sfc: Generate unique names for per-NIC workqueues
[linux-2.6/verdex.git] / drivers / net / sfc / efx.c
blob46c2a8b0a88d9fdc34661eb35955163f8250027b
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct *refill_workqueue;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct *reset_workqueue;
46 /**************************************************************************
48 * Configurable values
50 *************************************************************************/
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63 * Use separate channels for TX and RX events
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
68 * This is only used in MSI-X interrupt mode
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
75 /* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
78 static int napi_weight = 64;
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
84 unsigned int efx_monitor_interval = 1 * HZ;
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
93 static unsigned int allow_bad_hwaddr;
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
101 static unsigned int rx_irq_mod_usec = 60;
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
112 static unsigned int tx_irq_mod_usec = 150;
114 /* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
119 static unsigned int interrupt_mode;
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
136 /**************************************************************************
138 * Utility functions and prototypes
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
148 if (efx->state == STATE_RUNNING) \
149 ASSERT_RTNL(); \
150 } while (0)
152 /**************************************************************************
154 * Event queue processing
156 *************************************************************************/
158 /* Process channel's event queue
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 !channel->enabled))
172 return 0;
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
185 efx_flush_lro(channel);
186 efx_rx_strategy(channel);
188 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
190 return rx_packets;
193 /* Mark channel as finished processing
195 * Note that since we will not receive further interrupts for this
196 * channel before we finish processing and call the eventq_read_ack()
197 * method, there is no need to use the interrupt hold-off timers.
199 static inline void efx_channel_processed(struct efx_channel *channel)
201 /* The interrupt handler for this channel may set work_pending
202 * as soon as we acknowledge the events we've seen. Make sure
203 * it's cleared before then. */
204 channel->work_pending = false;
205 smp_wmb();
207 falcon_eventq_read_ack(channel);
210 /* NAPI poll handler
212 * NAPI guarantees serialisation of polls of the same device, which
213 * provides the guarantee required by efx_process_channel().
215 static int efx_poll(struct napi_struct *napi, int budget)
217 struct efx_channel *channel =
218 container_of(napi, struct efx_channel, napi_str);
219 struct net_device *napi_dev = channel->napi_dev;
220 int rx_packets;
222 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
223 channel->channel, raw_smp_processor_id());
225 rx_packets = efx_process_channel(channel, budget);
227 if (rx_packets < budget) {
228 /* There is no race here; although napi_disable() will
229 * only wait for netif_rx_complete(), this isn't a problem
230 * since efx_channel_processed() will have no effect if
231 * interrupts have already been disabled.
233 netif_rx_complete(napi);
234 efx_channel_processed(channel);
237 return rx_packets;
240 /* Process the eventq of the specified channel immediately on this CPU
242 * Disable hardware generated interrupts, wait for any existing
243 * processing to finish, then directly poll (and ack ) the eventq.
244 * Finally reenable NAPI and interrupts.
246 * Since we are touching interrupts the caller should hold the suspend lock
248 void efx_process_channel_now(struct efx_channel *channel)
250 struct efx_nic *efx = channel->efx;
252 BUG_ON(!channel->used_flags);
253 BUG_ON(!channel->enabled);
255 /* Disable interrupts and wait for ISRs to complete */
256 falcon_disable_interrupts(efx);
257 if (efx->legacy_irq)
258 synchronize_irq(efx->legacy_irq);
259 if (channel->irq)
260 synchronize_irq(channel->irq);
262 /* Wait for any NAPI processing to complete */
263 napi_disable(&channel->napi_str);
265 /* Poll the channel */
266 efx_process_channel(channel, efx->type->evq_size);
268 /* Ack the eventq. This may cause an interrupt to be generated
269 * when they are reenabled */
270 efx_channel_processed(channel);
272 napi_enable(&channel->napi_str);
273 falcon_enable_interrupts(efx);
276 /* Create event queue
277 * Event queue memory allocations are done only once. If the channel
278 * is reset, the memory buffer will be reused; this guards against
279 * errors during channel reset and also simplifies interrupt handling.
281 static int efx_probe_eventq(struct efx_channel *channel)
283 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
285 return falcon_probe_eventq(channel);
288 /* Prepare channel's event queue */
289 static void efx_init_eventq(struct efx_channel *channel)
291 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
293 channel->eventq_read_ptr = 0;
295 falcon_init_eventq(channel);
298 static void efx_fini_eventq(struct efx_channel *channel)
300 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
302 falcon_fini_eventq(channel);
305 static void efx_remove_eventq(struct efx_channel *channel)
307 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
309 falcon_remove_eventq(channel);
312 /**************************************************************************
314 * Channel handling
316 *************************************************************************/
318 static int efx_probe_channel(struct efx_channel *channel)
320 struct efx_tx_queue *tx_queue;
321 struct efx_rx_queue *rx_queue;
322 int rc;
324 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
326 rc = efx_probe_eventq(channel);
327 if (rc)
328 goto fail1;
330 efx_for_each_channel_tx_queue(tx_queue, channel) {
331 rc = efx_probe_tx_queue(tx_queue);
332 if (rc)
333 goto fail2;
336 efx_for_each_channel_rx_queue(rx_queue, channel) {
337 rc = efx_probe_rx_queue(rx_queue);
338 if (rc)
339 goto fail3;
342 channel->n_rx_frm_trunc = 0;
344 return 0;
346 fail3:
347 efx_for_each_channel_rx_queue(rx_queue, channel)
348 efx_remove_rx_queue(rx_queue);
349 fail2:
350 efx_for_each_channel_tx_queue(tx_queue, channel)
351 efx_remove_tx_queue(tx_queue);
352 fail1:
353 return rc;
357 static void efx_set_channel_names(struct efx_nic *efx)
359 struct efx_channel *channel;
360 const char *type = "";
361 int number;
363 efx_for_each_channel(channel, efx) {
364 number = channel->channel;
365 if (efx->n_channels > efx->n_rx_queues) {
366 if (channel->channel < efx->n_rx_queues) {
367 type = "-rx";
368 } else {
369 type = "-tx";
370 number -= efx->n_rx_queues;
373 snprintf(channel->name, sizeof(channel->name),
374 "%s%s-%d", efx->name, type, number);
378 /* Channels are shutdown and reinitialised whilst the NIC is running
379 * to propagate configuration changes (mtu, checksum offload), or
380 * to clear hardware error conditions
382 static void efx_init_channels(struct efx_nic *efx)
384 struct efx_tx_queue *tx_queue;
385 struct efx_rx_queue *rx_queue;
386 struct efx_channel *channel;
388 /* Calculate the rx buffer allocation parameters required to
389 * support the current MTU, including padding for header
390 * alignment and overruns.
392 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
393 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
394 efx->type->rx_buffer_padding);
395 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
397 /* Initialise the channels */
398 efx_for_each_channel(channel, efx) {
399 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
401 efx_init_eventq(channel);
403 efx_for_each_channel_tx_queue(tx_queue, channel)
404 efx_init_tx_queue(tx_queue);
406 /* The rx buffer allocation strategy is MTU dependent */
407 efx_rx_strategy(channel);
409 efx_for_each_channel_rx_queue(rx_queue, channel)
410 efx_init_rx_queue(rx_queue);
412 WARN_ON(channel->rx_pkt != NULL);
413 efx_rx_strategy(channel);
417 /* This enables event queue processing and packet transmission.
419 * Note that this function is not allowed to fail, since that would
420 * introduce too much complexity into the suspend/resume path.
