FIFO
)
4849 else if (p
->policy
== SCHED_RR
)
4850 time_slice
= DEF_TIMESLICE
;
4852 struct sched_entity
*se
= &p
->se
;
4853 unsigned long flags
;
4856 rq
= task_rq_lock(p
, &flags
);
4857 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4858 task_rq_unlock(rq
, &flags
);
4860 read_unlock(&tasklist_lock
);
4861 jiffies_to_timespec(time_slice
, &t
);
4862 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4866 read_unlock(&tasklist_lock
);
4870 static const char stat_nam
[] = "RSDTtZX";
4872 static void show_task(struct task_struct
*p
)
4874 unsigned long free
= 0;
4877 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4878 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4879 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4880 #if BITS_PER_LONG == 32
4881 if (state
== TASK_RUNNING
)
4882 printk(KERN_CONT
" running ");
4884 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4886 if (state
== TASK_RUNNING
)
4887 printk(KERN_CONT
" running task ");
4889 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4891 #ifdef CONFIG_DEBUG_STACK_USAGE
4893 unsigned long *n
= end_of_stack(p
);
4896 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4899 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4900 task_pid_nr(p
), task_pid_nr(p
->parent
));
4902 if (state
!= TASK_RUNNING
)
4903 show_stack(p
, NULL
);
4906 void show_state_filter(unsigned long state_filter
)
4908 struct task_struct
*g
, *p
;
4910 #if BITS_PER_LONG == 32
4912 " task PC stack pid father\n");
4915 " task PC stack pid father\n");
4917 read_lock(&tasklist_lock
);
4918 do_each_thread(g
, p
) {
4920 * reset the NMI-timeout, listing all files on a slow
4921 * console might take alot of time:
4923 touch_nmi_watchdog();
4924 if (!state_filter
|| (p
->state
& state_filter
))
4926 } while_each_thread(g
, p
);
4928 touch_all_softlockup_watchdogs();
4930 #ifdef CONFIG_SCHED_DEBUG
4931 sysrq_sched_debug_show();
4933 read_unlock(&tasklist_lock
);
4935 * Only show locks if all tasks are dumped:
4937 if (state_filter
== -1)
4938 debug_show_all_locks();
4941 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4943 idle
->sched_class
= &idle_sched_class
;
4947 * init_idle - set up an idle thread for a given CPU
4948 * @idle: task in question
4949 * @cpu: cpu the idle task belongs to
4951 * NOTE: this function does not set the idle thread's NEED_RESCHED
4952 * flag, to make booting more robust.
4954 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4956 struct rq
*rq
= cpu_rq(cpu
);
4957 unsigned long flags
;
4960 idle
->se
.exec_start
= sched_clock();
4962 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4963 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4964 __set_task_cpu(idle
, cpu
);
4966 spin_lock_irqsave(&rq
->lock
, flags
);
4967 rq
->curr
= rq
->idle
= idle
;
4968 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4971 spin_unlock_irqrestore(&rq
->lock
, flags
);
4973 /* Set the preempt count _outside_ the spinlocks! */
4974 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4975 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4977 task_thread_info(idle
)->preempt_count
= 0;
4980 * The idle tasks have their own, simple scheduling class:
4982 idle
->sched_class
= &idle_sched_class
;
4986 * In a system that switches off the HZ timer nohz_cpu_mask
4987 * indicates which cpus entered this state. This is used
4988 * in the rcu update to wait only for active cpus. For system
4989 * which do not switch off the HZ timer nohz_cpu_mask should
4990 * always be CPU_MASK_NONE.
4992 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4995 * Increase the granularity value when there are more CPUs,
4996 * because with more CPUs the 'effective latency' as visible
4997 * to users decreases. But the relationship is not linear,
4998 * so pick a second-best guess by going with the log2 of the
5001 * This idea comes from the SD scheduler of Con Kolivas:
5003 static inline void sched_init_granularity(void)
5005 unsigned int factor
= 1 + ilog2(num_online_cpus());
5006 const unsigned long limit
= 200000000;
5008 sysctl_sched_min_granularity
*= factor
;
5009 if (sysctl_sched_min_granularity
> limit
)
5010 sysctl_sched_min_granularity
= limit
;
5012 sysctl_sched_latency
*= factor
;
5013 if (sysctl_sched_latency
> limit
)
5014 sysctl_sched_latency
= limit
;
5016 sysctl_sched_wakeup_granularity
*= factor
;
5017 sysctl_sched_batch_wakeup_granularity
*= factor
;
5022 * This is how migration works:
5024 * 1) we queue a struct migration_req structure in the source CPU's
5025 * runqueue and wake up that CPU's migration thread.
5026 * 2) we down() the locked semaphore => thread blocks.
5027 * 3) migration thread wakes up (implicitly it forces the migrated
5028 * thread off the CPU)
5029 * 4) it gets the migration request and checks whether the migrated
5030 * task is still in the wrong runqueue.
5031 * 5) if it's in the wrong runqueue then the migration thread removes
5032 * it and puts it into the right queue.
5033 * 6) migration thread up()s the semaphore.
5034 * 7) we wake up and the migration is done.
5038 * Change a given task's CPU affinity. Migrate the thread to a
5039 * proper CPU and schedule it away if the CPU it's executing on
5040 * is removed from the allowed bitmask.
5042 * NOTE: the caller must have a valid reference to the task, the
5043 * task must not exit() & deallocate itself prematurely. The
5044 * call is not atomic; no spinlocks may be held.
5046 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5048 struct migration_req req
;
5049 unsigned long flags
;
5053 rq
= task_rq_lock(p
, &flags
);
5054 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5059 p
->cpus_allowed
= new_mask
;
5060 /* Can the task run on the task's current CPU? If so, we're done */
5061 if (cpu_isset(task_cpu(p
), new_mask
))
5064 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5065 /* Need help from migration thread: drop lock and wait. */
5066 task_rq_unlock(rq
, &flags
);
5067 wake_up_process(rq
->migration_thread
);
5068 wait_for_completion(&req
.done
);
5069 tlb_migrate_finish(p
->mm
);
5073 task_rq_unlock(rq
, &flags
);
5077 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5080 * Move (not current) task off this cpu, onto dest cpu. We're doing
5081 * this because either it can't run here any more (set_cpus_allowed()
5082 * away from this CPU, or CPU going down), or because we're
5083 * attempting to rebalance this task on exec (sched_exec).
5085 * So we race with normal scheduler movements, but that's OK, as long
5086 * as the task is no longer on this CPU.
5088 * Returns non-zero if task was successfully migrated.
