V4L/DVB (10027): m5602: convert the s5k83a sensor to use the common function
[linux-2.6/verdex.git] / block / blk-core.c
blob561e8a1b43a4a526e405905c69cf8f0e15a4df27
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
33 #include "blk.h"
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct hd_struct *part;
68 int rw = rq_data_dir(rq);
69 int cpu;
71 if (!blk_fs_request(rq) || !rq->rq_disk)
72 return;
74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
77 if (!new_io)
78 part_stat_inc(cpu, part, merges[rw]);
79 else {
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
84 part_stat_unlock();
87 void blk_queue_congestion_threshold(struct request_queue *q)
89 int nr;
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
109 * Will return NULL if the request queue cannot be located.
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev);
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 void blk_rq_init(struct request_queue *q, struct request *rq)
124 memset(rq, 0, sizeof(*rq));
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->tag = -1;
135 rq->ref_count = 1;
137 EXPORT_SYMBOL(blk_rq_init);
139 static void req_bio_endio(struct request *rq, struct bio *bio,
140 unsigned int nbytes, int error)
142 struct request_queue *q = rq->q;
144 if (&q->bar_rq != rq) {
145 if (error)
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
150 if (unlikely(nbytes > bio->bi_size)) {
151 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
152 __func__, nbytes, bio->bi_size);
153 nbytes = bio->bi_size;
156 bio->bi_size -= nbytes;
157 bio->bi_sector += (nbytes >> 9);
159 if (bio_integrity(bio))
160 bio_integrity_advance(bio, nbytes);
162 if (bio->bi_size == 0)
163 bio_endio(bio, error);
164 } else {
167 * Okay, this is the barrier request in progress, just
168 * record the error;
170 if (error && !q->orderr)
171 q->orderr = error;
175 void blk_dump_rq_flags(struct request *rq, char *msg)
177 int bit;
179 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
180 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
181 rq->cmd_flags);
183 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
184 (unsigned long long)rq->sector,
185 rq->nr_sectors,
186 rq->current_nr_sectors);
187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
188 rq->bio, rq->biotail,
189 rq->buffer, rq->data,
190 rq->data_len);
192 if (blk_pc_request(rq)) {
193 printk(KERN_INFO " cdb: ");
194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
199 EXPORT_SYMBOL(blk_dump_rq_flags);
202 * "plug" the device if there are no outstanding requests: this will
203 * force the transfer to start only after we have put all the requests
204 * on the list.
206 * This is called with interrupts off and no requests on the queue and
207 * with the queue lock held.
209 void blk_plug_device(struct request_queue *q)
211 WARN_ON(!irqs_disabled());
214 * don't plug a stopped queue, it must be paired with blk_start_queue()
215 * which will restart the queueing
217 if (blk_queue_stopped(q))
218 return;
220 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
221 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
222 trace_block_plug(q);
225 EXPORT_SYMBOL(blk_plug_device);
228 * blk_plug_device_unlocked - plug a device without queue lock held
229 * @q: The &struct request_queue to plug
231 * Description:
232 * Like @blk_plug_device(), but grabs the queue lock and disables
233 * interrupts.
235 void blk_plug_device_unlocked(struct request_queue *q)
237 unsigned long flags;
239 spin_lock_irqsave(q->queue_lock, flags);
240 blk_plug_device(q);
241 spin_unlock_irqrestore(q->queue_lock, flags);
243 EXPORT_SYMBOL(blk_plug_device_unlocked);
246 * remove the queue from the plugged list, if present. called with
247 * queue lock held and interrupts disabled.
249 int blk_remove_plug(struct request_queue *q)
251 WARN_ON(!irqs_disabled());
253 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
254 return 0;
256 del_timer(&q->unplug_timer);
257 return 1;
259 EXPORT_SYMBOL(blk_remove_plug);
262 * remove the plug and let it rip..
264 void __generic_unplug_device(struct request_queue *q)
266 if (unlikely(blk_queue_stopped(q)))
267 return;
269 if (!blk_remove_plug(q))
270 return;
272 q->request_fn(q);
276 * generic_unplug_device - fire a request queue
277 * @q: The &struct request_queue in question
279 * Description:
280 * Linux uses plugging to build bigger requests queues before letting
281 * the device have at them. If a queue is plugged, the I/O scheduler
282 * is still adding and merging requests on the queue. Once the queue
283 * gets unplugged, the request_fn defined for the queue is invoked and
284 * transfers started.
286 void generic_unplug_device(struct request_queue *q)
288 if (blk_queue_plugged(q)) {
289 spin_lock_irq(q->queue_lock);
290 __generic_unplug_device(q);
291 spin_unlock_irq(q->queue_lock);
294 EXPORT_SYMBOL(generic_unplug_device);
296 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
297 struct page *page)
299 struct request_queue *q = bdi->unplug_io_data;
301 blk_unplug(q);
304 void blk_unplug_work(struct work_struct *work)
306 struct request_queue *q =
307 container_of(work, struct request_queue, unplug_work);
309 trace_block_unplug_io(q);
310 q->unplug_fn(q);
313 void blk_unplug_timeout(unsigned long data)
315 struct request_queue *q = (struct request_queue *)data;
317 trace_block_unplug_timer(q);
318 kblockd_schedule_work(q, &q->unplug_work);
321 void blk_unplug(struct request_queue *q)
324 * devices don't necessarily have an ->unplug_fn defined
326 if (q->unplug_fn) {
327 trace_block_unplug_io(q);
328 q->unplug_fn(q);
331 EXPORT_SYMBOL(blk_unplug);
333 static void blk_invoke_request_fn(struct request_queue *q)
335 if (unlikely(blk_queue_stopped(q)))
336 return;
339 * one level of recursion is ok and is much faster than kicking
340 * the unplug handling
342 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
343 q->request_fn(q);
344 queue_flag_clear(QUEUE_FLAG_REENTER, q);
345 } else {
346 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
347 kblockd_schedule_work(q, &q->unplug_work);
352 * blk_start_queue - restart a previously stopped queue
353 * @q: The &struct request_queue in question
355 * Description:
356 * blk_start_queue() will clear the stop flag on the queue, and call
357 * the request_fn for the queue if it was in a stopped state when
358 * entered. Also see blk_stop_queue(). Queue lock must be held.
360 void blk_start_queue(struct request_queue *q)
362 WARN_ON(!irqs_disabled());
364 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
365 blk_invoke_request_fn(q);
367 EXPORT_SYMBOL(blk_start_queue);
370 * blk_stop_queue - stop a queue
371 * @q: The &struct request_queue in question
373 * Description:
374 * The Linux block layer assumes that a block driver will consume all
375 * entries on the request queue when the request_fn strategy is called.
376 * Often this will not happen, because of hardware limitations (queue
377 * depth settings). If a device driver gets a 'queue full' response,
378 * or if it simply chooses not to queue more I/O at one point, it can
379 * call this function to prevent the request_fn from being called until
380 * the driver has signalled it's ready to go again. This happens by calling
381 * blk_start_queue() to restart queue operations. Queue lock must be held.
