2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
53 #include <linux/crc32.h>
57 * ubifs_ro_mode - switch UBIFS to read read-only mode.
58 * @c: UBIFS file-system description object
59 * @err: error code which is the reason of switching to R/O mode
61 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
65 c
->no_chk_data_crc
= 0;
66 ubifs_warn("switched to read-only mode, error %d", err
);
72 * ubifs_check_node - check node.
73 * @c: UBIFS file-system description object
75 * @lnum: logical eraseblock number
76 * @offs: offset within the logical eraseblock
77 * @quiet: print no messages
78 * @must_chk_crc: indicates whether to always check the CRC
80 * This function checks node magic number and CRC checksum. This function also
81 * validates node length to prevent UBIFS from becoming crazy when an attacker
82 * feeds it a file-system image with incorrect nodes. For example, too large
83 * node length in the common header could cause UBIFS to read memory outside of
84 * allocated buffer when checking the CRC checksum.
86 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
87 * true, which is controlled by corresponding UBIFS mount option. However, if
88 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
89 * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
90 * ignored and CRC is checked.
92 * This function returns zero in case of success and %-EUCLEAN in case of bad
95 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
96 int offs
, int quiet
, int must_chk_crc
)
98 int err
= -EINVAL
, type
, node_len
;
99 uint32_t crc
, node_crc
, magic
;
100 const struct ubifs_ch
*ch
= buf
;
102 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
103 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
105 magic
= le32_to_cpu(ch
->magic
);
106 if (magic
!= UBIFS_NODE_MAGIC
) {
108 ubifs_err("bad magic %#08x, expected %#08x",
109 magic
, UBIFS_NODE_MAGIC
);
114 type
= ch
->node_type
;
115 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
117 ubifs_err("bad node type %d", type
);
121 node_len
= le32_to_cpu(ch
->len
);
122 if (node_len
+ offs
> c
->leb_size
)
125 if (c
->ranges
[type
].max_len
== 0) {
126 if (node_len
!= c
->ranges
[type
].len
)
128 } else if (node_len
< c
->ranges
[type
].min_len
||
129 node_len
> c
->ranges
[type
].max_len
)
132 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->always_chk_crc
&&
136 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
137 node_crc
= le32_to_cpu(ch
->crc
);
138 if (crc
!= node_crc
) {
140 ubifs_err("bad CRC: calculated %#08x, read %#08x",
150 ubifs_err("bad node length %d", node_len
);
153 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
154 dbg_dump_node(c
, buf
);
161 * ubifs_pad - pad flash space.
162 * @c: UBIFS file-system description object
163 * @buf: buffer to put padding to
164 * @pad: how many bytes to pad
166 * The flash media obliges us to write only in chunks of %c->min_io_size and
167 * when we have to write less data we add padding node to the write-buffer and
168 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
169 * media is being scanned. If the amount of wasted space is not enough to fit a
170 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
171 * pattern (%UBIFS_PADDING_BYTE).
173 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
176 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
180 ubifs_assert(pad
>= 0 && !(pad
& 7));
182 if (pad
>= UBIFS_PAD_NODE_SZ
) {
183 struct ubifs_ch
*ch
= buf
;
184 struct ubifs_pad_node
*pad_node
= buf
;
186 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
187 ch
->node_type
= UBIFS_PAD_NODE
;
188 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
189 ch
->padding
[0] = ch
->padding
[1] = 0;
191 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
192 pad
-= UBIFS_PAD_NODE_SZ
;
193 pad_node
->pad_len
= cpu_to_le32(pad
);
194 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
195 ch
->crc
= cpu_to_le32(crc
);
196 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
198 /* Too little space, padding node won't fit */
199 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
203 * next_sqnum - get next sequence number.
204 * @c: UBIFS file-system description object
206 static unsigned long long next_sqnum(struct ubifs_info
*c
)
208 unsigned long long sqnum
;
210 spin_lock(&c
->cnt_lock
);
211 sqnum
= ++c
->max_sqnum
;
212 spin_unlock(&c
->cnt_lock
);
214 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
215 if (sqnum
>= SQNUM_WATERMARK
) {
216 ubifs_err("sequence number overflow %llu, end of life",
218 ubifs_ro_mode(c
, -EINVAL
);
220 ubifs_warn("running out of sequence numbers, end of life soon");
227 * ubifs_prepare_node - prepare node to be written to flash.
