2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data
);
39 static void blk_unplug_timeout(unsigned long data
);
40 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
41 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
42 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
45 * For the allocated request tables
47 static kmem_cache_t
*request_cachep
;
50 * For queue allocation
52 static kmem_cache_t
*requestq_cachep
;
55 * For io context allocations
57 static kmem_cache_t
*iocontext_cachep
;
59 static wait_queue_head_t congestion_wqh
[2] = {
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
61 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
65 * Controlling structure to kblockd
67 static struct workqueue_struct
*kblockd_workqueue
;
69 unsigned long blk_max_low_pfn
, blk_max_pfn
;
71 EXPORT_SYMBOL(blk_max_low_pfn
);
72 EXPORT_SYMBOL(blk_max_pfn
);
74 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
89 return q
->nr_congestion_on
;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
97 return q
->nr_congestion_off
;
100 static void blk_queue_congestion_threshold(struct request_queue
*q
)
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
105 if (nr
> q
->nr_requests
)
107 q
->nr_congestion_on
= nr
;
109 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
112 q
->nr_congestion_off
= nr
;
116 * A queue has just exitted congestion. Note this in the global counter of
117 * congested queues, and wake up anyone who was waiting for requests to be
120 static void clear_queue_congested(request_queue_t
*q
, int rw
)
123 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
125 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
126 clear_bit(bit
, &q
->backing_dev_info
.state
);
127 smp_mb__after_clear_bit();
128 if (waitqueue_active(wqh
))
133 * A queue has just entered congestion. Flag that in the queue's VM-visible
134 * state flags and increment the global gounter of congested queues.
136 static void set_queue_congested(request_queue_t
*q
, int rw
)
140 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
141 set_bit(bit
, &q
->backing_dev_info
.state
);
145 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
148 * Locates the passed device's request queue and returns the address of its
151 * Will return NULL if the request queue cannot be located.
153 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
155 struct backing_dev_info
*ret
= NULL
;
156 request_queue_t
*q
= bdev_get_queue(bdev
);
159 ret
= &q
->backing_dev_info
;
163 EXPORT_SYMBOL(blk_get_backing_dev_info
);
165 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
168 q
->activity_data
= data
;
171 EXPORT_SYMBOL(blk_queue_activity_fn
);
174 * blk_queue_prep_rq - set a prepare_request function for queue
176 * @pfn: prepare_request function
178 * It's possible for a queue to register a prepare_request callback which
179 * is invoked before the request is handed to the request_fn. The goal of
180 * the function is to prepare a request for I/O, it can be used to build a
181 * cdb from the request data for instance.
184 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
189 EXPORT_SYMBOL(blk_queue_prep_rq
);
192 * blk_queue_merge_bvec - set a merge_bvec function for queue
194 * @mbfn: merge_bvec_fn
196 * Usually queues have static limitations on the max sectors or segments that
197 * we can put in a request. Stacking drivers may have some settings that
198 * are dynamic, and thus we have to query the queue whether it is ok to
199 * add a new bio_vec to a bio at a given offset or not. If the block device
200 * has such limitations, it needs to register a merge_bvec_fn to control
201 * the size of bio's sent to it. Note that a block device *must* allow a
202 * single page to be added to an empty bio. The block device driver may want
203 * to use the bio_split() function to deal with these bio's. By default
204 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
207 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
209 q
->merge_bvec_fn
= mbfn
;
212 EXPORT_SYMBOL(blk_queue_merge_bvec
);
214 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
216 q
->softirq_done_fn
= fn
;
219 EXPORT_SYMBOL(blk_queue_softirq_done
);
222 * blk_queue_make_request - define an alternate make_request function for a device
223 * @q: the request queue for the device to be affected
224 * @mfn: the alternate make_request function
227 * The normal way for &struct bios to be passed to a device
228 * driver is for them to be collected into requests on a request
229 * queue, and then to allow the device driver to select requests
230 * off that queue when it is ready. This works well for many block
231 * devices. However some block devices (typically virtual devices
232 * such as md or lvm) do not benefit from the processing on the
233 * request queue, and are served best by having the requests passed
234 * directly to them. This can be achieved by providing a function
235 * to blk_queue_make_request().
238 * The driver that does this *must* be able to deal appropriately
239 * with buffers in "highmemory". This can be accomplished by either calling
240 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
241 * blk_queue_bounce() to create a buffer in normal memory.
243 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
248 q
->nr_requests
= BLKDEV_MAX_RQ
;
249 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
250 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
251 q
->make_request_fn
= mfn
;
252 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
253 q
->backing_dev_info
.state
= 0;
254 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
255 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
256 blk_queue_hardsect_size(q
, 512);
257 blk_queue_dma_alignment(q
, 511);
258 blk_queue_congestion_threshold(q
);
259 q
->nr_batching
= BLK_BATCH_REQ
;
261 q
->unplug_thresh
= 4; /* hmm */
262 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
263 if (q
->unplug_delay
== 0)
266 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
268 q
->unplug_timer
.function
= blk_unplug_timeout
;
269 q
->unplug_timer
.data
= (unsigned long)q
;
272 * by default assume old behaviour and bounce for any highmem page
274 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
276 blk_queue_activity_fn(q
, NULL
, NULL
);
279 EXPORT_SYMBOL(blk_queue_make_request
);
281 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
283 INIT_LIST_HEAD(&rq
->queuelist
);
284 INIT_LIST_HEAD(&rq
->donelist
);
287 rq
->rq_status
= RQ_ACTIVE
;
288 rq
->bio
= rq
->biotail
= NULL
;
297 rq
->nr_phys_segments
= 0;
300 rq
->end_io_data
= NULL
;
301 rq
->completion_data
= NULL
;
305 * blk_queue_ordered - does this queue support ordered writes
306 * @q: the request queue
307 * @ordered: one of QUEUE_ORDERED_*
308 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
311 * For journalled file systems, doing ordered writes on a commit
312 * block instead of explicitly doing wait_on_buffer (which is bad
313 * for performance) can be a big win. Block drivers supporting this
314 * feature should call this function and indicate so.
317 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
318 prepare_flush_fn
*prepare_flush_fn
)
320 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
321 prepare_flush_fn
== NULL
) {
322 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
326 if (ordered
!= QUEUE_ORDERED_NONE
&&
327 ordered
!= QUEUE_ORDERED_DRAIN
&&
328 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
329 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
330 ordered
!= QUEUE_ORDERED_TAG
&&
331 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
332 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
333 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
337 q
->ordered
= ordered
;
338 q
->next_ordered
= ordered
;
339 q
->prepare_flush_fn
= prepare_flush_fn
;
344 EXPORT_SYMBOL(blk_queue_ordered
);
347 * blk_queue_issue_flush_fn - set function for issuing a flush
348 * @q: the request queue
349 * @iff: the function to be called issuing the flush
352 * If a driver supports issuing a flush command, the support is notified
353 * to the block layer by defining it through this call.
356 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
358 q
->issue_flush_fn
= iff
;
361 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
364 * Cache flushing for ordered writes handling
366 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
370 return 1 << ffz(q
->ordseq
);
373 unsigned blk_ordered_req_seq(struct request
*rq
)
375 request_queue_t
*q
= rq
->q
;
377 BUG_ON(q
->ordseq
== 0);
379 if (rq
== &q
->pre_flush_rq
)
380 return QUEUE_ORDSEQ_PREFLUSH
;
381 if (rq
== &q
->bar_rq
)
382 return QUEUE_ORDSEQ_BAR
;
383 if (rq
== &q
->post_flush_rq
)
384 return QUEUE_ORDSEQ_POSTFLUSH
;
386 if ((rq
->flags
& REQ_ORDERED_COLOR
) ==
387 (q
->orig_bar_rq
->flags
& REQ_ORDERED_COLOR
))
388 return QUEUE_ORDSEQ_DRAIN
;
390 return QUEUE_ORDSEQ_DONE
;
393 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
398 if (error
&& !q
->orderr
)
401 BUG_ON(q
->ordseq
& seq
);
404 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
408 * Okay, sequence complete.
411 uptodate
= q
->orderr
? q
->orderr
: 1;
415 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
416 end_that_request_last(rq
, uptodate
);
419 static void pre_flush_end_io(struct request
*rq
, int error
)
421 elv_completed_request(rq
->q
, rq
);
422 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
425 static void bar_end_io(struct request
*rq
, int error
)
427 elv_completed_request(rq
->q
, rq
);
428 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
431 static void post_flush_end_io(struct request
*rq
, int error
)
433 elv_completed_request(rq
->q
, rq
);
434 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
437 static void queue_flush(request_queue_t
*q
, unsigned which
)
440 rq_end_io_fn
*end_io
;
442 if (which
== QUEUE_ORDERED_PREFLUSH
) {
443 rq
= &q
->pre_flush_rq
;
444 end_io
= pre_flush_end_io
;
446 rq
= &q
->post_flush_rq
;
447 end_io
= post_flush_end_io
;
451 rq
->flags
= REQ_HARDBARRIER
;
452 rq
->elevator_private
= NULL
;
453 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
456 q
->prepare_flush_fn(q
, rq
);
458 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
461 static inline struct request
*start_ordered(request_queue_t
*q
,
466 q
->ordered
= q
->next_ordered
;
467 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
470 * Prep proxy barrier request.
472 blkdev_dequeue_request(rq
);
476 rq
->flags
= bio_data_dir(q
->orig_bar_rq
->bio
);
477 rq
->flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
478 rq
->elevator_private
= NULL
;
480 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
481 rq
->end_io
= bar_end_io
;
484 * Queue ordered sequence. As we stack them at the head, we
485 * need to queue in reverse order. Note that we rely on that
486 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
487 * request gets inbetween ordered sequence.
489 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
490 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
492 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
494 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
496 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
497 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
498 rq
= &q
->pre_flush_rq
;
500 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
502 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
503 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
510 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
512 struct request
*rq
= *rqp
;
513 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
519 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
520 *rqp
= start_ordered(q
, rq
);
524 * This can happen when the queue switches to
525 * ORDERED_NONE while this request is on it.
