lockd: Make nlmsvc_create_block() use nlmsvc_lookup_host()
[linux-2.6/verdex.git] / include / linux / mmzone.h
blobebfc238cc243482d9baa9b7bb3bd92391d4f6479
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <asm/atomic.h>
18 /* Free memory management - zoned buddy allocator. */
19 #ifndef CONFIG_FORCE_MAX_ZONEORDER
20 #define MAX_ORDER 11
21 #else
22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23 #endif
25 struct free_area {
26 struct list_head free_list;
27 unsigned long nr_free;
30 struct pglist_data;
33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34 * So add a wild amount of padding here to ensure that they fall into separate
35 * cachelines. There are very few zone structures in the machine, so space
36 * consumption is not a concern here.
38 #if defined(CONFIG_SMP)
39 struct zone_padding {
40 char x[0];
41 } ____cacheline_internodealigned_in_smp;
42 #define ZONE_PADDING(name) struct zone_padding name;
43 #else
44 #define ZONE_PADDING(name)
45 #endif
47 struct per_cpu_pages {
48 int count; /* number of pages in the list */
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
54 struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
56 #ifdef CONFIG_NUMA
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
63 #endif
64 } ____cacheline_aligned_in_smp;
66 #ifdef CONFIG_NUMA
67 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
68 #else
69 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
70 #endif
72 #define ZONE_DMA 0
73 #define ZONE_DMA32 1
74 #define ZONE_NORMAL 2
75 #define ZONE_HIGHMEM 3
77 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
78 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
82 * When a memory allocation must conform to specific limitations (such
83 * as being suitable for DMA) the caller will pass in hints to the
84 * allocator in the gfp_mask, in the zone modifier bits. These bits
85 * are used to select a priority ordered list of memory zones which
86 * match the requested limits. GFP_ZONEMASK defines which bits within
87 * the gfp_mask should be considered as zone modifiers. Each valid
88 * combination of the zone modifier bits has a corresponding list
89 * of zones (in node_zonelists). Thus for two zone modifiers there
90 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
91 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
92 * combinations of zone modifiers in "zone modifier space".
94 * As an optimisation any zone modifier bits which are only valid when
95 * no other zone modifier bits are set (loners) should be placed in
96 * the highest order bits of this field. This allows us to reduce the
97 * extent of the zonelists thus saving space. For example in the case
98 * of three zone modifier bits, we could require up to eight zonelists.
99 * If the left most zone modifier is a "loner" then the highest valid
100 * zonelist would be four allowing us to allocate only five zonelists.
101 * Use the first form for GFP_ZONETYPES when the left most bit is not
102 * a "loner", otherwise use the second.
104 * NOTE! Make sure this matches the zones in <linux/gfp.h>
106 #define GFP_ZONEMASK 0x07
107 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
108 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
111 * On machines where it is needed (eg PCs) we divide physical memory
112 * into multiple physical zones. On a 32bit PC we have 4 zones:
114 * ZONE_DMA < 16 MB ISA DMA capable memory
115 * ZONE_DMA32 0 MB Empty
116 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
117 * ZONE_HIGHMEM > 896 MB only page cache and user processes
120 struct zone {
121 /* Fields commonly accessed by the page allocator */
122 unsigned long free_pages;
123 unsigned long pages_min, pages_low, pages_high;
125 * We don't know if the memory that we're going to allocate will be freeable
126 * or/and it will be released eventually, so to avoid totally wasting several
127 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
128 * to run OOM on the lower zones despite there's tons of freeable ram
129 * on the higher zones). This array is recalculated at runtime if the
130 * sysctl_lowmem_reserve_ratio sysctl changes.
132 unsigned long lowmem_reserve[MAX_NR_ZONES];
134 #ifdef CONFIG_NUMA
135 struct per_cpu_pageset *pageset[NR_CPUS];
136 #else
137 struct per_cpu_pageset pageset[NR_CPUS];
138 #endif
140 * free areas of different sizes
142 spinlock_t lock;
143 #ifdef CONFIG_MEMORY_HOTPLUG
144 /* see spanned/present_pages for more description */
145 seqlock_t span_seqlock;
146 #endif
147 struct free_area free_area[MAX_ORDER];
150 ZONE_PADDING(_pad1_)
152 /* Fields commonly accessed by the page reclaim scanner */
153 spinlock_t lru_lock;
154 struct list_head active_list;
155 struct list_head inactive_list;
156 unsigned long nr_scan_active;
157 unsigned long nr_scan_inactive;
158 unsigned long nr_active;
159 unsigned long nr_inactive;
160 unsigned long pages_scanned; /* since last reclaim */
161 int all_unreclaimable; /* All pages pinned */
163 /* A count of how many reclaimers are scanning this zone */
164 atomic_t reclaim_in_progress;
167 * timestamp (in jiffies) of the last zone reclaim that did not
168 * result in freeing of pages. This is used to avoid repeated scans
169 * if all memory in the zone is in use.