422 static void efx_start_channel(struct efx_channel *channel)
424 struct efx_rx_queue *rx_queue;
426 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
428 if (!(channel->efx->net_dev->flags & IFF_UP))
429 netif_napi_add(channel->napi_dev, &channel->napi_str,
430 efx_poll, napi_weight);
432 /* The interrupt handler for this channel may set work_pending
433 * as soon as we enable it. Make sure it's cleared before
434 * then. Similarly, make sure it sees the enabled flag set. */
435 channel->work_pending = false;
436 channel->enabled = true;
437 smp_wmb();
439 napi_enable(&channel->napi_str);
441 /* Load up RX descriptors */
442 efx_for_each_channel_rx_queue(rx_queue, channel)
443 efx_fast_push_rx_descriptors(rx_queue);
446 /* This disables event queue processing and packet transmission.
447 * This function does not guarantee that all queue processing
448 * (e.g. RX refill) is complete.
450 static void efx_stop_channel(struct efx_channel *channel)
452 struct efx_rx_queue *rx_queue;
454 if (!channel->enabled)
455 return;
457 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
459 channel->enabled = false;
460 napi_disable(&channel->napi_str);
462 /* Ensure that any worker threads have exited or will be no-ops */
463 efx_for_each_channel_rx_queue(rx_queue, channel) {
464 spin_lock_bh(&rx_queue->add_lock);
465 spin_unlock_bh(&rx_queue->add_lock);
469 static void efx_fini_channels(struct efx_nic *efx)
471 struct efx_channel *channel;
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
474 int rc;
476 EFX_ASSERT_RESET_SERIALISED(efx);
477 BUG_ON(efx->port_enabled);
479 rc = falcon_flush_queues(efx);
480 if (rc)
481 EFX_ERR(efx, "failed to flush queues\n");
482 else
483 EFX_LOG(efx, "successfully flushed all queues\n");
485 efx_for_each_channel(channel, efx) {
486 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
488 efx_for_each_channel_rx_queue(rx_queue, channel)
489 efx_fini_rx_queue(rx_queue);
490 efx_for_each_channel_tx_queue(tx_queue, channel)
491 efx_fini_tx_queue(tx_queue);
492 efx_fini_eventq(channel);
496 static void efx_remove_channel(struct efx_channel *channel)
498 struct efx_tx_queue *tx_queue;
499 struct efx_rx_queue *rx_queue;
501 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
503 efx_for_each_channel_rx_queue(rx_queue, channel)
504 efx_remove_rx_queue(rx_queue);
505 efx_for_each_channel_tx_queue(tx_queue, channel)
506 efx_remove_tx_queue(tx_queue);
507 efx_remove_eventq(channel);
509 channel->used_flags = 0;
512 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
514 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
517 /**************************************************************************
519 * Port handling
521 **************************************************************************/
523 /* This ensures that the kernel is kept informed (via
524 * netif_carrier_on/off) of the link status, and also maintains the
525 * link status's stop on the port's TX queue.
527 static void efx_link_status_changed(struct efx_nic *efx)
529 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
530 * that no events are triggered between unregister_netdev() and the
531 * driver unloading. A more general condition is that NETDEV_CHANGE
532 * can only be generated between NETDEV_UP and NETDEV_DOWN */
533 if (!netif_running(efx->net_dev))
534 return;
536 if (efx->port_inhibited) {
537 netif_carrier_off(efx->net_dev);
538 return;
541 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
542 efx->n_link_state_changes++;
544 if (efx->link_up)
545 netif_carrier_on(efx->net_dev);
546 else
547 netif_carrier_off(efx->net_dev);
550 /* Status message for kernel log */
551 if (efx->link_up) {
552 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
553 efx->link_speed, efx->link_fd ? "full" : "half",
554 efx->net_dev->mtu,
555 (efx->promiscuous ? " [PROMISC]" : ""));
556 } else {
557 EFX_INFO(efx, "link down\n");
562 /* This call reinitialises the MAC to pick up new PHY settings. The
563 * caller must hold the mac_lock */
564 void __efx_reconfigure_port(struct efx_nic *efx)
566 WARN_ON(!mutex_is_locked(&efx->mac_lock));
568 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
569 raw_smp_processor_id());
571 /* Serialise the promiscuous flag with efx_set_multicast_list. */
572 if (efx_dev_registered(efx)) {
573 netif_addr_lock_bh(efx->net_dev);
574 netif_addr_unlock_bh(efx->net_dev);
577 falcon_deconfigure_mac_wrapper(efx);
579 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
580 if (LOOPBACK_INTERNAL(efx))
581 efx->phy_mode |= PHY_MODE_TX_DISABLED;
582 else
583 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
584 efx->phy_op->reconfigure(efx);
586 if (falcon_switch_mac(efx))
587 goto fail;
589 efx->mac_op->reconfigure(efx);
591 /* Inform kernel of loss/gain of carrier */
592 efx_link_status_changed(efx);
593 return;
595 fail:
596 EFX_ERR(efx, "failed to reconfigure MAC\n");
597 efx->phy_op->fini(efx);
598 efx->port_initialized = false;
601 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
602 * disabled. */
603 void efx_reconfigure_port(struct efx_nic *efx)
605 EFX_ASSERT_RESET_SERIALISED(efx);
607 mutex_lock(&efx->mac_lock);
608 __efx_reconfigure_port(efx);
609 mutex_unlock(&efx->mac_lock);
612 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
613 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
614 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
615 static void efx_phy_work(struct work_struct *data)
617 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
619 mutex_lock(&efx->mac_lock);
620 if (efx->port_enabled)
621 __efx_reconfigure_port(efx);
622 mutex_unlock(&efx->mac_lock);
625 static void efx_mac_work(struct work_struct *data)
627 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
629 mutex_lock(&efx->mac_lock);
630 if (efx->port_enabled)
631 efx->mac_op->irq(efx);
632 mutex_unlock(&efx->mac_lock);
635 static int efx_probe_port(struct efx_nic *efx)
637 int rc;
639 EFX_LOG(efx, "create port\n");
641 /* Connect up MAC/PHY operations table and read MAC address */
642 rc = falcon_probe_port(efx);
643 if (rc)
644 goto err;
646 if (phy_flash_cfg)