527 blkdev_dequeue_request(rq
);
528 end_that_request_first(rq
, -EOPNOTSUPP
,
529 rq
->hard_nr_sectors
);
530 end_that_request_last(rq
, -EOPNOTSUPP
);
537 * Ordered sequence in progress
540 /* Special requests are not subject to ordering rules. */
541 if (!blk_fs_request(rq
) &&
542 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
545 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
546 /* Ordered by tag. Blocking the next barrier is enough. */
547 if (is_barrier
&& rq
!= &q
->bar_rq
)
550 /* Ordered by draining. Wait for turn. */
551 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
552 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
559 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
561 request_queue_t
*q
= bio
->bi_private
;
562 struct bio_vec
*bvec
;
566 * This is dry run, restore bio_sector and size. We'll finish
567 * this request again with the original bi_end_io after an
568 * error occurs or post flush is complete.
577 bio_for_each_segment(bvec
, bio
, i
) {
578 bvec
->bv_len
+= bvec
->bv_offset
;
583 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
584 bio
->bi_size
= q
->bi_size
;
585 bio
->bi_sector
-= (q
->bi_size
>> 9);
591 static inline int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
592 unsigned int nbytes
, int error
)
594 request_queue_t
*q
= rq
->q
;
598 if (&q
->bar_rq
!= rq
)
602 * Okay, this is the barrier request in progress, dry finish it.
604 if (error
&& !q
->orderr
)
607 endio
= bio
->bi_end_io
;
608 private = bio
->bi_private
;
609 bio
->bi_end_io
= flush_dry_bio_endio
;
612 bio_endio(bio
, nbytes
, error
);
614 bio
->bi_end_io
= endio
;
615 bio
->bi_private
= private;
621 * blk_queue_bounce_limit - set bounce buffer limit for queue
622 * @q: the request queue for the device
623 * @dma_addr: bus address limit
626 * Different hardware can have different requirements as to what pages
627 * it can do I/O directly to. A low level driver can call
628 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
629 * buffers for doing I/O to pages residing above @page.
631 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
633 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
636 q
->bounce_gfp
= GFP_NOIO
;
637 #if BITS_PER_LONG == 64
638 /* Assume anything <= 4GB can be handled by IOMMU.
639 Actually some IOMMUs can handle everything, but I don't
640 know of a way to test this here. */
641 if (bounce_pfn
< (0xffffffff>>PAGE_SHIFT
))
643 q
->bounce_pfn
= max_low_pfn
;
645 if (bounce_pfn
< blk_max_low_pfn
)
647 q
->bounce_pfn
= bounce_pfn
;
650 init_emergency_isa_pool();
651 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
652 q
->bounce_pfn
= bounce_pfn
;
656 EXPORT_SYMBOL(blk_queue_bounce_limit
);
659 * blk_queue_max_sectors - set max sectors for a request for this queue
660 * @q: the request queue for the device
661 * @max_sectors: max sectors in the usual 512b unit
664 * Enables a low level driver to set an upper limit on the size of
667 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
669 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
670 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
671 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
674 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
675 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
677 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
678 q
->max_hw_sectors
= max_sectors
;
682 EXPORT_SYMBOL(blk_queue_max_sectors
);
685 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
686 * @q: the request queue for the device
687 * @max_segments: max number of segments
690 * Enables a low level driver to set an upper limit on the number of
691 * physical data segments in a request. This would be the largest sized
692 * scatter list the driver could handle.
694 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
698 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
701 q
->max_phys_segments
= max_segments
;
704 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
707 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
708 * @q: the request queue for the device
709 * @max_segments: max number of segments
712 * Enables a low level driver to set an upper limit on the number of
713 * hw data segments in a request. This would be the largest number of
714 * address/length pairs the host adapter can actually give as once
717 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
721 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
724 q
->max_hw_segments
= max_segments
;
727 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
730 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
731 * @q: the request queue for the device
732 * @max_size: max size of segment in bytes
735 * Enables a low level driver to set an upper limit on the size of a
738 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
740 if (max_size
< PAGE_CACHE_SIZE
) {
741 max_size
= PAGE_CACHE_SIZE
;
742 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
745 q
->max_segment_size
= max_size
;
748 EXPORT_SYMBOL(blk_queue_max_segment_size
);
751 * blk_queue_hardsect_size - set hardware sector size for the queue
752 * @q: the request queue for the device
753 * @size: the hardware sector size, in bytes
756 * This should typically be set to the lowest possible sector size
757 * that the hardware can operate on (possible without reverting to
758 * even internal read-modify-write operations). Usually the default
759 * of 512 covers most hardware.
761 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
763 q
->hardsect_size
= size
;
766 EXPORT_SYMBOL(blk_queue_hardsect_size
);
769 * Returns the minimum that is _not_ zero, unless both are zero.
771 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
774 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
775 * @t: the stacking driver (top)
776 * @b: the underlying device (bottom)
778 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
780 /* zero is "infinity" */
781 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
782 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
784 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
785 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
786 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
787 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
788 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
789 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
792 EXPORT_SYMBOL(blk_queue_stack_limits
);
795 * blk_queue_segment_boundary - set boundary rules for segment merging
796 * @q: the request queue for the device
797 * @mask: the memory boundary mask
799 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
801 if (mask
< PAGE_CACHE_SIZE
- 1) {
802 mask
= PAGE_CACHE_SIZE
- 1;
803 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
806 q
->seg_boundary_mask
= mask
;
809 EXPORT_SYMBOL(blk_queue_segment_boundary
);
812 * blk_queue_dma_alignment - set dma length and memory alignment
813 * @q: the request queue for the device
814 * @mask: alignment mask
817 * set required memory and length aligment for direct dma transactions.
818 * this is used when buiding direct io requests for the queue.
821 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
823 q
->dma_alignment
= mask
;
826 EXPORT_SYMBOL(blk_queue_dma_alignment
);
829 * blk_queue_find_tag - find a request by its tag and queue
830 * @q: The request queue for the device
831 * @tag: The tag of the request
834 * Should be used when a device returns a tag and you want to match
837 * no locks need be held.
839 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
841 struct blk_queue_tag
*bqt
= q
->queue_tags
;
843 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
846 return bqt
->tag_index
[tag
];
849 EXPORT_SYMBOL(blk_queue_find_tag
);
852 * __blk_queue_free_tags - release tag maintenance info
853 * @q: the request queue for the device
856 * blk_cleanup_queue() will take care of calling this function, if tagging
857 * has been used. So there's no need to call this directly.
859 static void __blk_queue_free_tags(request_queue_t
*q
)
861 struct blk_queue_tag
*bqt
= q
->queue_tags
;
866 if (atomic_dec_and_test(&bqt
->refcnt
)) {
868 BUG_ON(!list_empty(&bqt
->busy_list
));
870 kfree(bqt
->tag_index
);
871 bqt
->tag_index
= NULL
;
879 q
->queue_tags
= NULL
;
880 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
884 * blk_queue_free_tags - release tag maintenance info
885 * @q: the request queue for the device
888 * This is used to disabled tagged queuing to a device, yet leave
891 void blk_queue_free_tags(request_queue_t
*q
)
893 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
896 EXPORT_SYMBOL(blk_queue_free_tags
);
899 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
901 struct request
**tag_index
;
902 unsigned long *tag_map
;
905 if (depth
> q
->nr_requests
* 2) {
906 depth
= q
->nr_requests
* 2;
907 printk(KERN_ERR
"%s: adjusted depth to %d\n",
908 __FUNCTION__
, depth
);
911 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
915 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
916 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
920 tags
->real_max_depth
= depth
;
921 tags
->max_depth
= depth
;
922 tags
->tag_index
= tag_index
;
923 tags
->tag_map
= tag_map
;
932 * blk_queue_init_tags - initialize the queue tag info
933 * @q: the request queue for the device
934 * @depth: the maximum queue depth supported
935 * @tags: the tag to use
937 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
938 struct blk_queue_tag
*tags
)
942 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
944 if (!tags
&& !q
->queue_tags
) {
945 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
949 if (init_tag_map(q
, tags
, depth
))
952 INIT_LIST_HEAD(&tags
->busy_list
);
954 atomic_set(&tags
->refcnt
, 1);
955 } else if (q
->queue_tags
) {
956 if ((rc
= blk_queue_resize_tags(q
, depth
)))
958 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
961 atomic_inc(&tags
->refcnt
);
964 * assign it, all done
966 q
->queue_tags
= tags
;
967 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
974 EXPORT_SYMBOL(blk_queue_init_tags
);
977 * blk_queue_resize_tags - change the queueing depth
978 * @q: the request queue for the device
979 * @new_depth: the new max command queueing depth
982 * Must be called with the queue lock held.
984 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
986 struct blk_queue_tag
*bqt
= q
->queue_tags
;
987 struct request
**tag_index
;
988 unsigned long *tag_map
;
989 int max_depth
, nr_ulongs
;
995 * if we already have large enough real_max_depth. just
996 * adjust max_depth. *NOTE* as requests with tag value
997 * between new_depth and real_max_depth can be in-flight, tag
998 * map can not be shrunk blindly here.
1000 if (new_depth
<= bqt
->real_max_depth
) {
1001 bqt
->max_depth
= new_depth
;
1006 * save the old state info, so we can copy it back
1008 tag_index
= bqt
->tag_index
;
1009 tag_map
= bqt
->tag_map
;
1010 max_depth
= bqt
->real_max_depth
;
1012 if (init_tag_map(q
, bqt
, new_depth
))
1015 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1016 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1017 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1024 EXPORT_SYMBOL(blk_queue_resize_tags
);
1027 * blk_queue_end_tag - end tag operations for a request
1028 * @q: the request queue for the device
1029 * @rq: the request that has completed
1032 * Typically called when end_that_request_first() returns 0, meaning
1033 * all transfers have been done for a request. It's important to call
1034 * this function before end_that_request_last(), as that will put the
1035 * request back on the free list thus corrupting the internal tag list.
1038 * queue lock must be held.
1040 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1042 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1047 if (unlikely(tag
>= bqt
->real_max_depth
))
1049 * This can happen after tag depth has been reduced.
1050 * FIXME: how about a warning or info message here?
1054 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1055 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1060 list_del_init(&rq
->queuelist
);
1061 rq
->flags
&= ~REQ_QUEUED
;
1064 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1065 printk(KERN_ERR
"%s: tag %d is missing\n",
1068 bqt
->tag_index
[tag
] = NULL
;
1072 EXPORT_SYMBOL(blk_queue_end_tag
);
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1090 * queue lock must be held.