228 * @c: UBIFS file-system description object
229 * @node: the node to pad
231 * @pad: if the buffer has to be padded
233 * This function prepares node at @node to be written to the media - it
234 * calculates node CRC, fills the common header, and adds proper padding up to
235 * the next minimum I/O unit if @pad is not zero.
237 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
240 struct ubifs_ch
*ch
= node
;
241 unsigned long long sqnum
= next_sqnum(c
);
243 ubifs_assert(len
>= UBIFS_CH_SZ
);
245 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
246 ch
->len
= cpu_to_le32(len
);
247 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
248 ch
->sqnum
= cpu_to_le64(sqnum
);
249 ch
->padding
[0] = ch
->padding
[1] = 0;
250 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
251 ch
->crc
= cpu_to_le32(crc
);
255 pad
= ALIGN(len
, c
->min_io_size
) - len
;
256 ubifs_pad(c
, node
+ len
, pad
);
261 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
262 * @c: UBIFS file-system description object
263 * @node: the node to pad
265 * @last: indicates the last node of the group
267 * This function prepares node at @node to be written to the media - it
268 * calculates node CRC and fills the common header.
270 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
273 struct ubifs_ch
*ch
= node
;
274 unsigned long long sqnum
= next_sqnum(c
);
276 ubifs_assert(len
>= UBIFS_CH_SZ
);
278 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
279 ch
->len
= cpu_to_le32(len
);
281 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
283 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
284 ch
->sqnum
= cpu_to_le64(sqnum
);
285 ch
->padding
[0] = ch
->padding
[1] = 0;
286 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
287 ch
->crc
= cpu_to_le32(crc
);
291 * wbuf_timer_callback - write-buffer timer callback function.
292 * @data: timer data (write-buffer descriptor)
294 * This function is called when the write-buffer timer expires.
296 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
298 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
300 dbg_io("jhead %d", wbuf
->jhead
);
302 wbuf
->c
->need_wbuf_sync
= 1;
303 ubifs_wake_up_bgt(wbuf
->c
);
304 return HRTIMER_NORESTART
;
308 * new_wbuf_timer - start new write-buffer timer.
309 * @wbuf: write-buffer descriptor
311 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
313 ubifs_assert(!hrtimer_active(&wbuf
->timer
));
317 dbg_io("set timer for jhead %d, %llu-%llu millisecs", wbuf
->jhead
,
318 div_u64(ktime_to_ns(wbuf
->softlimit
), USEC_PER_SEC
),
319 div_u64(ktime_to_ns(wbuf
->softlimit
) + wbuf
->delta
,
321 hrtimer_start_range_ns(&wbuf
->timer
, wbuf
->softlimit
, wbuf
->delta
,
326 * cancel_wbuf_timer - cancel write-buffer timer.
327 * @wbuf: write-buffer descriptor
329 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
334 hrtimer_cancel(&wbuf
->timer
);
338 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
339 * @wbuf: write-buffer to synchronize
341 * This function synchronizes write-buffer @buf and returns zero in case of
342 * success or a negative error code in case of failure.
344 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
346 struct ubifs_info
*c
= wbuf
->c
;
349 cancel_wbuf_timer_nolock(wbuf
);
350 if (!wbuf
->used
|| wbuf
->lnum
== -1)
351 /* Write-buffer is empty or not seeked */
354 dbg_io("LEB %d:%d, %d bytes, jhead %d",
355 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, wbuf
->jhead
);
356 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
357 ubifs_assert(!(wbuf
->avail
& 7));
358 ubifs_assert(wbuf
->offs
+ c
->min_io_size
<= c
->leb_size
);
363 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, wbuf
->avail
);
364 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
365 c
->min_io_size
, wbuf
->dtype
);
367 ubifs_err("cannot write %d bytes to LEB %d:%d",
368 c
->min_io_size
, wbuf
->lnum
, wbuf
->offs
);
375 spin_lock(&wbuf
->lock
);
376 wbuf
->offs
+= c
->min_io_size
;
377 wbuf
->avail
= c
->min_io_size
;
380 spin_unlock(&wbuf
->lock
);
382 if (wbuf
->sync_callback
)
383 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
384 c
->leb_size
- wbuf
->offs
, dirt
);
389 * ubifs_wbuf_seek_nolock - seek write-buffer.