5090 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5092 struct rq
*rq_dest
, *rq_src
;
5095 if (unlikely(cpu_is_offline(dest_cpu
)))
5098 rq_src
= cpu_rq(src_cpu
);
5099 rq_dest
= cpu_rq(dest_cpu
);
5101 double_rq_lock(rq_src
, rq_dest
);
5102 /* Already moved. */
5103 if (task_cpu(p
) != src_cpu
)
5105 /* Affinity changed (again). */
5106 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5109 on_rq
= p
->se
.on_rq
;
5111 deactivate_task(rq_src
, p
, 0);
5113 set_task_cpu(p
, dest_cpu
);
5115 activate_task(rq_dest
, p
, 0);
5116 check_preempt_curr(rq_dest
, p
);
5120 double_rq_unlock(rq_src
, rq_dest
);
5125 * migration_thread - this is a highprio system thread that performs
5126 * thread migration by bumping thread off CPU then 'pushing' onto
5129 static int migration_thread(void *data
)
5131 int cpu
= (long)data
;
5135 BUG_ON(rq
->migration_thread
!= current
);
5137 set_current_state(TASK_INTERRUPTIBLE
);
5138 while (!kthread_should_stop()) {
5139 struct migration_req
*req
;
5140 struct list_head
*head
;
5142 spin_lock_irq(&rq
->lock
);
5144 if (cpu_is_offline(cpu
)) {
5145 spin_unlock_irq(&rq
->lock
);
5149 if (rq
->active_balance
) {
5150 active_load_balance(rq
, cpu
);
5151 rq
->active_balance
= 0;
5154 head
= &rq
->migration_queue
;
5156 if (list_empty(head
)) {
5157 spin_unlock_irq(&rq
->lock
);
5159 set_current_state(TASK_INTERRUPTIBLE
);
5162 req
= list_entry(head
->next
, struct migration_req
, list
);
5163 list_del_init(head
->next
);
5165 spin_unlock(&rq
->lock
);
5166 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5169 complete(&req
->done
);
5171 __set_current_state(TASK_RUNNING
);
5175 /* Wait for kthread_stop */
5176 set_current_state(TASK_INTERRUPTIBLE
);
5177 while (!kthread_should_stop()) {
5179 set_current_state(TASK_INTERRUPTIBLE
);
5181 __set_current_state(TASK_RUNNING
);
5185 #ifdef CONFIG_HOTPLUG_CPU
5187 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5191 local_irq_disable();
5192 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5198 * Figure out where task on dead CPU should go, use force if necessary.
5199 * NOTE: interrupts should be disabled by the caller
5201 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5203 unsigned long flags
;
5210 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5211 cpus_and(mask
, mask
, p
->cpus_allowed
);
5212 dest_cpu
= any_online_cpu(mask
);
5214 /* On any allowed CPU? */
5215 if (dest_cpu
== NR_CPUS
)
5216 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5218 /* No more Mr. Nice Guy. */
5219 if (dest_cpu
== NR_CPUS
) {
5220 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5222 * Try to stay on the same cpuset, where the
5223 * current cpuset may be a subset of all cpus.
5224 * The cpuset_cpus_allowed_locked() variant of
5225 * cpuset_cpus_allowed() will not block. It must be
5226 * called within calls to cpuset_lock/cpuset_unlock.
5228 rq
= task_rq_lock(p
, &flags
);
5229 p
->cpus_allowed
= cpus_allowed
;
5230 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5231 task_rq_unlock(rq
, &flags
);
5234 * Don't tell them about moving exiting tasks or
5235 * kernel threads (both mm NULL), since they never
5238 if (p
->mm
&& printk_ratelimit())
5239 printk(KERN_INFO
"process %d (%s) no "
5240 "longer affine to cpu%d\n",
5241 task_pid_nr(p
), p
->comm
, dead_cpu
);
5243 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5247 * While a dead CPU has no uninterruptible tasks queued at this point,
5248 * it might still have a nonzero ->nr_uninterruptible counter, because
5249 * for performance reasons the counter is not stricly tracking tasks to
5250 * their home CPUs. So we just add the counter to another CPU's counter,
5251 * to keep the global sum constant after CPU-down:
5253 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5255 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5256 unsigned long flags
;
5258 local_irq_save(flags
);
5259 double_rq_lock(rq_src
, rq_dest
);
5260 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5261 rq_src
->nr_uninterruptible
= 0;
5262 double_rq_unlock(rq_src
, rq_dest
);
5263 local_irq_restore(flags
);
5266 /* Run through task list and migrate tasks from the dead cpu. */
5267 static void migrate_live_tasks(int src_cpu
)
5269 struct task_struct
*p
, *t
;
5271 read_lock(&tasklist_lock
);
5273 do_each_thread(t
, p
) {
5277 if (task_cpu(p
) == src_cpu
)
5278 move_task_off_dead_cpu(src_cpu
, p
);
5279 } while_each_thread(t
, p
);
5281 read_unlock(&tasklist_lock
);
5285 * Schedules idle task to be the next runnable task on current CPU.
5286 * It does so by boosting its priority to highest possible.
5287 * Used by CPU offline code.
5289 void sched_idle_next(void)
5291 int this_cpu
= smp_processor_id();
5292 struct rq
*rq
= cpu_rq(this_cpu
);
5293 struct task_struct
*p
= rq
->idle
;
5294 unsigned long flags
;
5296 /* cpu has to be offline */
5297 BUG_ON(cpu_online(this_cpu
));
5300 * Strictly not necessary since rest of the CPUs are stopped by now
5301 * and interrupts disabled on the current cpu.
5303 spin_lock_irqsave(&rq
->lock
, flags
);
5305 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5307 update_rq_clock(rq
);
5308 activate_task(rq
, p
, 0);
5310 spin_unlock_irqrestore(&rq
->lock
, flags
);
5314 * Ensures that the idle task is using init_mm right before its cpu goes
5317 void idle_task_exit(void)
5319 struct mm_struct
*mm
= current
->active_mm
;
5321 BUG_ON(cpu_online(smp_processor_id()));
5324 switch_mm(mm
, &init_mm
, current
);
5328 /* called under rq->lock with disabled interrupts */
5329 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5331 struct rq
*rq
= cpu_rq(dead_cpu
);
5333 /* Must be exiting, otherwise would be on tasklist. */
5334 BUG_ON(!p
->exit_state
);
5336 /* Cannot have done final schedule yet: would have vanished. */
5337 BUG_ON(p
->state
== TASK_DEAD
);
5342 * Drop lock around migration; if someone else moves it,
5343 * that's OK. No task can be added to this CPU, so iteration is
5346 spin_unlock_irq(&rq
->lock
);
5347 move_task_off_dead_cpu(dead_cpu
, p
);
5348 spin_lock_irq(&rq
->lock
);
5353 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5354 static void migrate_dead_tasks(unsigned int dead_cpu
)
5356 struct rq
*rq
= cpu_rq(dead_cpu
);
5357 struct task_struct
*next
;
5360 if (!rq
->nr_running
)
5362 update_rq_clock(rq
);
5363 next
= pick_next_task(rq
, rq
->curr
);
5366 migrate_dead(dead_cpu
, next
);
5370 #endif /* CONFIG_HOTPLUG_CPU */
5372 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5374 static struct ctl_table sd_ctl_dir
[] = {
5376 .procname
= "sched_domain",
5382 static struct ctl_table sd_ctl_root
[] = {
5384 .ctl_name
= CTL_KERN
,
5385 .procname
= "kernel",
5387 .child
= sd_ctl_dir
,
5392 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5394 struct ctl_table
*entry
=
5395 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5400 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5402 struct ctl_table
*entry
;
5405 * In the intermediate directories, both the child directory and
5406 * procname are dynamically allocated and could fail but the mode
5407 * will always be set. In the lowest directory the names are
5408 * static strings and all have proc handlers.
