xen/x86-64: fix breakpoints and hardware watchpoints
[linux-2.6/verdex.git] / arch / x86 / oprofile / op_model_p4.c
blob819b131fd752888c39b39f2fb386263223d9dd83
1 /**
2 * @file op_model_p4.c
3 * P4 model-specific MSR operations
5 * @remark Copyright 2002 OProfile authors
6 * @remark Read the file COPYING
8 * @author Graydon Hoare
9 */
11 #include <linux/oprofile.h>
12 #include <linux/smp.h>
13 #include <linux/ptrace.h>
14 #include <linux/nmi.h>
15 #include <asm/msr.h>
16 #include <asm/fixmap.h>
17 #include <asm/apic.h>
20 #include "op_x86_model.h"
21 #include "op_counter.h"
23 #define NUM_EVENTS 39
25 #define NUM_COUNTERS_NON_HT 8
26 #define NUM_ESCRS_NON_HT 45
27 #define NUM_CCCRS_NON_HT 18
28 #define NUM_CONTROLS_NON_HT (NUM_ESCRS_NON_HT + NUM_CCCRS_NON_HT)
30 #define NUM_COUNTERS_HT2 4
31 #define NUM_ESCRS_HT2 23
32 #define NUM_CCCRS_HT2 9
33 #define NUM_CONTROLS_HT2 (NUM_ESCRS_HT2 + NUM_CCCRS_HT2)
35 static unsigned int num_counters = NUM_COUNTERS_NON_HT;
36 static unsigned int num_controls = NUM_CONTROLS_NON_HT;
38 /* this has to be checked dynamically since the
39 hyper-threadedness of a chip is discovered at
40 kernel boot-time. */
41 static inline void setup_num_counters(void)
43 #ifdef CONFIG_SMP
44 if (smp_num_siblings == 2) {
45 num_counters = NUM_COUNTERS_HT2;
46 num_controls = NUM_CONTROLS_HT2;
48 #endif
51 static int inline addr_increment(void)
53 #ifdef CONFIG_SMP
54 return smp_num_siblings == 2 ? 2 : 1;
55 #else
56 return 1;
57 #endif
61 /* tables to simulate simplified hardware view of p4 registers */
62 struct p4_counter_binding {
63 int virt_counter;
64 int counter_address;
65 int cccr_address;
68 struct p4_event_binding {
69 int escr_select; /* value to put in CCCR */
70 int event_select; /* value to put in ESCR */
71 struct {
72 int virt_counter; /* for this counter... */
73 int escr_address; /* use this ESCR */
74 } bindings[2];
77 /* nb: these CTR_* defines are a duplicate of defines in
78 event/i386.p4*events. */
81 #define CTR_BPU_0 (1 << 0)
82 #define CTR_MS_0 (1 << 1)
83 #define CTR_FLAME_0 (1 << 2)
84 #define CTR_IQ_4 (1 << 3)
85 #define CTR_BPU_2 (1 << 4)
86 #define CTR_MS_2 (1 << 5)
87 #define CTR_FLAME_2 (1 << 6)
88 #define CTR_IQ_5 (1 << 7)
90 static struct p4_counter_binding p4_counters[NUM_COUNTERS_NON_HT] = {
91 { CTR_BPU_0, MSR_P4_BPU_PERFCTR0, MSR_P4_BPU_CCCR0 },
92 { CTR_MS_0, MSR_P4_MS_PERFCTR0, MSR_P4_MS_CCCR0 },
93 { CTR_FLAME_0, MSR_P4_FLAME_PERFCTR0, MSR_P4_FLAME_CCCR0 },
94 { CTR_IQ_4, MSR_P4_IQ_PERFCTR4, MSR_P4_IQ_CCCR4 },
95 { CTR_BPU_2, MSR_P4_BPU_PERFCTR2, MSR_P4_BPU_CCCR2 },
96 { CTR_MS_2, MSR_P4_MS_PERFCTR2, MSR_P4_MS_CCCR2 },
97 { CTR_FLAME_2, MSR_P4_FLAME_PERFCTR2, MSR_P4_FLAME_CCCR2 },
98 { CTR_IQ_5, MSR_P4_IQ_PERFCTR5, MSR_P4_IQ_CCCR5 }
101 #define NUM_UNUSED_CCCRS (NUM_CCCRS_NON_HT - NUM_COUNTERS_NON_HT)