383 void blk_stop_queue(struct request_queue *q)
385 blk_remove_plug(q);
386 queue_flag_set(QUEUE_FLAG_STOPPED, q);
388 EXPORT_SYMBOL(blk_stop_queue);
391 * blk_sync_queue - cancel any pending callbacks on a queue
392 * @q: the queue
394 * Description:
395 * The block layer may perform asynchronous callback activity
396 * on a queue, such as calling the unplug function after a timeout.
397 * A block device may call blk_sync_queue to ensure that any
398 * such activity is cancelled, thus allowing it to release resources
399 * that the callbacks might use. The caller must already have made sure
400 * that its ->make_request_fn will not re-add plugging prior to calling
401 * this function.
404 void blk_sync_queue(struct request_queue *q)
406 del_timer_sync(&q->unplug_timer);
407 kblockd_flush_work(&q->unplug_work);
409 EXPORT_SYMBOL(blk_sync_queue);
412 * __blk_run_queue - run a single device queue
413 * @q: The queue to run
415 * Description:
416 * See @blk_run_queue. This variant must be called with the queue lock
417 * held and interrupts disabled.
420 void __blk_run_queue(struct request_queue *q)
422 blk_remove_plug(q);
425 * Only recurse once to avoid overrunning the stack, let the unplug
426 * handling reinvoke the handler shortly if we already got there.
428 if (!elv_queue_empty(q))
429 blk_invoke_request_fn(q);
431 EXPORT_SYMBOL(__blk_run_queue);
434 * blk_run_queue - run a single device queue
435 * @q: The queue to run
437 * Description:
438 * Invoke request handling on this queue, if it has pending work to do.
439 * May be used to restart queueing when a request has completed. Also
440 * See @blk_start_queueing.
443 void blk_run_queue(struct request_queue *q)
445 unsigned long flags;
447 spin_lock_irqsave(q->queue_lock, flags);
448 __blk_run_queue(q);
449 spin_unlock_irqrestore(q->queue_lock, flags);
451 EXPORT_SYMBOL(blk_run_queue);
453 void blk_put_queue(struct request_queue *q)
455 kobject_put(&q->kobj);
458 void blk_cleanup_queue(struct request_queue *q)
461 * We know we have process context here, so we can be a little
462 * cautious and ensure that pending block actions on this device
463 * are done before moving on. Going into this function, we should
464 * not have processes doing IO to this device.
466 blk_sync_queue(q);
468 mutex_lock(&q->sysfs_lock);
469 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
470 mutex_unlock(&q->sysfs_lock);
472 if (q->elevator)
473 elevator_exit(q->elevator);
475 blk_put_queue(q);
477 EXPORT_SYMBOL(blk_cleanup_queue);
479 static int blk_init_free_list(struct request_queue *q)
481 struct request_list *rl = &q->rq;
483 rl->count[READ] = rl->count[WRITE] = 0;
484 rl->starved[READ] = rl->starved[WRITE] = 0;
485 rl->elvpriv = 0;
486 init_waitqueue_head(&rl->wait[READ]);
487 init_waitqueue_head(&rl->wait[WRITE]);
489 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
490 mempool_free_slab, request_cachep, q->node);
492 if (!rl->rq_pool)
493 return -ENOMEM;
495 return 0;
498 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
500 return blk_alloc_queue_node(gfp_mask, -1);
502 EXPORT_SYMBOL(blk_alloc_queue);
504 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
506 struct request_queue *q;
507 int err;
509 q = kmem_cache_alloc_node(blk_requestq_cachep,
510 gfp_mask | __GFP_ZERO, node_id);
511 if (!q)
512 return NULL;
514 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
515 q->backing_dev_info.unplug_io_data = q;
516 err = bdi_init(&q->backing_dev_info);
517 if (err) {
518 kmem_cache_free(blk_requestq_cachep, q);
519 return NULL;
522 init_timer(&q->unplug_timer);
523 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
524 INIT_LIST_HEAD(&q->timeout_list);
525 INIT_WORK(&q->unplug_work, blk_unplug_work);
527 kobject_init(&q->kobj, &blk_queue_ktype);
529 mutex_init(&q->sysfs_lock);
530 spin_lock_init(&q->__queue_lock);
532 return q;
534 EXPORT_SYMBOL(blk_alloc_queue_node);
537 * blk_init_queue - prepare a request queue for use with a block device
538 * @rfn: The function to be called to process requests that have been
539 * placed on the queue.
540 * @lock: Request queue spin lock
542 * Description:
543 * If a block device wishes to use the standard request handling procedures,
544 * which sorts requests and coalesces adjacent requests, then it must
545 * call blk_init_queue(). The function @rfn will be called when there
546 * are requests on the queue that need to be processed. If the device
547 * supports plugging, then @rfn may not be called immediately when requests
548 * are available on the queue, but may be called at some time later instead.
549 * Plugged queues are generally unplugged when a buffer belonging to one
550 * of the requests on the queue is needed, or due to memory pressure.
552 * @rfn is not required, or even expected, to remove all requests off the
553 * queue, but only as many as it can handle at a time. If it does leave
554 * requests on the queue, it is responsible for arranging that the requests
555 * get dealt with eventually.
557 * The queue spin lock must be held while manipulating the requests on the
558 * request queue; this lock will be taken also from interrupt context, so irq
559 * disabling is needed for it.
561 * Function returns a pointer to the initialized request queue, or %NULL if
562 * it didn't succeed.
564 * Note:
565 * blk_init_queue() must be paired with a blk_cleanup_queue() call
566 * when the block device is deactivated (such as at module unload).
569 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
571 return blk_init_queue_node(rfn, lock, -1);
573 EXPORT_SYMBOL(blk_init_queue);
575 struct request_queue *
576 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
578 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 if (!q)
581 return NULL;
583 q->node = node_id;
584 if (blk_init_free_list(q)) {
585 kmem_cache_free(blk_requestq_cachep, q);
586 return NULL;
590 * if caller didn't supply a lock, they get per-queue locking with
591 * our embedded lock
593 if (!lock)
594 lock = &q->__queue_lock;
596 q->request_fn = rfn;
597 q->prep_rq_fn = NULL;
598 q->unplug_fn = generic_unplug_device;
599 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
600 1 << QUEUE_FLAG_STACKABLE);
601 q->queue_lock = lock;
603 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
605 blk_queue_make_request(q, __make_request);
606 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
608 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
609 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
611 q->sg_reserved_size = INT_MAX;
613 blk_set_cmd_filter_defaults(&q->cmd_filter);
616 * all done
618 if (!elevator_init(q, NULL)) {
619 blk_queue_congestion_threshold(q);
620 return q;
623 blk_put_queue(q);
624 return NULL;
626 EXPORT_SYMBOL(blk_init_queue_node);
628 int blk_get_queue(struct request_queue *q)
630 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
631 kobject_get(&q->kobj);
632 return 0;
635 return 1;
638 static inline void blk_free_request(struct request_queue *q, struct request *rq)
640 if (rq->cmd_flags & REQ_ELVPRIV)
641 elv_put_request(q, rq);
642 mempool_free(rq, q->rq.rq_pool);
645 static struct request *
646 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
648 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
650 if (!rq)
651 return NULL;
653 blk_rq_init(q, rq);
655 rq->cmd_flags = rw | REQ_ALLOCED;
657 if (priv) {
658 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
659 mempool_free(rq, q->rq.rq_pool);
660 return NULL;
662 rq->cmd_flags |= REQ_ELVPRIV;
665 return rq;
669 * ioc_batching returns true if the ioc is a valid batching request and
670 * should be given priority access to a request.