5410 for (entry
= *tablep
; entry
->mode
; entry
++) {
5412 sd_free_ctl_entry(&entry
->child
);
5413 if (entry
->proc_handler
== NULL
)
5414 kfree(entry
->procname
);
5422 set_table_entry(struct ctl_table
*entry
,
5423 const char *procname
, void *data
, int maxlen
,
5424 mode_t mode
, proc_handler
*proc_handler
)
5426 entry
->procname
= procname
;
5428 entry
->maxlen
= maxlen
;
5430 entry
->proc_handler
= proc_handler
;
5433 static struct ctl_table
*
5434 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5436 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5441 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5442 sizeof(long), 0644, proc_doulongvec_minmax
);
5443 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5444 sizeof(long), 0644, proc_doulongvec_minmax
);
5445 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5446 sizeof(int), 0644, proc_dointvec_minmax
);
5447 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5448 sizeof(int), 0644, proc_dointvec_minmax
);
5449 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5450 sizeof(int), 0644, proc_dointvec_minmax
);
5451 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5452 sizeof(int), 0644, proc_dointvec_minmax
);
5453 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5454 sizeof(int), 0644, proc_dointvec_minmax
);
5455 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5456 sizeof(int), 0644, proc_dointvec_minmax
);
5457 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5458 sizeof(int), 0644, proc_dointvec_minmax
);
5459 set_table_entry(&table
[9], "cache_nice_tries",
5460 &sd
->cache_nice_tries
,
5461 sizeof(int), 0644, proc_dointvec_minmax
);
5462 set_table_entry(&table
[10], "flags", &sd
->flags
,
5463 sizeof(int), 0644, proc_dointvec_minmax
);
5464 /* &table[11] is terminator */
5469 static ctl_table
* sd_alloc_ctl_cpu_table(int cpu
)
5471 struct ctl_table
*entry
, *table
;
5472 struct sched_domain
*sd
;
5473 int domain_num
= 0, i
;
5476 for_each_domain(cpu
, sd
)
5478 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5483 for_each_domain(cpu
, sd
) {
5484 snprintf(buf
, 32, "domain%d", i
);
5485 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5487 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5494 static struct ctl_table_header
*sd_sysctl_header
;
5495 static void register_sched_domain_sysctl(void)
5497 int i
, cpu_num
= num_online_cpus();
5498 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5501 WARN_ON(sd_ctl_dir
[0].child
);
5502 sd_ctl_dir
[0].child
= entry
;
5507 for_each_online_cpu(i
) {
5508 snprintf(buf
, 32, "cpu%d", i
);
5509 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5511 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5515 WARN_ON(sd_sysctl_header
);
5516 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5519 /* may be called multiple times per register */
5520 static void unregister_sched_domain_sysctl(void)
5522 if (sd_sysctl_header
)
5523 unregister_sysctl_table(sd_sysctl_header
);
5524 sd_sysctl_header
= NULL
;
5525 if (sd_ctl_dir
[0].child
)
5526 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5529 static void register_sched_domain_sysctl(void)
5532 static void unregister_sched_domain_sysctl(void)
5538 * migration_call - callback that gets triggered when a CPU is added.
5539 * Here we can start up the necessary migration thread for the new CPU.
5541 static int __cpuinit
5542 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5544 struct task_struct
*p
;
5545 int cpu
= (long)hcpu
;
5546 unsigned long flags
;
5550 case CPU_LOCK_ACQUIRE
:
5551 mutex_lock(&sched_hotcpu_mutex
);
5554 case CPU_UP_PREPARE
:
5555 case CPU_UP_PREPARE_FROZEN
:
5556 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5559 kthread_bind(p
, cpu
);
5560 /* Must be high prio: stop_machine expects to yield to it. */
5561 rq
= task_rq_lock(p
, &flags
);
5562 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5563 task_rq_unlock(rq
, &flags
);
5564 cpu_rq(cpu
)->migration_thread
= p
;
5568 case CPU_ONLINE_FROZEN
:
5569 /* Strictly unnecessary, as first user will wake it. */
5570 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 case CPU_UP_CANCELED
:
5575 case CPU_UP_CANCELED_FROZEN
:
5576 if (!cpu_rq(cpu
)->migration_thread
)
5578 /* Unbind it from offline cpu so it can run. Fall thru. */
5579 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5580 any_online_cpu(cpu_online_map
));
5581 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5582 cpu_rq(cpu
)->migration_thread
= NULL
;
5586 case CPU_DEAD_FROZEN
:
5587 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5588 migrate_live_tasks(cpu
);
5590 kthread_stop(rq
->migration_thread
);
5591 rq
->migration_thread
= NULL
;
5592 /* Idle task back to normal (off runqueue, low prio) */
5593 spin_lock_irq(&rq
->lock
);
5594 update_rq_clock(rq
);
5595 deactivate_task(rq
, rq
->idle
, 0);
5596 rq
->idle
->static_prio
= MAX_PRIO
;
5597 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5598 rq
->idle
->sched_class
= &idle_sched_class
;
5599 migrate_dead_tasks(cpu
);
5600 spin_unlock_irq(&rq
->lock
);
5602 migrate_nr_uninterruptible(rq
);
5603 BUG_ON(rq
->nr_running
!= 0);
5605 /* No need to migrate the tasks: it was best-effort if
5606 * they didn't take sched_hotcpu_mutex. Just wake up
5607 * the requestors. */
5608 spin_lock_irq(&rq
->lock
);
5609 while (!list_empty(&rq
->migration_queue
)) {
5610 struct migration_req
*req
;
5612 req
= list_entry(rq
->migration_queue
.next
,
5613 struct migration_req
, list
);
5614 list_del_init(&req
->list
);
5615 complete(&req
->done
);
5617 spin_unlock_irq(&rq
->lock
);
5620 case CPU_LOCK_RELEASE
:
5621 mutex_unlock(&sched_hotcpu_mutex
);
5627 /* Register at highest priority so that task migration (migrate_all_tasks)
5628 * happens before everything else.