647 efx->phy_mode = PHY_MODE_SPECIAL;
649 /* Sanity check MAC address */
650 if (is_valid_ether_addr(efx->mac_address)) {
651 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
652 } else {
653 EFX_ERR(efx, "invalid MAC address %pM\n",
654 efx->mac_address);
655 if (!allow_bad_hwaddr) {
656 rc = -EINVAL;
657 goto err;
659 random_ether_addr(efx->net_dev->dev_addr);
660 EFX_INFO(efx, "using locally-generated MAC %pM\n",
661 efx->net_dev->dev_addr);
664 return 0;
666 err:
667 efx_remove_port(efx);
668 return rc;
671 static int efx_init_port(struct efx_nic *efx)
673 int rc;
675 EFX_LOG(efx, "init port\n");
677 rc = efx->phy_op->init(efx);
678 if (rc)
679 return rc;
680 efx->phy_op->reconfigure(efx);
682 mutex_lock(&efx->mac_lock);
683 rc = falcon_switch_mac(efx);
684 mutex_unlock(&efx->mac_lock);
685 if (rc)
686 goto fail;
687 efx->mac_op->reconfigure(efx);
689 efx->port_initialized = true;
690 efx->stats_enabled = true;
691 return 0;
693 fail:
694 efx->phy_op->fini(efx);
695 return rc;
698 /* Allow efx_reconfigure_port() to be scheduled, and close the window
699 * between efx_stop_port and efx_flush_all whereby a previously scheduled
700 * efx_phy_work()/efx_mac_work() may have been cancelled */
701 static void efx_start_port(struct efx_nic *efx)
703 EFX_LOG(efx, "start port\n");
704 BUG_ON(efx->port_enabled);
706 mutex_lock(&efx->mac_lock);
707 efx->port_enabled = true;
708 __efx_reconfigure_port(efx);
709 efx->mac_op->irq(efx);
710 mutex_unlock(&efx->mac_lock);
713 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
714 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
715 * and efx_mac_work may still be scheduled via NAPI processing until
716 * efx_flush_all() is called */
717 static void efx_stop_port(struct efx_nic *efx)
719 EFX_LOG(efx, "stop port\n");
721 mutex_lock(&efx->mac_lock);
722 efx->port_enabled = false;
723 mutex_unlock(&efx->mac_lock);
725 /* Serialise against efx_set_multicast_list() */
726 if (efx_dev_registered(efx)) {
727 netif_addr_lock_bh(efx->net_dev);
728 netif_addr_unlock_bh(efx->net_dev);
732 static void efx_fini_port(struct efx_nic *efx)
734 EFX_LOG(efx, "shut down port\n");
736 if (!efx->port_initialized)
737 return;
739 efx->phy_op->fini(efx);
740 efx->port_initialized = false;
742 efx->link_up = false;
743 efx_link_status_changed(efx);
746 static void efx_remove_port(struct efx_nic *efx)
748 EFX_LOG(efx, "destroying port\n");
750 falcon_remove_port(efx);
753 /**************************************************************************
755 * NIC handling
757 **************************************************************************/
759 /* This configures the PCI device to enable I/O and DMA. */
760 static int efx_init_io(struct efx_nic *efx)
762 struct pci_dev *pci_dev = efx->pci_dev;
763 dma_addr_t dma_mask = efx->type->max_dma_mask;
764 int rc;
766 EFX_LOG(efx, "initialising I/O\n");
768 rc = pci_enable_device(pci_dev);
769 if (rc) {
770 EFX_ERR(efx, "failed to enable PCI device\n");
771 goto fail1;
774 pci_set_master(pci_dev);
776 /* Set the PCI DMA mask. Try all possibilities from our
777 * genuine mask down to 32 bits, because some architectures
778 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
779 * masks event though they reject 46 bit masks.
781 while (dma_mask > 0x7fffffffUL) {
782 if (pci_dma_supported(pci_dev, dma_mask) &&
783 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
784 break;
785 dma_mask >>= 1;
787 if (rc) {
788 EFX_ERR(efx, "could not find a suitable DMA mask\n");
789 goto fail2;
791 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
792 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
793 if (rc) {
794 /* pci_set_consistent_dma_mask() is not *allowed* to
795 * fail with a mask that pci_set_dma_mask() accepted,
796 * but just in case...
798 EFX_ERR(efx, "failed to set consistent DMA mask\n");
799 goto fail2;
802 efx->membase_phys = pci_resource_start(efx->pci_dev,
803 efx->type->mem_bar);
804 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
805 if (rc) {
806 EFX_ERR(efx, "request for memory BAR failed\n");
807 rc = -EIO;
808 goto fail3;
810 efx->membase = ioremap_nocache(efx->membase_phys,
811 efx->type->mem_map_size);
812 if (!efx->membase) {
813 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
814 efx->type->mem_bar,
815 (unsigned long long)efx->membase_phys,
816 efx->type->mem_map_size);
817 rc = -ENOMEM;
818 goto fail4;
820 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
821 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
822 efx->type->mem_map_size, efx->membase);
824 return 0;
826 fail4:
827 pci_release_region(efx->pci_dev, efx->type->mem_bar);
828 fail3:
829 efx->membase_phys = 0;
830 fail2:
831 pci_disable_device(efx->pci_dev);
832 fail1:
833 return rc;
836 static void efx_fini_io(struct efx_nic *efx)
838 EFX_LOG(efx, "shutting down I/O\n");
840 if (efx->membase) {
841 iounmap(efx->membase);
842 efx->membase = NULL;
845 if (efx->membase_phys) {
846 pci_release_region(efx->pci_dev, efx->type->mem_bar);
847 efx->membase_phys = 0;
850 pci_disable_device(efx->pci_dev);
853 /* Get number of RX queues wanted. Return number of online CPU
854 * packages in the expectation that an IRQ balancer will spread
855 * interrupts across them. */
856 static int efx_wanted_rx_queues(void)
858 cpumask_t core_mask;
859 int count;
860 int cpu;
862 cpus_clear(core_mask);
863 count = 0;
864 for_each_online_cpu(cpu) {
865 if (!cpu_isset(cpu, core_mask)) {
866 ++count;
867 cpus_or(core_mask, core_mask,
868 topology_core_siblings(cpu));
872 return count;
875 /* Probe the number and type of interrupts we are able to obtain, and
876 * the resulting numbers of channels and RX queues.
878 static void efx_probe_interrupts(struct efx_nic *efx)
880 int max_channels =
881 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
882 int rc, i;
884 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
885 struct msix_entry xentries[EFX_MAX_CHANNELS];
886 int wanted_ints;
887 int rx_queues;
889 /* We want one RX queue and interrupt per CPU package
890 * (or as specified by the rss_cpus module parameter).
891 * We will need one channel per interrupt.