1092 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1094 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1097 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
1099 "%s: request %p for device [%s] already tagged %d",
1101 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1105 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1106 if (tag
>= bqt
->max_depth
)
1109 __set_bit(tag
, bqt
->tag_map
);
1111 rq
->flags
|= REQ_QUEUED
;
1113 bqt
->tag_index
[tag
] = rq
;
1114 blkdev_dequeue_request(rq
);
1115 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1120 EXPORT_SYMBOL(blk_queue_start_tag
);
1123 * blk_queue_invalidate_tags - invalidate all pending tags
1124 * @q: the request queue for the device
1127 * Hardware conditions may dictate a need to stop all pending requests.
1128 * In this case, we will safely clear the block side of the tag queue and
1129 * readd all requests to the request queue in the right order.
1132 * queue lock must be held.
1134 void blk_queue_invalidate_tags(request_queue_t
*q
)
1136 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1137 struct list_head
*tmp
, *n
;
1140 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1141 rq
= list_entry_rq(tmp
);
1143 if (rq
->tag
== -1) {
1145 "%s: bad tag found on list\n", __FUNCTION__
);
1146 list_del_init(&rq
->queuelist
);
1147 rq
->flags
&= ~REQ_QUEUED
;
1149 blk_queue_end_tag(q
, rq
);
1151 rq
->flags
&= ~REQ_STARTED
;
1152 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1156 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1158 static const char * const rq_flags
[] = {
1179 "REQ_DRIVE_TASKFILE",
1184 "REQ_ORDERED_COLOR",
1187 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1191 printk("%s: dev %s: flags = ", msg
,
1192 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1195 if (rq
->flags
& (1 << bit
))
1196 printk("%s ", rq_flags
[bit
]);
1198 } while (bit
< __REQ_NR_BITS
);
1200 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1202 rq
->current_nr_sectors
);
1203 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1205 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1207 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1208 printk("%02x ", rq
->cmd
[bit
]);
1213 EXPORT_SYMBOL(blk_dump_rq_flags
);
1215 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1217 struct bio_vec
*bv
, *bvprv
= NULL
;
1218 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1219 int high
, highprv
= 1;
1221 if (unlikely(!bio
->bi_io_vec
))
1224 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1225 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1226 bio_for_each_segment(bv
, bio
, i
) {
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1232 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1233 if (high
|| highprv
)
1234 goto new_hw_segment
;
1236 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1240 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1243 goto new_hw_segment
;
1245 seg_size
+= bv
->bv_len
;
1246 hw_seg_size
+= bv
->bv_len
;
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1253 hw_seg_size
+= bv
->bv_len
;
1256 if (hw_seg_size
> bio
->bi_hw_front_size
)
1257 bio
->bi_hw_front_size
= hw_seg_size
;
1258 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1264 seg_size
= bv
->bv_len
;
1267 if (hw_seg_size
> bio
->bi_hw_back_size
)
1268 bio
->bi_hw_back_size
= hw_seg_size
;
1269 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1270 bio
->bi_hw_front_size
= hw_seg_size
;
1271 bio
->bi_phys_segments
= nr_phys_segs
;
1272 bio
->bi_hw_segments
= nr_hw_segs
;
1273 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1277 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1280 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1283 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1285 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1289 * bio and nxt are contigous in memory, check if the queue allows
1290 * these two to be merged into one
1292 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1298 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1301 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1302 blk_recount_segments(q
, bio
);
1303 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1304 blk_recount_segments(q
, nxt
);
1305 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1306 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1308 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1315 * map a request to scatterlist, return number of sg entries setup. Caller
1316 * must make sure sg can hold rq->nr_phys_segments entries
1318 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1320 struct bio_vec
*bvec
, *bvprv
;
1322 int nsegs
, i
, cluster
;
1325 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1328 * for each bio in rq
1331 rq_for_each_bio(bio
, rq
) {
1333 * for each segment in bio
1335 bio_for_each_segment(bvec
, bio
, i
) {
1336 int nbytes
= bvec
->bv_len
;
1338 if (bvprv
&& cluster
) {
1339 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1344 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1347 sg
[nsegs
- 1].length
+= nbytes
;
1350 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1351 sg
[nsegs
].page
= bvec
->bv_page
;
1352 sg
[nsegs
].length
= nbytes
;
1353 sg
[nsegs
].offset
= bvec
->bv_offset
;
1358 } /* segments in bio */
1364 EXPORT_SYMBOL(blk_rq_map_sg
);
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1371 static inline int ll_new_mergeable(request_queue_t
*q
,
1372 struct request
*req
,
1375 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1377 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1378 req
->flags
|= REQ_NOMERGE
;
1379 if (req
== q
->last_merge
)
1380 q
->last_merge
= NULL
;
1385 * A hw segment is just getting larger, bump just the phys
1388 req
->nr_phys_segments
+= nr_phys_segs
;
1392 static inline int ll_new_hw_segment(request_queue_t
*q
,
1393 struct request
*req
,
1396 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1397 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1399 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1400 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1401 req
->flags
|= REQ_NOMERGE
;
1402 if (req
== q
->last_merge
)
1403 q
->last_merge
= NULL
;
1408 * This will form the start of a new hw segment. Bump both
1411 req
->nr_hw_segments
+= nr_hw_segs
;
1412 req
->nr_phys_segments
+= nr_phys_segs
;
1416 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1419 unsigned short max_sectors
;
1422 if (unlikely(blk_pc_request(req
)))
1423 max_sectors
= q
->max_hw_sectors
;
1425 max_sectors
= q
->max_sectors
;
1427 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1428 req
->flags
|= REQ_NOMERGE
;
1429 if (req
== q
->last_merge
)
1430 q
->last_merge
= NULL
;
1433 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1434 blk_recount_segments(q
, req
->biotail
);
1435 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1436 blk_recount_segments(q
, bio
);
1437 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len
)) {
1440 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1443 if (req
->nr_hw_segments
== 1)
1444 req
->bio
->bi_hw_front_size
= len
;
1445 if (bio
->bi_hw_segments
== 1)
1446 bio
->bi_hw_back_size
= len
;
1451 return ll_new_hw_segment(q
, req
, bio
);
1454 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1457 unsigned short max_sectors
;
1460 if (unlikely(blk_pc_request(req
)))
1461 max_sectors
= q
->max_hw_sectors
;
1463 max_sectors
= q
->max_sectors
;
1466 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1467 req
->flags
|= REQ_NOMERGE
;
1468 if (req
== q
->last_merge
)
1469 q
->last_merge
= NULL
;
1472 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1473 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1474 blk_recount_segments(q
, bio
);
1475 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1476 blk_recount_segments(q
, req
->bio
);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len
)) {
1479 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1482 if (bio
->bi_hw_segments
== 1)
1483 bio
->bi_hw_front_size
= len
;
1484 if (req
->nr_hw_segments
== 1)
1485 req
->biotail
->bi_hw_back_size
= len
;
1490 return ll_new_hw_segment(q
, req
, bio
);
1493 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1494 struct request
*next
)
1496 int total_phys_segments
;
1497 int total_hw_segments
;
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1503 if (req
->special
|| next
->special
)
1507 * Will it become too large?
1509 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1512 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1513 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1514 total_phys_segments
--;
1516 if (total_phys_segments
> q
->max_phys_segments
)
1519 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1520 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1521 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1523 * propagate the combined length to the end of the requests
1525 if (req
->nr_hw_segments
== 1)
1526 req
->bio
->bi_hw_front_size
= len
;
1527 if (next
->nr_hw_segments
== 1)
1528 next
->biotail
->bi_hw_back_size
= len
;
1529 total_hw_segments
--;
1532 if (total_hw_segments
> q
->max_hw_segments
)
1535 /* Merge is OK... */
1536 req
->nr_phys_segments
= total_phys_segments
;
1537 req
->nr_hw_segments
= total_hw_segments
;
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1549 void blk_plug_device(request_queue_t
*q
)
1551 WARN_ON(!irqs_disabled());
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1557 if (blk_queue_stopped(q
))
1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1561 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1562 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1566 EXPORT_SYMBOL(blk_plug_device
);
1569 * remove the queue from the plugged list, if present. called with
1570 * queue lock held and interrupts disabled.
1572 int blk_remove_plug(request_queue_t
*q
)
1574 WARN_ON(!irqs_disabled());
1576 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1579 del_timer(&q
->unplug_timer
);
1583 EXPORT_SYMBOL(blk_remove_plug
);
1586 * remove the plug and let it rip..
1588 void __generic_unplug_device(request_queue_t
*q
)
1590 if (unlikely(blk_queue_stopped(q
)))
1593 if (!blk_remove_plug(q
))
1598 EXPORT_SYMBOL(__generic_unplug_device
);
1601 * generic_unplug_device - fire a request queue
1602 * @q: The &request_queue_t in question
1605 * Linux uses plugging to build bigger requests queues before letting
1606 * the device have at them. If a queue is plugged, the I/O scheduler
1607 * is still adding and merging requests on the queue. Once the queue
1608 * gets unplugged, the request_fn defined for the queue is invoked and
1609 * transfers started.
1611 void generic_unplug_device(request_queue_t
*q
)
1613 spin_lock_irq(q
->queue_lock
);
1614 __generic_unplug_device(q
);
1615 spin_unlock_irq(q
->queue_lock
);
1617 EXPORT_SYMBOL(generic_unplug_device
);
1619 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1622 request_queue_t
*q
= bdi
->unplug_io_data
;
1625 * devices don't necessarily have an ->unplug_fn defined
1628 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1629 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1635 static void blk_unplug_work(void *data
)
1637 request_queue_t
*q
= data
;
1639 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1640 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1645 static void blk_unplug_timeout(unsigned long data
)
1647 request_queue_t
*q
= (request_queue_t
*)data
;
1649 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1650 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1652 kblockd_schedule_work(&q
->unplug_work
);
1656 * blk_start_queue - restart a previously stopped queue
1657 * @q: The &request_queue_t in question
1660 * blk_start_queue() will clear the stop flag on the queue, and call
1661 * the request_fn for the queue if it was in a stopped state when
1662 * entered. Also see blk_stop_queue(). Queue lock must be held.