103 /* p4 event codes in libop/op_event.h are indices into this table. */
105 static struct p4_event_binding p4_events[NUM_EVENTS] = {
107 { /* BRANCH_RETIRED */
108 0x05, 0x06,
109 { {CTR_IQ_4, MSR_P4_CRU_ESCR2},
110 {CTR_IQ_5, MSR_P4_CRU_ESCR3} }
113 { /* MISPRED_BRANCH_RETIRED */
114 0x04, 0x03,
115 { { CTR_IQ_4, MSR_P4_CRU_ESCR0},
116 { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
119 { /* TC_DELIVER_MODE */
120 0x01, 0x01,
121 { { CTR_MS_0, MSR_P4_TC_ESCR0},
122 { CTR_MS_2, MSR_P4_TC_ESCR1} }
125 { /* BPU_FETCH_REQUEST */
126 0x00, 0x03,
127 { { CTR_BPU_0, MSR_P4_BPU_ESCR0},
128 { CTR_BPU_2, MSR_P4_BPU_ESCR1} }
131 { /* ITLB_REFERENCE */
132 0x03, 0x18,
133 { { CTR_BPU_0, MSR_P4_ITLB_ESCR0},
134 { CTR_BPU_2, MSR_P4_ITLB_ESCR1} }
137 { /* MEMORY_CANCEL */
138 0x05, 0x02,
139 { { CTR_FLAME_0, MSR_P4_DAC_ESCR0},
140 { CTR_FLAME_2, MSR_P4_DAC_ESCR1} }
143 { /* MEMORY_COMPLETE */
144 0x02, 0x08,
145 { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
146 { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
149 { /* LOAD_PORT_REPLAY */
150 0x02, 0x04,
151 { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
152 { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
155 { /* STORE_PORT_REPLAY */
156 0x02, 0x05,
157 { { CTR_FLAME_0, MSR_P4_SAAT_ESCR0},
158 { CTR_FLAME_2, MSR_P4_SAAT_ESCR1} }
161 { /* MOB_LOAD_REPLAY */
162 0x02, 0x03,
163 { { CTR_BPU_0, MSR_P4_MOB_ESCR0},
164 { CTR_BPU_2, MSR_P4_MOB_ESCR1} }
167 { /* PAGE_WALK_TYPE */
168 0x04, 0x01,
169 { { CTR_BPU_0, MSR_P4_PMH_ESCR0},
170 { CTR_BPU_2, MSR_P4_PMH_ESCR1} }
173 { /* BSQ_CACHE_REFERENCE */
174 0x07, 0x0c,
175 { { CTR_BPU_0, MSR_P4_BSU_ESCR0},
176 { CTR_BPU_2, MSR_P4_BSU_ESCR1} }
179 { /* IOQ_ALLOCATION */
180 0x06, 0x03,
181 { { CTR_BPU_0, MSR_P4_FSB_ESCR0},
182 { 0, 0 } }
185 { /* IOQ_ACTIVE_ENTRIES */
186 0x06, 0x1a,
187 { { CTR_BPU_2, MSR_P4_FSB_ESCR1},
188 { 0, 0 } }
191 { /* FSB_DATA_ACTIVITY */
192 0x06, 0x17,
193 { { CTR_BPU_0, MSR_P4_FSB_ESCR0},
194 { CTR_BPU_2, MSR_P4_FSB_ESCR1} }
197 { /* BSQ_ALLOCATION */
198 0x07, 0x05,
199 { { CTR_BPU_0, MSR_P4_BSU_ESCR0},
200 { 0, 0 } }
203 { /* BSQ_ACTIVE_ENTRIES */
204 0x07, 0x06,
205 { { CTR_BPU_2, MSR_P4_BSU_ESCR1 /* guess */},
206 { 0, 0 } }
209 { /* X87_ASSIST */
210 0x05, 0x03,
211 { { CTR_IQ_4, MSR_P4_CRU_ESCR2},
212 { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
215 { /* SSE_INPUT_ASSIST */
216 0x01, 0x34,
217 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
218 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
221 { /* PACKED_SP_UOP */
222 0x01, 0x08,
223 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
224 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
227 { /* PACKED_DP_UOP */
228 0x01, 0x0c,
229 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
230 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
233 { /* SCALAR_SP_UOP */
234 0x01, 0x0a,