893 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
894 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
895 wanted_ints = min(wanted_ints, max_channels);
897 for (i = 0; i < wanted_ints; i++)
898 xentries[i].entry = i;
899 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
900 if (rc > 0) {
901 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
902 " available (%d < %d).\n", rc, wanted_ints);
903 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
904 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
905 wanted_ints = rc;
906 rc = pci_enable_msix(efx->pci_dev, xentries,
907 wanted_ints);
910 if (rc == 0) {
911 efx->n_rx_queues = min(rx_queues, wanted_ints);
912 efx->n_channels = wanted_ints;
913 for (i = 0; i < wanted_ints; i++)
914 efx->channel[i].irq = xentries[i].vector;
915 } else {
916 /* Fall back to single channel MSI */
917 efx->interrupt_mode = EFX_INT_MODE_MSI;
918 EFX_ERR(efx, "could not enable MSI-X\n");
922 /* Try single interrupt MSI */
923 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
924 efx->n_rx_queues = 1;
925 efx->n_channels = 1;
926 rc = pci_enable_msi(efx->pci_dev);
927 if (rc == 0) {
928 efx->channel[0].irq = efx->pci_dev->irq;
929 } else {
930 EFX_ERR(efx, "could not enable MSI\n");
931 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
935 /* Assume legacy interrupts */
936 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
937 efx->n_rx_queues = 1;
938 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
939 efx->legacy_irq = efx->pci_dev->irq;
943 static void efx_remove_interrupts(struct efx_nic *efx)
945 struct efx_channel *channel;
947 /* Remove MSI/MSI-X interrupts */
948 efx_for_each_channel(channel, efx)
949 channel->irq = 0;
950 pci_disable_msi(efx->pci_dev);
951 pci_disable_msix(efx->pci_dev);
953 /* Remove legacy interrupt */
954 efx->legacy_irq = 0;
957 static void efx_set_channels(struct efx_nic *efx)
959 struct efx_tx_queue *tx_queue;
960 struct efx_rx_queue *rx_queue;
962 efx_for_each_tx_queue(tx_queue, efx) {
963 if (separate_tx_channels)
964 tx_queue->channel = &efx->channel[efx->n_channels-1];
965 else
966 tx_queue->channel = &efx->channel[0];
967 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
970 efx_for_each_rx_queue(rx_queue, efx) {
971 rx_queue->channel = &efx->channel[rx_queue->queue];
972 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
976 static int efx_probe_nic(struct efx_nic *efx)
978 int rc;
980 EFX_LOG(efx, "creating NIC\n");
982 /* Carry out hardware-type specific initialisation */
983 rc = falcon_probe_nic(efx);
984 if (rc)
985 return rc;
987 /* Determine the number of channels and RX queues by trying to hook
988 * in MSI-X interrupts. */
989 efx_probe_interrupts(efx);
991 efx_set_channels(efx);
993 /* Initialise the interrupt moderation settings */
994 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
996 return 0;
999 static void efx_remove_nic(struct efx_nic *efx)
1001 EFX_LOG(efx, "destroying NIC\n");
1003 efx_remove_interrupts(efx);
1004 falcon_remove_nic(efx);
1007 /**************************************************************************
1009 * NIC startup/shutdown
1011 *************************************************************************/
1013 static int efx_probe_all(struct efx_nic *efx)
1015 struct efx_channel *channel;
1016 int rc;
1018 /* Create NIC */
1019 rc = efx_probe_nic(efx);
1020 if (rc) {
1021 EFX_ERR(efx, "failed to create NIC\n");
1022 goto fail1;
1025 /* Create port */
1026 rc = efx_probe_port(efx);
1027 if (rc) {
1028 EFX_ERR(efx, "failed to create port\n");
1029 goto fail2;
1032 /* Create channels */
1033 efx_for_each_channel(channel, efx) {
1034 rc = efx_probe_channel(channel);
1035 if (rc) {
1036 EFX_ERR(efx, "failed to create channel %d\n",
1037 channel->channel);
1038 goto fail3;
1041 efx_set_channel_names(efx);
1043 return 0;
1045 fail3:
1046 efx_for_each_channel(channel, efx)
1047 efx_remove_channel(channel);
1048 efx_remove_port(efx);
1049 fail2:
1050 efx_remove_nic(efx);
1051 fail1:
1052 return rc;
1055 /* Called after previous invocation(s) of efx_stop_all, restarts the
1056 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1057 * and ensures that the port is scheduled to be reconfigured.
1058 * This function is safe to call multiple times when the NIC is in any
1059 * state. */
1060 static void efx_start_all(struct efx_nic *efx)
1062 struct efx_channel *channel;
1064 EFX_ASSERT_RESET_SERIALISED(efx);
1066 /* Check that it is appropriate to restart the interface. All
1067 * of these flags are safe to read under just the rtnl lock */
1068 if (efx->port_enabled)
1069 return;
1070 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1071 return;
1072 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1073 return;
1075 /* Mark the port as enabled so port reconfigurations can start, then
1076 * restart the transmit interface early so the watchdog timer stops */
1077 efx_start_port(efx);
1078 if (efx_dev_registered(efx))
1079 efx_wake_queue(efx);
1081 efx_for_each_channel(channel, efx)
1082 efx_start_channel(channel);
1084 falcon_enable_interrupts(efx);
1086 /* Start hardware monitor if we're in RUNNING */
1087 if (efx->state == STATE_RUNNING)
1088 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1089 efx_monitor_interval);
1092 /* Flush all delayed work. Should only be called when no more delayed work
1093 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1094 * since we're holding the rtnl_lock at this point. */
1095 static void efx_flush_all(struct efx_nic *efx)
1097 struct efx_rx_queue *rx_queue;
1099 /* Make sure the hardware monitor is stopped */
1100 cancel_delayed_work_sync(&efx->monitor_work);
1102 /* Ensure that all RX slow refills are complete. */
1103 efx_for_each_rx_queue(rx_queue, efx)
1104 cancel_delayed_work_sync(&rx_queue->work);
1106 /* Stop scheduled port reconfigurations */
1107 cancel_work_sync(&efx->mac_work);
1108 cancel_work_sync(&efx->phy_work);
1112 /* Quiesce hardware and software without bringing the link down.
1113 * Safe to call multiple times, when the nic and interface is in any
1114 * state. The caller is guaranteed to subsequently be in a position
1115 * to modify any hardware and software state they see fit without
1116 * taking locks. */
1117 static void efx_stop_all(struct efx_nic *efx)
1119 struct efx_channel *channel;
1121 EFX_ASSERT_RESET_SERIALISED(efx);
1123 /* port_enabled can be read safely under the rtnl lock */
1124 if (!efx->port_enabled)
1125 return;
1127 /* Disable interrupts and wait for ISR to complete */
1128 falcon_disable_interrupts(efx);
1129 if (efx->legacy_irq)
1130 synchronize_irq(efx->legacy_irq);
1131 efx_for_each_channel(channel, efx) {
1132 if (channel->irq)
1133 synchronize_irq(channel->irq);
1136 /* Stop all NAPI processing and synchronous rx refills */
1137 efx_for_each_channel(channel, efx)
1138 efx_stop_channel(channel);
1140 /* Stop all asynchronous port reconfigurations. Since all
1141 * event processing has already been stopped, there is no
1142 * window to loose phy events */
1143 efx_stop_port(efx);
1145 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1146 efx_flush_all(efx);
1148 /* Isolate the MAC from the TX and RX engines, so that queue
1149 * flushes will complete in a timely fashion. */
1150 falcon_drain_tx_fifo(efx);
1152 /* Stop the kernel transmit interface late, so the watchdog
1153 * timer isn't ticking over the flush */
1154 if (efx_dev_registered(efx)) {
1155 efx_stop_queue(efx);
1156 netif_tx_lock_bh(efx->net_dev);
1157 netif_tx_unlock_bh(efx->net_dev);
1161 static void efx_remove_all(struct efx_nic *efx)
1163 struct efx_channel *channel;
1165 efx_for_each_channel(channel, efx)
1166 efx_remove_channel(channel);
1167 efx_remove_port(efx);
1168 efx_remove_nic(efx);
1171 /* A convinience function to safely flush all the queues */
1172 void efx_flush_queues(struct efx_nic *efx)
1174 EFX_ASSERT_RESET_SERIALISED(efx);
1176 efx_stop_all(efx);
1178 efx_fini_channels(efx);
1179 efx_init_channels(efx);
1181 efx_start_all(efx);
1184 /**************************************************************************
1186 * Interrupt moderation
1188 **************************************************************************/
1190 /* Set interrupt moderation parameters */
1191 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1193 struct efx_tx_queue *tx_queue;
1194 struct efx_rx_queue *rx_queue;
1196 EFX_ASSERT_RESET_SERIALISED(efx);
1198 efx_for_each_tx_queue(tx_queue, efx)
1199 tx_queue->channel->irq_moderation = tx_usecs;
1201 efx_for_each_rx_queue(rx_queue, efx)
1202 rx_queue->channel->irq_moderation = rx_usecs;
1205 /**************************************************************************
1207 * Hardware monitor
1209 **************************************************************************/
1211 /* Run periodically off the general workqueue. Serialised against
1212 * efx_reconfigure_port via the mac_lock */
1213 static void efx_monitor(struct work_struct *data)
1215 struct efx_nic *efx = container_of(data, struct efx_nic,
1216 monitor_work.work);
1217 int rc;
1219 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1220 raw_smp_processor_id());
1222 /* If the mac_lock is already held then it is likely a port
1223 * reconfiguration is already in place, which will likely do
1224 * most of the work of check_hw() anyway. */
1225 if (!mutex_trylock(&efx->mac_lock))
1226 goto out_requeue;
1227 if (!efx->port_enabled)
1228 goto out_unlock;
1229 rc = efx->board_info.monitor(efx);
1230 if (rc) {
1231 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1232 (rc == -ERANGE) ? "reported fault" : "failed");
1233 efx->phy_mode |= PHY_MODE_LOW_POWER;
1234 falcon_sim_phy_event(efx);
1236 efx->phy_op->poll(efx);
1237 efx->mac_op->poll(efx);
1239 out_unlock:
1240 mutex_unlock(&efx->mac_lock);
1241 out_requeue:
1242 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1243 efx_monitor_interval);
1246 /**************************************************************************
1248 * ioctls
1250 *************************************************************************/
1252 /* Net device ioctl
1253 * Context: process, rtnl_lock() held.