1664 void blk_start_queue(request_queue_t
*q
)
1666 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1669 * one level of recursion is ok and is much faster than kicking
1670 * the unplug handling
1672 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1674 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1677 kblockd_schedule_work(&q
->unplug_work
);
1681 EXPORT_SYMBOL(blk_start_queue
);
1684 * blk_stop_queue - stop a queue
1685 * @q: The &request_queue_t in question
1688 * The Linux block layer assumes that a block driver will consume all
1689 * entries on the request queue when the request_fn strategy is called.
1690 * Often this will not happen, because of hardware limitations (queue
1691 * depth settings). If a device driver gets a 'queue full' response,
1692 * or if it simply chooses not to queue more I/O at one point, it can
1693 * call this function to prevent the request_fn from being called until
1694 * the driver has signalled it's ready to go again. This happens by calling
1695 * blk_start_queue() to restart queue operations. Queue lock must be held.
1697 void blk_stop_queue(request_queue_t
*q
)
1700 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1702 EXPORT_SYMBOL(blk_stop_queue
);
1705 * blk_sync_queue - cancel any pending callbacks on a queue
1709 * The block layer may perform asynchronous callback activity
1710 * on a queue, such as calling the unplug function after a timeout.
1711 * A block device may call blk_sync_queue to ensure that any
1712 * such activity is cancelled, thus allowing it to release resources
1713 * the the callbacks might use. The caller must already have made sure
1714 * that its ->make_request_fn will not re-add plugging prior to calling
1718 void blk_sync_queue(struct request_queue
*q
)
1720 del_timer_sync(&q
->unplug_timer
);
1723 EXPORT_SYMBOL(blk_sync_queue
);
1726 * blk_run_queue - run a single device queue
1727 * @q: The queue to run
1729 void blk_run_queue(struct request_queue
*q
)
1731 unsigned long flags
;
1733 spin_lock_irqsave(q
->queue_lock
, flags
);
1737 * Only recurse once to avoid overrunning the stack, let the unplug
1738 * handling reinvoke the handler shortly if we already got there.
1740 if (!elv_queue_empty(q
)) {
1741 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1743 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1746 kblockd_schedule_work(&q
->unplug_work
);
1750 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1752 EXPORT_SYMBOL(blk_run_queue
);
1755 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1756 * @kobj: the kobj belonging of the request queue to be released
1759 * blk_cleanup_queue is the pair to blk_init_queue() or
1760 * blk_queue_make_request(). It should be called when a request queue is
1761 * being released; typically when a block device is being de-registered.
1762 * Currently, its primary task it to free all the &struct request
1763 * structures that were allocated to the queue and the queue itself.
1766 * Hopefully the low level driver will have finished any
1767 * outstanding requests first...
1769 static void blk_release_queue(struct kobject
*kobj
)
1771 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
1772 struct request_list
*rl
= &q
->rq
;
1777 mempool_destroy(rl
->rq_pool
);
1780 __blk_queue_free_tags(q
);
1783 blk_trace_shutdown(q
);
1785 kmem_cache_free(requestq_cachep
, q
);
1788 void blk_put_queue(request_queue_t
*q
)
1790 kobject_put(&q
->kobj
);
1792 EXPORT_SYMBOL(blk_put_queue
);
1794 void blk_cleanup_queue(request_queue_t
* q
)
1796 mutex_lock(&q
->sysfs_lock
);
1797 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1798 mutex_unlock(&q
->sysfs_lock
);
1801 elevator_exit(q
->elevator
);
1806 EXPORT_SYMBOL(blk_cleanup_queue
);
1808 static int blk_init_free_list(request_queue_t
*q
)
1810 struct request_list
*rl
= &q
->rq
;
1812 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1813 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1815 init_waitqueue_head(&rl
->wait
[READ
]);
1816 init_waitqueue_head(&rl
->wait
[WRITE
]);
1818 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1819 mempool_free_slab
, request_cachep
, q
->node
);
1827 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1829 return blk_alloc_queue_node(gfp_mask
, -1);
1831 EXPORT_SYMBOL(blk_alloc_queue
);
1833 static struct kobj_type queue_ktype
;
1835 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1839 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1843 memset(q
, 0, sizeof(*q
));
1844 init_timer(&q
->unplug_timer
);
1846 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1847 q
->kobj
.ktype
= &queue_ktype
;
1848 kobject_init(&q
->kobj
);
1850 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1851 q
->backing_dev_info
.unplug_io_data
= q
;
1853 mutex_init(&q
->sysfs_lock
);
1857 EXPORT_SYMBOL(blk_alloc_queue_node
);
1860 * blk_init_queue - prepare a request queue for use with a block device
1861 * @rfn: The function to be called to process requests that have been
1862 * placed on the queue.
1863 * @lock: Request queue spin lock
1866 * If a block device wishes to use the standard request handling procedures,
1867 * which sorts requests and coalesces adjacent requests, then it must
1868 * call blk_init_queue(). The function @rfn will be called when there
1869 * are requests on the queue that need to be processed. If the device
1870 * supports plugging, then @rfn may not be called immediately when requests
1871 * are available on the queue, but may be called at some time later instead.
1872 * Plugged queues are generally unplugged when a buffer belonging to one
1873 * of the requests on the queue is needed, or due to memory pressure.
1875 * @rfn is not required, or even expected, to remove all requests off the
1876 * queue, but only as many as it can handle at a time. If it does leave
1877 * requests on the queue, it is responsible for arranging that the requests
1878 * get dealt with eventually.
1880 * The queue spin lock must be held while manipulating the requests on the
1883 * Function returns a pointer to the initialized request queue, or NULL if
1884 * it didn't succeed.
1887 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1888 * when the block device is deactivated (such as at module unload).
1891 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1893 return blk_init_queue_node(rfn
, lock
, -1);
1895 EXPORT_SYMBOL(blk_init_queue
);
1898 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1900 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1906 if (blk_init_free_list(q
)) {
1907 kmem_cache_free(requestq_cachep
, q
);
1912 * if caller didn't supply a lock, they get per-queue locking with
1916 spin_lock_init(&q
->__queue_lock
);
1917 lock
= &q
->__queue_lock
;
1920 q
->request_fn
= rfn
;
1921 q
->back_merge_fn
= ll_back_merge_fn
;
1922 q
->front_merge_fn
= ll_front_merge_fn
;
1923 q
->merge_requests_fn
= ll_merge_requests_fn
;
1924 q
->prep_rq_fn
= NULL
;
1925 q
->unplug_fn
= generic_unplug_device
;
1926 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1927 q
->queue_lock
= lock
;
1929 blk_queue_segment_boundary(q
, 0xffffffff);
1931 blk_queue_make_request(q
, __make_request
);
1932 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1934 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1935 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1940 if (!elevator_init(q
, NULL
)) {
1941 blk_queue_congestion_threshold(q
);
1948 EXPORT_SYMBOL(blk_init_queue_node
);
1950 int blk_get_queue(request_queue_t
*q
)
1952 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1953 kobject_get(&q
->kobj
);
1960 EXPORT_SYMBOL(blk_get_queue
);
1962 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1964 if (rq
->flags
& REQ_ELVPRIV
)
1965 elv_put_request(q
, rq
);
1966 mempool_free(rq
, q
->rq
.rq_pool
);
1969 static inline struct request
*
1970 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1971 int priv
, gfp_t gfp_mask
)
1973 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1979 * first three bits are identical in rq->flags and bio->bi_rw,
1980 * see bio.h and blkdev.h
1985 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1986 mempool_free(rq
, q
->rq
.rq_pool
);
1989 rq
->flags
|= REQ_ELVPRIV
;
1996 * ioc_batching returns true if the ioc is a valid batching request and
1997 * should be given priority access to a request.
1999 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
2005 * Make sure the process is able to allocate at least 1 request
2006 * even if the batch times out, otherwise we could theoretically
2009 return ioc
->nr_batch_requests
== q
->nr_batching
||
2010 (ioc
->nr_batch_requests
> 0
2011 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2015 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2016 * will cause the process to be a "batcher" on all queues in the system. This
2017 * is the behaviour we want though - once it gets a wakeup it should be given
2020 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
2022 if (!ioc
|| ioc_batching(q
, ioc
))
2025 ioc
->nr_batch_requests
= q
->nr_batching
;
2026 ioc
->last_waited
= jiffies
;
2029 static void __freed_request(request_queue_t
*q
, int rw
)
2031 struct request_list
*rl
= &q
->rq
;
2033 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2034 clear_queue_congested(q
, rw
);
2036 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2037 if (waitqueue_active(&rl
->wait
[rw
]))
2038 wake_up(&rl
->wait
[rw
]);
2040 blk_clear_queue_full(q
, rw
);
2045 * A request has just been released. Account for it, update the full and
2046 * congestion status, wake up any waiters. Called under q->queue_lock.
2048 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2050 struct request_list
*rl
= &q
->rq
;
2056 __freed_request(q
, rw
);
2058 if (unlikely(rl
->starved
[rw
^ 1]))
2059 __freed_request(q
, rw
^ 1);
2062 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2064 * Get a free request, queue_lock must be held.
2065 * Returns NULL on failure, with queue_lock held.
2066 * Returns !NULL on success, with queue_lock *not held*.
2068 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2071 struct request
*rq
= NULL
;
2072 struct request_list
*rl
= &q
->rq
;
2073 struct io_context
*ioc
= NULL
;
2074 int may_queue
, priv
;
2076 may_queue
= elv_may_queue(q
, rw
, bio
);
2077 if (may_queue
== ELV_MQUEUE_NO
)
2080 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2081 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2082 ioc
= current_io_context(GFP_ATOMIC
);
2084 * The queue will fill after this allocation, so set
2085 * it as full, and mark this process as "batching".
2086 * This process will be allowed to complete a batch of
2087 * requests, others will be blocked.
