pkt_sched: sch_htb: Remove htb_sched nwc_hit field
[linux-2.6/verdex.git] / block / elevator.c
blob9ac82dde99dddcd5434659f65a1e81c2a166b639
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include "blk.h"
41 static DEFINE_SPINLOCK(elv_list_lock);
42 static LIST_HEAD(elv_list);
45 * Merge hash stuff.
47 static const int elv_hash_shift = 6;
48 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
49 #define ELV_HASH_FN(sec) \
50 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
51 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
56 * Query io scheduler to see if the current process issuing bio may be
57 * merged with rq.
59 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
61 struct request_queue *q = rq->q;
62 elevator_t *e = q->elevator;
64 if (e->ops->elevator_allow_merge_fn)
65 return e->ops->elevator_allow_merge_fn(q, rq, bio);
67 return 1;
71 * can we safely merge with this request?
73 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
75 if (!rq_mergeable(rq))
76 return 0;
79 * Don't merge file system requests and discard requests
81 if (bio_discard(bio) != bio_discard(rq->bio))
82 return 0;
85 * different data direction or already started, don't merge
87 if (bio_data_dir(bio) != rq_data_dir(rq))
88 return 0;
91 * must be same device and not a special request
93 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
94 return 0;
97 * only merge integrity protected bio into ditto rq
99 if (bio_integrity(bio) != blk_integrity_rq(rq))
100 return 0;
102 if (!elv_iosched_allow_merge(rq, bio))
103 return 0;
105 return 1;
107 EXPORT_SYMBOL(elv_rq_merge_ok);
109 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
111 int ret = ELEVATOR_NO_MERGE;
114 * we can merge and sequence is ok, check if it's possible
116 if (elv_rq_merge_ok(__rq, bio)) {
117 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
118 ret = ELEVATOR_BACK_MERGE;
119 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
120 ret = ELEVATOR_FRONT_MERGE;
123 return ret;
126 static struct elevator_type *elevator_find(const char *name)
128 struct elevator_type *e;
130 list_for_each_entry(e, &elv_list, list) {
131 if (!strcmp(e->elevator_name, name))
132 return e;
135 return NULL;
138 static void elevator_put(struct elevator_type *e)
140 module_put(e->elevator_owner);
143 static struct elevator_type *elevator_get(const char *name)
145 struct elevator_type *e;
147 spin_lock(&elv_list_lock);
149 e = elevator_find(name);
150 if (!e) {
151 char elv[ELV_NAME_MAX + strlen("-iosched")];
153 spin_unlock(&elv_list_lock);
155 if (!strcmp(name, "anticipatory"))
156 sprintf(elv, "as-iosched");
157 else
158 sprintf(elv, "%s-iosched", name);
160 request_module("%s", elv);
161 spin_lock(&elv_list_lock);
162 e = elevator_find(name);
165 if (e && !try_module_get(e->elevator_owner))
166 e = NULL;
168 spin_unlock(&elv_list_lock);
170 return e;
173 static void *elevator_init_queue(struct request_queue *q,
174 struct elevator_queue *eq)
176 return eq->ops->elevator_init_fn(q);
179 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
180 void *data)
182 q->elevator = eq;
183 eq->elevator_data = data;
186 static char chosen_elevator[16];
188 static int __init elevator_setup(char *str)
191 * Be backwards-compatible with previous kernels, so users
192 * won't get the wrong elevator.