171 unsigned long last_unsuccessful_zone_reclaim;
174 * prev_priority holds the scanning priority for this zone. It is
175 * defined as the scanning priority at which we achieved our reclaim
176 * target at the previous try_to_free_pages() or balance_pgdat()
177 * invokation.
179 * We use prev_priority as a measure of how much stress page reclaim is
180 * under - it drives the swappiness decision: whether to unmap mapped
181 * pages.
183 * temp_priority is used to remember the scanning priority at which
184 * this zone was successfully refilled to free_pages == pages_high.
186 * Access to both these fields is quite racy even on uniprocessor. But
187 * it is expected to average out OK.
189 int temp_priority;
190 int prev_priority;
193 ZONE_PADDING(_pad2_)
194 /* Rarely used or read-mostly fields */
197 * wait_table -- the array holding the hash table
198 * wait_table_size -- the size of the hash table array
199 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
201 * The purpose of all these is to keep track of the people
202 * waiting for a page to become available and make them
203 * runnable again when possible. The trouble is that this
204 * consumes a lot of space, especially when so few things
205 * wait on pages at a given time. So instead of using
206 * per-page waitqueues, we use a waitqueue hash table.
208 * The bucket discipline is to sleep on the same queue when
209 * colliding and wake all in that wait queue when removing.
210 * When something wakes, it must check to be sure its page is
211 * truly available, a la thundering herd. The cost of a
212 * collision is great, but given the expected load of the
213 * table, they should be so rare as to be outweighed by the
214 * benefits from the saved space.
216 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
217 * primary users of these fields, and in mm/page_alloc.c
218 * free_area_init_core() performs the initialization of them.
220 wait_queue_head_t * wait_table;
221 unsigned long wait_table_size;
222 unsigned long wait_table_bits;
225 * Discontig memory support fields.
227 struct pglist_data *zone_pgdat;
228 struct page *zone_mem_map;
229 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
230 unsigned long zone_start_pfn;
233 * zone_start_pfn, spanned_pages and present_pages are all
234 * protected by span_seqlock. It is a seqlock because it has
235 * to be read outside of zone->lock, and it is done in the main
236 * allocator path. But, it is written quite infrequently.
238 * The lock is declared along with zone->lock because it is
239 * frequently read in proximity to zone->lock. It's good to
240 * give them a chance of being in the same cacheline.
242 unsigned long spanned_pages; /* total size, including holes */
243 unsigned long present_pages; /* amount of memory (excluding holes) */
246 * rarely used fields:
248 char *name;
249 } ____cacheline_internodealigned_in_smp;
253 * The "priority" of VM scanning is how much of the queues we will scan in one
254 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
255 * queues ("queue_length >> 12") during an aging round.
257 #define DEF_PRIORITY 12
260 * One allocation request operates on a zonelist. A zonelist
261 * is a list of zones, the first one is the 'goal' of the
262 * allocation, the other zones are fallback zones, in decreasing
263 * priority.
265 * Right now a zonelist takes up less than a cacheline. We never
266 * modify it apart from boot-up, and only a few indices are used,
267 * so despite the zonelist table being relatively big, the cache
268 * footprint of this construct is very small.
270 struct zonelist {
271 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
276 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
277 * (mostly NUMA machines?) to denote a higher-level memory zone than the
278 * zone denotes.
280 * On NUMA machines, each NUMA node would have a pg_data_t to describe
281 * it's memory layout.
283 * Memory statistics and page replacement data structures are maintained on a
284 * per-zone basis.