672 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
674 if (!ioc)
675 return 0;
678 * Make sure the process is able to allocate at least 1 request
679 * even if the batch times out, otherwise we could theoretically
680 * lose wakeups.
682 return ioc->nr_batch_requests == q->nr_batching ||
683 (ioc->nr_batch_requests > 0
684 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
688 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
689 * will cause the process to be a "batcher" on all queues in the system. This
690 * is the behaviour we want though - once it gets a wakeup it should be given
691 * a nice run.
693 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
695 if (!ioc || ioc_batching(q, ioc))
696 return;
698 ioc->nr_batch_requests = q->nr_batching;
699 ioc->last_waited = jiffies;
702 static void __freed_request(struct request_queue *q, int rw)
704 struct request_list *rl = &q->rq;
706 if (rl->count[rw] < queue_congestion_off_threshold(q))
707 blk_clear_queue_congested(q, rw);
709 if (rl->count[rw] + 1 <= q->nr_requests) {
710 if (waitqueue_active(&rl->wait[rw]))
711 wake_up(&rl->wait[rw]);
713 blk_clear_queue_full(q, rw);
718 * A request has just been released. Account for it, update the full and
719 * congestion status, wake up any waiters. Called under q->queue_lock.
721 static void freed_request(struct request_queue *q, int rw, int priv)
723 struct request_list *rl = &q->rq;
725 rl->count[rw]--;
726 if (priv)
727 rl->elvpriv--;
729 __freed_request(q, rw);
731 if (unlikely(rl->starved[rw ^ 1]))
732 __freed_request(q, rw ^ 1);
735 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
737 * Get a free request, queue_lock must be held.
738 * Returns NULL on failure, with queue_lock held.
739 * Returns !NULL on success, with queue_lock *not held*.
741 static struct request *get_request(struct request_queue *q, int rw_flags,
742 struct bio *bio, gfp_t gfp_mask)
744 struct request *rq = NULL;
745 struct request_list *rl = &q->rq;
746 struct io_context *ioc = NULL;
747 const int rw = rw_flags & 0x01;
748 int may_queue, priv;
750 may_queue = elv_may_queue(q, rw_flags);
751 if (may_queue == ELV_MQUEUE_NO)
752 goto rq_starved;
754 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
755 if (rl->count[rw]+1 >= q->nr_requests) {
756 ioc = current_io_context(GFP_ATOMIC, q->node);
758 * The queue will fill after this allocation, so set
759 * it as full, and mark this process as "batching".
760 * This process will be allowed to complete a batch of
761 * requests, others will be blocked.
763 if (!blk_queue_full(q, rw)) {
764 ioc_set_batching(q, ioc);
765 blk_set_queue_full(q, rw);
766 } else {
767 if (may_queue != ELV_MQUEUE_MUST
768 && !ioc_batching(q, ioc)) {
770 * The queue is full and the allocating
771 * process is not a "batcher", and not
772 * exempted by the IO scheduler
774 goto out;
778 blk_set_queue_congested(q, rw);
782 * Only allow batching queuers to allocate up to 50% over the defined
783 * limit of requests, otherwise we could have thousands of requests
784 * allocated with any setting of ->nr_requests
786 if (rl->count[rw] >= (3 * q->nr_requests / 2))
787 goto out;
789 rl->count[rw]++;
790 rl->starved[rw] = 0;
792 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
793 if (priv)
794 rl->elvpriv++;
796 spin_unlock_irq(q->queue_lock);
798 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
799 if (unlikely(!rq)) {
801 * Allocation failed presumably due to memory. Undo anything
802 * we might have messed up.
804 * Allocating task should really be put onto the front of the
805 * wait queue, but this is pretty rare.
807 spin_lock_irq(q->queue_lock);
808 freed_request(q, rw, priv);
811 * in the very unlikely event that allocation failed and no
812 * requests for this direction was pending, mark us starved
813 * so that freeing of a request in the other direction will
814 * notice us. another possible fix would be to split the
815 * rq mempool into READ and WRITE
817 rq_starved:
818 if (unlikely(rl->count[rw] == 0))
819 rl->starved[rw] = 1;
821 goto out;
825 * ioc may be NULL here, and ioc_batching will be false. That's
826 * OK, if the queue is under the request limit then requests need
827 * not count toward the nr_batch_requests limit. There will always
828 * be some limit enforced by BLK_BATCH_TIME.
830 if (ioc_batching(q, ioc))
831 ioc->nr_batch_requests--;
833 trace_block_getrq(q, bio, rw);
834 out:
835 return rq;
839 * No available requests for this queue, unplug the device and wait for some
840 * requests to become available.
842 * Called with q->queue_lock held, and returns with it unlocked.
844 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
845 struct bio *bio)
847 const int rw = rw_flags & 0x01;
848 struct request *rq;
850 rq = get_request(q, rw_flags, bio, GFP_NOIO);
851 while (!rq) {
852 DEFINE_WAIT(wait);
853 struct io_context *ioc;
854 struct request_list *rl = &q->rq;
856 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
857 TASK_UNINTERRUPTIBLE);
859 trace_block_sleeprq(q, bio, rw);
861 __generic_unplug_device(q);
862 spin_unlock_irq(q->queue_lock);
863 io_schedule();
866 * After sleeping, we become a "batching" process and
867 * will be able to allocate at least one request, and
868 * up to a big batch of them for a small period time.
869 * See ioc_batching, ioc_set_batching
871 ioc = current_io_context(GFP_NOIO, q->node);
872 ioc_set_batching(q, ioc);
874 spin_lock_irq(q->queue_lock);
875 finish_wait(&rl->wait[rw], &wait);
877 rq = get_request(q, rw_flags, bio, GFP_NOIO);
880 return rq;
883 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
885 struct request *rq;
887 BUG_ON(rw != READ && rw != WRITE);
889 spin_lock_irq(q->queue_lock);
890 if (gfp_mask & __GFP_WAIT) {
891 rq = get_request_wait(q, rw, NULL);
892 } else {
893 rq = get_request(q, rw, NULL, gfp_mask);
894 if (!rq)
895 spin_unlock_irq(q->queue_lock);
897 /* q->queue_lock is unlocked at this point */
899 return rq;
901 EXPORT_SYMBOL(blk_get_request);
904 * blk_start_queueing - initiate dispatch of requests to device
905 * @q: request queue to kick into gear
907 * This is basically a helper to remove the need to know whether a queue
908 * is plugged or not if someone just wants to initiate dispatch of requests
909 * for this queue. Should be used to start queueing on a device outside
910 * of ->request_fn() context. Also see @blk_run_queue.
912 * The queue lock must be held with interrupts disabled.