5630 static struct notifier_block __cpuinitdata migration_notifier
= {
5631 .notifier_call
= migration_call
,
5635 void __init
migration_init(void)
5637 void *cpu
= (void *)(long)smp_processor_id();
5640 /* Start one for the boot CPU: */
5641 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5642 BUG_ON(err
== NOTIFY_BAD
);
5643 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5644 register_cpu_notifier(&migration_notifier
);
5650 /* Number of possible processor ids */
5651 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5652 EXPORT_SYMBOL(nr_cpu_ids
);
5654 #ifdef CONFIG_SCHED_DEBUG
5656 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5658 struct sched_group
*group
= sd
->groups
;
5659 cpumask_t groupmask
;
5662 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5663 cpus_clear(groupmask
);
5665 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5667 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5668 printk("does not load-balance\n");
5670 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5675 printk(KERN_CONT
"span %s\n", str
);
5677 if (!cpu_isset(cpu
, sd
->span
)) {
5678 printk(KERN_ERR
"ERROR: domain->span does not contain "
5681 if (!cpu_isset(cpu
, group
->cpumask
)) {
5682 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5686 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5690 printk(KERN_ERR
"ERROR: group is NULL\n");
5694 if (!group
->__cpu_power
) {
5695 printk(KERN_CONT
"\n");
5696 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5701 if (!cpus_weight(group
->cpumask
)) {
5702 printk(KERN_CONT
"\n");
5703 printk(KERN_ERR
"ERROR: empty group\n");
5707 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5708 printk(KERN_CONT
"\n");
5709 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5713 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5715 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5716 printk(KERN_CONT
" %s", str
);
5718 group
= group
->next
;
5719 } while (group
!= sd
->groups
);
5720 printk(KERN_CONT
"\n");
5722 if (!cpus_equal(sd
->span
, groupmask
))
5723 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5725 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5726 printk(KERN_ERR
"ERROR: parent span is not a superset "
5727 "of domain->span\n");
5731 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5736 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5740 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5743 if (sched_domain_debug_one(sd
, cpu
, level
))
5752 # define sched_domain_debug(sd, cpu) do { } while (0)
5755 static int sd_degenerate(struct sched_domain
*sd
)
5757 if (cpus_weight(sd
->span
) == 1)
5760 /* Following flags need at least 2 groups */
5761 if (sd
->flags
& (SD_LOAD_BALANCE
|
5762 SD_BALANCE_NEWIDLE
|
5766 SD_SHARE_PKG_RESOURCES
)) {
5767 if (sd
->groups
!= sd
->groups
->next
)
5771 /* Following flags don't use groups */
5772 if (sd
->flags
& (SD_WAKE_IDLE
|
5781 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5783 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5785 if (sd_degenerate(parent
))
5788 if (!cpus_equal(sd
->span
, parent
->span
))
5791 /* Does parent contain flags not in child? */
5792 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5793 if (cflags
& SD_WAKE_AFFINE
)
5794 pflags
&= ~SD_WAKE_BALANCE
;
5795 /* Flags needing groups don't count if only 1 group in parent */
5796 if (parent
->groups
== parent
->groups
->next
) {
5797 pflags
&= ~(SD_LOAD_BALANCE
|
5798 SD_BALANCE_NEWIDLE
|
5802 SD_SHARE_PKG_RESOURCES
);
5804 if (~cflags
& pflags
)
5811 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5812 * hold the hotplug lock.
5814 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5816 struct rq
*rq
= cpu_rq(cpu
);
5817 struct sched_domain
*tmp
;
5819 /* Remove the sched domains which do not contribute to scheduling. */
5820 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5821 struct sched_domain
*parent
= tmp
->parent
;
5824 if (sd_parent_degenerate(tmp
, parent
)) {
5825 tmp
->parent
= parent
->parent
;
5827 parent
->parent
->child
= tmp
;
5831 if (sd
&& sd_degenerate(sd
)) {
5837 sched_domain_debug(sd
, cpu
);
5839 rcu_assign_pointer(rq
->sd
, sd
);
5842 /* cpus with isolated domains */
5843 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5845 /* Setup the mask of cpus configured for isolated domains */
5846 static int __init
isolated_cpu_setup(char *str
)
5848 int ints
[NR_CPUS
], i
;
5850 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5851 cpus_clear(cpu_isolated_map
);
5852 for (i
= 1; i
<= ints
[0]; i
++)
5853 if (ints
[i
] < NR_CPUS
)
5854 cpu_set(ints
[i
], cpu_isolated_map
);
5858 __setup("isolcpus=", isolated_cpu_setup
);
5861 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5862 * to a function which identifies what group(along with sched group) a CPU
5863 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5864 * (due to the fact that we keep track of groups covered with a cpumask_t).
5866 * init_sched_build_groups will build a circular linked list of the groups
5867 * covered by the given span, and will set each group's ->cpumask correctly,
5868 * and ->cpu_power to 0.
5871 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5872 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5873 struct sched_group
**sg
))
5875 struct sched_group
*first
= NULL
, *last
= NULL
;
5876 cpumask_t covered
= CPU_MASK_NONE
;
5879 for_each_cpu_mask(i
, span
) {
5880 struct sched_group
*sg
;
5881 int group
= group_fn(i
, cpu_map
, &sg
);
5884 if (cpu_isset(i
, covered
))
5887 sg
->cpumask
= CPU_MASK_NONE
;
5888 sg
->__cpu_power
= 0;
5890 for_each_cpu_mask(j
, span
) {
5891 if (group_fn(j
, cpu_map
, NULL
) != group
)
5894 cpu_set(j
, covered
);
5895 cpu_set(j
, sg
->cpumask
);
5906 #define SD_NODES_PER_DOMAIN 16
5911 * find_next_best_node - find the next node to include in a sched_domain
5912 * @node: node whose sched_domain we're building
5913 * @used_nodes: nodes already in the sched_domain
5915 * Find the next node to include in a given scheduling domain. Simply
5916 * finds the closest node not already in the @used_nodes map.
5918 * Should use nodemask_t.
5920 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5922 int i
, n
, val
, min_val
, best_node
= 0;
5926 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5927 /* Start at @node */
5928 n
= (node
+ i
) % MAX_NUMNODES
;
5930 if (!nr_cpus_node(n
))
5933 /* Skip already used nodes */
5934 if (test_bit(n
, used_nodes
))
5937 /* Simple min distance search */
5938 val
= node_distance(node
, n
);
5940 if (val
< min_val
) {
5946 set_bit(best_node
, used_nodes
);
5951 * sched_domain_node_span - get a cpumask for a node's sched_domain
5952 * @node: node whose cpumask we're constructing
5953 * @size: number of nodes to include in this span
5955 * Given a node, construct a good cpumask for its sched_domain to span. It
5956 * should be one that prevents unnecessary balancing, but also spreads tasks
5959 static cpumask_t
sched_domain_node_span(int node
)
5961 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5962 cpumask_t span
, nodemask
;
5966 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5968 nodemask
= node_to_cpumask(node
);
5969 cpus_or(span
, span
, nodemask
);
5970 set_bit(node
, used_nodes
);
5972 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5973 int next_node
= find_next_best_node(node
, used_nodes
);
5975 nodemask
= node_to_cpumask(next_node
);
5976 cpus_or(span
, span
, nodemask
);
5983 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5986 * SMT sched-domains:
5988 #ifdef CONFIG_SCHED_SMT
5989 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5990 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5992 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5993 struct sched_group
**sg
)
5996 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6002 * multi-core sched-domains:
6004 #ifdef CONFIG_SCHED_MC
6005 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6006 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6009 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6010 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6011 struct sched_group
**sg
)
6014 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6015 cpus_and(mask
, mask
, *cpu_map
);
6016 group
= first_cpu(mask
);
6018 *sg
= &per_cpu(sched_group_core
, group
);
6021 #elif defined(CONFIG_SCHED_MC)
6022 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
6023 struct sched_group
**sg
)
6026 *sg
= &per_cpu(sched_group_core
, cpu
);
6031 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6032 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6034 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
6035 struct sched_group
**sg
)
6038 #ifdef CONFIG_SCHED_MC
6039 cpumask_t mask
= cpu_coregroup_map(cpu
);
6040 cpus_and(mask
, mask
, *cpu_map
);
6041 group
= first_cpu(mask
);
6042 #elif defined(CONFIG_SCHED_SMT)
6043 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6044 cpus_and(mask
, mask
, *cpu_map
);
6045 group
= first_cpu(mask
);
6050 *sg
= &per_cpu(sched_group_phys
, group
);
6056 * The init_sched_build_groups can't handle what we want to do with node
6057 * groups, so roll our own. Now each node has its own list of groups which
6058 * gets dynamically allocated.