2089 if (!blk_queue_full(q
, rw
)) {
2090 ioc_set_batching(q
, ioc
);
2091 blk_set_queue_full(q
, rw
);
2093 if (may_queue
!= ELV_MQUEUE_MUST
2094 && !ioc_batching(q
, ioc
)) {
2096 * The queue is full and the allocating
2097 * process is not a "batcher", and not
2098 * exempted by the IO scheduler
2104 set_queue_congested(q
, rw
);
2108 * Only allow batching queuers to allocate up to 50% over the defined
2109 * limit of requests, otherwise we could have thousands of requests
2110 * allocated with any setting of ->nr_requests
2112 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2116 rl
->starved
[rw
] = 0;
2118 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2122 spin_unlock_irq(q
->queue_lock
);
2124 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
2125 if (unlikely(!rq
)) {
2127 * Allocation failed presumably due to memory. Undo anything
2128 * we might have messed up.
2130 * Allocating task should really be put onto the front of the
2131 * wait queue, but this is pretty rare.
2133 spin_lock_irq(q
->queue_lock
);
2134 freed_request(q
, rw
, priv
);
2137 * in the very unlikely event that allocation failed and no
2138 * requests for this direction was pending, mark us starved
2139 * so that freeing of a request in the other direction will
2140 * notice us. another possible fix would be to split the
2141 * rq mempool into READ and WRITE
2144 if (unlikely(rl
->count
[rw
] == 0))
2145 rl
->starved
[rw
] = 1;
2151 * ioc may be NULL here, and ioc_batching will be false. That's
2152 * OK, if the queue is under the request limit then requests need
2153 * not count toward the nr_batch_requests limit. There will always
2154 * be some limit enforced by BLK_BATCH_TIME.
2156 if (ioc_batching(q
, ioc
))
2157 ioc
->nr_batch_requests
--;
2162 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2168 * No available requests for this queue, unplug the device and wait for some
2169 * requests to become available.
2171 * Called with q->queue_lock held, and returns with it unlocked.
2173 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2178 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2181 struct request_list
*rl
= &q
->rq
;
2183 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2184 TASK_UNINTERRUPTIBLE
);
2186 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2189 struct io_context
*ioc
;
2191 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2193 __generic_unplug_device(q
);
2194 spin_unlock_irq(q
->queue_lock
);
2198 * After sleeping, we become a "batching" process and
2199 * will be able to allocate at least one request, and
2200 * up to a big batch of them for a small period time.
2201 * See ioc_batching, ioc_set_batching
2203 ioc
= current_io_context(GFP_NOIO
);
2204 ioc_set_batching(q
, ioc
);
2206 spin_lock_irq(q
->queue_lock
);
2208 finish_wait(&rl
->wait
[rw
], &wait
);
2214 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2218 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2220 spin_lock_irq(q
->queue_lock
);
2221 if (gfp_mask
& __GFP_WAIT
) {
2222 rq
= get_request_wait(q
, rw
, NULL
);
2224 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2226 spin_unlock_irq(q
->queue_lock
);
2228 /* q->queue_lock is unlocked at this point */
2232 EXPORT_SYMBOL(blk_get_request
);
2235 * blk_requeue_request - put a request back on queue
2236 * @q: request queue where request should be inserted
2237 * @rq: request to be inserted
2240 * Drivers often keep queueing requests until the hardware cannot accept
2241 * more, when that condition happens we need to put the request back
2242 * on the queue. Must be called with queue lock held.
2244 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2246 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2248 if (blk_rq_tagged(rq
))
2249 blk_queue_end_tag(q
, rq
);
2251 elv_requeue_request(q
, rq
);
2254 EXPORT_SYMBOL(blk_requeue_request
);
2257 * blk_insert_request - insert a special request in to a request queue
2258 * @q: request queue where request should be inserted
2259 * @rq: request to be inserted
2260 * @at_head: insert request at head or tail of queue
2261 * @data: private data
2264 * Many block devices need to execute commands asynchronously, so they don't
2265 * block the whole kernel from preemption during request execution. This is
2266 * accomplished normally by inserting aritficial requests tagged as
2267 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2268 * scheduled for actual execution by the request queue.
2270 * We have the option of inserting the head or the tail of the queue.
2271 * Typically we use the tail for new ioctls and so forth. We use the head
2272 * of the queue for things like a QUEUE_FULL message from a device, or a
2273 * host that is unable to accept a particular command.
2275 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2276 int at_head
, void *data
)
2278 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2279 unsigned long flags
;
2282 * tell I/O scheduler that this isn't a regular read/write (ie it
2283 * must not attempt merges on this) and that it acts as a soft
2286 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2290 spin_lock_irqsave(q
->queue_lock
, flags
);
2293 * If command is tagged, release the tag
2295 if (blk_rq_tagged(rq
))
2296 blk_queue_end_tag(q
, rq
);
2298 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2299 __elv_add_request(q
, rq
, where
, 0);
2301 if (blk_queue_plugged(q
))
2302 __generic_unplug_device(q
);
2305 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2308 EXPORT_SYMBOL(blk_insert_request
);
2311 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2312 * @q: request queue where request should be inserted
2313 * @rq: request structure to fill
2314 * @ubuf: the user buffer
2315 * @len: length of user data
2318 * Data will be mapped directly for zero copy io, if possible. Otherwise
2319 * a kernel bounce buffer is used.
2321 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2322 * still in process context.
2324 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2325 * before being submitted to the device, as pages mapped may be out of
2326 * reach. It's the callers responsibility to make sure this happens. The
2327 * original bio must be passed back in to blk_rq_unmap_user() for proper
2330 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2333 unsigned long uaddr
;
2337 if (len
> (q
->max_hw_sectors
<< 9))
2342 reading
= rq_data_dir(rq
) == READ
;
2345 * if alignment requirement is satisfied, map in user pages for
2346 * direct dma. else, set up kernel bounce buffers
2348 uaddr
= (unsigned long) ubuf
;
2349 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2350 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2352 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2355 rq
->bio
= rq
->biotail
= bio
;
2356 blk_rq_bio_prep(q
, rq
, bio
);
2358 rq
->buffer
= rq
->data
= NULL
;
2364 * bio is the err-ptr
2366 return PTR_ERR(bio
);
2369 EXPORT_SYMBOL(blk_rq_map_user
);
2372 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2373 * @q: request queue where request should be inserted
2374 * @rq: request to map data to
2375 * @iov: pointer to the iovec
2376 * @iov_count: number of elements in the iovec
2379 * Data will be mapped directly for zero copy io, if possible. Otherwise
2380 * a kernel bounce buffer is used.
2382 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2383 * still in process context.
2385 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2386 * before being submitted to the device, as pages mapped may be out of
2387 * reach. It's the callers responsibility to make sure this happens. The
2388 * original bio must be passed back in to blk_rq_unmap_user() for proper
2391 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2392 struct sg_iovec
*iov
, int iov_count
)
2396 if (!iov
|| iov_count
<= 0)
2399 /* we don't allow misaligned data like bio_map_user() does. If the
2400 * user is using sg, they're expected to know the alignment constraints
2401 * and respect them accordingly */
2402 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2404 return PTR_ERR(bio
);
2406 rq
->bio
= rq
->biotail
= bio
;
2407 blk_rq_bio_prep(q
, rq
, bio
);
2408 rq
->buffer
= rq
->data
= NULL
;
2409 rq
->data_len
= bio
->bi_size
;
2413 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2416 * blk_rq_unmap_user - unmap a request with user data
2417 * @bio: bio to be unmapped
2418 * @ulen: length of user buffer
2421 * Unmap a bio previously mapped by blk_rq_map_user().
2423 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2428 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2429 bio_unmap_user(bio
);
2431 ret
= bio_uncopy_user(bio
);
2437 EXPORT_SYMBOL(blk_rq_unmap_user
);
2440 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2441 * @q: request queue where request should be inserted
2442 * @rq: request to fill
2443 * @kbuf: the kernel buffer
2444 * @len: length of user data
2445 * @gfp_mask: memory allocation flags
2447 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2448 unsigned int len
, gfp_t gfp_mask
)
2452 if (len
> (q
->max_hw_sectors
<< 9))
2457 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2459 return PTR_ERR(bio
);
2461 if (rq_data_dir(rq
) == WRITE
)
2462 bio
->bi_rw
|= (1 << BIO_RW
);
2464 rq
->bio
= rq
->biotail
= bio
;
2465 blk_rq_bio_prep(q
, rq
, bio
);
2467 rq
->buffer
= rq
->data
= NULL
;
2472 EXPORT_SYMBOL(blk_rq_map_kern
);
2475 * blk_execute_rq_nowait - insert a request into queue for execution
2476 * @q: queue to insert the request in
2477 * @bd_disk: matching gendisk
2478 * @rq: request to insert
2479 * @at_head: insert request at head or tail of queue
2480 * @done: I/O completion handler
2483 * Insert a fully prepared request at the back of the io scheduler queue
2484 * for execution. Don't wait for completion.
2486 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2487 struct request
*rq
, int at_head
,
2490 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2492 rq
->rq_disk
= bd_disk
;
2493 rq
->flags
|= REQ_NOMERGE
;
2495 WARN_ON(irqs_disabled());
2496 spin_lock_irq(q
->queue_lock
);
2497 __elv_add_request(q
, rq
, where
, 1);
2498 __generic_unplug_device(q
);
2499 spin_unlock_irq(q
->queue_lock
);
2501 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2504 * blk_execute_rq - insert a request into queue for execution
2505 * @q: queue to insert the request in
2506 * @bd_disk: matching gendisk
2507 * @rq: request to insert
2508 * @at_head: insert request at head or tail of queue
2511 * Insert a fully prepared request at the back of the io scheduler queue
2512 * for execution and wait for completion.
2514 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2515 struct request
*rq
, int at_head
)
2517 DECLARE_COMPLETION(wait
);
2518 char sense
[SCSI_SENSE_BUFFERSIZE
];
2522 * we need an extra reference to the request, so we can look at
2523 * it after io completion
2528 memset(sense
, 0, sizeof(sense
));
2533 rq
->waiting
= &wait
;
2534 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2535 wait_for_completion(&wait
);
2544 EXPORT_SYMBOL(blk_execute_rq
);
2547 * blkdev_issue_flush - queue a flush
2548 * @bdev: blockdev to issue flush for
2549 * @error_sector: error sector
2552 * Issue a flush for the block device in question. Caller can supply
2553 * room for storing the error offset in case of a flush error, if they
2554 * wish to. Caller must run wait_for_completion() on its own.