914 void blk_start_queueing(struct request_queue *q)
916 if (!blk_queue_plugged(q)) {
917 if (unlikely(blk_queue_stopped(q)))
918 return;
919 q->request_fn(q);
920 } else
921 __generic_unplug_device(q);
923 EXPORT_SYMBOL(blk_start_queueing);
926 * blk_requeue_request - put a request back on queue
927 * @q: request queue where request should be inserted
928 * @rq: request to be inserted
930 * Description:
931 * Drivers often keep queueing requests until the hardware cannot accept
932 * more, when that condition happens we need to put the request back
933 * on the queue. Must be called with queue lock held.
935 void blk_requeue_request(struct request_queue *q, struct request *rq)
937 blk_delete_timer(rq);
938 blk_clear_rq_complete(rq);
939 trace_block_rq_requeue(q, rq);
941 if (blk_rq_tagged(rq))
942 blk_queue_end_tag(q, rq);
944 elv_requeue_request(q, rq);
946 EXPORT_SYMBOL(blk_requeue_request);
949 * blk_insert_request - insert a special request into a request queue
950 * @q: request queue where request should be inserted
951 * @rq: request to be inserted
952 * @at_head: insert request at head or tail of queue
953 * @data: private data
955 * Description:
956 * Many block devices need to execute commands asynchronously, so they don't
957 * block the whole kernel from preemption during request execution. This is
958 * accomplished normally by inserting aritficial requests tagged as
959 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
960 * be scheduled for actual execution by the request queue.
962 * We have the option of inserting the head or the tail of the queue.
963 * Typically we use the tail for new ioctls and so forth. We use the head
964 * of the queue for things like a QUEUE_FULL message from a device, or a
965 * host that is unable to accept a particular command.
967 void blk_insert_request(struct request_queue *q, struct request *rq,
968 int at_head, void *data)
970 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
971 unsigned long flags;
974 * tell I/O scheduler that this isn't a regular read/write (ie it
975 * must not attempt merges on this) and that it acts as a soft
976 * barrier
978 rq->cmd_type = REQ_TYPE_SPECIAL;
979 rq->cmd_flags |= REQ_SOFTBARRIER;
981 rq->special = data;
983 spin_lock_irqsave(q->queue_lock, flags);
986 * If command is tagged, release the tag
988 if (blk_rq_tagged(rq))
989 blk_queue_end_tag(q, rq);
991 drive_stat_acct(rq, 1);
992 __elv_add_request(q, rq, where, 0);
993 blk_start_queueing(q);
994 spin_unlock_irqrestore(q->queue_lock, flags);
996 EXPORT_SYMBOL(blk_insert_request);
999 * add-request adds a request to the linked list.
1000 * queue lock is held and interrupts disabled, as we muck with the
1001 * request queue list.
1003 static inline void add_request(struct request_queue *q, struct request *req)
1005 drive_stat_acct(req, 1);
1008 * elevator indicated where it wants this request to be
1009 * inserted at elevator_merge time
1011 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1014 static void part_round_stats_single(int cpu, struct hd_struct *part,
1015 unsigned long now)
1017 if (now == part->stamp)
1018 return;
1020 if (part->in_flight) {
1021 __part_stat_add(cpu, part, time_in_queue,
1022 part->in_flight * (now - part->stamp));
1023 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1025 part->stamp = now;
1029 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1030 * @cpu: cpu number for stats access
1031 * @part: target partition
1033 * The average IO queue length and utilisation statistics are maintained
1034 * by observing the current state of the queue length and the amount of
1035 * time it has been in this state for.
1037 * Normally, that accounting is done on IO completion, but that can result
1038 * in more than a second's worth of IO being accounted for within any one
1039 * second, leading to >100% utilisation. To deal with that, we call this
1040 * function to do a round-off before returning the results when reading
1041 * /proc/diskstats. This accounts immediately for all queue usage up to
1042 * the current jiffies and restarts the counters again.
1044 void part_round_stats(int cpu, struct hd_struct *part)
1046 unsigned long now = jiffies;
1048 if (part->partno)
1049 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1050 part_round_stats_single(cpu, part, now);
1052 EXPORT_SYMBOL_GPL(part_round_stats);
1055 * queue lock must be held
1057 void __blk_put_request(struct request_queue *q, struct request *req)
1059 if (unlikely(!q))
1060 return;
1061 if (unlikely(--req->ref_count))
1062 return;
1064 elv_completed_request(q, req);
1067 * Request may not have originated from ll_rw_blk. if not,
1068 * it didn't come out of our reserved rq pools
1070 if (req->cmd_flags & REQ_ALLOCED) {
1071 int rw = rq_data_dir(req);
1072 int priv = req->cmd_flags & REQ_ELVPRIV;
1074 BUG_ON(!list_empty(&req->queuelist));
1075 BUG_ON(!hlist_unhashed(&req->hash));
1077 blk_free_request(q, req);
1078 freed_request(q, rw, priv);
1081 EXPORT_SYMBOL_GPL(__blk_put_request);
1083 void blk_put_request(struct request *req)
1085 unsigned long flags;
1086 struct request_queue *q = req->q;
1088 spin_lock_irqsave(q->queue_lock, flags);
1089 __blk_put_request(q, req);
1090 spin_unlock_irqrestore(q->queue_lock, flags);
1092 EXPORT_SYMBOL(blk_put_request);
1094 void init_request_from_bio(struct request *req, struct bio *bio)
1096 req->cpu = bio->bi_comp_cpu;
1097 req->cmd_type = REQ_TYPE_FS;
1100 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1102 if (bio_rw_ahead(bio))
1103 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1104 REQ_FAILFAST_DRIVER);
1105 if (bio_failfast_dev(bio))
1106 req->cmd_flags |= REQ_FAILFAST_DEV;
1107 if (bio_failfast_transport(bio))
1108 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1109 if (bio_failfast_driver(bio))
1110 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1113 * REQ_BARRIER implies no merging, but lets make it explicit
1115 if (unlikely(bio_discard(bio))) {
1116 req->cmd_flags |= REQ_DISCARD;
1117 if (bio_barrier(bio))
1118 req->cmd_flags |= REQ_SOFTBARRIER;
1119 req->q->prepare_discard_fn(req->q, req);
1120 } else if (unlikely(bio_barrier(bio)))
1121 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1123 if (bio_sync(bio))
1124 req->cmd_flags |= REQ_RW_SYNC;
1125 if (bio_rw_meta(bio))
1126 req->cmd_flags |= REQ_RW_META;
1128 req->errors = 0;
1129 req->hard_sector = req->sector = bio->bi_sector;
1130 req->ioprio = bio_prio(bio);
1131 req->start_time = jiffies;
1132 blk_rq_bio_prep(req->q, req, bio);
1135 static int __make_request(struct request_queue *q, struct bio *bio)
1137 struct request *req;
1138 int el_ret, nr_sectors, barrier, discard, err;
1139 const unsigned short prio = bio_prio(bio);
1140 const int sync = bio_sync(bio);
1141 int rw_flags;
1143 nr_sectors = bio_sectors(bio);
1146 * low level driver can indicate that it wants pages above a
1147 * certain limit bounced to low memory (ie for highmem, or even
1148 * ISA dma in theory)
1150 blk_queue_bounce(q, &bio);
1152 barrier = bio_barrier(bio);
1153 if (unlikely(barrier) && bio_has_data(bio) &&
1154 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1155 err = -EOPNOTSUPP;
1156 goto end_io;
1159 discard = bio_discard(bio);
1160 if (unlikely(discard) && !q->prepare_discard_fn) {
1161 err = -EOPNOTSUPP;
1162 goto end_io;
1165 spin_lock_irq(q->queue_lock);
1167 if (unlikely(barrier) || elv_queue_empty(q))
1168 goto get_rq;
1170 el_ret = elv_merge(q, &req, bio);
1171 switch (el_ret) {
1172 case ELEVATOR_BACK_MERGE:
1173 BUG_ON(!rq_mergeable(req));
1175 if (!ll_back_merge_fn(q, req, bio))
1176 break;
1178 trace_block_bio_backmerge(q, bio);
1180 req->biotail->bi_next = bio;
1181 req->biotail = bio;
1182 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1183 req->ioprio = ioprio_best(req->ioprio, prio);
1184 if (!blk_rq_cpu_valid(req))
1185 req->cpu = bio->bi_comp_cpu;
1186 drive_stat_acct(req, 0);
1187 if (!attempt_back_merge(q, req))
1188 elv_merged_request(q, req, el_ret);
1189 goto out;
1191 case ELEVATOR_FRONT_MERGE:
1192 BUG_ON(!rq_mergeable(req));
1194 if (!ll_front_merge_fn(q, req, bio))
1195 break;
1197 trace_block_bio_frontmerge(q, bio);
1199 bio->bi_next = req->bio;
1200 req->bio = bio;
1203 * may not be valid. if the low level driver said
1204 * it didn't need a bounce buffer then it better
1205 * not touch req->buffer either...