194 if (!strcmp(str, "as"))
195 strcpy(chosen_elevator, "anticipatory");
196 else
197 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
198 return 1;
201 __setup("elevator=", elevator_setup);
203 static struct kobj_type elv_ktype;
205 static elevator_t *elevator_alloc(struct request_queue *q,
206 struct elevator_type *e)
208 elevator_t *eq;
209 int i;
211 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
212 if (unlikely(!eq))
213 goto err;
215 eq->ops = &e->ops;
216 eq->elevator_type = e;
217 kobject_init(&eq->kobj, &elv_ktype);
218 mutex_init(&eq->sysfs_lock);
220 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
221 GFP_KERNEL, q->node);
222 if (!eq->hash)
223 goto err;
225 for (i = 0; i < ELV_HASH_ENTRIES; i++)
226 INIT_HLIST_HEAD(&eq->hash[i]);
228 return eq;
229 err:
230 kfree(eq);
231 elevator_put(e);
232 return NULL;
235 static void elevator_release(struct kobject *kobj)
237 elevator_t *e = container_of(kobj, elevator_t, kobj);
239 elevator_put(e->elevator_type);
240 kfree(e->hash);
241 kfree(e);
244 int elevator_init(struct request_queue *q, char *name)
246 struct elevator_type *e = NULL;
247 struct elevator_queue *eq;
248 int ret = 0;
249 void *data;
251 INIT_LIST_HEAD(&q->queue_head);
252 q->last_merge = NULL;
253 q->end_sector = 0;
254 q->boundary_rq = NULL;
256 if (name) {
257 e = elevator_get(name);
258 if (!e)
259 return -EINVAL;
262 if (!e && *chosen_elevator) {
263 e = elevator_get(chosen_elevator);
264 if (!e)
265 printk(KERN_ERR "I/O scheduler %s not found\n",
266 chosen_elevator);
269 if (!e) {
270 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
271 if (!e) {
272 printk(KERN_ERR
273 "Default I/O scheduler not found. " \
274 "Using noop.\n");
275 e = elevator_get("noop");
279 eq = elevator_alloc(q, e);
280 if (!eq)
281 return -ENOMEM;
283 data = elevator_init_queue(q, eq);
284 if (!data) {
285 kobject_put(&eq->kobj);
286 return -ENOMEM;
289 elevator_attach(q, eq, data);
290 return ret;
292 EXPORT_SYMBOL(elevator_init);
294 void elevator_exit(elevator_t *e)
296 mutex_lock(&e->sysfs_lock);
297 if (e->ops->elevator_exit_fn)
298 e->ops->elevator_exit_fn(e);
299 e->ops = NULL;
300 mutex_unlock(&e->sysfs_lock);
302 kobject_put(&e->kobj);
304 EXPORT_SYMBOL(elevator_exit);
306 static void elv_activate_rq(struct request_queue *q, struct request *rq)
308 elevator_t *e = q->elevator;
310 if (e->ops->elevator_activate_req_fn)
311 e->ops->elevator_activate_req_fn(q, rq);
314 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
316 elevator_t *e = q->elevator;
318 if (e->ops->elevator_deactivate_req_fn)
319 e->ops->elevator_deactivate_req_fn(q, rq);
322 static inline void __elv_rqhash_del(struct request *rq)
324 hlist_del_init(&rq->hash);
327 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
329 if (ELV_ON_HASH(rq))
330 __elv_rqhash_del(rq);
333 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
335 elevator_t *e = q->elevator;
337 BUG_ON(ELV_ON_HASH(rq));
338 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
341 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
343 __elv_rqhash_del(rq);
344 elv_rqhash_add(q, rq);
347 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
349 elevator_t *e = q->elevator;
350 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
351 struct hlist_node *entry, *next;
352 struct request *rq;
354 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
355 BUG_ON(!ELV_ON_HASH(rq));
357 if (unlikely(!rq_mergeable(rq))) {
358 __elv_rqhash_del(rq);
359 continue;
362 if (rq_hash_key(rq) == offset)
363 return rq;
366 return NULL;
370 * RB-tree support functions for inserting/lookup/removal of requests
371 * in a sorted RB tree.