6060 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6061 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6063 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6064 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6066 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6067 struct sched_group
**sg
)
6069 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6072 cpus_and(nodemask
, nodemask
, *cpu_map
);
6073 group
= first_cpu(nodemask
);
6076 *sg
= &per_cpu(sched_group_allnodes
, group
);
6080 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6082 struct sched_group
*sg
= group_head
;
6088 for_each_cpu_mask(j
, sg
->cpumask
) {
6089 struct sched_domain
*sd
;
6091 sd
= &per_cpu(phys_domains
, j
);
6092 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6094 * Only add "power" once for each
6100 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6103 } while (sg
!= group_head
);
6108 /* Free memory allocated for various sched_group structures */
6109 static void free_sched_groups(const cpumask_t
*cpu_map
)
6113 for_each_cpu_mask(cpu
, *cpu_map
) {
6114 struct sched_group
**sched_group_nodes
6115 = sched_group_nodes_bycpu
[cpu
];
6117 if (!sched_group_nodes
)
6120 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6121 cpumask_t nodemask
= node_to_cpumask(i
);
6122 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6124 cpus_and(nodemask
, nodemask
, *cpu_map
);
6125 if (cpus_empty(nodemask
))
6135 if (oldsg
!= sched_group_nodes
[i
])
6138 kfree(sched_group_nodes
);
6139 sched_group_nodes_bycpu
[cpu
] = NULL
;
6143 static void free_sched_groups(const cpumask_t
*cpu_map
)
6149 * Initialize sched groups cpu_power.
6151 * cpu_power indicates the capacity of sched group, which is used while
6152 * distributing the load between different sched groups in a sched domain.
6153 * Typically cpu_power for all the groups in a sched domain will be same unless
6154 * there are asymmetries in the topology. If there are asymmetries, group
6155 * having more cpu_power will pickup more load compared to the group having
6158 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6159 * the maximum number of tasks a group can handle in the presence of other idle
6160 * or lightly loaded groups in the same sched domain.
6162 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6164 struct sched_domain
*child
;
6165 struct sched_group
*group
;
6167 WARN_ON(!sd
|| !sd
->groups
);
6169 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6174 sd
->groups
->__cpu_power
= 0;
6177 * For perf policy, if the groups in child domain share resources
6178 * (for example cores sharing some portions of the cache hierarchy
6179 * or SMT), then set this domain groups cpu_power such that each group
6180 * can handle only one task, when there are other idle groups in the
6181 * same sched domain.
6183 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6185 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6186 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6191 * add cpu_power of each child group to this groups cpu_power
6193 group
= child
->groups
;
6195 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6196 group
= group
->next
;
6197 } while (group
!= child
->groups
);
6201 * Build sched domains for a given set of cpus and attach the sched domains
6202 * to the individual cpus
6204 static int build_sched_domains(const cpumask_t
*cpu_map
)
6208 struct sched_group
**sched_group_nodes
= NULL
;
6209 int sd_allnodes
= 0;
6212 * Allocate the per-node list of sched groups
6214 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6216 if (!sched_group_nodes
) {
6217 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6220 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6224 * Set up domains for cpus specified by the cpu_map.
6226 for_each_cpu_mask(i
, *cpu_map
) {
6227 struct sched_domain
*sd
= NULL
, *p
;
6228 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6230 cpus_and(nodemask
, nodemask
, *cpu_map
);
6233 if (cpus_weight(*cpu_map
) >
6234 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6235 sd
= &per_cpu(allnodes_domains
, i
);
6236 *sd
= SD_ALLNODES_INIT
;
6237 sd
->span
= *cpu_map
;
6238 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6244 sd
= &per_cpu(node_domains
, i
);
6246 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6250 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6254 sd
= &per_cpu(phys_domains
, i
);
6256 sd
->span
= nodemask
;
6260 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6262 #ifdef CONFIG_SCHED_MC
6264 sd
= &per_cpu(core_domains
, i
);
6266 sd
->span
= cpu_coregroup_map(i
);
6267 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6270 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6273 #ifdef CONFIG_SCHED_SMT
6275 sd
= &per_cpu(cpu_domains
, i
);
6276 *sd
= SD_SIBLING_INIT
;
6277 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6278 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6281 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6285 #ifdef CONFIG_SCHED_SMT
6286 /* Set up CPU (sibling) groups */
6287 for_each_cpu_mask(i
, *cpu_map
) {
6288 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6289 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6290 if (i
!= first_cpu(this_sibling_map
))
6293 init_sched_build_groups(this_sibling_map
, cpu_map
,
6298 #ifdef CONFIG_SCHED_MC
6299 /* Set up multi-core groups */
6300 for_each_cpu_mask(i
, *cpu_map
) {
6301 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6302 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6303 if (i
!= first_cpu(this_core_map
))
6305 init_sched_build_groups(this_core_map
, cpu_map
,
6306 &cpu_to_core_group
);
6310 /* Set up physical groups */
6311 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6312 cpumask_t nodemask
= node_to_cpumask(i
);
6314 cpus_and(nodemask
, nodemask
, *cpu_map
);
6315 if (cpus_empty(nodemask
))
6318 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6322 /* Set up node groups */
6324 init_sched_build_groups(*cpu_map
, cpu_map
,
6325 &cpu_to_allnodes_group
);
6327 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6328 /* Set up node groups */
6329 struct sched_group
*sg
, *prev
;
6330 cpumask_t nodemask
= node_to_cpumask(i
);
6331 cpumask_t domainspan
;
6332 cpumask_t covered
= CPU_MASK_NONE
;
6335 cpus_and(nodemask
, nodemask
, *cpu_map
);
6336 if (cpus_empty(nodemask
)) {
6337 sched_group_nodes
[i
] = NULL
;
6341 domainspan
= sched_domain_node_span(i
);
6342 cpus_and(domainspan
, domainspan
, *cpu_map
);
6344 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6346 printk(KERN_WARNING
"Can not alloc domain group for "
6350 sched_group_nodes
[i
] = sg
;
6351 for_each_cpu_mask(j
, nodemask
) {
6352 struct sched_domain
*sd
;
6354 sd
= &per_cpu(node_domains
, j
);
6357 sg
->__cpu_power
= 0;
6358 sg
->cpumask
= nodemask
;
6360 cpus_or(covered
, covered
, nodemask
);
6363 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6364 cpumask_t tmp
, notcovered
;
6365 int n
= (i
+ j
) % MAX_NUMNODES
;
6367 cpus_complement(notcovered
, covered
);
6368 cpus_and(tmp
, notcovered
, *cpu_map
);
6369 cpus_and(tmp
, tmp