1207 req->buffer = bio_data(bio);
1208 req->current_nr_sectors = bio_cur_sectors(bio);
1209 req->hard_cur_sectors = req->current_nr_sectors;
1210 req->sector = req->hard_sector = bio->bi_sector;
1211 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1212 req->ioprio = ioprio_best(req->ioprio, prio);
1213 if (!blk_rq_cpu_valid(req))
1214 req->cpu = bio->bi_comp_cpu;
1215 drive_stat_acct(req, 0);
1216 if (!attempt_front_merge(q, req))
1217 elv_merged_request(q, req, el_ret);
1218 goto out;
1220 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1221 default:
1225 get_rq:
1227 * This sync check and mask will be re-done in init_request_from_bio(),
1228 * but we need to set it earlier to expose the sync flag to the
1229 * rq allocator and io schedulers.
1231 rw_flags = bio_data_dir(bio);
1232 if (sync)
1233 rw_flags |= REQ_RW_SYNC;
1236 * Grab a free request. This is might sleep but can not fail.
1237 * Returns with the queue unlocked.
1239 req = get_request_wait(q, rw_flags, bio);
1242 * After dropping the lock and possibly sleeping here, our request
1243 * may now be mergeable after it had proven unmergeable (above).
1244 * We don't worry about that case for efficiency. It won't happen
1245 * often, and the elevators are able to handle it.
1247 init_request_from_bio(req, bio);
1249 spin_lock_irq(q->queue_lock);
1250 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1251 bio_flagged(bio, BIO_CPU_AFFINE))
1252 req->cpu = blk_cpu_to_group(smp_processor_id());
1253 if (elv_queue_empty(q))
1254 blk_plug_device(q);
1255 add_request(q, req);
1256 out:
1257 if (sync)
1258 __generic_unplug_device(q);
1259 spin_unlock_irq(q->queue_lock);
1260 return 0;
1262 end_io:
1263 bio_endio(bio, err);
1264 return 0;
1268 * If bio->bi_dev is a partition, remap the location
1270 static inline void blk_partition_remap(struct bio *bio)
1272 struct block_device *bdev = bio->bi_bdev;
1274 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1275 struct hd_struct *p = bdev->bd_part;
1277 bio->bi_sector += p->start_sect;
1278 bio->bi_bdev = bdev->bd_contains;
1280 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1281 bdev->bd_dev, bio->bi_sector,
1282 bio->bi_sector - p->start_sect);
1286 static void handle_bad_sector(struct bio *bio)
1288 char b[BDEVNAME_SIZE];
1290 printk(KERN_INFO "attempt to access beyond end of device\n");
1291 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1292 bdevname(bio->bi_bdev, b),
1293 bio->bi_rw,
1294 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1295 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1297 set_bit(BIO_EOF, &bio->bi_flags);
1300 #ifdef CONFIG_FAIL_MAKE_REQUEST
1302 static DECLARE_FAULT_ATTR(fail_make_request);
1304 static int __init setup_fail_make_request(char *str)
1306 return setup_fault_attr(&fail_make_request, str);
1308 __setup("fail_make_request=", setup_fail_make_request);
1310 static int should_fail_request(struct bio *bio)
1312 struct hd_struct *part = bio->bi_bdev->bd_part;
1314 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1315 return should_fail(&fail_make_request, bio->bi_size);
1317 return 0;
1320 static int __init fail_make_request_debugfs(void)
1322 return init_fault_attr_dentries(&fail_make_request,
1323 "fail_make_request");
1326 late_initcall(fail_make_request_debugfs);
1328 #else /* CONFIG_FAIL_MAKE_REQUEST */
1330 static inline int should_fail_request(struct bio *bio)
1332 return 0;
1335 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1338 * Check whether this bio extends beyond the end of the device.
1340 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1342 sector_t maxsector;
1344 if (!nr_sectors)
1345 return 0;
1347 /* Test device or partition size, when known. */
1348 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1349 if (maxsector) {
1350 sector_t sector = bio->bi_sector;
1352 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1354 * This may well happen - the kernel calls bread()
1355 * without checking the size of the device, e.g., when
1356 * mounting a device.
1358 handle_bad_sector(bio);
1359 return 1;
1363 return 0;
1367 * generic_make_request - hand a buffer to its device driver for I/O
1368 * @bio: The bio describing the location in memory and on the device.
1370 * generic_make_request() is used to make I/O requests of block
1371 * devices. It is passed a &struct bio, which describes the I/O that needs
1372 * to be done.
1374 * generic_make_request() does not return any status. The
1375 * success/failure status of the request, along with notification of
1376 * completion, is delivered asynchronously through the bio->bi_end_io
1377 * function described (one day) else where.
1379 * The caller of generic_make_request must make sure that bi_io_vec
1380 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1381 * set to describe the device address, and the
1382 * bi_end_io and optionally bi_private are set to describe how
1383 * completion notification should be signaled.
1385 * generic_make_request and the drivers it calls may use bi_next if this
1386 * bio happens to be merged with someone else, and may change bi_dev and
1387 * bi_sector for remaps as it sees fit. So the values of these fields
1388 * should NOT be depended on after the call to generic_make_request.
1390 static inline void __generic_make_request(struct bio *bio)
1392 struct request_queue *q;
1393 sector_t old_sector;
1394 int ret, nr_sectors = bio_sectors(bio);
1395 dev_t old_dev;
1396 int err = -EIO;
1398 might_sleep();
1400 if (bio_check_eod(bio, nr_sectors))
1401 goto end_io;
1404 * Resolve the mapping until finished. (drivers are
1405 * still free to implement/resolve their own stacking
1406 * by explicitly returning 0)
1408 * NOTE: we don't repeat the blk_size check for each new device.
