[PATCH] x86-64: Speed up dwarf2 unwinder
[linux-2.6/verdex.git] / drivers / mtd / nand / rtc_from4.c
blobf8c49645324d7b5e458b08824beaabb535e42cd3
1 /*
2 * drivers/mtd/nand/rtc_from4.c
4 * Copyright (C) 2004 Red Hat, Inc.
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
9 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
22 #include <linux/delay.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/rslib.h>
27 #include <linux/module.h>
28 #include <linux/mtd/compatmac.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <asm/io.h>
35 * MTD structure for Renesas board
37 static struct mtd_info *rtc_from4_mtd = NULL;
39 #define RTC_FROM4_MAX_CHIPS 2
41 /* HS77x9 processor register defines */
42 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
43 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
44 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
45 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
46 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
47 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
48 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
51 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
53 /* Address where flash is mapped */
54 #define RTC_FROM4_FIO_BASE 0x14000000
56 /* CLE and ALE are tied to address lines 5 & 4, respectively */
57 #define RTC_FROM4_CLE (1 << 5)
58 #define RTC_FROM4_ALE (1 << 4)
60 /* address lines A24-A22 used for chip selection */
61 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
62 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
63 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
64 /* mask address lines A24-A22 used for chip selection */
65 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
67 /* FPGA status register for checking device ready (bit zero) */
68 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
69 #define RTC_FROM4_DEVICE_READY 0x0001
71 /* FPGA Reed-Solomon ECC Control register */
73 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
74 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
75 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
76 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
78 /* FPGA Reed-Solomon ECC code base */
79 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
80 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
82 /* FPGA Reed-Solomon ECC check register */
83 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
84 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
86 #define ERR_STAT_ECC_AVAILABLE 0x20
88 /* Undefine for software ECC */
89 #define RTC_FROM4_HWECC 1
91 /* Define as 1 for no virtual erase blocks (in JFFS2) */
92 #define RTC_FROM4_NO_VIRTBLOCKS 0
95 * Module stuff
97 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
99 static const struct mtd_partition partition_info[] = {
101 .name = "Renesas flash partition 1",
102 .offset = 0,
103 .size = MTDPART_SIZ_FULL},
106 #define NUM_PARTITIONS 1
109 * hardware specific flash bbt decriptors
110 * Note: this is to allow debugging by disabling
111 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
114 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
115 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
117 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
118 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
119 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
120 .offs = 40,
121 .len = 4,
122 .veroffs = 44,
123 .maxblocks = 4,
124 .pattern = bbt_pattern
127 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
128 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
129 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
130 .offs = 40,
131 .len = 4,
132 .veroffs = 44,
133 .maxblocks = 4,
134 .pattern = mirror_pattern
137 #ifdef RTC_FROM4_HWECC
139 /* the Reed Solomon control structure */
140 static struct rs_control *rs_decoder;
143 * hardware specific Out Of Band information
145 static struct nand_ecclayout rtc_from4_nand_oobinfo = {
146 .eccbytes = 32,
147 .eccpos = {
148 0, 1, 2, 3, 4, 5, 6, 7,
149 8, 9, 10, 11, 12, 13, 14, 15,
150 16, 17, 18, 19, 20, 21, 22, 23,
151 24, 25, 26, 27, 28, 29, 30, 31},
152 .oobfree = {{32, 32}}
155 /* Aargh. I missed the reversed bit order, when I
156 * was talking to Renesas about the FPGA.
158 * The table is used for bit reordering and inversion
159 * of the ecc byte which we get from the FPGA
161 static uint8_t revbits[256] = {
162 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
163 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
164 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
165 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
166 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
167 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
168 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
169 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
170 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
171 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
172 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
173 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
174 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
175 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
176 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
177 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
178 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
179 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
180 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
181 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
182 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
183 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
184 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
185 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
186 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
187 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
188 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
189 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
190 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
191 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
192 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
193 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
196 #endif
199 * rtc_from4_hwcontrol - hardware specific access to control-lines
200 * @mtd: MTD device structure
201 * @cmd: hardware control command
203 * Address lines (A5 and A4) are used to control Command and Address Latch
204 * Enable on this board, so set the read/write address appropriately.
206 * Chip Enable is also controlled by the Chip Select (CS5) and
207 * Address lines (A24-A22), so no action is required here.
210 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
211 unsigned int ctrl)
213 struct nand_chip *chip = (mtd->priv);
215 if (cmd == NAND_CMD_NONE)
216 return;
218 if (ctrl & NAND_CLE)
219 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
220 else
221 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
225 * rtc_from4_nand_select_chip - hardware specific chip select
226 * @mtd: MTD device structure
227 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
229 * The chip select is based on address lines A24-A22.
230 * This driver uses flash slots 3 and 4 (A23-A22).