390 * @wbuf: write-buffer
391 * @lnum: logical eraseblock number to seek to
392 * @offs: logical eraseblock offset to seek to
395 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
396 * The write-buffer is synchronized if it is not empty. Returns zero in case of
397 * success and a negative error code in case of failure.
399 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
,
402 const struct ubifs_info
*c
= wbuf
->c
;
404 dbg_io("LEB %d:%d, jhead %d", lnum
, offs
, wbuf
->jhead
);
405 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
406 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
407 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
408 ubifs_assert(lnum
!= wbuf
->lnum
);
410 if (wbuf
->used
> 0) {
411 int err
= ubifs_wbuf_sync_nolock(wbuf
);
417 spin_lock(&wbuf
->lock
);
420 wbuf
->avail
= c
->min_io_size
;
422 spin_unlock(&wbuf
->lock
);
429 * ubifs_bg_wbufs_sync - synchronize write-buffers.
430 * @c: UBIFS file-system description object
432 * This function is called by background thread to synchronize write-buffers.
433 * Returns zero in case of success and a negative error code in case of
436 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
440 if (!c
->need_wbuf_sync
)
442 c
->need_wbuf_sync
= 0;
449 dbg_io("synchronize");
450 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
451 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
456 * If the mutex is locked then wbuf is being changed, so
457 * synchronization is not necessary.
459 if (mutex_is_locked(&wbuf
->io_mutex
))
462 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
463 if (!wbuf
->need_sync
) {
464 mutex_unlock(&wbuf
->io_mutex
);
468 err
= ubifs_wbuf_sync_nolock(wbuf
);
469 mutex_unlock(&wbuf
->io_mutex
);
471 ubifs_err("cannot sync write-buffer, error %d", err
);
472 ubifs_ro_mode(c
, err
);
480 /* Cancel all timers to prevent repeated errors */
481 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
482 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
484 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
485 cancel_wbuf_timer_nolock(wbuf
);
486 mutex_unlock(&wbuf
->io_mutex
);
492 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
493 * @wbuf: write-buffer
494 * @buf: node to write
497 * This function writes data to flash via write-buffer @wbuf. This means that
498 * the last piece of the node won't reach the flash media immediately if it
499 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
500 * until the write-buffer is synchronized (e.g., by timer).
502 * This function returns zero in case of success and a negative error code in
503 * case of failure. If the node cannot be written because there is no more
504 * space in this logical eraseblock, %-ENOSPC is returned.
506 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
508 struct ubifs_info
*c
= wbuf
->c
;
509 int err
, written
, n
, aligned_len
= ALIGN(len
, 8), offs
;
511 dbg_io("%d bytes (%s) to jhead %d wbuf at LEB %d:%d", len
,
512 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), wbuf
->jhead
,
513 wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
514 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
515 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
516 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
517 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= c
->min_io_size
);
518 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
520 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
525 cancel_wbuf_timer_nolock(wbuf
);
530 if (aligned_len
<= wbuf
->avail
) {
532 * The node is not very large and fits entirely within
535 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
537 if (aligned_len
== wbuf
->avail
) {
538 dbg_io("flush jhead %d wbuf to LEB %d:%d",
539 wbuf
->jhead
, wbuf
->lnum
, wbuf
->offs
);
540 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
,
541 wbuf
->offs
, c
->min_io_size
,
546 spin_lock(&wbuf
->lock
);
547 wbuf
->offs
+= c
->min_io_size
;
548 wbuf
->avail
= c
->min_io_size
;
551 spin_unlock(&wbuf
->lock
);
553 spin_lock(&wbuf
->lock
);
554 wbuf
->avail
-= aligned_len
;
555 wbuf
->used
+= aligned_len
;
556 spin_unlock(&wbuf
->lock
);
563 * The node is large enough and does not fit entirely within current
564 * minimal I/O unit. We have to fill and flush write-buffer and switch
565 * to the next min. I/O unit.