1409 * Stacking drivers are expected to know what they are doing.
1411 old_sector = -1;
1412 old_dev = 0;
1413 do {
1414 char b[BDEVNAME_SIZE];
1416 q = bdev_get_queue(bio->bi_bdev);
1417 if (!q) {
1418 printk(KERN_ERR
1419 "generic_make_request: Trying to access "
1420 "nonexistent block-device %s (%Lu)\n",
1421 bdevname(bio->bi_bdev, b),
1422 (long long) bio->bi_sector);
1423 end_io:
1424 bio_endio(bio, err);
1425 break;
1428 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1429 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1430 bdevname(bio->bi_bdev, b),
1431 bio_sectors(bio),
1432 q->max_hw_sectors);
1433 goto end_io;
1436 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1437 goto end_io;
1439 if (should_fail_request(bio))
1440 goto end_io;
1443 * If this device has partitions, remap block n
1444 * of partition p to block n+start(p) of the disk.
1446 blk_partition_remap(bio);
1448 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1449 goto end_io;
1451 if (old_sector != -1)
1452 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1453 old_sector);
1455 trace_block_bio_queue(q, bio);
1457 old_sector = bio->bi_sector;
1458 old_dev = bio->bi_bdev->bd_dev;
1460 if (bio_check_eod(bio, nr_sectors))
1461 goto end_io;
1462 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1463 (bio_discard(bio) && !q->prepare_discard_fn)) {
1464 err = -EOPNOTSUPP;
1465 goto end_io;
1468 ret = q->make_request_fn(q, bio);
1469 } while (ret);
1473 * We only want one ->make_request_fn to be active at a time,
1474 * else stack usage with stacked devices could be a problem.
1475 * So use current->bio_{list,tail} to keep a list of requests
1476 * submited by a make_request_fn function.
1477 * current->bio_tail is also used as a flag to say if
1478 * generic_make_request is currently active in this task or not.
1479 * If it is NULL, then no make_request is active. If it is non-NULL,
1480 * then a make_request is active, and new requests should be added
1481 * at the tail
1483 void generic_make_request(struct bio *bio)
1485 if (current->bio_tail) {
1486 /* make_request is active */
1487 *(current->bio_tail) = bio;
1488 bio->bi_next = NULL;
1489 current->bio_tail = &bio->bi_next;
1490 return;
1492 /* following loop may be a bit non-obvious, and so deserves some
1493 * explanation.
1494 * Before entering the loop, bio->bi_next is NULL (as all callers
1495 * ensure that) so we have a list with a single bio.
1496 * We pretend that we have just taken it off a longer list, so
1497 * we assign bio_list to the next (which is NULL) and bio_tail
1498 * to &bio_list, thus initialising the bio_list of new bios to be
1499 * added. __generic_make_request may indeed add some more bios
1500 * through a recursive call to generic_make_request. If it
1501 * did, we find a non-NULL value in bio_list and re-enter the loop
1502 * from the top. In this case we really did just take the bio
1503 * of the top of the list (no pretending) and so fixup bio_list and
1504 * bio_tail or bi_next, and call into __generic_make_request again.
1506 * The loop was structured like this to make only one call to
1507 * __generic_make_request (which is important as it is large and
1508 * inlined) and to keep the structure simple.
1510 BUG_ON(bio->bi_next);
1511 do {
1512 current->bio_list = bio->bi_next;
1513 if (bio->bi_next == NULL)
1514 current->bio_tail = &current->bio_list;
1515 else
1516 bio->bi_next = NULL;
1517 __generic_make_request(bio);
1518 bio = current->bio_list;
1519 } while (bio);
1520 current->bio_tail = NULL; /* deactivate */
1522 EXPORT_SYMBOL(generic_make_request);
1525 * submit_bio - submit a bio to the block device layer for I/O
1526 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1527 * @bio: The &struct bio which describes the I/O
1529 * submit_bio() is very similar in purpose to generic_make_request(), and
1530 * uses that function to do most of the work. Both are fairly rough
1531 * interfaces; @bio must be presetup and ready for I/O.
1534 void submit_bio(int rw, struct bio *bio)
1536 int count = bio_sectors(bio);
1538 bio->bi_rw |= rw;
1541 * If it's a regular read/write or a barrier with data attached,
1542 * go through the normal accounting stuff before submission.
1544 if (bio_has_data(bio)) {
1545 if (rw & WRITE) {
1546 count_vm_events(PGPGOUT, count);
1547 } else {
1548 task_io_account_read(bio->bi_size);
1549 count_vm_events(PGPGIN, count);
1552 if (unlikely(block_dump)) {
1553 char b[BDEVNAME_SIZE];
1554 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1555 current->comm, task_pid_nr(current),
1556 (rw & WRITE) ? "WRITE" : "READ",
1557 (unsigned long long)bio->bi_sector,
1558 bdevname(bio->bi_bdev, b));
1562 generic_make_request(bio);
1564 EXPORT_SYMBOL(submit_bio);
1567 * blk_rq_check_limits - Helper function to check a request for the queue limit
1568 * @q: the queue
1569 * @rq: the request being checked
1571 * Description:
1572 * @rq may have been made based on weaker limitations of upper-level queues
1573 * in request stacking drivers, and it may violate the limitation of @q.
1574 * Since the block layer and the underlying device driver trust @rq
1575 * after it is inserted to @q, it should be checked against @q before
1576 * the insertion using this generic function.
1578 * This function should also be useful for request stacking drivers
1579 * in some cases below, so export this fuction.
1580 * Request stacking drivers like request-based dm may change the queue
1581 * limits while requests are in the queue (e.g. dm's table swapping).
1582 * Such request stacking drivers should check those requests agaist
1583 * the new queue limits again when they dispatch those requests,
1584 * although such checkings are also done against the old queue limits
1585 * when submitting requests.
1587 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1589 if (rq->nr_sectors > q->max_sectors ||
1590 rq->data_len > q->max_hw_sectors << 9) {
1591 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1592 return -EIO;
1596 * queue's settings related to segment counting like q->bounce_pfn
1597 * may differ from that of other stacking queues.
1598 * Recalculate it to check the request correctly on this queue's
1599 * limitation.
1601 blk_recalc_rq_segments(rq);
1602 if (rq->nr_phys_segments > q->max_phys_segments ||
1603 rq->nr_phys_segments > q->max_hw_segments) {
1604 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1605 return -EIO;
1608 return 0;
1610 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1613 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1614 * @q: the queue to submit the request
1615 * @rq: the request being queued
1617 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1619 unsigned long flags;
1621 if (blk_rq_check_limits(q, rq))
1622 return -EIO;
1624 #ifdef CONFIG_FAIL_MAKE_REQUEST
1625 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1626 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1627 return -EIO;
1628 #endif
1630 spin_lock_irqsave(q->queue_lock, flags);
1633 * Submitting request must be dequeued before calling this function
1634 * because it will be linked to another request_queue
1636 BUG_ON(blk_queued_rq(rq));
1638 drive_stat_acct(rq, 1);
1639 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1641 spin_unlock_irqrestore(q->queue_lock, flags);
1643 return 0;
1645 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1648 * blkdev_dequeue_request - dequeue request and start timeout timer
1649 * @req: request to dequeue
1651 * Dequeue @req and start timeout timer on it. This hands off the
1652 * request to the driver.