233 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
235 struct nand_chip *this = mtd->priv;
237 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
238 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
240 switch (chip) {
242 case 0: /* select slot 3 chip */
243 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
244 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
245 break;
246 case 1: /* select slot 4 chip */
247 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
248 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
249 break;
255 * rtc_from4_nand_device_ready - hardware specific ready/busy check
256 * @mtd: MTD device structure
258 * This board provides the Ready/Busy state in the status register
259 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
262 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
264 unsigned short status;
266 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
268 return (status & RTC_FROM4_DEVICE_READY);
273 * deplete - code to perform device recovery in case there was a power loss
274 * @mtd: MTD device structure
275 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
277 * If there was a sudden loss of power during an erase operation, a
278 * "device recovery" operation must be performed when power is restored
279 * to ensure correct operation. This routine performs the required steps
280 * for the requested chip.
282 * See page 86 of the data sheet for details.
285 static void deplete(struct mtd_info *mtd, int chip)
287 struct nand_chip *this = mtd->priv;
289 /* wait until device is ready */
290 while (!this->dev_ready(mtd)) ;
292 this->select_chip(mtd, chip);
294 /* Send the commands for device recovery, phase 1 */
295 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
296 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
298 /* Send the commands for device recovery, phase 2 */
299 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
300 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
304 #ifdef RTC_FROM4_HWECC
306 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
307 * @mtd: MTD device structure
308 * @mode: I/O mode; read or write
310 * enable hardware ECC for data read or write
313 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
315 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
316 unsigned short status;
318 switch (mode) {
319 case NAND_ECC_READ:
320 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
322 *rs_ecc_ctl = status;
323 break;
325 case NAND_ECC_READSYN:
326 status = 0x00;
328 *rs_ecc_ctl = status;
329 break;
331 case NAND_ECC_WRITE:
332 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
334 *rs_ecc_ctl = status;
335 break;
337 default:
338 BUG();
339 break;
345 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
346 * @mtd: MTD device structure
347 * @dat: buffer containing the data to generate ECC codes
348 * @ecc_code ECC codes calculated
350 * The ECC code is calculated by the FPGA. All we have to do is read the values
351 * from the FPGA registers.
353 * Note: We read from the inverted registers, since data is inverted before
354 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
357 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
359 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
360 unsigned short value;
361 int i;
363 for (i = 0; i < 8; i++) {
364 value = *rs_eccn;
365 ecc_code[i] = (unsigned char)value;
366 rs_eccn++;
368 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
372 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
373 * @mtd: MTD device structure
374 * @buf: buffer containing the data to generate ECC codes
375 * @ecc1 ECC codes read
376 * @ecc2 ECC codes calculated
378 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
379 * else we read the ecc results from the fpga and call the rs library to decode
380 * and hopefully correct the error.
383 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
385 int i, j, res;
386 unsigned short status;
387 uint16_t par[6], syn[6];
388 uint8_t ecc[8];
389 volatile unsigned short *rs_ecc;
391 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
393 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
394 return 0;
397 /* Read the syndrom pattern from the FPGA and correct the bitorder */
398 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
399 for (i = 0; i < 8; i++) {
400 ecc[i] = revbits[(*rs_ecc) & 0xFF];
401 rs_ecc++;
404 /* convert into 6 10bit syndrome fields */
405 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
406 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
407 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
408 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
409 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
410 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
412 /* Convert to computable syndrome */
413 for (i = 0; i < 6; i++) {
414 syn[i] = par[0];
415 for (j = 1; j < 6; j++)
416 if (par[j] != rs_decoder->nn)
417 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
419 /* Convert to index form */
420 syn[i] = rs_decoder->index_of[syn[i]];
423 /* Let the library code do its magic. */
424 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
425 if (res > 0) {
426 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
428 return res;
432 * rtc_from4_errstat - perform additional error status checks
433 * @mtd: MTD device structure
434 * @this: NAND chip structure
435 * @state: state or the operation
436 * @status: status code returned from read status
437 * @page: startpage inside the chip, must be called with (page & this->pagemask)
439 * Perform additional error status checks on erase and write failures
440 * to determine if errors are correctable. For this device, correctable
441 * 1-bit errors on erase and write are considered acceptable.
443 * note: see pages 34..37 of data sheet for details.