1255 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1257 struct efx_nic *efx = netdev_priv(net_dev);
1259 EFX_ASSERT_RESET_SERIALISED(efx);
1261 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1264 /**************************************************************************
1266 * NAPI interface
1268 **************************************************************************/
1270 static int efx_init_napi(struct efx_nic *efx)
1272 struct efx_channel *channel;
1273 int rc;
1275 efx_for_each_channel(channel, efx) {
1276 channel->napi_dev = efx->net_dev;
1277 rc = efx_lro_init(&channel->lro_mgr, efx);
1278 if (rc)
1279 goto err;
1281 return 0;
1282 err:
1283 efx_fini_napi(efx);
1284 return rc;
1287 static void efx_fini_napi(struct efx_nic *efx)
1289 struct efx_channel *channel;
1291 efx_for_each_channel(channel, efx) {
1292 efx_lro_fini(&channel->lro_mgr);
1293 channel->napi_dev = NULL;
1297 /**************************************************************************
1299 * Kernel netpoll interface
1301 *************************************************************************/
1303 #ifdef CONFIG_NET_POLL_CONTROLLER
1305 /* Although in the common case interrupts will be disabled, this is not
1306 * guaranteed. However, all our work happens inside the NAPI callback,
1307 * so no locking is required.
1309 static void efx_netpoll(struct net_device *net_dev)
1311 struct efx_nic *efx = netdev_priv(net_dev);
1312 struct efx_channel *channel;
1314 efx_for_each_channel(channel, efx)
1315 efx_schedule_channel(channel);
1318 #endif
1320 /**************************************************************************
1322 * Kernel net device interface
1324 *************************************************************************/
1326 /* Context: process, rtnl_lock() held. */
1327 static int efx_net_open(struct net_device *net_dev)
1329 struct efx_nic *efx = netdev_priv(net_dev);
1330 EFX_ASSERT_RESET_SERIALISED(efx);
1332 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1333 raw_smp_processor_id());
1335 if (efx->phy_mode & PHY_MODE_SPECIAL)
1336 return -EBUSY;
1338 efx_start_all(efx);
1339 return 0;
1342 /* Context: process, rtnl_lock() held.
1343 * Note that the kernel will ignore our return code; this method
1344 * should really be a void.
1346 static int efx_net_stop(struct net_device *net_dev)
1348 struct efx_nic *efx = netdev_priv(net_dev);
1350 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1351 raw_smp_processor_id());
1353 /* Stop the device and flush all the channels */
1354 efx_stop_all(efx);
1355 efx_fini_channels(efx);
1356 efx_init_channels(efx);
1358 return 0;
1361 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1362 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1364 struct efx_nic *efx = netdev_priv(net_dev);
1365 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1366 struct net_device_stats *stats = &net_dev->stats;
1368 /* Update stats if possible, but do not wait if another thread
1369 * is updating them (or resetting the NIC); slightly stale
1370 * stats are acceptable.
1372 if (!spin_trylock(&efx->stats_lock))
1373 return stats;
1374 if (efx->stats_enabled) {
1375 efx->mac_op->update_stats(efx);
1376 falcon_update_nic_stats(efx);
1378 spin_unlock(&efx->stats_lock);
1380 stats->rx_packets = mac_stats->rx_packets;
1381 stats->tx_packets = mac_stats->tx_packets;
1382 stats->rx_bytes = mac_stats->rx_bytes;
1383 stats->tx_bytes = mac_stats->tx_bytes;
1384 stats->multicast = mac_stats->rx_multicast;
1385 stats->collisions = mac_stats->tx_collision;
1386 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1387 mac_stats->rx_length_error);
1388 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1389 stats->rx_crc_errors = mac_stats->rx_bad;
1390 stats->rx_frame_errors = mac_stats->rx_align_error;
1391 stats->rx_fifo_errors = mac_stats->rx_overflow;
1392 stats->rx_missed_errors = mac_stats->rx_missed;
1393 stats->tx_window_errors = mac_stats->tx_late_collision;
1395 stats->rx_errors = (stats->rx_length_errors +
1396 stats->rx_over_errors +
1397 stats->rx_crc_errors +
1398 stats->rx_frame_errors +
1399 stats->rx_fifo_errors +
1400 stats->rx_missed_errors +
1401 mac_stats->rx_symbol_error);
1402 stats->tx_errors = (stats->tx_window_errors +
1403 mac_stats->tx_bad);
1405 return stats;
1408 /* Context: netif_tx_lock held, BHs disabled. */
1409 static void efx_watchdog(struct net_device *net_dev)
1411 struct efx_nic *efx = netdev_priv(net_dev);
1413 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1414 " resetting channels\n",
1415 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1417 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1421 /* Context: process, rtnl_lock() held. */
1422 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1424 struct efx_nic *efx = netdev_priv(net_dev);
1425 int rc = 0;
1427 EFX_ASSERT_RESET_SERIALISED(efx);
1429 if (new_mtu > EFX_MAX_MTU)
1430 return -EINVAL;
1432 efx_stop_all(efx);
1434 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1436 efx_fini_channels(efx);
1437 net_dev->mtu = new_mtu;
1438 efx_init_channels(efx);
1440 efx_start_all(efx);
1441 return rc;
1444 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1446 struct efx_nic *efx = netdev_priv(net_dev);
1447 struct sockaddr *addr = data;
1448 char *new_addr = addr->sa_data;
1450 EFX_ASSERT_RESET_SERIALISED(efx);
1452 if (!is_valid_ether_addr(new_addr)) {
1453 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1454 new_addr);
1455 return -EINVAL;
1458 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1460 /* Reconfigure the MAC */
1461 efx_reconfigure_port(efx);
1463 return 0;
1466 /* Context: netif_addr_lock held, BHs disabled. */
1467 static void efx_set_multicast_list(struct net_device *net_dev)
1469 struct efx_nic *efx = netdev_priv(net_dev);
1470 struct dev_mc_list *mc_list = net_dev->mc_list;
1471 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1472 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1473 bool changed = (efx->promiscuous != promiscuous);
1474 u32 crc;
1475 int bit;
1476 int i;
1478 efx->promiscuous = promiscuous;
1480 /* Build multicast hash table */
1481 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1482 memset(mc_hash, 0xff, sizeof(*mc_hash));
1483 } else {
1484 memset(mc_hash, 0x00, sizeof(*mc_hash));
1485 for (i = 0; i < net_dev->mc_count; i++) {
1486 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1487 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1488 set_bit_le(bit, mc_hash->byte);
1489 mc_list = mc_list->next;
1493 if (!efx->port_enabled)
1494 /* Delay pushing settings until efx_start_port() */
1495 return;
1497 if (changed)
1498 queue_work(efx->workqueue, &efx->phy_work);