235 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
236 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
239 { /* SCALAR_DP_UOP */
240 0x01, 0x0e,
241 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
242 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
245 { /* 64BIT_MMX_UOP */
246 0x01, 0x02,
247 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
248 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
251 { /* 128BIT_MMX_UOP */
252 0x01, 0x1a,
253 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
254 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
257 { /* X87_FP_UOP */
258 0x01, 0x04,
259 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
260 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
263 { /* X87_SIMD_MOVES_UOP */
264 0x01, 0x2e,
265 { { CTR_FLAME_0, MSR_P4_FIRM_ESCR0},
266 { CTR_FLAME_2, MSR_P4_FIRM_ESCR1} }
269 { /* MACHINE_CLEAR */
270 0x05, 0x02,
271 { { CTR_IQ_4, MSR_P4_CRU_ESCR2},
272 { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
275 { /* GLOBAL_POWER_EVENTS */
276 0x06, 0x13 /* older manual says 0x05, newer 0x13 */,
277 { { CTR_BPU_0, MSR_P4_FSB_ESCR0},
278 { CTR_BPU_2, MSR_P4_FSB_ESCR1} }
281 { /* TC_MS_XFER */
282 0x00, 0x05,
283 { { CTR_MS_0, MSR_P4_MS_ESCR0},
284 { CTR_MS_2, MSR_P4_MS_ESCR1} }
287 { /* UOP_QUEUE_WRITES */
288 0x00, 0x09,
289 { { CTR_MS_0, MSR_P4_MS_ESCR0},
290 { CTR_MS_2, MSR_P4_MS_ESCR1} }
293 { /* FRONT_END_EVENT */
294 0x05, 0x08,
295 { { CTR_IQ_4, MSR_P4_CRU_ESCR2},
296 { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
299 { /* EXECUTION_EVENT */
300 0x05, 0x0c,
301 { { CTR_IQ_4, MSR_P4_CRU_ESCR2},
302 { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
305 { /* REPLAY_EVENT */
306 0x05, 0x09,
307 { { CTR_IQ_4, MSR_P4_CRU_ESCR2},
308 { CTR_IQ_5, MSR_P4_CRU_ESCR3} }
311 { /* INSTR_RETIRED */
312 0x04, 0x02,
313 { { CTR_IQ_4, MSR_P4_CRU_ESCR0},
314 { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
317 { /* UOPS_RETIRED */
318 0x04, 0x01,
319 { { CTR_IQ_4, MSR_P4_CRU_ESCR0},
320 { CTR_IQ_5, MSR_P4_CRU_ESCR1} }
323 { /* UOP_TYPE */
324 0x02, 0x02,
325 { { CTR_IQ_4, MSR_P4_RAT_ESCR0},
326 { CTR_IQ_5, MSR_P4_RAT_ESCR1} }
329 { /* RETIRED_MISPRED_BRANCH_TYPE */
330 0x02, 0x05,
331 { { CTR_MS_0, MSR_P4_TBPU_ESCR0},
332 { CTR_MS_2, MSR_P4_TBPU_ESCR1} }
335 { /* RETIRED_BRANCH_TYPE */
336 0x02, 0x04,
337 { { CTR_MS_0, MSR_P4_TBPU_ESCR0},
338 { CTR_MS_2, MSR_P4_TBPU_ESCR1} }
343 #define MISC_PMC_ENABLED_P(x) ((x) & 1 << 7)
345 #define ESCR_RESERVED_BITS 0x80000003
346 #define ESCR_CLEAR(escr) ((escr) &= ESCR_RESERVED_BITS)
347 #define ESCR_SET_USR_0(escr, usr) ((escr) |= (((usr) & 1) << 2))
348 #define ESCR_SET_OS_0(escr, os) ((escr) |= (((os) & 1) << 3))
349 #define ESCR_SET_USR_1(escr, usr) ((escr) |= (((usr) & 1)))
350 #define ESCR_SET_OS_1(escr, os) ((escr) |= (((os) & 1) << 1))