373 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
375 struct rb_node **p = &root->rb_node;
376 struct rb_node *parent = NULL;
377 struct request *__rq;
379 while (*p) {
380 parent = *p;
381 __rq = rb_entry(parent, struct request, rb_node);
383 if (rq->sector < __rq->sector)
384 p = &(*p)->rb_left;
385 else if (rq->sector > __rq->sector)
386 p = &(*p)->rb_right;
387 else
388 return __rq;
391 rb_link_node(&rq->rb_node, parent, p);
392 rb_insert_color(&rq->rb_node, root);
393 return NULL;
395 EXPORT_SYMBOL(elv_rb_add);
397 void elv_rb_del(struct rb_root *root, struct request *rq)
399 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
400 rb_erase(&rq->rb_node, root);
401 RB_CLEAR_NODE(&rq->rb_node);
403 EXPORT_SYMBOL(elv_rb_del);
405 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
407 struct rb_node *n = root->rb_node;
408 struct request *rq;
410 while (n) {
411 rq = rb_entry(n, struct request, rb_node);
413 if (sector < rq->sector)
414 n = n->rb_left;
415 else if (sector > rq->sector)
416 n = n->rb_right;
417 else
418 return rq;
421 return NULL;
423 EXPORT_SYMBOL(elv_rb_find);
426 * Insert rq into dispatch queue of q. Queue lock must be held on
427 * entry. rq is sort instead into the dispatch queue. To be used by
428 * specific elevators.
430 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
432 sector_t boundary;
433 struct list_head *entry;
434 int stop_flags;
436 if (q->last_merge == rq)
437 q->last_merge = NULL;
439 elv_rqhash_del(q, rq);
441 q->nr_sorted--;
443 boundary = q->end_sector;
444 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
445 list_for_each_prev(entry, &q->queue_head) {
446 struct request *pos = list_entry_rq(entry);
448 if (blk_discard_rq(rq) != blk_discard_rq(pos))
449 break;
450 if (rq_data_dir(rq) != rq_data_dir(pos))
451 break;
452 if (pos->cmd_flags & stop_flags)
453 break;
454 if (rq->sector >= boundary) {
455 if (pos->sector < boundary)
456 continue;
457 } else {
458 if (pos->sector >= boundary)
459 break;
461 if (rq->sector >= pos->sector)
462 break;
465 list_add(&rq->queuelist, entry);
467 EXPORT_SYMBOL(elv_dispatch_sort);
470 * Insert rq into dispatch queue of q. Queue lock must be held on
471 * entry. rq is added to the back of the dispatch queue. To be used by
472 * specific elevators.
474 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
476 if (q->last_merge == rq)
477 q->last_merge = NULL;
479 elv_rqhash_del(q, rq);
481 q->nr_sorted--;
483 q->end_sector = rq_end_sector(rq);
484 q->boundary_rq = rq;
485 list_add_tail(&rq->queuelist, &q->queue_head);
487 EXPORT_SYMBOL(elv_dispatch_add_tail);
489 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
491 elevator_t *e = q->elevator;
492 struct request *__rq;
493 int ret;
496 * First try one-hit cache.
498 if (q->last_merge) {
499 ret = elv_try_merge(q->last_merge, bio);
500 if (ret != ELEVATOR_NO_MERGE) {
501 *req = q->last_merge;
502 return ret;
506 if (blk_queue_nomerges(q))
507 return ELEVATOR_NO_MERGE;
510 * See if our hash lookup can find a potential backmerge.