1500 /* Create and activate new global multicast hash table */
1501 falcon_set_multicast_hash(efx);
1504 static const struct net_device_ops efx_netdev_ops = {
1505 .ndo_open = efx_net_open,
1506 .ndo_stop = efx_net_stop,
1507 .ndo_get_stats = efx_net_stats,
1508 .ndo_tx_timeout = efx_watchdog,
1509 .ndo_start_xmit = efx_hard_start_xmit,
1510 .ndo_validate_addr = eth_validate_addr,
1511 .ndo_do_ioctl = efx_ioctl,
1512 .ndo_change_mtu = efx_change_mtu,
1513 .ndo_set_mac_address = efx_set_mac_address,
1514 .ndo_set_multicast_list = efx_set_multicast_list,
1515 #ifdef CONFIG_NET_POLL_CONTROLLER
1516 .ndo_poll_controller = efx_netpoll,
1517 #endif
1520 static void efx_update_name(struct efx_nic *efx)
1522 strcpy(efx->name, efx->net_dev->name);
1523 efx_mtd_rename(efx);
1524 efx_set_channel_names(efx);
1527 static int efx_netdev_event(struct notifier_block *this,
1528 unsigned long event, void *ptr)
1530 struct net_device *net_dev = ptr;
1532 if (net_dev->netdev_ops == &efx_netdev_ops &&
1533 event == NETDEV_CHANGENAME)
1534 efx_update_name(netdev_priv(net_dev));
1536 return NOTIFY_DONE;
1539 static struct notifier_block efx_netdev_notifier = {
1540 .notifier_call = efx_netdev_event,
1543 static ssize_t
1544 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1546 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1547 return sprintf(buf, "%d\n", efx->phy_type);
1549 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1551 static int efx_register_netdev(struct efx_nic *efx)
1553 struct net_device *net_dev = efx->net_dev;
1554 int rc;
1556 net_dev->watchdog_timeo = 5 * HZ;
1557 net_dev->irq = efx->pci_dev->irq;
1558 net_dev->netdev_ops = &efx_netdev_ops;
1559 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1560 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1562 /* Always start with carrier off; PHY events will detect the link */
1563 netif_carrier_off(efx->net_dev);
1565 /* Clear MAC statistics */
1566 efx->mac_op->update_stats(efx);
1567 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1569 rc = register_netdev(net_dev);
1570 if (rc) {
1571 EFX_ERR(efx, "could not register net dev\n");
1572 return rc;
1575 rtnl_lock();
1576 efx_update_name(efx);
1577 rtnl_unlock();
1579 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1580 if (rc) {
1581 EFX_ERR(efx, "failed to init net dev attributes\n");
1582 goto fail_registered;
1585 return 0;
1587 fail_registered:
1588 unregister_netdev(net_dev);
1589 return rc;
1592 static void efx_unregister_netdev(struct efx_nic *efx)
1594 struct efx_tx_queue *tx_queue;
1596 if (!efx->net_dev)
1597 return;
1599 BUG_ON(netdev_priv(efx->net_dev) != efx);
1601 /* Free up any skbs still remaining. This has to happen before
1602 * we try to unregister the netdev as running their destructors
1603 * may be needed to get the device ref. count to 0. */
1604 efx_for_each_tx_queue(tx_queue, efx)
1605 efx_release_tx_buffers(tx_queue);
1607 if (efx_dev_registered(efx)) {
1608 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1609 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1610 unregister_netdev(efx->net_dev);
1614 /**************************************************************************
1616 * Device reset and suspend
1618 **************************************************************************/
1620 /* Tears down the entire software state and most of the hardware state
1621 * before reset. */
1622 void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1624 EFX_ASSERT_RESET_SERIALISED(efx);
1626 /* The net_dev->get_stats handler is quite slow, and will fail
1627 * if a fetch is pending over reset. Serialise against it. */
1628 spin_lock(&efx->stats_lock);
1629 efx->stats_enabled = false;
1630 spin_unlock(&efx->stats_lock);
1632 efx_stop_all(efx);
1633 mutex_lock(&efx->mac_lock);
1634 mutex_lock(&efx->spi_lock);
1636 efx->phy_op->get_settings(efx, ecmd);
1638 efx_fini_channels(efx);
1641 /* This function will always ensure that the locks acquired in
1642 * efx_reset_down() are released. A failure return code indicates
1643 * that we were unable to reinitialise the hardware, and the
1644 * driver should be disabled. If ok is false, then the rx and tx
1645 * engines are not restarted, pending a RESET_DISABLE. */
1646 int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
1648 int rc;
1650 EFX_ASSERT_RESET_SERIALISED(efx);
1652 rc = falcon_init_nic(efx);
1653 if (rc) {
1654 EFX_ERR(efx, "failed to initialise NIC\n");
1655 ok = false;
1658 if (ok) {
1659 efx_init_channels(efx);
1661 if (efx->phy_op->set_settings(efx, ecmd))
1662 EFX_ERR(efx, "could not restore PHY settings\n");
1665 mutex_unlock(&efx->spi_lock);
1666 mutex_unlock(&efx->mac_lock);
1668 if (ok) {
1669 efx_start_all(efx);
1670 efx->stats_enabled = true;
1672 return rc;
1675 /* Reset the NIC as transparently as possible. Do not reset the PHY
1676 * Note that the reset may fail, in which case the card will be left
1677 * in a most-probably-unusable state.
1679 * This function will sleep. You cannot reset from within an atomic
1680 * state; use efx_schedule_reset() instead.
1682 * Grabs the rtnl_lock.
1684 static int efx_reset(struct efx_nic *efx)
1686 struct ethtool_cmd ecmd;
1687 enum reset_type method = efx->reset_pending;
1688 int rc;
1690 /* Serialise with kernel interfaces */
1691 rtnl_lock();
1693 /* If we're not RUNNING then don't reset. Leave the reset_pending
1694 * flag set so that efx_pci_probe_main will be retried */
1695 if (efx->state != STATE_RUNNING) {
1696 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1697 goto unlock_rtnl;
1700 EFX_INFO(efx, "resetting (%d)\n", method);
1702 efx_reset_down(efx, &ecmd);
1704 rc = falcon_reset_hw(efx, method);
1705 if (rc) {
1706 EFX_ERR(efx, "failed to reset hardware\n");
1707 goto fail;
1710 /* Allow resets to be rescheduled. */
1711 efx->reset_pending = RESET_TYPE_NONE;
1713 /* Reinitialise bus-mastering, which may have been turned off before
1714 * the reset was scheduled. This is still appropriate, even in the
1715 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1716 * can respond to requests. */
1717 pci_set_master(efx->pci_dev);
1719 /* Leave device stopped if necessary */
1720 if (method == RESET_TYPE_DISABLE) {
1721 rc = -EIO;
1722 goto fail;
1725 rc = efx_reset_up(efx, &ecmd, true);
1726 if (rc)
1727 goto disable;
1729 EFX_LOG(efx, "reset complete\n");
1730 unlock_rtnl:
1731 rtnl_unlock();
1732 return 0;
1734 fail:
1735 efx_reset_up(efx, &ecmd, false);
1736 disable:
1737 EFX_ERR(efx, "has been disabled\n");
1738 efx->state = STATE_DISABLED;
1740 rtnl_unlock();
1741 efx_unregister_netdev(efx);
1742 efx_fini_port(efx);
1743 return rc;
1746 /* The worker thread exists so that code that cannot sleep can
1747 * schedule a reset for later.