1654 * Block internal functions which don't want to start timer should
1655 * call elv_dequeue_request().
1657 void blkdev_dequeue_request(struct request *req)
1659 elv_dequeue_request(req->q, req);
1662 * We are now handing the request to the hardware, add the
1663 * timeout handler.
1665 blk_add_timer(req);
1667 EXPORT_SYMBOL(blkdev_dequeue_request);
1670 * __end_that_request_first - end I/O on a request
1671 * @req: the request being processed
1672 * @error: %0 for success, < %0 for error
1673 * @nr_bytes: number of bytes to complete
1675 * Description:
1676 * Ends I/O on a number of bytes attached to @req, and sets it up
1677 * for the next range of segments (if any) in the cluster.
1679 * Return:
1680 * %0 - we are done with this request, call end_that_request_last()
1681 * %1 - still buffers pending for this request
1683 static int __end_that_request_first(struct request *req, int error,
1684 int nr_bytes)
1686 int total_bytes, bio_nbytes, next_idx = 0;
1687 struct bio *bio;
1689 trace_block_rq_complete(req->q, req);
1692 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1693 * sense key with us all the way through
1695 if (!blk_pc_request(req))
1696 req->errors = 0;
1698 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1699 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1700 req->rq_disk ? req->rq_disk->disk_name : "?",
1701 (unsigned long long)req->sector);
1704 if (blk_fs_request(req) && req->rq_disk) {
1705 const int rw = rq_data_dir(req);
1706 struct hd_struct *part;
1707 int cpu;
1709 cpu = part_stat_lock();
1710 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1711 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1712 part_stat_unlock();
1715 total_bytes = bio_nbytes = 0;
1716 while ((bio = req->bio) != NULL) {
1717 int nbytes;
1720 * For an empty barrier request, the low level driver must
1721 * store a potential error location in ->sector. We pass
1722 * that back up in ->bi_sector.
1724 if (blk_empty_barrier(req))
1725 bio->bi_sector = req->sector;
1727 if (nr_bytes >= bio->bi_size) {
1728 req->bio = bio->bi_next;
1729 nbytes = bio->bi_size;
1730 req_bio_endio(req, bio, nbytes, error);
1731 next_idx = 0;
1732 bio_nbytes = 0;
1733 } else {
1734 int idx = bio->bi_idx + next_idx;
1736 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1737 blk_dump_rq_flags(req, "__end_that");
1738 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1739 __func__, bio->bi_idx, bio->bi_vcnt);
1740 break;
1743 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1744 BIO_BUG_ON(nbytes > bio->bi_size);
1747 * not a complete bvec done
1749 if (unlikely(nbytes > nr_bytes)) {
1750 bio_nbytes += nr_bytes;
1751 total_bytes += nr_bytes;
1752 break;
1756 * advance to the next vector
1758 next_idx++;
1759 bio_nbytes += nbytes;
1762 total_bytes += nbytes;
1763 nr_bytes -= nbytes;
1765 bio = req->bio;
1766 if (bio) {
1768 * end more in this run, or just return 'not-done'
1770 if (unlikely(nr_bytes <= 0))
1771 break;
1776 * completely done
1778 if (!req->bio)
1779 return 0;
1782 * if the request wasn't completed, update state
1784 if (bio_nbytes) {
1785 req_bio_endio(req, bio, bio_nbytes, error);
1786 bio->bi_idx += next_idx;
1787 bio_iovec(bio)->bv_offset += nr_bytes;
1788 bio_iovec(bio)->bv_len -= nr_bytes;
1791 blk_recalc_rq_sectors(req, total_bytes >> 9);
1792 blk_recalc_rq_segments(req);
1793 return 1;
1797 * queue lock must be held
1799 static void end_that_request_last(struct request *req, int error)
1801 struct gendisk *disk = req->rq_disk;
1803 if (blk_rq_tagged(req))
1804 blk_queue_end_tag(req->q, req);
1806 if (blk_queued_rq(req))
1807 elv_dequeue_request(req->q, req);
1809 if (unlikely(laptop_mode) && blk_fs_request(req))
1810 laptop_io_completion();
1812 blk_delete_timer(req);
1815 * Account IO completion. bar_rq isn't accounted as a normal
1816 * IO on queueing nor completion. Accounting the containing
1817 * request is enough.
1819 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1820 unsigned long duration = jiffies - req->start_time;
1821 const int rw = rq_data_dir(req);
1822 struct hd_struct *part;
1823 int cpu;
1825 cpu = part_stat_lock();
1826 part = disk_map_sector_rcu(disk, req->sector);
1828 part_stat_inc(cpu, part, ios[rw]);
1829 part_stat_add(cpu, part, ticks[rw], duration);
1830 part_round_stats(cpu, part);
1831 part_dec_in_flight(part);
1833 part_stat_unlock();
1836 if (req->end_io)
1837 req->end_io(req, error);
1838 else {
1839 if (blk_bidi_rq(req))
1840 __blk_put_request(req->next_rq->q, req->next_rq);
1842 __blk_put_request(req->q, req);
1847 * blk_rq_bytes - Returns bytes left to complete in the entire request
1848 * @rq: the request being processed
1850 unsigned int blk_rq_bytes(struct request *rq)
1852 if (blk_fs_request(rq))
1853 return rq->hard_nr_sectors << 9;
1855 return rq->data_len;
1857 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1860 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1861 * @rq: the request being processed
1863 unsigned int blk_rq_cur_bytes(struct request *rq)
1865 if (blk_fs_request(rq))
1866 return rq->current_nr_sectors << 9;
1868 if (rq->bio)
1869 return rq->bio->bi_size;
1871 return rq->data_len;
1873 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1876 * end_request - end I/O on the current segment of the request
1877 * @req: the request being processed
1878 * @uptodate: error value or %0/%1 uptodate flag
1880 * Description:
1881 * Ends I/O on the current segment of a request. If that is the only
1882 * remaining segment, the request is also completed and freed.
1884 * This is a remnant of how older block drivers handled I/O completions.
1885 * Modern drivers typically end I/O on the full request in one go, unless
1886 * they have a residual value to account for. For that case this function
1887 * isn't really useful, unless the residual just happens to be the
1888 * full current segment. In other words, don't use this function in new
1889 * code. Use blk_end_request() or __blk_end_request() to end a request.
1891 void end_request(struct request *req, int uptodate)
1893 int error = 0;
1895 if (uptodate <= 0)
1896 error = uptodate ? uptodate : -EIO;
1898 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1900 EXPORT_SYMBOL(end_request);
1902 static int end_that_request_data(struct request *rq, int error,
1903 unsigned int nr_bytes, unsigned int bidi_bytes)
1905 if (rq->bio) {
1906 if (__end_that_request_first(rq, error, nr_bytes))
1907 return 1;
1909 /* Bidi request must be completed as a whole */
1910 if (blk_bidi_rq(rq) &&
1911 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1912 return 1;
1915 return 0;
1919 * blk_end_io - Generic end_io function to complete a request.