286 struct bootmem_data;
287 typedef struct pglist_data {
288 struct zone node_zones[MAX_NR_ZONES];
289 struct zonelist node_zonelists[GFP_ZONETYPES];
290 int nr_zones;
291 #ifdef CONFIG_FLAT_NODE_MEM_MAP
292 struct page *node_mem_map;
293 #endif
294 struct bootmem_data *bdata;
295 #ifdef CONFIG_MEMORY_HOTPLUG
297 * Must be held any time you expect node_start_pfn, node_present_pages
298 * or node_spanned_pages stay constant. Holding this will also
299 * guarantee that any pfn_valid() stays that way.
301 * Nests above zone->lock and zone->size_seqlock.
303 spinlock_t node_size_lock;
304 #endif
305 unsigned long node_start_pfn;
306 unsigned long node_present_pages; /* total number of physical pages */
307 unsigned long node_spanned_pages; /* total size of physical page
308 range, including holes */
309 int node_id;
310 struct pglist_data *pgdat_next;
311 wait_queue_head_t kswapd_wait;
312 struct task_struct *kswapd;
313 int kswapd_max_order;
314 } pg_data_t;
316 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
317 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
318 #ifdef CONFIG_FLAT_NODE_MEM_MAP
319 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
320 #else
321 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
322 #endif
323 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
325 #include <linux/memory_hotplug.h>
327 extern struct pglist_data *pgdat_list;
329 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
330 unsigned long *free, struct pglist_data *pgdat);
331 void get_zone_counts(unsigned long *active, unsigned long *inactive,
332 unsigned long *free);
333 void build_all_zonelists(void);
334 void wakeup_kswapd(struct zone *zone, int order);
335 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
336 int classzone_idx, int alloc_flags);
338 #ifdef CONFIG_HAVE_MEMORY_PRESENT
339 void memory_present(int nid, unsigned long start, unsigned long end);
340 #else
341 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
342 #endif
344 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
345 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
346 #endif
349 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
351 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
354 * for_each_pgdat - helper macro to iterate over all nodes
355 * @pgdat - pointer to a pg_data_t variable
357 * Meant to help with common loops of the form
358 * pgdat = pgdat_list;
359 * while(pgdat) {
360 * ...
361 * pgdat = pgdat->pgdat_next;
364 #define for_each_pgdat(pgdat) \
365 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
368 * next_zone - helper magic for for_each_zone()
369 * Thanks to William Lee Irwin III for this piece of ingenuity.
371 static inline struct zone *next_zone(struct zone *zone)
373 pg_data_t *pgdat = zone->zone_pgdat;
375 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
376 zone++;
377 else if (pgdat->pgdat_next) {
378 pgdat = pgdat->pgdat_next;
379 zone = pgdat->node_zones;
380 } else
381 zone = NULL;
383 return zone;
387 * for_each_zone - helper macro to iterate over all memory zones
388 * @zone - pointer to struct zone variable
390 * The user only needs to declare the zone variable, for_each_zone
391 * fills it in. This basically means for_each_zone() is an
392 * easier to read version of this piece of code:
394 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
395 * for (i = 0; i < MAX_NR_ZONES; ++i) {
396 * struct zone * z = pgdat->node_zones + i;
397 * ...
401 #define for_each_zone(zone) \
402 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
404 static inline int populated_zone(struct zone *zone)
406 return (!!zone->present_pages);
409 static inline int is_highmem_idx(int idx)
411 return (idx == ZONE_HIGHMEM);
414 static inline int is_normal_idx(int idx)
416 return (idx == ZONE_NORMAL);
420 * is_highmem - helper function to quickly check if a struct zone is a
421 * highmem zone or not. This is an attempt to keep references
422 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
423 * @zone - pointer to struct zone variable
425 static inline int is_highmem(struct zone *zone)
427 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
430 static inline int is_normal(struct zone *zone)
432 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
435 static inline int is_dma32(struct zone *zone)
437 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
440 static inline int is_dma(struct zone *zone)
442 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
445 /* These two functions are used to setup the per zone pages min values */
446 struct ctl_table;
447 struct file;
448 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
449 void __user *, size_t *, loff_t *);
450 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
451 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
452 void __user *, size_t *, loff_t *);
453 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
454 void __user *, size_t *, loff_t *);
456 #include <linux/topology.h>
457 /* Returns the number of the current Node. */
458 #ifndef numa_node_id
459 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
460 #endif
462 #ifndef CONFIG_NEED_MULTIPLE_NODES
464 extern struct pglist_data contig_page_data;
465 #define NODE_DATA(nid) (&contig_page_data)
466 #define NODE_MEM_MAP(nid) mem_map
467 #define MAX_NODES_SHIFT 1
469 #else /* CONFIG_NEED_MULTIPLE_NODES */
471 #include <asm/mmzone.h>
473 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
475 #ifdef CONFIG_SPARSEMEM
476 #include <asm/sparsemem.h>
477 #endif
479 #if BITS_PER_LONG == 32
481 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
482 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
484 #define FLAGS_RESERVED 9
486 #elif BITS_PER_LONG == 64
488 * with 64 bit flags field, there's plenty of room.
