dma-debug: add checking for [alloc|free]_coherent
[linux-2.6/verdex.git] / kernel / irq / handle.c
blob3aba8d12f328ec91e59f5c72217ceb0c0d2fd0a1
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
21 #include "internals.h"
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
26 struct lock_class_key irq_desc_lock_class;
28 /**
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 print_irq_desc(irq, desc);
38 kstat_incr_irqs_this_cpu(irq, desc);
39 ack_bad_irq(irq);
42 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
43 static void __init init_irq_default_affinity(void)
45 alloc_bootmem_cpumask_var(&irq_default_affinity);
46 cpumask_setall(irq_default_affinity);
48 #else
49 static void __init init_irq_default_affinity(void)
52 #endif
55 * Linux has a controller-independent interrupt architecture.
56 * Every controller has a 'controller-template', that is used
57 * by the main code to do the right thing. Each driver-visible
58 * interrupt source is transparently wired to the appropriate
59 * controller. Thus drivers need not be aware of the
60 * interrupt-controller.
62 * The code is designed to be easily extended with new/different
63 * interrupt controllers, without having to do assembly magic or
64 * having to touch the generic code.
66 * Controller mappings for all interrupt sources:
68 int nr_irqs = NR_IRQS;
69 EXPORT_SYMBOL_GPL(nr_irqs);
71 #ifdef CONFIG_SPARSE_IRQ
72 static struct irq_desc irq_desc_init = {
73 .irq = -1,
74 .status = IRQ_DISABLED,
75 .chip = &no_irq_chip,
76 .handle_irq = handle_bad_irq,
77 .depth = 1,
78 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
79 #ifdef CONFIG_SMP
80 .affinity = CPU_MASK_ALL
81 #endif
84 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
86 unsigned long bytes;
87 char *ptr;
88 int node;
90 /* Compute how many bytes we need per irq and allocate them */
91 bytes = nr * sizeof(unsigned int);
93 node = cpu_to_node(cpu);
94 ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
95 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node);
97 if (ptr)
98 desc->kstat_irqs = (unsigned int *)ptr;
101 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
103 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
105 spin_lock_init(&desc->lock);
106 desc->irq = irq;
107 #ifdef CONFIG_SMP
108 desc->cpu = cpu;
109 #endif
110 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
111 init_kstat_irqs(desc, cpu, nr_cpu_ids);
112 if (!desc->kstat_irqs) {
113 printk(KERN_ERR "can not alloc kstat_irqs\n");
114 BUG_ON(1);
116 arch_init_chip_data(desc, cpu);
120 * Protect the sparse_irqs:
122 DEFINE_SPINLOCK(sparse_irq_lock);
124 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
126 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
127 [0 ... NR_IRQS_LEGACY-1] = {
128 .irq = -1,
129 .status = IRQ_DISABLED,
130 .chip = &no_irq_chip,
131 .handle_irq = handle_bad_irq,
132 .depth = 1,
133 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
134 #ifdef CONFIG_SMP
135 .affinity = CPU_MASK_ALL
136 #endif
140 /* FIXME: use bootmem alloc ...*/
141 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
143 int __init early_irq_init(void)
145 struct irq_desc *desc;
146 int legacy_count;
147 int i;
149 init_irq_default_affinity();
151 desc = irq_desc_legacy;
152 legacy_count = ARRAY_SIZE(irq_desc_legacy);
154 for (i = 0; i < legacy_count; i++) {
155 desc[i].irq = i;
156 desc[i].kstat_irqs = kstat_irqs_legacy[i];
157 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
159 irq_desc_ptrs[i] = desc + i;
162 for (i = legacy_count; i < NR_IRQS; i++)
163 irq_desc_ptrs[i] = NULL;
165 return arch_early_irq_init();
168 struct irq_desc *irq_to_desc(unsigned int irq)
170 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
173 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
175 struct irq_desc *desc;
176 unsigned long flags;
177 int node;
179 if (irq >= NR_IRQS) {
180 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
181 irq, NR_IRQS);
182 WARN_ON(1);
183 return NULL;
186 desc = irq_desc_ptrs[irq];
187 if (desc)
188 return desc;
190 spin_lock_irqsave(&sparse_irq_lock, flags);
192 /* We have to check it to avoid races with another CPU */
193 desc = irq_desc_ptrs[irq];
194 if (desc)
195 goto out_unlock;
197 node = cpu_to_node(cpu);
198 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
199 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
200 irq, cpu, node);
201 if (!desc) {
202 printk(KERN_ERR "can not alloc irq_desc\n");
203 BUG_ON(1);
205 init_one_irq_desc(irq, desc, cpu);
207 irq_desc_ptrs[irq] = desc;
209 out_unlock:
210 spin_unlock_irqrestore(&sparse_irq_lock, flags);
212 return desc;
215 #else /* !CONFIG_SPARSE_IRQ */
217 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
218 [0 ... NR_IRQS-1] = {
219 .status = IRQ_DISABLED,
220 .chip = &no_irq_chip,
221 .handle_irq = handle_bad_irq,
222 .depth = 1,
223 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
224 #ifdef CONFIG_SMP
225 .affinity = CPU_MASK_ALL
226 #endif
230 int __init early_irq_init(void)
232 struct irq_desc *desc;
233 int count;
234 int i;
236 init_irq_default_affinity();
238 desc = irq_desc;
239 count = ARRAY_SIZE(irq_desc);
241 for (i = 0; i < count; i++)
242 desc[i].irq = i;
244 return arch_early_irq_init();
247 struct irq_desc *irq_to_desc(unsigned int irq)
249 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
252 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
254 return irq_to_desc(irq);
256 #endif /* !CONFIG_SPARSE_IRQ */
259 * What should we do if we get a hw irq event on an illegal vector?