2556 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2560 if (bdev
->bd_disk
== NULL
)
2563 q
= bdev_get_queue(bdev
);
2566 if (!q
->issue_flush_fn
)
2569 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2572 EXPORT_SYMBOL(blkdev_issue_flush
);
2574 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2576 int rw
= rq_data_dir(rq
);
2578 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2582 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2584 disk_round_stats(rq
->rq_disk
);
2585 rq
->rq_disk
->in_flight
++;
2590 * add-request adds a request to the linked list.
2591 * queue lock is held and interrupts disabled, as we muck with the
2592 * request queue list.
2594 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2596 drive_stat_acct(req
, req
->nr_sectors
, 1);
2599 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2602 * elevator indicated where it wants this request to be
2603 * inserted at elevator_merge time
2605 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2609 * disk_round_stats() - Round off the performance stats on a struct
2612 * The average IO queue length and utilisation statistics are maintained
2613 * by observing the current state of the queue length and the amount of
2614 * time it has been in this state for.
2616 * Normally, that accounting is done on IO completion, but that can result
2617 * in more than a second's worth of IO being accounted for within any one
2618 * second, leading to >100% utilisation. To deal with that, we call this
2619 * function to do a round-off before returning the results when reading
2620 * /proc/diskstats. This accounts immediately for all queue usage up to
2621 * the current jiffies and restarts the counters again.
2623 void disk_round_stats(struct gendisk
*disk
)
2625 unsigned long now
= jiffies
;
2627 if (now
== disk
->stamp
)
2630 if (disk
->in_flight
) {
2631 __disk_stat_add(disk
, time_in_queue
,
2632 disk
->in_flight
* (now
- disk
->stamp
));
2633 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2638 EXPORT_SYMBOL_GPL(disk_round_stats
);
2641 * queue lock must be held
2643 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2645 struct request_list
*rl
= req
->rl
;
2649 if (unlikely(--req
->ref_count
))
2652 elv_completed_request(q
, req
);
2654 req
->rq_status
= RQ_INACTIVE
;
2658 * Request may not have originated from ll_rw_blk. if not,
2659 * it didn't come out of our reserved rq pools
2662 int rw
= rq_data_dir(req
);
2663 int priv
= req
->flags
& REQ_ELVPRIV
;
2665 BUG_ON(!list_empty(&req
->queuelist
));
2667 blk_free_request(q
, req
);
2668 freed_request(q
, rw
, priv
);
2672 EXPORT_SYMBOL_GPL(__blk_put_request
);
2674 void blk_put_request(struct request
*req
)
2676 unsigned long flags
;
2677 request_queue_t
*q
= req
->q
;
2680 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2681 * following if (q) test.
2684 spin_lock_irqsave(q
->queue_lock
, flags
);
2685 __blk_put_request(q
, req
);
2686 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2690 EXPORT_SYMBOL(blk_put_request
);
2693 * blk_end_sync_rq - executes a completion event on a request
2694 * @rq: request to complete
2695 * @error: end io status of the request
2697 void blk_end_sync_rq(struct request
*rq
, int error
)
2699 struct completion
*waiting
= rq
->waiting
;
2702 __blk_put_request(rq
->q
, rq
);
2705 * complete last, if this is a stack request the process (and thus
2706 * the rq pointer) could be invalid right after this complete()
2710 EXPORT_SYMBOL(blk_end_sync_rq
);
2713 * blk_congestion_wait - wait for a queue to become uncongested
2714 * @rw: READ or WRITE
2715 * @timeout: timeout in jiffies
2717 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2718 * If no queues are congested then just wait for the next request to be
2721 long blk_congestion_wait(int rw
, long timeout
)
2725 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2727 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2728 ret
= io_schedule_timeout(timeout
);
2729 finish_wait(wqh
, &wait
);
2733 EXPORT_SYMBOL(blk_congestion_wait
);
2736 * Has to be called with the request spinlock acquired
2738 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2739 struct request
*next
)
2741 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2747 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2750 if (rq_data_dir(req
) != rq_data_dir(next
)
2751 || req
->rq_disk
!= next
->rq_disk
2752 || next
->waiting
|| next
->special
)
2756 * If we are allowed to merge, then append bio list
2757 * from next to rq and release next. merge_requests_fn
2758 * will have updated segment counts, update sector
2761 if (!q
->merge_requests_fn(q
, req
, next
))
2765 * At this point we have either done a back merge
2766 * or front merge. We need the smaller start_time of
2767 * the merged requests to be the current request
2768 * for accounting purposes.
2770 if (time_after(req
->start_time
, next
->start_time
))
2771 req
->start_time
= next
->start_time
;
2773 req
->biotail
->bi_next
= next
->bio
;
2774 req
->biotail
= next
->biotail
;
2776 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2778 elv_merge_requests(q
, req
, next
);
2781 disk_round_stats(req
->rq_disk
);
2782 req
->rq_disk
->in_flight
--;
2785 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2787 __blk_put_request(q
, next
);
2791 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2793 struct request
*next
= elv_latter_request(q
, rq
);
2796 return attempt_merge(q
, rq
, next
);
2801 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2803 struct request
*prev
= elv_former_request(q
, rq
);
2806 return attempt_merge(q
, prev
, rq
);
2811 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2813 req
->flags
|= REQ_CMD
;
2816 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2818 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2819 req
->flags
|= REQ_FAILFAST
;
2822 * REQ_BARRIER implies no merging, but lets make it explicit
2824 if (unlikely(bio_barrier(bio
)))
2825 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2828 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2829 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2830 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2831 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2832 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2833 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2834 req
->waiting
= NULL
;
2835 req
->bio
= req
->biotail
= bio
;
2836 req
->ioprio
= bio_prio(bio
);
2837 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2838 req
->start_time
= jiffies
;
2841 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2843 struct request
*req
;
2844 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2845 unsigned short prio
;
2848 sector
= bio
->bi_sector
;
2849 nr_sectors
= bio_sectors(bio
);
2850 cur_nr_sectors
= bio_cur_sectors(bio
);
2851 prio
= bio_prio(bio
);
2853 rw
= bio_data_dir(bio
);
2854 sync
= bio_sync(bio
);
2857 * low level driver can indicate that it wants pages above a
2858 * certain limit bounced to low memory (ie for highmem, or even
2859 * ISA dma in theory)
2861 blk_queue_bounce(q
, &bio
);
2863 spin_lock_prefetch(q
->queue_lock
);
2865 barrier
= bio_barrier(bio
);
2866 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2871 spin_lock_irq(q
->queue_lock
);
2873 if (unlikely(barrier
) || elv_queue_empty(q
))
2876 el_ret
= elv_merge(q
, &req
, bio
);
2878 case ELEVATOR_BACK_MERGE
:
2879 BUG_ON(!rq_mergeable(req
));
2881 if (!q
->back_merge_fn(q
, req
, bio
))
2884 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2886 req
->biotail
->bi_next
= bio
;
2888 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2889 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2890 drive_stat_acct(req
, nr_sectors
, 0);
2891 if (!attempt_back_merge(q
, req
))
2892 elv_merged_request(q
, req
);
2895 case ELEVATOR_FRONT_MERGE
:
2896 BUG_ON(!rq_mergeable(req
));
2898 if (!q
->front_merge_fn(q
, req
, bio
))
2901 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2903 bio
->bi_next
= req
->bio
;
2907 * may not be valid. if the low level driver said
2908 * it didn't need a bounce buffer then it better
2909 * not touch req->buffer either...
2911 req
->buffer
= bio_data(bio
);
2912 req
->current_nr_sectors
= cur_nr_sectors
;
2913 req
->hard_cur_sectors
= cur_nr_sectors
;
2914 req
->sector
= req
->hard_sector
= sector
;
2915 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2916 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2917 drive_stat_acct(req
, nr_sectors
, 0);
2918 if (!attempt_front_merge(q
, req
))
2919 elv_merged_request(q
, req
);
2922 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2929 * Grab a free request. This is might sleep but can not fail.
2930 * Returns with the queue unlocked.
2932 req
= get_request_wait(q
, rw
, bio
);
2935 * After dropping the lock and possibly sleeping here, our request
2936 * may now be mergeable after it had proven unmergeable (above).
2937 * We don't worry about that case for efficiency. It won't happen
2938 * often, and the elevators are able to handle it.
2940 init_request_from_bio(req
, bio
);
2942 spin_lock_irq(q
->queue_lock
);
2943 if (elv_queue_empty(q
))
2945 add_request(q
, req
);
2948 __generic_unplug_device(q
);
2950 spin_unlock_irq(q
->queue_lock
);
2954 bio_endio(bio
, nr_sectors
<< 9, err
);
2959 * If bio->bi_dev is a partition, remap the location
2961 static inline void blk_partition_remap(struct bio
*bio
)
2963 struct block_device
*bdev
= bio
->bi_bdev
;
2965 if (bdev
!= bdev
->bd_contains
) {
2966 struct hd_struct
*p
= bdev
->bd_part
;
2967 const int rw
= bio_data_dir(bio
);
2969 p
->sectors
[rw
] += bio_sectors(bio
);
2972 bio
->bi_sector
+= p
->start_sect
;
2973 bio
->bi_bdev
= bdev
->bd_contains
;
2977 static void handle_bad_sector(struct bio
*bio
)
2979 char b
[BDEVNAME_SIZE
];
2981 printk(KERN_INFO
"attempt to access beyond end of device\n");
2982 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2983 bdevname(bio
->bi_bdev
, b
),
2985 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2986 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2988 set_bit(BIO_EOF
, &bio
->bi_flags
);
2992 * generic_make_request: hand a buffer to its device driver for I/O
2993 * @bio: The bio describing the location in memory and on the device.
2995 * generic_make_request() is used to make I/O requests of block
2996 * devices. It is passed a &struct bio, which describes the I/O that needs
2999 * generic_make_request() does not return any status. The
3000 * success/failure status of the request, along with notification of
3001 * completion, is delivered asynchronously through the bio->bi_end_io
3002 * function described (one day) else where.
3004 * The caller of generic_make_request must make sure that bi_io_vec
3005 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3006 * set to describe the device address, and the
3007 * bi_end_io and optionally bi_private are set to describe how
3008 * completion notification should be signaled.