490 #define FLAGS_RESERVED 32
492 #else
494 #error BITS_PER_LONG not defined
496 #endif
498 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
499 #define early_pfn_to_nid(nid) (0UL)
500 #endif
502 #ifdef CONFIG_FLATMEM
503 #define pfn_to_nid(pfn) (0)
504 #endif
506 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
507 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
509 #ifdef CONFIG_SPARSEMEM
512 * SECTION_SHIFT #bits space required to store a section #
514 * PA_SECTION_SHIFT physical address to/from section number
515 * PFN_SECTION_SHIFT pfn to/from section number
517 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
519 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
520 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
522 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
524 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
525 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
527 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
528 #error Allocator MAX_ORDER exceeds SECTION_SIZE
529 #endif
531 struct page;
532 struct mem_section {
534 * This is, logically, a pointer to an array of struct
535 * pages. However, it is stored with some other magic.
536 * (see sparse.c::sparse_init_one_section())
538 * Making it a UL at least makes someone do a cast
539 * before using it wrong.
541 unsigned long section_mem_map;
544 #ifdef CONFIG_SPARSEMEM_EXTREME
545 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
546 #else
547 #define SECTIONS_PER_ROOT 1
548 #endif
550 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
551 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
552 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
554 #ifdef CONFIG_SPARSEMEM_EXTREME
555 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
556 #else
557 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
558 #endif
560 static inline struct mem_section *__nr_to_section(unsigned long nr)
562 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
563 return NULL;
564 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
566 extern int __section_nr(struct mem_section* ms);
569 * We use the lower bits of the mem_map pointer to store
570 * a little bit of information. There should be at least
571 * 3 bits here due to 32-bit alignment.
573 #define SECTION_MARKED_PRESENT (1UL<<0)
574 #define SECTION_HAS_MEM_MAP (1UL<<1)
575 #define SECTION_MAP_LAST_BIT (1UL<<2)
576 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
578 static inline struct page *__section_mem_map_addr(struct mem_section *section)
580 unsigned long map = section->section_mem_map;
581 map &= SECTION_MAP_MASK;
582 return (struct page *)map;
585 static inline int valid_section(struct mem_section *section)
587 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
590 static inline int section_has_mem_map(struct mem_section *section)
592 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
595 static inline int valid_section_nr(unsigned long nr)
597 return valid_section(__nr_to_section(nr));
600 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
602 return __nr_to_section(pfn_to_section_nr(pfn));
605 #define pfn_to_page(pfn) \
606 ({ \
607 unsigned long __pfn = (pfn); \
608 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
610 #define page_to_pfn(page) \
611 ({ \
612 page - __section_mem_map_addr(__nr_to_section( \
613 page_to_section(page))); \
616 static inline int pfn_valid(unsigned long pfn)
618 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
619 return 0;
620 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
624 * These are _only_ used during initialisation, therefore they
625 * can use __initdata ... They could have names to indicate
626 * this restriction.
628 #ifdef CONFIG_NUMA
629 #define pfn_to_nid(pfn) \
630 ({ \
631 unsigned long __pfn_to_nid_pfn = (pfn); \
632 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
634 #else
635 #define pfn_to_nid(pfn) (0)
636 #endif
638 #define early_pfn_valid(pfn) pfn_valid(pfn)
639 void sparse_init(void);
640 #else
641 #define sparse_init() do {} while (0)
642 #define sparse_index_init(_sec, _nid) do {} while (0)
643 #endif /* CONFIG_SPARSEMEM */
645 #ifndef early_pfn_valid
646 #define early_pfn_valid(pfn) (1)
647 #endif
649 void memory_present(int nid, unsigned long start, unsigned long end);
650 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
652 #endif /* !__ASSEMBLY__ */
653 #endif /* __KERNEL__ */
654 #endif /* _LINUX_MMZONE_H */