567 dbg_io("flush jhead %d wbuf to LEB %d:%d",
568 wbuf
->jhead
, wbuf
->lnum
, wbuf
->offs
);
569 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
570 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
571 c
->min_io_size
, wbuf
->dtype
);
575 offs
= wbuf
->offs
+ c
->min_io_size
;
577 aligned_len
-= wbuf
->avail
;
578 written
= wbuf
->avail
;
581 * The remaining data may take more whole min. I/O units, so write the
582 * remains multiple to min. I/O unit size directly to the flash media.
583 * We align node length to 8-byte boundary because we anyway flash wbuf
584 * if the remaining space is less than 8 bytes.
586 n
= aligned_len
>> c
->min_io_shift
;
588 n
<<= c
->min_io_shift
;
589 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
, offs
);
590 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
+ written
, offs
, n
,
600 spin_lock(&wbuf
->lock
);
603 * And now we have what's left and what does not take whole
604 * min. I/O unit, so write it to the write-buffer and we are
607 memcpy(wbuf
->buf
, buf
+ written
, len
);
610 wbuf
->used
= aligned_len
;
611 wbuf
->avail
= c
->min_io_size
- aligned_len
;
613 spin_unlock(&wbuf
->lock
);
616 if (wbuf
->sync_callback
) {
617 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
619 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
625 new_wbuf_timer_nolock(wbuf
);
630 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
631 len
, wbuf
->lnum
, wbuf
->offs
, err
);
632 dbg_dump_node(c
, buf
);
634 dbg_dump_leb(c
, wbuf
->lnum
);
639 * ubifs_write_node - write node to the media.
640 * @c: UBIFS file-system description object
641 * @buf: the node to write
643 * @lnum: logical eraseblock number
644 * @offs: offset within the logical eraseblock
645 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
647 * This function automatically fills node magic number, assigns sequence
648 * number, and calculates node CRC checksum. The length of the @buf buffer has
649 * to be aligned to the minimal I/O unit size. This function automatically
650 * appends padding node and padding bytes if needed. Returns zero in case of
651 * success and a negative error code in case of failure.
653 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
656 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
658 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
659 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
661 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
662 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
667 ubifs_prepare_node(c
, buf
, len
, 1);
668 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, buf_len
, dtype
);
670 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
671 buf_len
, lnum
, offs
, err
);
672 dbg_dump_node(c
, buf
);
680 * ubifs_read_node_wbuf - read node from the media or write-buffer.
681 * @wbuf: wbuf to check for un-written data
682 * @buf: buffer to read to
685 * @lnum: logical eraseblock number
686 * @offs: offset within the logical eraseblock
688 * This function reads a node of known type and length, checks it and stores
689 * in @buf. If the node partially or fully sits in the write-buffer, this
690 * function takes data from the buffer, otherwise it reads the flash media.
691 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
692 * error code in case of failure.
694 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
697 const struct ubifs_info
*c
= wbuf
->c
;
698 int err
, rlen
, overlap
;
699 struct ubifs_ch
*ch
= buf
;
701 dbg_io("LEB %d:%d, %s, length %d, jhead %d", lnum
, offs
,
702 dbg_ntype(type
), len
, wbuf
->jhead
);
703 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
704 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
705 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
707 spin_lock(&wbuf
->lock
);
708 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
710 /* We may safely unlock the write-buffer and read the data */
711 spin_unlock(&wbuf
->lock
);
712 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
715 /* Don't read under wbuf */
716 rlen
= wbuf
->offs
- offs
;
720 /* Copy the rest from the write-buffer */
721 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
722 spin_unlock(&wbuf
->lock
);
725 /* Read everything that goes before write-buffer */
726 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, rlen
);
727 if (err
&& err
!= -EBADMSG
) {
728 ubifs_err("failed to read node %d from LEB %d:%d, "
729 "error %d", type
, lnum
, offs
, err
);
735 if (type
!= ch
->node_type
) {
736 ubifs_err("bad node type (%d but expected %d)",
737 ch
->node_type
, type
);
741 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
743 ubifs_err("expected node type %d", type
);
747 rlen
= le32_to_cpu(ch
->len
);
749 ubifs_err("bad node length %d, expected %d", rlen
, len
);
756 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
757 dbg_dump_node(c
, buf
);
763 * ubifs_read_node - read node.