351 #define ESCR_SET_EVENT_SELECT(escr, sel) ((escr) |= (((sel) & 0x3f) << 25))
352 #define ESCR_SET_EVENT_MASK(escr, mask) ((escr) |= (((mask) & 0xffff) << 9))
353 #define ESCR_READ(escr, high, ev, i) do {rdmsr(ev->bindings[(i)].escr_address, (escr), (high)); } while (0)
354 #define ESCR_WRITE(escr, high, ev, i) do {wrmsr(ev->bindings[(i)].escr_address, (escr), (high)); } while (0)
356 #define CCCR_RESERVED_BITS 0x38030FFF
357 #define CCCR_CLEAR(cccr) ((cccr) &= CCCR_RESERVED_BITS)
358 #define CCCR_SET_REQUIRED_BITS(cccr) ((cccr) |= 0x00030000)
359 #define CCCR_SET_ESCR_SELECT(cccr, sel) ((cccr) |= (((sel) & 0x07) << 13))
360 #define CCCR_SET_PMI_OVF_0(cccr) ((cccr) |= (1<<26))
361 #define CCCR_SET_PMI_OVF_1(cccr) ((cccr) |= (1<<27))
362 #define CCCR_SET_ENABLE(cccr) ((cccr) |= (1<<12))
363 #define CCCR_SET_DISABLE(cccr) ((cccr) &= ~(1<<12))
364 #define CCCR_READ(low, high, i) do {rdmsr(p4_counters[(i)].cccr_address, (low), (high)); } while (0)
365 #define CCCR_WRITE(low, high, i) do {wrmsr(p4_counters[(i)].cccr_address, (low), (high)); } while (0)
366 #define CCCR_OVF_P(cccr) ((cccr) & (1U<<31))
367 #define CCCR_CLEAR_OVF(cccr) ((cccr) &= (~(1U<<31)))
369 #define CTRL_IS_RESERVED(msrs, c) (msrs->controls[(c)].addr ? 1 : 0)
370 #define CTR_IS_RESERVED(msrs, c) (msrs->counters[(c)].addr ? 1 : 0)
371 #define CTR_READ(l, h, i) do {rdmsr(p4_counters[(i)].counter_address, (l), (h)); } while (0)
372 #define CTR_WRITE(l, i) do {wrmsr(p4_counters[(i)].counter_address, -(u32)(l), -1); } while (0)
373 #define CTR_OVERFLOW_P(ctr) (!((ctr) & 0x80000000))
376 /* this assigns a "stagger" to the current CPU, which is used throughout
377 the code in this module as an extra array offset, to select the "even"
378 or "odd" part of all the divided resources. */
379 static unsigned int get_stagger(void)
381 #ifdef CONFIG_SMP
382 int cpu = smp_processor_id();
383 return cpu != cpumask_first(__get_cpu_var(cpu_sibling_map));
384 #endif
385 return 0;
389 /* finally, mediate access to a real hardware counter
390 by passing a "virtual" counter numer to this macro,
391 along with your stagger setting. */
392 #define VIRT_CTR(stagger, i) ((i) + ((num_counters) * (stagger)))
394 static unsigned long reset_value[NUM_COUNTERS_NON_HT];
397 static void p4_fill_in_addresses(struct op_msrs * const msrs)
399 unsigned int i;
400 unsigned int addr, cccraddr, stag;
402 setup_num_counters();
403 stag = get_stagger();
405 /* initialize some registers */
406 for (i = 0; i < num_counters; ++i)
407 msrs->counters[i].addr = 0;
408 for (i = 0; i < num_controls; ++i)
409 msrs->controls[i].addr = 0;
411 /* the counter & cccr registers we pay attention to */
412 for (i = 0; i < num_counters; ++i) {
413 addr = p4_counters[VIRT_CTR(stag, i)].counter_address;
414 cccraddr = p4_counters[VIRT_CTR(stag, i)].cccr_address;