3010 * generic_make_request and the drivers it calls may use bi_next if this
3011 * bio happens to be merged with someone else, and may change bi_dev and
3012 * bi_sector for remaps as it sees fit. So the values of these fields
3013 * should NOT be depended on after the call to generic_make_request.
3015 void generic_make_request(struct bio
*bio
)
3019 int ret
, nr_sectors
= bio_sectors(bio
);
3023 /* Test device or partition size, when known. */
3024 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3026 sector_t sector
= bio
->bi_sector
;
3028 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3030 * This may well happen - the kernel calls bread()
3031 * without checking the size of the device, e.g., when
3032 * mounting a device.
3034 handle_bad_sector(bio
);
3040 * Resolve the mapping until finished. (drivers are
3041 * still free to implement/resolve their own stacking
3042 * by explicitly returning 0)
3044 * NOTE: we don't repeat the blk_size check for each new device.
3045 * Stacking drivers are expected to know what they are doing.
3050 char b
[BDEVNAME_SIZE
];
3052 q
= bdev_get_queue(bio
->bi_bdev
);
3055 "generic_make_request: Trying to access "
3056 "nonexistent block-device %s (%Lu)\n",
3057 bdevname(bio
->bi_bdev
, b
),
3058 (long long) bio
->bi_sector
);
3060 bio_endio(bio
, bio
->bi_size
, -EIO
);
3064 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3065 printk("bio too big device %s (%u > %u)\n",
3066 bdevname(bio
->bi_bdev
, b
),
3072 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3076 * If this device has partitions, remap block n
3077 * of partition p to block n+start(p) of the disk.
3079 blk_partition_remap(bio
);
3081 if (maxsector
!= -1)
3082 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3085 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3087 maxsector
= bio
->bi_sector
;
3088 old_dev
= bio
->bi_bdev
->bd_dev
;
3090 ret
= q
->make_request_fn(q
, bio
);
3094 EXPORT_SYMBOL(generic_make_request
);
3097 * submit_bio: submit a bio to the block device layer for I/O
3098 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3099 * @bio: The &struct bio which describes the I/O
3101 * submit_bio() is very similar in purpose to generic_make_request(), and
3102 * uses that function to do most of the work. Both are fairly rough
3103 * interfaces, @bio must be presetup and ready for I/O.
3106 void submit_bio(int rw
, struct bio
*bio
)
3108 int count
= bio_sectors(bio
);
3110 BIO_BUG_ON(!bio
->bi_size
);
3111 BIO_BUG_ON(!bio
->bi_io_vec
);
3114 mod_page_state(pgpgout
, count
);
3116 mod_page_state(pgpgin
, count
);
3118 if (unlikely(block_dump
)) {
3119 char b
[BDEVNAME_SIZE
];
3120 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3121 current
->comm
, current
->pid
,
3122 (rw
& WRITE
) ? "WRITE" : "READ",
3123 (unsigned long long)bio
->bi_sector
,
3124 bdevname(bio
->bi_bdev
,b
));
3127 generic_make_request(bio
);
3130 EXPORT_SYMBOL(submit_bio
);
3132 static void blk_recalc_rq_segments(struct request
*rq
)
3134 struct bio
*bio
, *prevbio
= NULL
;
3135 int nr_phys_segs
, nr_hw_segs
;
3136 unsigned int phys_size
, hw_size
;
3137 request_queue_t
*q
= rq
->q
;
3142 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3143 rq_for_each_bio(bio
, rq
) {
3144 /* Force bio hw/phys segs to be recalculated. */
3145 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3147 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3148 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3150 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3151 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3153 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3154 pseg
<= q
->max_segment_size
) {
3156 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3160 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3161 hseg
<= q
->max_segment_size
) {
3163 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3170 rq
->nr_phys_segments
= nr_phys_segs
;
3171 rq
->nr_hw_segments
= nr_hw_segs
;
3174 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3176 if (blk_fs_request(rq
)) {
3177 rq
->hard_sector
+= nsect
;
3178 rq
->hard_nr_sectors
-= nsect
;
3181 * Move the I/O submission pointers ahead if required.
3183 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3184 (rq
->sector
<= rq
->hard_sector
)) {
3185 rq
->sector
= rq
->hard_sector
;
3186 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3187 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3188 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3189 rq
->buffer
= bio_data(rq
->bio
);
3193 * if total number of sectors is less than the first segment
3194 * size, something has gone terribly wrong
3196 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3197 printk("blk: request botched\n");
3198 rq
->nr_sectors
= rq
->current_nr_sectors
;
3203 static int __end_that_request_first(struct request
*req
, int uptodate
,
3206 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3209 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3212 * extend uptodate bool to allow < 0 value to be direct io error
3215 if (end_io_error(uptodate
))
3216 error
= !uptodate
? -EIO
: uptodate
;
3219 * for a REQ_BLOCK_PC request, we want to carry any eventual
3220 * sense key with us all the way through
3222 if (!blk_pc_request(req
))
3226 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3227 printk("end_request: I/O error, dev %s, sector %llu\n",
3228 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3229 (unsigned long long)req
->sector
);
3232 if (blk_fs_request(req
) && req
->rq_disk
) {
3233 const int rw
= rq_data_dir(req
);
3235 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3238 total_bytes
= bio_nbytes
= 0;
3239 while ((bio
= req
->bio
) != NULL
) {
3242 if (nr_bytes
>= bio
->bi_size
) {
3243 req
->bio
= bio
->bi_next
;
3244 nbytes
= bio
->bi_size
;
3245 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3246 bio_endio(bio
, nbytes
, error
);
3250 int idx
= bio
->bi_idx
+ next_idx
;
3252 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3253 blk_dump_rq_flags(req
, "__end_that");
3254 printk("%s: bio idx %d >= vcnt %d\n",
3256 bio
->bi_idx
, bio
->bi_vcnt
);
3260 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3261 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3264 * not a complete bvec done
3266 if (unlikely(nbytes
> nr_bytes
)) {
3267 bio_nbytes
+= nr_bytes
;
3268 total_bytes
+= nr_bytes
;
3273 * advance to the next vector
3276 bio_nbytes
+= nbytes
;
3279 total_bytes
+= nbytes
;
3282 if ((bio
= req
->bio
)) {
3284 * end more in this run, or just return 'not-done'
3286 if (unlikely(nr_bytes
<= 0))
3298 * if the request wasn't completed, update state
3301 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3302 bio_endio(bio
, bio_nbytes
, error
);
3303 bio
->bi_idx
+= next_idx
;
3304 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3305 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3308 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3309 blk_recalc_rq_segments(req
);
3314 * end_that_request_first - end I/O on a request
3315 * @req: the request being processed
3316 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3317 * @nr_sectors: number of sectors to end I/O on
3320 * Ends I/O on a number of sectors attached to @req, and sets it up
3321 * for the next range of segments (if any) in the cluster.
3324 * 0 - we are done with this request, call end_that_request_last()
3325 * 1 - still buffers pending for this request
3327 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3329 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3332 EXPORT_SYMBOL(end_that_request_first
);
3335 * end_that_request_chunk - end I/O on a request
3336 * @req: the request being processed
3337 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3338 * @nr_bytes: number of bytes to complete
3341 * Ends I/O on a number of bytes attached to @req, and sets it up
3342 * for the next range of segments (if any). Like end_that_request_first(),
3343 * but deals with bytes instead of sectors.
3346 * 0 - we are done with this request, call end_that_request_last()
3347 * 1 - still buffers pending for this request
3349 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3351 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3354 EXPORT_SYMBOL(end_that_request_chunk
);
3357 * splice the completion data to a local structure and hand off to
3358 * process_completion_queue() to complete the requests
3360 static void blk_done_softirq(struct softirq_action
*h
)
3362 struct list_head
*cpu_list
;
3363 LIST_HEAD(local_list
);
3365 local_irq_disable();
3366 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3367 list_splice_init(cpu_list
, &local_list
);
3370 while (!list_empty(&local_list
)) {
3371 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3373 list_del_init(&rq
->donelist
);
3374 rq
->q
->softirq_done_fn(rq
);
3378 #ifdef CONFIG_HOTPLUG_CPU
3380 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3384 * If a CPU goes away, splice its entries to the current CPU
3385 * and trigger a run of the softirq
3387 if (action
== CPU_DEAD
) {
3388 int cpu
= (unsigned long) hcpu
;
3390 local_irq_disable();
3391 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3392 &__get_cpu_var(blk_cpu_done
));
3393 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3401 static struct notifier_block blk_cpu_notifier
= {
3402 .notifier_call
= blk_cpu_notify
,
3405 #endif /* CONFIG_HOTPLUG_CPU */
3408 * blk_complete_request - end I/O on a request
3409 * @req: the request being processed
3412 * Ends all I/O on a request. It does not handle partial completions,
3413 * unless the driver actually implements this in its completionc callback
3414 * through requeueing. Theh actual completion happens out-of-order,
3415 * through a softirq handler. The user must have registered a completion
3416 * callback through blk_queue_softirq_done().
3419 void blk_complete_request(struct request
*req
)
3421 struct list_head
*cpu_list
;
3422 unsigned long flags
;
3424 BUG_ON(!req
->q
->softirq_done_fn
);
3426 local_irq_save(flags
);
3428 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3429 list_add_tail(&req
->donelist
, cpu_list
);
3430 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3432 local_irq_restore(flags
);
3435 EXPORT_SYMBOL(blk_complete_request
);
3438 * queue lock must be held
3440 void end_that_request_last(struct request
*req
, int uptodate
)
3442 struct gendisk
*disk
= req
->rq_disk
;
3446 * extend uptodate bool to allow < 0 value to be direct io error
3449 if (end_io_error(uptodate
))
3450 error
= !uptodate
? -EIO
: uptodate
;
3452 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3453 laptop_io_completion();
3456 * Account IO completion. bar_rq isn't accounted as a normal
3457 * IO on queueing nor completion. Accounting the containing
3458 * request is enough.