1749 static void efx_reset_work(struct work_struct *data)
1751 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1753 efx_reset(nic);
1756 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1758 enum reset_type method;
1760 if (efx->reset_pending != RESET_TYPE_NONE) {
1761 EFX_INFO(efx, "quenching already scheduled reset\n");
1762 return;
1765 switch (type) {
1766 case RESET_TYPE_INVISIBLE:
1767 case RESET_TYPE_ALL:
1768 case RESET_TYPE_WORLD:
1769 case RESET_TYPE_DISABLE:
1770 method = type;
1771 break;
1772 case RESET_TYPE_RX_RECOVERY:
1773 case RESET_TYPE_RX_DESC_FETCH:
1774 case RESET_TYPE_TX_DESC_FETCH:
1775 case RESET_TYPE_TX_SKIP:
1776 method = RESET_TYPE_INVISIBLE;
1777 break;
1778 default:
1779 method = RESET_TYPE_ALL;
1780 break;
1783 if (method != type)
1784 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1785 else
1786 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1788 efx->reset_pending = method;
1790 queue_work(reset_workqueue, &efx->reset_work);
1793 /**************************************************************************
1795 * List of NICs we support
1797 **************************************************************************/
1799 /* PCI device ID table */
1800 static struct pci_device_id efx_pci_table[] __devinitdata = {
1801 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1802 .driver_data = (unsigned long) &falcon_a_nic_type},
1803 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1804 .driver_data = (unsigned long) &falcon_b_nic_type},
1805 {0} /* end of list */
1808 /**************************************************************************
1810 * Dummy PHY/MAC/Board operations
1812 * Can be used for some unimplemented operations
1813 * Needed so all function pointers are valid and do not have to be tested
1814 * before use
1816 **************************************************************************/
1817 int efx_port_dummy_op_int(struct efx_nic *efx)
1819 return 0;
1821 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1822 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1824 static struct efx_mac_operations efx_dummy_mac_operations = {
1825 .reconfigure = efx_port_dummy_op_void,
1826 .poll = efx_port_dummy_op_void,
1827 .irq = efx_port_dummy_op_void,
1830 static struct efx_phy_operations efx_dummy_phy_operations = {
1831 .init = efx_port_dummy_op_int,
1832 .reconfigure = efx_port_dummy_op_void,
1833 .poll = efx_port_dummy_op_void,
1834 .fini = efx_port_dummy_op_void,
1835 .clear_interrupt = efx_port_dummy_op_void,
1838 static struct efx_board efx_dummy_board_info = {
1839 .init = efx_port_dummy_op_int,
1840 .init_leds = efx_port_dummy_op_int,
1841 .set_fault_led = efx_port_dummy_op_blink,
1842 .monitor = efx_port_dummy_op_int,
1843 .blink = efx_port_dummy_op_blink,
1844 .fini = efx_port_dummy_op_void,
1847 /**************************************************************************
1849 * Data housekeeping
1851 **************************************************************************/
1853 /* This zeroes out and then fills in the invariants in a struct
1854 * efx_nic (including all sub-structures).
1856 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1857 struct pci_dev *pci_dev, struct net_device *net_dev)
1859 struct efx_channel *channel;
1860 struct efx_tx_queue *tx_queue;
1861 struct efx_rx_queue *rx_queue;
1862 int i;
1864 /* Initialise common structures */
1865 memset(efx, 0, sizeof(*efx));
1866 spin_lock_init(&efx->biu_lock);
1867 spin_lock_init(&efx->phy_lock);
1868 mutex_init(&efx->spi_lock);
1869 INIT_WORK(&efx->reset_work, efx_reset_work);
1870 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1871 efx->pci_dev = pci_dev;
1872 efx->state = STATE_INIT;
1873 efx->reset_pending = RESET_TYPE_NONE;
1874 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1875 efx->board_info = efx_dummy_board_info;
1877 efx->net_dev = net_dev;
1878 efx->rx_checksum_enabled = true;
1879 spin_lock_init(&efx->netif_stop_lock);
1880 spin_lock_init(&efx->stats_lock);
1881 mutex_init(&efx->mac_lock);
1882 efx->mac_op = &efx_dummy_mac_operations;
1883 efx->phy_op = &efx_dummy_phy_operations;
1884 efx->mii.dev = net_dev;
1885 INIT_WORK(&efx->phy_work, efx_phy_work);
1886 INIT_WORK(&efx->mac_work, efx_mac_work);
1887 atomic_set(&efx->netif_stop_count, 1);
1889 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1890 channel = &efx->channel[i];
1891 channel->efx = efx;
1892 channel->channel = i;
1893 channel->work_pending = false;
1895 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1896 tx_queue = &efx->tx_queue[i];
1897 tx_queue->efx = efx;
1898 tx_queue->queue = i;
1899 tx_queue->buffer = NULL;
1900 tx_queue->channel = &efx->channel[0]; /* for safety */
1901 tx_queue->tso_headers_free = NULL;
1903 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1904 rx_queue = &efx->rx_queue[i];
1905 rx_queue->efx = efx;
1906 rx_queue->queue = i;
1907 rx_queue->channel = &efx->channel[0]; /* for safety */
1908 rx_queue->buffer = NULL;
1909 spin_lock_init(&rx_queue->add_lock);
1910 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1913 efx->type = type;
1915 /* Sanity-check NIC type */
1916 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1917 (efx->type->txd_ring_mask + 1));
1918 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1919 (efx->type->rxd_ring_mask + 1));
1920 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1921 (efx->type->evq_size - 1));
1922 /* As close as we can get to guaranteeing that we don't overflow */
1923 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1924 (efx->type->txd_ring_mask + 1 +
1925 efx->type->rxd_ring_mask + 1));
1926 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1928 /* Higher numbered interrupt modes are less capable! */
1929 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1930 interrupt_mode);
1932 /* Would be good to use the net_dev name, but we're too early */
1933 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1934 pci_name(pci_dev));
1935 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1936 if (!efx->workqueue)
1937 return -ENOMEM;
1939 return 0;
1942 static void efx_fini_struct(struct efx_nic *efx)
1944 if (efx->workqueue) {
1945 destroy_workqueue(efx->workqueue);
1946 efx->workqueue = NULL;
1950 /**************************************************************************
1952 * PCI interface
1954 **************************************************************************/
1956 /* Main body of final NIC shutdown code
1957 * This is called only at module unload (or hotplug removal).
1959 static void efx_pci_remove_main(struct efx_nic *efx)
1961 EFX_ASSERT_RESET_SERIALISED(efx);
1963 /* Skip everything if we never obtained a valid membase */
1964 if (!efx->membase)
1965 return;
1967 efx_fini_channels(efx);
1968 efx_fini_port(efx);
1970 /* Shutdown the board, then the NIC and board state */
1971 efx->board_info.fini(efx);
1972 falcon_fini_interrupt(efx);
1974 efx_fini_napi(efx);
1975 efx_remove_all(efx);
1978 /* Final NIC shutdown
1979 * This is called only at module unload (or hotplug removal).