, domainspan
);
6370 if (cpus_empty(tmp
))
6373 nodemask
= node_to_cpumask(n
);
6374 cpus_and(tmp
, tmp
, nodemask
);
6375 if (cpus_empty(tmp
))
6378 sg
= kmalloc_node(sizeof(struct sched_group
),
6382 "Can not alloc domain group for node %d\n", j
);
6385 sg
->__cpu_power
= 0;
6387 sg
->next
= prev
->next
;
6388 cpus_or(covered
, covered
, tmp
);
6395 /* Calculate CPU power for physical packages and nodes */
6396 #ifdef CONFIG_SCHED_SMT
6397 for_each_cpu_mask(i
, *cpu_map
) {
6398 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6400 init_sched_groups_power(i
, sd
);
6403 #ifdef CONFIG_SCHED_MC
6404 for_each_cpu_mask(i
, *cpu_map
) {
6405 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6407 init_sched_groups_power(i
, sd
);
6411 for_each_cpu_mask(i
, *cpu_map
) {
6412 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6414 init_sched_groups_power(i
, sd
);
6418 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6419 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6422 struct sched_group
*sg
;
6424 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6425 init_numa_sched_groups_power(sg
);
6429 /* Attach the domains */
6430 for_each_cpu_mask(i
, *cpu_map
) {
6431 struct sched_domain
*sd
;
6432 #ifdef CONFIG_SCHED_SMT
6433 sd
= &per_cpu(cpu_domains
, i
);
6434 #elif defined(CONFIG_SCHED_MC)
6435 sd
= &per_cpu(core_domains
, i
);
6437 sd
= &per_cpu(phys_domains
, i
);
6439 cpu_attach_domain(sd
, i
);
6446 free_sched_groups(cpu_map
);
6451 static cpumask_t
*doms_cur
; /* current sched domains */
6452 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6455 * Special case: If a kmalloc of a doms_cur partition (array of
6456 * cpumask_t) fails, then fallback to a single sched domain,
6457 * as determined by the single cpumask_t fallback_doms.
6459 static cpumask_t fallback_doms
;
6462 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6463 * For now this just excludes isolated cpus, but could be used to
6464 * exclude other special cases in the future.
6466 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6471 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6473 doms_cur
= &fallback_doms
;
6474 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6475 err
= build_sched_domains(doms_cur
);
6476 register_sched_domain_sysctl();
6481 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6483 free_sched_groups(cpu_map
);
6487 * Detach sched domains from a group of cpus specified in cpu_map
6488 * These cpus will now be attached to the NULL domain
6490 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6494 unregister_sched_domain_sysctl();
6496 for_each_cpu_mask(i
, *cpu_map
)
6497 cpu_attach_domain(NULL
, i
);
6498 synchronize_sched();
6499 arch_destroy_sched_domains(cpu_map
);
6503 * Partition sched domains as specified by the 'ndoms_new'
6504 * cpumasks in the array doms_new[] of cpumasks. This compares
6505 * doms_new[] to the current sched domain partitioning, doms_cur[].
6506 * It destroys each deleted domain and builds each new domain.
6508 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6509 * The masks don't intersect (don't overlap.) We should setup one
6510 * sched domain for each mask. CPUs not in any of the cpumasks will
6511 * not be load balanced. If the same cpumask appears both in the
6512 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6515 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6516 * ownership of it and will kfree it when done with it. If the caller
6517 * failed the kmalloc call, then it can pass in doms_new == NULL,
6518 * and partition_sched_domains() will fallback to the single partition
6521 * Call with hotplug lock held
6523 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6527 /* always unregister in case we don't destroy any domains */
6528 unregister_sched_domain_sysctl();
6530 if (doms_new
== NULL
) {
6532 doms_new
= &fallback_doms
;
6533 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6536 /* Destroy deleted domains */
6537 for (i
= 0; i
< ndoms_cur
; i
++) {
6538 for (j
= 0; j
< ndoms_new
; j
++) {
6539 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6542 /* no match - a current sched domain not in new doms_new[] */
6543 detach_destroy_domains(doms_cur
+ i
);
6548 /* Build new domains */
6549 for (i
= 0; i
< ndoms_new
; i
++) {
6550 for (j
= 0; j
< ndoms_cur
; j
++) {
6551 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6554 /* no match - add a new doms_new */
6555 build_sched_domains(doms_new
+ i
);
6560 /* Remember the new sched domains */
6561 if (doms_cur
!= &fallback_doms
)
6563 doms_cur
= doms_new
;
6564 ndoms_cur
= ndoms_new
;
6566 register_sched_domain_sysctl();
6569 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6570 static int arch_reinit_sched_domains(void)
6574 mutex_lock(&sched_hotcpu_mutex
);
6575 detach_destroy_domains(&cpu_online_map
);
6576 err
= arch_init_sched_domains(&cpu_online_map
);
6577 mutex_unlock(&sched_hotcpu_mutex
);
6582 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6586 if (buf
[0] != '0' && buf
[0] != '1')
6590 sched_smt_power_savings
= (buf
[0] == '1');
6592 sched_mc_power_savings
= (buf
[0] == '1');
6594 ret
= arch_reinit_sched_domains();
6596 return ret
? ret
: count
;
6599 #ifdef CONFIG_SCHED_MC
6600 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6602 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6604 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6605 const char *buf
, size_t count
)
6607 return sched_power_savings_store(buf
, count
, 0);
6609 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6610 sched_mc_power_savings_store
);
6613 #ifdef CONFIG_SCHED_SMT
6614 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6616 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6618 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6619 const char *buf
, size_t count
)
6621 return sched_power_savings_store(buf
, count
, 1);
6623 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6624 sched_smt_power_savings_store
);
6627 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6631 #ifdef CONFIG_SCHED_SMT
6633 err
= sysfs_create_file(&cls
->kset
.kobj
,
6634 &attr_sched_smt_power_savings
.attr
);
6636 #ifdef CONFIG_SCHED_MC
6637 if (!err
&& mc_capable())
6638 err
= sysfs_create_file(&cls
->kset
.kobj
,
6639 &attr_sched_mc_power_savings
.attr
);
6646 * Force a reinitialization of the sched domains hierarchy. The domains
6647 * and groups cannot be updated in place without racing with the balancing
6648 * code, so we temporarily attach all running cpus to the NULL domain
6649 * which will prevent rebalancing while the sched domains are recalculated.
6651 static int update_sched_domains(struct notifier_block
*nfb
,
6652 unsigned long action
, void *hcpu
)
6655 case CPU_UP_PREPARE
:
6656 case CPU_UP_PREPARE_FROZEN
:
6657 case CPU_DOWN_PREPARE
:
6658 case CPU_DOWN_PREPARE_FROZEN
:
6659 detach_destroy_domains(&cpu_online_map
);
6662 case CPU_UP_CANCELED
:
6663 case CPU_UP_CANCELED_FROZEN
:
6664 case CPU_DOWN_FAILED
:
6665 case CPU_DOWN_FAILED_FROZEN
:
6667 case CPU_ONLINE_FROZEN
:
6669 case CPU_DEAD_FROZEN
:
6671 * Fall through and re-initialise the domains.