3460 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3461 unsigned long duration
= jiffies
- req
->start_time
;
3462 const int rw
= rq_data_dir(req
);
3464 __disk_stat_inc(disk
, ios
[rw
]);
3465 __disk_stat_add(disk
, ticks
[rw
], duration
);
3466 disk_round_stats(disk
);
3470 req
->end_io(req
, error
);
3472 __blk_put_request(req
->q
, req
);
3475 EXPORT_SYMBOL(end_that_request_last
);
3477 void end_request(struct request
*req
, int uptodate
)
3479 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3480 add_disk_randomness(req
->rq_disk
);
3481 blkdev_dequeue_request(req
);
3482 end_that_request_last(req
, uptodate
);
3486 EXPORT_SYMBOL(end_request
);
3488 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3490 /* first three bits are identical in rq->flags and bio->bi_rw */
3491 rq
->flags
|= (bio
->bi_rw
& 7);
3493 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3494 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3495 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3496 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3497 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3498 rq
->buffer
= bio_data(bio
);
3500 rq
->bio
= rq
->biotail
= bio
;
3503 EXPORT_SYMBOL(blk_rq_bio_prep
);
3505 int kblockd_schedule_work(struct work_struct
*work
)
3507 return queue_work(kblockd_workqueue
, work
);
3510 EXPORT_SYMBOL(kblockd_schedule_work
);
3512 void kblockd_flush(void)
3514 flush_workqueue(kblockd_workqueue
);
3516 EXPORT_SYMBOL(kblockd_flush
);
3518 int __init
blk_dev_init(void)
3522 kblockd_workqueue
= create_workqueue("kblockd");
3523 if (!kblockd_workqueue
)
3524 panic("Failed to create kblockd\n");
3526 request_cachep
= kmem_cache_create("blkdev_requests",
3527 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3529 requestq_cachep
= kmem_cache_create("blkdev_queue",
3530 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3532 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3533 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3535 for_each_possible_cpu(i
)
3536 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3538 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3539 #ifdef CONFIG_HOTPLUG_CPU
3540 register_cpu_notifier(&blk_cpu_notifier
);
3543 blk_max_low_pfn
= max_low_pfn
;
3544 blk_max_pfn
= max_pfn
;
3550 * IO Context helper functions
3552 void put_io_context(struct io_context
*ioc
)
3557 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3559 if (atomic_dec_and_test(&ioc
->refcount
)) {
3560 struct cfq_io_context
*cic
;
3563 if (ioc
->aic
&& ioc
->aic
->dtor
)
3564 ioc
->aic
->dtor(ioc
->aic
);
3565 if (ioc
->cic_root
.rb_node
!= NULL
) {
3566 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3568 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3573 kmem_cache_free(iocontext_cachep
, ioc
);
3576 EXPORT_SYMBOL(put_io_context
);
3578 /* Called by the exitting task */
3579 void exit_io_context(void)
3581 unsigned long flags
;
3582 struct io_context
*ioc
;
3583 struct cfq_io_context
*cic
;
3585 local_irq_save(flags
);
3587 ioc
= current
->io_context
;
3588 current
->io_context
= NULL
;
3590 task_unlock(current
);
3591 local_irq_restore(flags
);
3593 if (ioc
->aic
&& ioc
->aic
->exit
)
3594 ioc
->aic
->exit(ioc
->aic
);
3595 if (ioc
->cic_root
.rb_node
!= NULL
) {
3596 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3600 put_io_context(ioc
);
3604 * If the current task has no IO context then create one and initialise it.
3605 * Otherwise, return its existing IO context.
3607 * This returned IO context doesn't have a specifically elevated refcount,
3608 * but since the current task itself holds a reference, the context can be
3609 * used in general code, so long as it stays within `current` context.
3611 struct io_context
*current_io_context(gfp_t gfp_flags
)
3613 struct task_struct
*tsk
= current
;
3614 struct io_context
*ret
;
3616 ret
= tsk
->io_context
;
3620 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3622 atomic_set(&ret
->refcount
, 1);
3623 ret
->task
= current
;
3624 ret
->set_ioprio
= NULL
;
3625 ret
->last_waited
= jiffies
; /* doesn't matter... */
3626 ret
->nr_batch_requests
= 0; /* because this is 0 */
3628 ret
->cic_root
.rb_node
= NULL
;
3629 tsk
->io_context
= ret
;
3634 EXPORT_SYMBOL(current_io_context
);
3637 * If the current task has no IO context then create one and initialise it.
3638 * If it does have a context, take a ref on it.
3640 * This is always called in the context of the task which submitted the I/O.
3642 struct io_context
*get_io_context(gfp_t gfp_flags
)
3644 struct io_context
*ret
;
3645 ret
= current_io_context(gfp_flags
);
3647 atomic_inc(&ret
->refcount
);
3650 EXPORT_SYMBOL(get_io_context
);
3652 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3654 struct io_context
*src
= *psrc
;
3655 struct io_context
*dst
= *pdst
;
3658 BUG_ON(atomic_read(&src
->refcount
) == 0);
3659 atomic_inc(&src
->refcount
);
3660 put_io_context(dst
);
3664 EXPORT_SYMBOL(copy_io_context
);
3666 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3668 struct io_context
*temp
;
3673 EXPORT_SYMBOL(swap_io_context
);
3678 struct queue_sysfs_entry
{
3679 struct attribute attr
;
3680 ssize_t (*show
)(struct request_queue
*, char *);
3681 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3685 queue_var_show(unsigned int var
, char *page
)
3687 return sprintf(page
, "%d\n", var
);
3691 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3693 char *p
= (char *) page
;
3695 *var
= simple_strtoul(p
, &p
, 10);
3699 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3701 return queue_var_show(q
->nr_requests
, (page
));
3705 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3707 struct request_list
*rl
= &q
->rq
;
3709 int ret
= queue_var_store(&nr
, page
, count
);
3710 if (nr
< BLKDEV_MIN_RQ
)
3713 spin_lock_irq(q
->queue_lock
);
3714 q
->nr_requests
= nr
;
3715 blk_queue_congestion_threshold(q
);
3717 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3718 set_queue_congested(q
, READ
);
3719 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3720 clear_queue_congested(q
, READ
);
3722 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3723 set_queue_congested(q
, WRITE
);
3724 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3725 clear_queue_congested(q
, WRITE
);
3727 if (rl
->count
[READ
] >= q
->nr_requests
) {
3728 blk_set_queue_full(q
, READ
);
3729 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3730 blk_clear_queue_full(q
, READ
);
3731 wake_up(&rl
->wait
[READ
]);
3734 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3735 blk_set_queue_full(q
, WRITE
);
3736 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3737 blk_clear_queue_full(q
, WRITE
);
3738 wake_up(&rl
->wait
[WRITE
]);
3740 spin_unlock_irq(q
->queue_lock
);
3744 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3746 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3748 return queue_var_show(ra_kb
, (page
));
3752 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3754 unsigned long ra_kb
;
3755 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3757 spin_lock_irq(q
->queue_lock
);
3758 if (ra_kb
> (q
->max_sectors
>> 1))
3759 ra_kb
= (q
->max_sectors
>> 1);
3761 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3762 spin_unlock_irq(q
->queue_lock
);
3767 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3769 int max_sectors_kb
= q
->max_sectors
>> 1;
3771 return queue_var_show(max_sectors_kb
, (page
));
3775 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3777 unsigned long max_sectors_kb
,
3778 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3779 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3780 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3783 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3786 * Take the queue lock to update the readahead and max_sectors
3787 * values synchronously:
3789 spin_lock_irq(q
->queue_lock
);
3791 * Trim readahead window as well, if necessary:
3793 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3794 if (ra_kb
> max_sectors_kb
)
3795 q
->backing_dev_info
.ra_pages
=
3796 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3798 q
->max_sectors
= max_sectors_kb
<< 1;
3799 spin_unlock_irq(q
->queue_lock
);
3804 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3806 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3808 return queue_var_show(max_hw_sectors_kb
, (page
));
3812 static struct queue_sysfs_entry queue_requests_entry
= {
3813 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3814 .show
= queue_requests_show
,
3815 .store
= queue_requests_store
,
3818 static struct queue_sysfs_entry queue_ra_entry
= {
3819 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3820 .show
= queue_ra_show
,
3821 .store
= queue_ra_store
,
3824 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3825 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3826 .show
= queue_max_sectors_show
,
3827 .store
= queue_max_sectors_store
,
3830 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3831 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3832 .show
= queue_max_hw_sectors_show
,
3835 static struct queue_sysfs_entry queue_iosched_entry
= {
3836 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3837 .show
= elv_iosched_show
,
3838 .store
= elv_iosched_store
,
3841 static struct attribute
*default_attrs
[] = {
3842 &queue_requests_entry
.attr
,
3843 &queue_ra_entry
.attr
,
3844 &queue_max_hw_sectors_entry
.attr
,
3845 &queue_max_sectors_entry
.attr
,
3846 &queue_iosched_entry
.attr
,
3850 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3853 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3855 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3856 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3861 mutex_lock(&q
->sysfs_lock
);
3862 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3863 mutex_unlock(&q
->sysfs_lock
);
3866 res
= entry
->show(q
, page
);
3867 mutex_unlock(&q
->sysfs_lock
);
3872 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3873 const char *page
, size_t length
)
3875 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3876 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3882 mutex_lock(&q
->sysfs_lock
);
3883 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3884 mutex_unlock(&q
->sysfs_lock
);
3887 res
= entry
->store(q
, page
, length
);
3888 mutex_unlock(&q
->sysfs_lock
);
3892 static struct sysfs_ops queue_sysfs_ops
= {
3893 .show
= queue_attr_show
,
3894 .store
= queue_attr_store
,
3897 static struct kobj_type queue_ktype
= {
3898 .sysfs_ops
= &queue_sysfs_ops
,
3899 .default_attrs
= default_attrs
,
3900 .release
= blk_release_queue
,
3903 int blk_register_queue(struct gendisk
*disk
)
3907 request_queue_t
*q
= disk
->queue
;
3909 if (!q
|| !q
->request_fn
)
3912 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3914 ret
= kobject_add(&q
->kobj
);
3918 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
3920 ret
= elv_register_queue(q
);
3922 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3923 kobject_del(&q
->kobj
);
3930 void blk_unregister_queue(struct gendisk
*disk
)
3932 request_queue_t
*q
= disk
->queue
;
3934 if (q
&& q
->request_fn
) {
3935 elv_unregister_queue(q
);
3937 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3938 kobject_del(&q
->kobj
);
3939 kobject_put(&disk
->kobj
);