1981 static void efx_pci_remove(struct pci_dev *pci_dev)
1983 struct efx_nic *efx;
1985 efx = pci_get_drvdata(pci_dev);
1986 if (!efx)
1987 return;
1989 /* Mark the NIC as fini, then stop the interface */
1990 rtnl_lock();
1991 efx->state = STATE_FINI;
1992 dev_close(efx->net_dev);
1994 /* Allow any queued efx_resets() to complete */
1995 rtnl_unlock();
1997 if (efx->membase == NULL)
1998 goto out;
2000 efx_unregister_netdev(efx);
2002 efx_mtd_remove(efx);
2004 /* Wait for any scheduled resets to complete. No more will be
2005 * scheduled from this point because efx_stop_all() has been
2006 * called, we are no longer registered with driverlink, and
2007 * the net_device's have been removed. */
2008 cancel_work_sync(&efx->reset_work);
2010 efx_pci_remove_main(efx);
2012 out:
2013 efx_fini_io(efx);
2014 EFX_LOG(efx, "shutdown successful\n");
2016 pci_set_drvdata(pci_dev, NULL);
2017 efx_fini_struct(efx);
2018 free_netdev(efx->net_dev);
2021 /* Main body of NIC initialisation
2022 * This is called at module load (or hotplug insertion, theoretically).
2024 static int efx_pci_probe_main(struct efx_nic *efx)
2026 int rc;
2028 /* Do start-of-day initialisation */
2029 rc = efx_probe_all(efx);
2030 if (rc)
2031 goto fail1;
2033 rc = efx_init_napi(efx);
2034 if (rc)
2035 goto fail2;
2037 /* Initialise the board */
2038 rc = efx->board_info.init(efx);
2039 if (rc) {
2040 EFX_ERR(efx, "failed to initialise board\n");
2041 goto fail3;
2044 rc = falcon_init_nic(efx);
2045 if (rc) {
2046 EFX_ERR(efx, "failed to initialise NIC\n");
2047 goto fail4;
2050 rc = efx_init_port(efx);
2051 if (rc) {
2052 EFX_ERR(efx, "failed to initialise port\n");
2053 goto fail5;
2056 efx_init_channels(efx);
2058 rc = falcon_init_interrupt(efx);
2059 if (rc)
2060 goto fail6;
2062 return 0;
2064 fail6:
2065 efx_fini_channels(efx);
2066 efx_fini_port(efx);
2067 fail5:
2068 fail4:
2069 efx->board_info.fini(efx);
2070 fail3:
2071 efx_fini_napi(efx);
2072 fail2:
2073 efx_remove_all(efx);
2074 fail1:
2075 return rc;
2078 /* NIC initialisation
2080 * This is called at module load (or hotplug insertion,
2081 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2082 * sets up and registers the network devices with the kernel and hooks
2083 * the interrupt service routine. It does not prepare the device for
2084 * transmission; this is left to the first time one of the network
2085 * interfaces is brought up (i.e. efx_net_open).
2087 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2088 const struct pci_device_id *entry)
2090 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2091 struct net_device *net_dev;
2092 struct efx_nic *efx;
2093 int i, rc;
2095 /* Allocate and initialise a struct net_device and struct efx_nic */
2096 net_dev = alloc_etherdev(sizeof(*efx));
2097 if (!net_dev)
2098 return -ENOMEM;
2099 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2100 NETIF_F_HIGHDMA | NETIF_F_TSO);
2101 if (lro)
2102 net_dev->features |= NETIF_F_LRO;
2103 /* Mask for features that also apply to VLAN devices */
2104 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2105 NETIF_F_HIGHDMA | NETIF_F_TSO);
2106 efx = netdev_priv(net_dev);
2107 pci_set_drvdata(pci_dev, efx);
2108 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2109 if (rc)
2110 goto fail1;
2112 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2114 /* Set up basic I/O (BAR mappings etc) */
2115 rc = efx_init_io(efx);
2116 if (rc)
2117 goto fail2;
2119 /* No serialisation is required with the reset path because
2120 * we're in STATE_INIT. */
2121 for (i = 0; i < 5; i++) {
2122 rc = efx_pci_probe_main(efx);
2124 /* Serialise against efx_reset(). No more resets will be
2125 * scheduled since efx_stop_all() has been called, and we
2126 * have not and never have been registered with either
2127 * the rtnetlink or driverlink layers. */
2128 cancel_work_sync(&efx->reset_work);
2130 if (rc == 0) {
2131 if (efx->reset_pending != RESET_TYPE_NONE) {
2132 /* If there was a scheduled reset during
2133 * probe, the NIC is probably hosed anyway */
2134 efx_pci_remove_main(efx);
2135 rc = -EIO;
2136 } else {
2137 break;
2141 /* Retry if a recoverably reset event has been scheduled */
2142 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2143 (efx->reset_pending != RESET_TYPE_ALL))
2144 goto fail3;
2146 efx->reset_pending = RESET_TYPE_NONE;
2149 if (rc) {
2150 EFX_ERR(efx, "Could not reset NIC\n");
2151 goto fail4;
2154 /* Switch to the running state before we expose the device to
2155 * the OS. This is to ensure that the initial gathering of
2156 * MAC stats succeeds. */
2157 efx->state = STATE_RUNNING;
2159 efx_mtd_probe(efx); /* allowed to fail */
2161 rc = efx_register_netdev(efx);
2162 if (rc)
2163 goto fail5;
2165 EFX_LOG(efx, "initialisation successful\n");
2166 return 0;
2168 fail5:
2169 efx_pci_remove_main(efx);
2170 fail4:
2171 fail3:
2172 efx_fini_io(efx);
2173 fail2:
2174 efx_fini_struct(efx);
2175 fail1:
2176 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2177 free_netdev(net_dev);
2178 return rc;
2181 static struct pci_driver efx_pci_driver = {
2182 .name = EFX_DRIVER_NAME,
2183 .id_table = efx_pci_table,
2184 .probe = efx_pci_probe,
2185 .remove = efx_pci_remove,
2188 /**************************************************************************
2190 * Kernel module interface
2192 *************************************************************************/
2194 module_param(interrupt_mode, uint, 0444);
2195 MODULE_PARM_DESC(interrupt_mode,
2196 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2198 static int __init efx_init_module(void)
2200 int rc;
2202 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2204 rc = register_netdevice_notifier(&efx_netdev_notifier);
2205 if (rc)
2206 goto err_notifier;
2208 refill_workqueue = create_workqueue("sfc_refill");
2209 if (!refill_workqueue) {
2210 rc = -ENOMEM;
2211 goto err_refill;
2213 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2214 if (!reset_workqueue) {
2215 rc = -ENOMEM;
2216 goto err_reset;
2219 rc = pci_register_driver(&efx_pci_driver);
2220 if (rc < 0)
2221 goto err_pci;
2223 return 0;
2225 err_pci:
2226 destroy_workqueue(reset_workqueue);
2227 err_reset:
2228 destroy_workqueue(refill_workqueue);
2229 err_refill:
2230 unregister_netdevice_notifier(&efx_netdev_notifier);
2231 err_notifier:
2232 return rc;
2235 static void __exit efx_exit_module(void)
2237 printk(KERN_INFO "Solarflare NET driver unloading\n");
2239 pci_unregister_driver(&efx_pci_driver);
2240 destroy_workqueue(reset_workqueue);
2241 destroy_workqueue(refill_workqueue);
2242 unregister_netdevice_notifier(&efx_netdev_notifier);
2246 module_init(efx_init_module);
2247 module_exit(efx_exit_module);
2249 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2250 "Solarflare Communications");
2251 MODULE_DESCRIPTION("Solarflare Communications network driver");
2252 MODULE_LICENSE("GPL");
2253 MODULE_DEVICE_TABLE(pci, efx_pci_table);