6678 /* The hotplug lock is already held by cpu_up/cpu_down */
6679 arch_init_sched_domains(&cpu_online_map
);
6684 void __init
sched_init_smp(void)
6686 cpumask_t non_isolated_cpus
;
6688 mutex_lock(&sched_hotcpu_mutex
);
6689 arch_init_sched_domains(&cpu_online_map
);
6690 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6691 if (cpus_empty(non_isolated_cpus
))
6692 cpu_set(smp_processor_id(), non_isolated_cpus
);
6693 mutex_unlock(&sched_hotcpu_mutex
);
6694 /* XXX: Theoretical race here - CPU may be hotplugged now */
6695 hotcpu_notifier(update_sched_domains
, 0);
6697 /* Move init over to a non-isolated CPU */
6698 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6700 sched_init_granularity();
6703 void __init
sched_init_smp(void)
6705 sched_init_granularity();
6707 #endif /* CONFIG_SMP */
6709 int in_sched_functions(unsigned long addr
)
6711 /* Linker adds these: start and end of __sched functions */
6712 extern char __sched_text_start
[], __sched_text_end
[];
6714 return in_lock_functions(addr
) ||
6715 (addr
>= (unsigned long)__sched_text_start
6716 && addr
< (unsigned long)__sched_text_end
);
6719 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6721 cfs_rq
->tasks_timeline
= RB_ROOT
;
6722 #ifdef CONFIG_FAIR_GROUP_SCHED
6725 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6728 void __init
sched_init(void)
6730 int highest_cpu
= 0;
6733 for_each_possible_cpu(i
) {
6734 struct rt_prio_array
*array
;
6738 spin_lock_init(&rq
->lock
);
6739 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6742 init_cfs_rq(&rq
->cfs
, rq
);
6743 #ifdef CONFIG_FAIR_GROUP_SCHED
6744 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6746 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6747 struct sched_entity
*se
=
6748 &per_cpu(init_sched_entity
, i
);
6750 init_cfs_rq_p
[i
] = cfs_rq
;
6751 init_cfs_rq(cfs_rq
, rq
);
6752 cfs_rq
->tg
= &init_task_group
;
6753 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6754 &rq
->leaf_cfs_rq_list
);
6756 init_sched_entity_p
[i
] = se
;
6757 se
->cfs_rq
= &rq
->cfs
;
6759 se
->load
.weight
= init_task_group_load
;
6760 se
->load
.inv_weight
=
6761 div64_64(1ULL<<32, init_task_group_load
);
6764 init_task_group
.shares
= init_task_group_load
;
6765 spin_lock_init(&init_task_group
.lock
);
6768 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6769 rq
->cpu_load
[j
] = 0;
6772 rq
->active_balance
= 0;
6773 rq
->next_balance
= jiffies
;
6776 rq
->migration_thread
= NULL
;
6777 INIT_LIST_HEAD(&rq
->migration_queue
);
6779 atomic_set(&rq
->nr_iowait
, 0);
6781 array
= &rq
->rt
.active
;
6782 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6783 INIT_LIST_HEAD(array
->queue
+ j
);
6784 __clear_bit(j
, array
->bitmap
);
6787 /* delimiter for bitsearch: */
6788 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6791 set_load_weight(&init_task
);
6793 #ifdef CONFIG_PREEMPT_NOTIFIERS
6794 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6798 nr_cpu_ids
= highest_cpu
+ 1;
6799 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6802 #ifdef CONFIG_RT_MUTEXES
6803 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6807 * The boot idle thread does lazy MMU switching as well:
6809 atomic_inc(&init_mm
.mm_count
);
6810 enter_lazy_tlb(&init_mm
, current
);
6813 * Make us the idle thread. Technically, schedule() should not be
6814 * called from this thread, however somewhere below it might be,
6815 * but because we are the idle thread, we just pick up running again
6816 * when this runqueue becomes "idle".
6818 init_idle(current
, smp_processor_id());
6820 * During early bootup we pretend to be a normal task:
6822 current
->sched_class
= &fair_sched_class
;
6825 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6826 void __might_sleep(char *file
, int line
)
6829 static unsigned long prev_jiffy
; /* ratelimiting */
6831 if ((in_atomic() || irqs_disabled()) &&
6832 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6833 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6835 prev_jiffy
= jiffies
;
6836 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6837 " context at %s:%d\n", file
, line
);
6838 printk("in_atomic():%d, irqs_disabled():%d\n",
6839 in_atomic(), irqs_disabled());
6840 debug_show_held_locks(current
);
6841 if (irqs_disabled())
6842 print_irqtrace_events(current
);
6847 EXPORT_SYMBOL(__might_sleep
);
6850 #ifdef CONFIG_MAGIC_SYSRQ
6851 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6854 update_rq_clock(rq
);
6855 on_rq
= p
->se
.on_rq
;
6857 deactivate_task(rq
, p
, 0);
6858 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6860 activate_task(rq
, p
, 0);
6861 resched_task(rq
->curr
);
6865 void normalize_rt_tasks(void)
6867 struct task_struct
*g
, *p
;
6868 unsigned long flags
;
6871 read_lock_irq(&tasklist_lock
);
6872 do_each_thread(g
, p
) {
6874 * Only normalize user tasks:
6879 p
->se
.exec_start
= 0;
6880 #ifdef CONFIG_SCHEDSTATS
6881 p
->se
.wait_start
= 0;
6882 p
->se
.sleep_start
= 0;
6883 p
->se
.block_start
= 0;
6885 task_rq(p
)->clock
= 0;
6889 * Renice negative nice level userspace
6892 if (TASK_NICE(p
) < 0 && p
->mm
)
6893 set_user_nice(p
, 0);
6897 spin_lock_irqsave(&p
->pi_lock
, flags
);
6898 rq
= __task_rq_lock(p
);
6900 normalize_task(rq
, p
);
6902 __task_rq_unlock(rq
);
6903 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6904 } while_each_thread(g
, p
);
6906 read_unlock_irq(&tasklist_lock
);
6909 #endif /* CONFIG_MAGIC_SYSRQ */
6913 * These functions are only useful for the IA64 MCA handling.
6915 * They can only be called when the whole system has been
6916 * stopped - every CPU needs to be quiescent, and no scheduling
6917 * activity can take place. Using them for anything else would
6918 * be a serious bug, and as a result, they aren't even visible
6919 * under any other configuration.
6923 * curr_task - return the current task for a given cpu.
6924 * @cpu: the processor in question.
6926 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6928 struct task_struct
*curr_task(int cpu
)
6930 return cpu_curr(cpu
);
6934 * set_curr_task - set the current task for a given cpu.
6935 * @cpu: the processor in question.
6936 * @p: the task pointer to set.