260 * Each architecture has to answer this themself.
262 static void ack_bad(unsigned int irq)
264 struct irq_desc *desc = irq_to_desc(irq);
266 print_irq_desc(irq, desc);
267 ack_bad_irq(irq);
271 * NOP functions
273 static void noop(unsigned int irq)
277 static unsigned int noop_ret(unsigned int irq)
279 return 0;
283 * Generic no controller implementation
285 struct irq_chip no_irq_chip = {
286 .name = "none",
287 .startup = noop_ret,
288 .shutdown = noop,
289 .enable = noop,
290 .disable = noop,
291 .ack = ack_bad,
292 .end = noop,
296 * Generic dummy implementation which can be used for
297 * real dumb interrupt sources
299 struct irq_chip dummy_irq_chip = {
300 .name = "dummy",
301 .startup = noop_ret,
302 .shutdown = noop,
303 .enable = noop,
304 .disable = noop,
305 .ack = noop,
306 .mask = noop,
307 .unmask = noop,
308 .end = noop,
312 * Special, empty irq handler:
314 irqreturn_t no_action(int cpl, void *dev_id)
316 return IRQ_NONE;
320 * handle_IRQ_event - irq action chain handler
321 * @irq: the interrupt number
322 * @action: the interrupt action chain for this irq
324 * Handles the action chain of an irq event
326 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
328 irqreturn_t ret, retval = IRQ_NONE;
329 unsigned int status = 0;
331 if (!(action->flags & IRQF_DISABLED))
332 local_irq_enable_in_hardirq();
334 do {
335 ret = action->handler(irq, action->dev_id);
336 if (ret == IRQ_HANDLED)
337 status |= action->flags;
338 retval |= ret;
339 action = action->next;
340 } while (action);
342 if (status & IRQF_SAMPLE_RANDOM)
343 add_interrupt_randomness(irq);
344 local_irq_disable();
346 return retval;
349 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
351 * __do_IRQ - original all in one highlevel IRQ handler
352 * @irq: the interrupt number
354 * __do_IRQ handles all normal device IRQ's (the special
355 * SMP cross-CPU interrupts have their own specific
356 * handlers).
358 * This is the original x86 implementation which is used for every
359 * interrupt type.
361 unsigned int __do_IRQ(unsigned int irq)
363 struct irq_desc *desc = irq_to_desc(irq);
364 struct irqaction *action;
365 unsigned int status;
367 kstat_incr_irqs_this_cpu(irq, desc);
369 if (CHECK_IRQ_PER_CPU(desc->status)) {
370 irqreturn_t action_ret;
373 * No locking required for CPU-local interrupts:
375 if (desc->chip->ack) {
376 desc->chip->ack(irq);
377 /* get new one */
378 desc = irq_remap_to_desc(irq, desc);
380 if (likely(!(desc->status & IRQ_DISABLED))) {
381 action_ret = handle_IRQ_event(irq, desc->action);
382 if (!noirqdebug)
383 note_interrupt(irq, desc, action_ret);
385 desc->chip->end(irq);
386 return 1;
389 spin_lock(&desc->lock);
390 if (desc->chip->ack) {
391 desc->chip->ack(irq);
392 desc = irq_remap_to_desc(irq, desc);
395 * REPLAY is when Linux resends an IRQ that was dropped earlier
396 * WAITING is used by probe to mark irqs that are being tested
398 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
399 status |= IRQ_PENDING; /* we _want_ to handle it */
402 * If the IRQ is disabled for whatever reason, we cannot
403 * use the action we have.
405 action = NULL;
406 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
407 action = desc->action;
408 status &= ~IRQ_PENDING; /* we commit to handling */
409 status |= IRQ_INPROGRESS; /* we are handling it */
411 desc->status = status;
414 * If there is no IRQ handler or it was disabled, exit early.
415 * Since we set PENDING, if another processor is handling
416 * a different instance of this same irq, the other processor
417 * will take care of it.
419 if (unlikely(!action))
420 goto out;
423 * Edge triggered interrupts need to remember
424 * pending events.
425 * This applies to any hw interrupts that allow a second
426 * instance of the same irq to arrive while we are in do_IRQ
427 * or in the handler. But the code here only handles the _second_
428 * instance of the irq, not the third or fourth. So it is mostly
429 * useful for irq hardware that does not mask cleanly in an
430 * SMP environment.
432 for (;;) {
433 irqreturn_t action_ret;
435 spin_unlock(&desc->lock);
437 action_ret = handle_IRQ_event(irq, action);
438 if (!noirqdebug)
439 note_interrupt(irq, desc, action_ret);
441 spin_lock(&desc->lock);
442 if (likely(!(desc->status & IRQ_PENDING)))
443 break;
444 desc->status &= ~IRQ_PENDING;
446 desc->status &= ~IRQ_INPROGRESS;
448 out:
450 * The ->end() handler has to deal with interrupts which got
451 * disabled while the handler was running.
453 desc->chip->end(irq);
454 spin_unlock(&desc->lock);
456 return 1;
458 #endif
460 void early_init_irq_lock_class(void)
462 struct irq_desc *desc;
463 int i;
465 for_each_irq_desc(i, desc) {
466 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
470 #ifdef CONFIG_SPARSE_IRQ
471 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
473 struct irq_desc *desc = irq_to_desc(irq);
474 return desc ? desc->kstat_irqs[cpu] : 0;
476 #endif
477 EXPORT_SYMBOL(kstat_irqs_cpu);