415 if (reserve_perfctr_nmi(addr)) {
416 msrs->counters[i].addr = addr;
417 msrs->controls[i].addr = cccraddr;
421 /* 43 ESCR registers in three or four discontiguous group */
422 for (addr = MSR_P4_BSU_ESCR0 + stag;
423 addr < MSR_P4_IQ_ESCR0; ++i, addr += addr_increment()) {
424 if (reserve_evntsel_nmi(addr))
425 msrs->controls[i].addr = addr;
428 /* no IQ_ESCR0/1 on some models, we save a seconde time BSU_ESCR0/1
429 * to avoid special case in nmi_{save|restore}_registers() */
430 if (boot_cpu_data.x86_model >= 0x3) {
431 for (addr = MSR_P4_BSU_ESCR0 + stag;
432 addr <= MSR_P4_BSU_ESCR1; ++i, addr += addr_increment()) {
433 if (reserve_evntsel_nmi(addr))
434 msrs->controls[i].addr = addr;
436 } else {
437 for (addr = MSR_P4_IQ_ESCR0 + stag;
438 addr <= MSR_P4_IQ_ESCR1; ++i, addr += addr_increment()) {
439 if (reserve_evntsel_nmi(addr))
440 msrs->controls[i].addr = addr;
444 for (addr = MSR_P4_RAT_ESCR0 + stag;
445 addr <= MSR_P4_SSU_ESCR0; ++i, addr += addr_increment()) {
446 if (reserve_evntsel_nmi(addr))
447 msrs->controls[i].addr = addr;
450 for (addr = MSR_P4_MS_ESCR0 + stag;
451 addr <= MSR_P4_TC_ESCR1; ++i, addr += addr_increment()) {
452 if (reserve_evntsel_nmi(addr))
453 msrs->controls[i].addr = addr;
456 for (addr = MSR_P4_IX_ESCR0 + stag;
457 addr <= MSR_P4_CRU_ESCR3; ++i, addr += addr_increment()) {
458 if (reserve_evntsel_nmi(addr))
459 msrs->controls[i].addr = addr;
462 /* there are 2 remaining non-contiguously located ESCRs */
464 if (num_counters == NUM_COUNTERS_NON_HT) {
465 /* standard non-HT CPUs handle both remaining ESCRs*/
466 if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5))
467 msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
468 if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
469 msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
471 } else if (stag == 0) {
472 /* HT CPUs give the first remainder to the even thread, as
473 the 32nd control register */
474 if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR4))
475 msrs->controls[i++].addr = MSR_P4_CRU_ESCR4;
477 } else {
478 /* and two copies of the second to the odd thread,
479 for the 22st and 23nd control registers */
480 if (reserve_evntsel_nmi(MSR_P4_CRU_ESCR5)) {
481 msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
482 msrs->controls[i++].addr = MSR_P4_CRU_ESCR5;
488 static void pmc_setup_one_p4_counter(unsigned int ctr)
490 int i;
491 int const maxbind = 2;
492 unsigned int cccr = 0;
493 unsigned int escr = 0;
494 unsigned int high = 0;
495 unsigned int counter_bit;
496 struct p4_event_binding *ev = NULL;
497 unsigned int stag;
499 stag = get_stagger();
501 /* convert from counter *number* to counter *bit* */
502 counter_bit = 1 << VIRT_CTR(stag, ctr);
504 /* find our event binding structure. */
505 if (counter_config[ctr].event <= 0 || counter_config[ctr].event > NUM_EVENTS) {