6938 * Description: This function must only be used when non-maskable interrupts
6939 * are serviced on a separate stack. It allows the architecture to switch the
6940 * notion of the current task on a cpu in a non-blocking manner. This function
6941 * must be called with all CPU's synchronized, and interrupts disabled, the
6942 * and caller must save the original value of the current task (see
6943 * curr_task() above) and restore that value before reenabling interrupts and
6944 * re-starting the system.
6946 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6948 void set_curr_task(int cpu
, struct task_struct
*p
)
6955 #ifdef CONFIG_FAIR_GROUP_SCHED
6957 /* allocate runqueue etc for a new task group */
6958 struct task_group
*sched_create_group(void)
6960 struct task_group
*tg
;
6961 struct cfs_rq
*cfs_rq
;
6962 struct sched_entity
*se
;
6966 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6968 return ERR_PTR(-ENOMEM
);
6970 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6973 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6977 for_each_possible_cpu(i
) {
6980 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6985 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6990 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6991 memset(se
, 0, sizeof(struct sched_entity
));
6993 tg
->cfs_rq
[i
] = cfs_rq
;
6994 init_cfs_rq(cfs_rq
, rq
);
6998 se
->cfs_rq
= &rq
->cfs
;
7000 se
->load
.weight
= NICE_0_LOAD
;
7001 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
7005 for_each_possible_cpu(i
) {
7007 cfs_rq
= tg
->cfs_rq
[i
];
7008 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7011 tg
->shares
= NICE_0_LOAD
;
7012 spin_lock_init(&tg
->lock
);
7017 for_each_possible_cpu(i
) {
7019 kfree(tg
->cfs_rq
[i
]);
7027 return ERR_PTR(-ENOMEM
);
7030 /* rcu callback to free various structures associated with a task group */
7031 static void free_sched_group(struct rcu_head
*rhp
)
7033 struct task_group
*tg
= container_of(rhp
, struct task_group
, rcu
);
7034 struct cfs_rq
*cfs_rq
;
7035 struct sched_entity
*se
;
7038 /* now it should be safe to free those cfs_rqs */
7039 for_each_possible_cpu(i
) {
7040 cfs_rq
= tg
->cfs_rq
[i
];
7052 /* Destroy runqueue etc associated with a task group */
7053 void sched_destroy_group(struct task_group
*tg
)
7055 struct cfs_rq
*cfs_rq
= NULL
;
7058 for_each_possible_cpu(i
) {
7059 cfs_rq
= tg
->cfs_rq
[i
];
7060 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7065 /* wait for possible concurrent references to cfs_rqs complete */
7066 call_rcu(&tg
->rcu
, free_sched_group
);
7069 /* change task's runqueue when it moves between groups.
7070 * The caller of this function should have put the task in its new group
7071 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7072 * reflect its new group.
7074 void sched_move_task(struct task_struct
*tsk
)
7077 unsigned long flags
;
7080 rq
= task_rq_lock(tsk
, &flags
);
7082 if (tsk
->sched_class
!= &fair_sched_class
) {
7083 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7087 update_rq_clock(rq
);
7089 running
= task_running(rq
, tsk
);
7090 on_rq
= tsk
->se
.on_rq
;
7093 dequeue_task(rq
, tsk
, 0);
7094 if (unlikely(running
))
7095 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7098 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7101 if (unlikely(running
))
7102 tsk
->sched_class
->set_curr_task(rq
);
7103 enqueue_task(rq
, tsk
, 0);
7107 task_rq_unlock(rq
, &flags
);
7110 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7112 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7113 struct rq
*rq
= cfs_rq
->rq
;
7116 spin_lock_irq(&rq
->lock
);
7120 dequeue_entity(cfs_rq
, se
, 0);
7122 se
->load
.weight
= shares
;
7123 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7126 enqueue_entity(cfs_rq
, se
, 0);
7128 spin_unlock_irq(&rq
->lock
);
7131 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7135 spin_lock(&tg
->lock
);
7136 if (tg
->shares
== shares
)
7139 tg
->shares
= shares
;
7140 for_each_possible_cpu(i
)
7141 set_se_shares(tg
->se
[i
], shares
);
7144 spin_unlock(&tg
->lock
);
7148 unsigned long sched_group_shares(struct task_group
*tg
)
7153 #endif /* CONFIG_FAIR_GROUP_SCHED */
7155 #ifdef CONFIG_FAIR_CGROUP_SCHED
7157 /* return corresponding task_group object of a cgroup */
7158 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7160 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7161 struct task_group
, css
);
7164 static struct cgroup_subsys_state
*
7165 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7167 struct task_group
*tg
;
7169 if (!cgrp
->parent
) {
7170 /* This is early initialization for the top cgroup */
7171 init_task_group
.css
.cgroup
= cgrp
;
7172 return &init_task_group
.css
;
7175 /* we support only 1-level deep hierarchical scheduler atm */
7176 if (cgrp
->parent
->parent
)
7177 return ERR_PTR(-EINVAL
);
7179 tg
= sched_create_group();
7181 return ERR_PTR(-ENOMEM
);
7183 /* Bind the cgroup to task_group object we just created */
7184 tg
->css
.cgroup
= cgrp
;
7189 static void cpu_cgroup_destroy(struct cgroup_subsys
*ss
,
7190 struct cgroup
*cgrp
)
7192 struct task_group
*tg
= cgroup_tg(cgrp
);
7194 sched_destroy_group(tg
);
7197 static int cpu_cgroup_can_attach(struct cgroup_subsys
*ss
,
7198 struct cgroup
*cgrp
, struct task_struct
*tsk
)
7200 /* We don't support RT-tasks being in separate groups */
7201 if (tsk
->sched_class
!= &fair_sched_class
)
7208 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7209 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7211 sched_move_task(tsk
);
7214 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7217 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7220 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7222 struct task_group
*tg
= cgroup_tg(cgrp
);
7224 return (u64
) tg
->shares
;
7227 static u64
cpu_usage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
7229 struct task_group
*tg
= cgroup_tg(cgrp
);
7230 unsigned long flags
;
7234 for_each_possible_cpu(i
) {
7236 * Lock to prevent races with updating 64-bit counters
7239 spin_lock_irqsave(&cpu_rq(i
)->lock
, flags
);
7240 res
+= tg
->se
[i
]->sum_exec_runtime
;
7241 spin_unlock_irqrestore(&cpu_rq(i
)->lock
, flags
);
7243 /* Convert from ns to ms */
7244 do_div(res
, NSEC_PER_MSEC
);
7249 static struct cftype cpu_files
[] = {
7252 .read_uint
= cpu_shares_read_uint
,
7253 .write_uint
= cpu_shares_write_uint
,
7257 .read_uint
= cpu_usage_read
,
7261 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7263 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7266 struct cgroup_subsys cpu_cgroup_subsys
= {
7268 .create
= cpu_cgroup_create
,
7269 .destroy
= cpu_cgroup_destroy
,
7270 .can_attach
= cpu_cgroup_can_attach
,
7271 .attach
= cpu_cgroup_attach
,
7272 .populate
= cpu_cgroup_populate
,
7273 .subsys_id
= cpu_cgroup_subsys_id
,
7277 #endif /* CONFIG_FAIR_CGROUP_SCHED */