764 * @c: UBIFS file-system description object
765 * @buf: buffer to read to
767 * @len: node length (not aligned)
768 * @lnum: logical eraseblock number
769 * @offs: offset within the logical eraseblock
771 * This function reads a node of known type and and length, checks it and
772 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
773 * and a negative error code in case of failure.
775 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
779 struct ubifs_ch
*ch
= buf
;
781 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
782 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
783 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
784 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
785 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
787 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
788 if (err
&& err
!= -EBADMSG
) {
789 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
790 type
, lnum
, offs
, err
);
794 if (type
!= ch
->node_type
) {
795 ubifs_err("bad node type (%d but expected %d)",
796 ch
->node_type
, type
);
800 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
802 ubifs_err("expected node type %d", type
);
806 l
= le32_to_cpu(ch
->len
);
808 ubifs_err("bad node length %d, expected %d", l
, len
);
815 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
816 dbg_dump_node(c
, buf
);
822 * ubifs_wbuf_init - initialize write-buffer.
823 * @c: UBIFS file-system description object
824 * @wbuf: write-buffer to initialize
826 * This function initializes write-buffer. Returns zero in case of success
827 * %-ENOMEM in case of failure.
829 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
833 wbuf
->buf
= kmalloc(c
->min_io_size
, GFP_KERNEL
);
837 size
= (c
->min_io_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
838 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
846 wbuf
->lnum
= wbuf
->offs
= -1;
847 wbuf
->avail
= c
->min_io_size
;
848 wbuf
->dtype
= UBI_UNKNOWN
;
849 wbuf
->sync_callback
= NULL
;
850 mutex_init(&wbuf
->io_mutex
);
851 spin_lock_init(&wbuf
->lock
);
855 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
856 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
857 wbuf
->softlimit
= ktime_set(WBUF_TIMEOUT_SOFTLIMIT
, 0);
858 wbuf
->delta
= WBUF_TIMEOUT_HARDLIMIT
- WBUF_TIMEOUT_SOFTLIMIT
;
859 wbuf
->delta
*= 1000000000ULL;
860 ubifs_assert(wbuf
->delta
<= ULONG_MAX
);
865 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
866 * @wbuf: the write-buffer where to add
867 * @inum: the inode number
869 * This function adds an inode number to the inode array of the write-buffer.
871 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
874 /* NOR flash or something similar */
877 spin_lock(&wbuf
->lock
);
879 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
880 spin_unlock(&wbuf
->lock
);
884 * wbuf_has_ino - returns if the wbuf contains data from the inode.
885 * @wbuf: the write-buffer
886 * @inum: the inode number
888 * This function returns with %1 if the write-buffer contains some data from the
889 * given inode otherwise it returns with %0.
891 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
895 spin_lock(&wbuf
->lock
);
896 for (i
= 0; i
< wbuf
->next_ino
; i
++)
897 if (inum
== wbuf
->inodes
[i
]) {
901 spin_unlock(&wbuf
->lock
);
907 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
908 * @c: UBIFS file-system description object
909 * @inode: inode to synchronize
911 * This function synchronizes write-buffers which contain nodes belonging to
912 * @inode. Returns zero in case of success and a negative error code in case of
915 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
919 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
920 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
924 * GC head is special, do not look at it. Even if the
925 * head contains something related to this inode, it is
926 * a _copy_ of corresponding on-flash node which sits
931 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
934 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
935 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
936 err
= ubifs_wbuf_sync_nolock(wbuf
);
937 mutex_unlock(&wbuf
->io_mutex
);
940 ubifs_ro_mode(c
, err
);