506 printk(KERN_ERR
507 "oprofile: P4 event code 0x%lx out of range\n",
508 counter_config[ctr].event);
509 return;
512 ev = &(p4_events[counter_config[ctr].event - 1]);
514 for (i = 0; i < maxbind; i++) {
515 if (ev->bindings[i].virt_counter & counter_bit) {
517 /* modify ESCR */
518 ESCR_READ(escr, high, ev, i);
519 ESCR_CLEAR(escr);
520 if (stag == 0) {
521 ESCR_SET_USR_0(escr, counter_config[ctr].user);
522 ESCR_SET_OS_0(escr, counter_config[ctr].kernel);
523 } else {
524 ESCR_SET_USR_1(escr, counter_config[ctr].user);
525 ESCR_SET_OS_1(escr, counter_config[ctr].kernel);
527 ESCR_SET_EVENT_SELECT(escr, ev->event_select);
528 ESCR_SET_EVENT_MASK(escr, counter_config[ctr].unit_mask);
529 ESCR_WRITE(escr, high, ev, i);
531 /* modify CCCR */
532 CCCR_READ(cccr, high, VIRT_CTR(stag, ctr));
533 CCCR_CLEAR(cccr);
534 CCCR_SET_REQUIRED_BITS(cccr);
535 CCCR_SET_ESCR_SELECT(cccr, ev->escr_select);
536 if (stag == 0)
537 CCCR_SET_PMI_OVF_0(cccr);
538 else
539 CCCR_SET_PMI_OVF_1(cccr);
540 CCCR_WRITE(cccr, high, VIRT_CTR(stag, ctr));
541 return;
545 printk(KERN_ERR
546 "oprofile: P4 event code 0x%lx no binding, stag %d ctr %d\n",
547 counter_config[ctr].event, stag, ctr);
551 static void p4_setup_ctrs(struct op_msrs const * const msrs)
553 unsigned int i;
554 unsigned int low, high;
555 unsigned int stag;
557 stag = get_stagger();
559 rdmsr(MSR_IA32_MISC_ENABLE, low, high);
560 if (!MISC_PMC_ENABLED_P(low)) {
561 printk(KERN_ERR "oprofile: P4 PMC not available\n");
562 return;
565 /* clear the cccrs we will use */
566 for (i = 0 ; i < num_counters ; i++) {
567 if (unlikely(!CTRL_IS_RESERVED(msrs, i)))
568 continue;
569 rdmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
570 CCCR_CLEAR(low);
571 CCCR_SET_REQUIRED_BITS(low);
572 wrmsr(p4_counters[VIRT_CTR(stag, i)].cccr_address, low, high);
575 /* clear all escrs (including those outside our concern) */
576 for (i = num_counters; i < num_controls; i++) {
577 if (unlikely(!CTRL_IS_RESERVED(msrs, i)))
578 continue;
579 wrmsr(msrs->controls[i].addr, 0, 0);
582 /* setup all counters */
583 for (i = 0 ; i < num_counters ; ++i) {
584 if ((counter_config[i].enabled) && (CTRL_IS_RESERVED(msrs, i))) {
585 reset_value[i] = counter_config[i].count;
586 pmc_setup_one_p4_counter(i);
587 CTR_WRITE(counter_config[i].count, VIRT_CTR(stag, i));
588 } else {
589 reset_value[i] = 0;
595 static int p4_check_ctrs(struct pt_regs * const regs,
596 struct op_msrs const * const msrs)
598 unsigned long ctr, low, high, stag, real;
599 int i;
601 stag = get_stagger();
603 for (i = 0; i < num_counters; ++i) {
605 if (!reset_value[i])
606 continue;
609 * there is some eccentricity in the hardware which
610 * requires that we perform 2 extra corrections:
612 * - check both the CCCR:OVF flag for overflow and the
613 * counter high bit for un-flagged overflows.