446 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
447 int state, int status, int page)
449 int er_stat = 0;
450 int rtn, retlen;
451 size_t len;
452 uint8_t *buf;
453 int i;
455 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
457 if (state == FL_ERASING) {
459 for (i = 0; i < 4; i++) {
460 if (!(status & 1 << (i + 1)))
461 continue;
462 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
463 -1, -1);
464 rtn = this->read_byte(mtd);
465 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
467 /* err_ecc_not_avail */
468 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
469 er_stat |= 1 << (i + 1);
472 } else if (state == FL_WRITING) {
474 unsigned long corrected = mtd->ecc_stats.corrected;
476 /* single bank write logic */
477 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
478 rtn = this->read_byte(mtd);
479 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
481 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
482 /* err_ecc_not_avail */
483 er_stat |= 1 << 1;
484 goto out;
487 len = mtd->writesize;
488 buf = kmalloc(len, GFP_KERNEL);
489 if (!buf) {
490 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
491 er_stat = 1;
492 goto out;
495 /* recovery read */
496 rtn = nand_do_read(mtd, page, len, &retlen, buf);
498 /* if read failed or > 1-bit error corrected */
499 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) {
500 er_stat |= 1 << 1;
501 kfree(buf);
504 rtn = status;
505 if (er_stat == 0) { /* if ECC is available */
506 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
509 return rtn;
511 #endif
514 * Main initialization routine
516 static int __init rtc_from4_init(void)
518 struct nand_chip *this;
519 unsigned short bcr1, bcr2, wcr2;
520 int i;
522 /* Allocate memory for MTD device structure and private data */
523 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
524 if (!rtc_from4_mtd) {
525 printk("Unable to allocate Renesas NAND MTD device structure.\n");
526 return -ENOMEM;
529 /* Get pointer to private data */
530 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
532 /* Initialize structures */
533 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
534 memset(this, 0, sizeof(struct nand_chip));
536 /* Link the private data with the MTD structure */
537 rtc_from4_mtd->priv = this;
538 rtc_from4_mtd->owner = THIS_MODULE;
540 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
541 bcr1 = *SH77X9_BCR1 & ~0x0002;
542 bcr1 |= 0x0002;
543 *SH77X9_BCR1 = bcr1;
545 /* set */
546 bcr2 = *SH77X9_BCR2 & ~0x0c00;
547 bcr2 |= 0x0800;
548 *SH77X9_BCR2 = bcr2;
550 /* set area 5 wait states */
551 wcr2 = *SH77X9_WCR2 & ~0x1c00;
552 wcr2 |= 0x1c00;
553 *SH77X9_WCR2 = wcr2;
555 /* Set address of NAND IO lines */
556 this->IO_ADDR_R = rtc_from4_fio_base;
557 this->IO_ADDR_W = rtc_from4_fio_base;
558 /* Set address of hardware control function */
559 this->cmd_ctrl = rtc_from4_hwcontrol;
560 /* Set address of chip select function */
561 this->select_chip = rtc_from4_nand_select_chip;
562 /* command delay time (in us) */
563 this->chip_delay = 100;
564 /* return the status of the Ready/Busy line */
565 this->dev_ready = rtc_from4_nand_device_ready;
567 #ifdef RTC_FROM4_HWECC
568 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
570 this->ecc.mode = NAND_ECC_HW_SYNDROME;
571 this->ecc.size = 512;
572 this->ecc.bytes = 8;
573 /* return the status of extra status and ECC checks */
574 this->errstat = rtc_from4_errstat;
575 /* set the nand_oobinfo to support FPGA H/W error detection */
576 this->ecc.layout = &rtc_from4_nand_oobinfo;
577 this->ecc.hwctl = rtc_from4_enable_hwecc;
578 this->ecc.calculate = rtc_from4_calculate_ecc;
579 this->ecc.correct = rtc_from4_correct_data;
580 #else
581 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
583 this->ecc.mode = NAND_ECC_SOFT;
584 #endif
586 /* set the bad block tables to support debugging */
587 this->bbt_td = &rtc_from4_bbt_main_descr;
588 this->bbt_md = &rtc_from4_bbt_mirror_descr;
590 /* Scan to find existence of the device */
591 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
592 kfree(rtc_from4_mtd);
593 return -ENXIO;
596 /* Perform 'device recovery' for each chip in case there was a power loss. */
597 for (i = 0; i < this->numchips; i++) {
598 deplete(rtc_from4_mtd, i);
601 #if RTC_FROM4_NO_VIRTBLOCKS
602 /* use a smaller erase block to minimize wasted space when a block is bad */
603 /* note: this uses eight times as much RAM as using the default and makes */
604 /* mounts take four times as long. */
605 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
606 #endif
608 /* Register the partitions */
609 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
611 #ifdef RTC_FROM4_HWECC
612 /* We could create the decoder on demand, if memory is a concern.
613 * This way we have it handy, if an error happens
615 * Symbolsize is 10 (bits)
616 * Primitve polynomial is x^10+x^3+1
617 * first consecutive root is 0
618 * primitve element to generate roots = 1
619 * generator polinomial degree = 6
621 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
622 if (!rs_decoder) {
623 printk(KERN_ERR "Could not create a RS decoder\n");
624 nand_release(rtc_from4_mtd);
625 kfree(rtc_from4_mtd);
626 return -ENOMEM;
628 #endif
629 /* Return happy */
630 return 0;
633 module_init(rtc_from4_init);
636 * Clean up routine
638 static void __exit rtc_from4_cleanup(void)
640 /* Release resource, unregister partitions */
641 nand_release(rtc_from4_mtd);
643 /* Free the MTD device structure */
644 kfree(rtc_from4_mtd);
646 #ifdef RTC_FROM4_HWECC
647 /* Free the reed solomon resources */
648 if (rs_decoder) {
649 free_rs(rs_decoder);
651 #endif
654 module_exit(rtc_from4_cleanup);
656 MODULE_LICENSE("GPL");
657 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
658 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");