1920 * @rq: the request being processed
1921 * @error: %0 for success, < %0 for error
1922 * @nr_bytes: number of bytes to complete @rq
1923 * @bidi_bytes: number of bytes to complete @rq->next_rq
1924 * @drv_callback: function called between completion of bios in the request
1925 * and completion of the request.
1926 * If the callback returns non %0, this helper returns without
1927 * completion of the request.
1929 * Description:
1930 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1931 * If @rq has leftover, sets it up for the next range of segments.
1933 * Return:
1934 * %0 - we are done with this request
1935 * %1 - this request is not freed yet, it still has pending buffers.
1937 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1938 unsigned int bidi_bytes,
1939 int (drv_callback)(struct request *))
1941 struct request_queue *q = rq->q;
1942 unsigned long flags = 0UL;
1944 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1945 return 1;
1947 /* Special feature for tricky drivers */
1948 if (drv_callback && drv_callback(rq))
1949 return 1;
1951 add_disk_randomness(rq->rq_disk);
1953 spin_lock_irqsave(q->queue_lock, flags);
1954 end_that_request_last(rq, error);
1955 spin_unlock_irqrestore(q->queue_lock, flags);
1957 return 0;
1961 * blk_end_request - Helper function for drivers to complete the request.
1962 * @rq: the request being processed
1963 * @error: %0 for success, < %0 for error
1964 * @nr_bytes: number of bytes to complete
1966 * Description:
1967 * Ends I/O on a number of bytes attached to @rq.
1968 * If @rq has leftover, sets it up for the next range of segments.
1970 * Return:
1971 * %0 - we are done with this request
1972 * %1 - still buffers pending for this request
1974 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1976 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1978 EXPORT_SYMBOL_GPL(blk_end_request);
1981 * __blk_end_request - Helper function for drivers to complete the request.
1982 * @rq: the request being processed
1983 * @error: %0 for success, < %0 for error
1984 * @nr_bytes: number of bytes to complete
1986 * Description:
1987 * Must be called with queue lock held unlike blk_end_request().
1989 * Return:
1990 * %0 - we are done with this request
1991 * %1 - still buffers pending for this request
1993 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1995 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1996 return 1;
1998 add_disk_randomness(rq->rq_disk);
2000 end_that_request_last(rq, error);
2002 return 0;
2004 EXPORT_SYMBOL_GPL(__blk_end_request);
2007 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2008 * @rq: the bidi request being processed
2009 * @error: %0 for success, < %0 for error
2010 * @nr_bytes: number of bytes to complete @rq
2011 * @bidi_bytes: number of bytes to complete @rq->next_rq
2013 * Description:
2014 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2016 * Return:
2017 * %0 - we are done with this request
2018 * %1 - still buffers pending for this request
2020 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2021 unsigned int bidi_bytes)
2023 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2025 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2028 * blk_update_request - Special helper function for request stacking drivers
2029 * @rq: the request being processed
2030 * @error: %0 for success, < %0 for error
2031 * @nr_bytes: number of bytes to complete @rq
2033 * Description:
2034 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2035 * the request structure even if @rq doesn't have leftover.
2036 * If @rq has leftover, sets it up for the next range of segments.
2038 * This special helper function is only for request stacking drivers
2039 * (e.g. request-based dm) so that they can handle partial completion.
2040 * Actual device drivers should use blk_end_request instead.
2042 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2044 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2046 * These members are not updated in end_that_request_data()
2047 * when all bios are completed.
2048 * Update them so that the request stacking driver can find
2049 * how many bytes remain in the request later.
2051 rq->nr_sectors = rq->hard_nr_sectors = 0;
2052 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2055 EXPORT_SYMBOL_GPL(blk_update_request);
2058 * blk_end_request_callback - Special helper function for tricky drivers
2059 * @rq: the request being processed
2060 * @error: %0 for success, < %0 for error
2061 * @nr_bytes: number of bytes to complete
2062 * @drv_callback: function called between completion of bios in the request
2063 * and completion of the request.
2064 * If the callback returns non %0, this helper returns without
2065 * completion of the request.
2067 * Description:
2068 * Ends I/O on a number of bytes attached to @rq.
2069 * If @rq has leftover, sets it up for the next range of segments.
2071 * This special helper function is used only for existing tricky drivers.
2072 * (e.g. cdrom_newpc_intr() of ide-cd)
2073 * This interface will be removed when such drivers are rewritten.
2074 * Don't use this interface in other places anymore.
2076 * Return:
2077 * %0 - we are done with this request
2078 * %1 - this request is not freed yet.
2079 * this request still has pending buffers or
2080 * the driver doesn't want to finish this request yet.
2082 int blk_end_request_callback(struct request *rq, int error,
2083 unsigned int nr_bytes,
2084 int (drv_callback)(struct request *))
2086 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2088 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2090 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2091 struct bio *bio)
2093 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2094 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2095 rq->cmd_flags |= (bio->bi_rw & 3);
2097 if (bio_has_data(bio)) {
2098 rq->nr_phys_segments = bio_phys_segments(q, bio);
2099 rq->buffer = bio_data(bio);
2101 rq->current_nr_sectors = bio_cur_sectors(bio);
2102 rq->hard_cur_sectors = rq->current_nr_sectors;
2103 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2104 rq->data_len = bio->bi_size;
2106 rq->bio = rq->biotail = bio;
2108 if (bio->bi_bdev)
2109 rq->rq_disk = bio->bi_bdev->bd_disk;
2113 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2114 * @q : the queue of the device being checked
2116 * Description:
2117 * Check if underlying low-level drivers of a device are busy.
2118 * If the drivers want to export their busy state, they must set own
2119 * exporting function using blk_queue_lld_busy() first.
2121 * Basically, this function is used only by request stacking drivers
2122 * to stop dispatching requests to underlying devices when underlying
2123 * devices are busy. This behavior helps more I/O merging on the queue
2124 * of the request stacking driver and prevents I/O throughput regression
2125 * on burst I/O load.
2127 * Return:
2128 * 0 - Not busy (The request stacking driver should dispatch request)
2129 * 1 - Busy (The request stacking driver should stop dispatching request)
2131 int blk_lld_busy(struct request_queue *q)
2133 if (q->lld_busy_fn)
2134 return q->lld_busy_fn(q);
2136 return 0;
2138 EXPORT_SYMBOL_GPL(blk_lld_busy);
2140 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2142 return queue_work(kblockd_workqueue, work);
2144 EXPORT_SYMBOL(kblockd_schedule_work);
2146 void kblockd_flush_work(struct work_struct *work)
2148 cancel_work_sync(work);
2150 EXPORT_SYMBOL(kblockd_flush_work);
2152 int __init blk_dev_init(void)
2154 kblockd_workqueue = create_workqueue("kblockd");
2155 if (!kblockd_workqueue)
2156 panic("Failed to create kblockd\n");
2158 request_cachep = kmem_cache_create("blkdev_requests",
2159 sizeof(struct request), 0, SLAB_PANIC, NULL);
2161 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2162 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2164 return 0;