615 * - write the counter back twice to ensure it gets
616 * updated properly.
618 * the former seems to be related to extra NMIs happening
619 * during the current NMI; the latter is reported as errata
620 * N15 in intel doc 249199-029, pentium 4 specification
621 * update, though their suggested work-around does not
622 * appear to solve the problem.
625 real = VIRT_CTR(stag, i);
627 CCCR_READ(low, high, real);
628 CTR_READ(ctr, high, real);
629 if (CCCR_OVF_P(low) || CTR_OVERFLOW_P(ctr)) {
630 oprofile_add_sample(regs, i);
631 CTR_WRITE(reset_value[i], real);
632 CCCR_CLEAR_OVF(low);
633 CCCR_WRITE(low, high, real);
634 CTR_WRITE(reset_value[i], real);
638 /* P4 quirk: you have to re-unmask the apic vector */
639 apic_write(APIC_LVTPC, apic_read(APIC_LVTPC) & ~APIC_LVT_MASKED);
641 /* See op_model_ppro.c */
642 return 1;
646 static void p4_start(struct op_msrs const * const msrs)
648 unsigned int low, high, stag;
649 int i;
651 stag = get_stagger();
653 for (i = 0; i < num_counters; ++i) {
654 if (!reset_value[i])
655 continue;
656 CCCR_READ(low, high, VIRT_CTR(stag, i));
657 CCCR_SET_ENABLE(low);
658 CCCR_WRITE(low, high, VIRT_CTR(stag, i));
663 static void p4_stop(struct op_msrs const * const msrs)
665 unsigned int low, high, stag;
666 int i;
668 stag = get_stagger();
670 for (i = 0; i < num_counters; ++i) {
671 if (!reset_value[i])
672 continue;
673 CCCR_READ(low, high, VIRT_CTR(stag, i));
674 CCCR_SET_DISABLE(low);
675 CCCR_WRITE(low, high, VIRT_CTR(stag, i));
679 static void p4_shutdown(struct op_msrs const * const msrs)
681 int i;
683 for (i = 0 ; i < num_counters ; ++i) {
684 if (CTR_IS_RESERVED(msrs, i))
685 release_perfctr_nmi(msrs->counters[i].addr);
688 * some of the control registers are specially reserved in
689 * conjunction with the counter registers (hence the starting offset).
690 * This saves a few bits.
692 for (i = num_counters ; i < num_controls ; ++i) {
693 if (CTRL_IS_RESERVED(msrs, i))
694 release_evntsel_nmi(msrs->controls[i].addr);
699 #ifdef CONFIG_SMP
700 struct op_x86_model_spec const op_p4_ht2_spec = {
701 .num_counters = NUM_COUNTERS_HT2,
702 .num_controls = NUM_CONTROLS_HT2,
703 .fill_in_addresses = &p4_fill_in_addresses,
704 .setup_ctrs = &p4_setup_ctrs,
705 .check_ctrs = &p4_check_ctrs,
706 .start = &p4_start,
707 .stop = &p4_stop,
708 .shutdown = &p4_shutdown
710 #endif
712 struct op_x86_model_spec const op_p4_spec = {
713 .num_counters = NUM_COUNTERS_NON_HT,
714 .num_controls = NUM_CONTROLS_NON_HT,
715 .fill_in_addresses = &p4_fill_in_addresses,
716 .setup_ctrs = &p4_setup_ctrs,
717 .check_ctrs = &p4_check_ctrs,
718 .start = &p4_start,
719 .stop = &p4_stop,
720 .shutdown = &p4_shutdown