512 __rq = elv_rqhash_find(q, bio->bi_sector);
513 if (__rq && elv_rq_merge_ok(__rq, bio)) {
514 *req = __rq;
515 return ELEVATOR_BACK_MERGE;
518 if (e->ops->elevator_merge_fn)
519 return e->ops->elevator_merge_fn(q, req, bio);
521 return ELEVATOR_NO_MERGE;
524 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
526 elevator_t *e = q->elevator;
528 if (e->ops->elevator_merged_fn)
529 e->ops->elevator_merged_fn(q, rq, type);
531 if (type == ELEVATOR_BACK_MERGE)
532 elv_rqhash_reposition(q, rq);
534 q->last_merge = rq;
537 void elv_merge_requests(struct request_queue *q, struct request *rq,
538 struct request *next)
540 elevator_t *e = q->elevator;
542 if (e->ops->elevator_merge_req_fn)
543 e->ops->elevator_merge_req_fn(q, rq, next);
545 elv_rqhash_reposition(q, rq);
546 elv_rqhash_del(q, next);
548 q->nr_sorted--;
549 q->last_merge = rq;
552 void elv_requeue_request(struct request_queue *q, struct request *rq)
555 * it already went through dequeue, we need to decrement the
556 * in_flight count again
558 if (blk_account_rq(rq)) {
559 q->in_flight--;
560 if (blk_sorted_rq(rq))
561 elv_deactivate_rq(q, rq);
564 rq->cmd_flags &= ~REQ_STARTED;
566 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
569 static void elv_drain_elevator(struct request_queue *q)
571 static int printed;
572 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
574 if (q->nr_sorted == 0)
575 return;
576 if (printed++ < 10) {
577 printk(KERN_ERR "%s: forced dispatching is broken "
578 "(nr_sorted=%u), please report this\n",
579 q->elevator->elevator_type->elevator_name, q->nr_sorted);
583 void elv_insert(struct request_queue *q, struct request *rq, int where)
585 struct list_head *pos;
586 unsigned ordseq;
587 int unplug_it = 1;
589 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
591 rq->q = q;
593 switch (where) {
594 case ELEVATOR_INSERT_FRONT:
595 rq->cmd_flags |= REQ_SOFTBARRIER;
597 list_add(&rq->queuelist, &q->queue_head);
598 break;
600 case ELEVATOR_INSERT_BACK:
601 rq->cmd_flags |= REQ_SOFTBARRIER;
602 elv_drain_elevator(q);
603 list_add_tail(&rq->queuelist, &q->queue_head);
605 * We kick the queue here for the following reasons.
606 * - The elevator might have returned NULL previously
607 * to delay requests and returned them now. As the
608 * queue wasn't empty before this request, ll_rw_blk
609 * won't run the queue on return, resulting in hang.
610 * - Usually, back inserted requests won't be merged
611 * with anything. There's no point in delaying queue
612 * processing.
614 blk_remove_plug(q);
615 blk_start_queueing(q);
616 break;
618 case ELEVATOR_INSERT_SORT:
619 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
620 rq->cmd_flags |= REQ_SORTED;
621 q->nr_sorted++;
622 if (rq_mergeable(rq)) {
623 elv_rqhash_add(q, rq);
624 if (!q->last_merge)
625 q->last_merge = rq;
629 * Some ioscheds (cfq) run q->request_fn directly, so
630 * rq cannot be accessed after calling
631 * elevator_add_req_fn.
633 q->elevator->ops->elevator_add_req_fn(q, rq);
634 break;
636 case ELEVATOR_INSERT_REQUEUE:
638 * If ordered flush isn't in progress, we do front
639 * insertion; otherwise, requests should be requeued
640 * in ordseq order.
642 rq->cmd_flags |= REQ_SOFTBARRIER;
645 * Most requeues happen because of a busy condition,
646 * don't force unplug of the queue for that case.
648 unplug_it = 0;
650 if (q->ordseq == 0) {
651 list_add(&rq->queuelist, &q->queue_head);
652 break;
655 ordseq = blk_ordered_req_seq(rq);
657 list_for_each(pos, &q->queue_head) {
658 struct request *pos_rq = list_entry_rq(pos);
659 if (ordseq <= blk_ordered_req_seq(pos_rq))
660 break;
663 list_add_tail(&rq->queuelist, pos);
664 break;
666 default:
667 printk(KERN_ERR "%s: bad insertion point %d\n",
668 __func__, where);
669 BUG();
672 if (unplug_it && blk_queue_plugged(q)) {
673 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
674 - q->in_flight;
676 if (nrq >= q->unplug_thresh)
677 __generic_unplug_device(q);
681 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
682 int plug)
684 if (q->ordcolor)
685 rq->cmd_flags |= REQ_ORDERED_COLOR;
687 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
689 * toggle ordered color
691 if (blk_barrier_rq(rq))
692 q->ordcolor ^= 1;
695 * barriers implicitly indicate back insertion
697 if (where == ELEVATOR_INSERT_SORT)
698 where = ELEVATOR_INSERT_BACK;
701 * this request is scheduling boundary, update
702 * end_sector
704 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
705 q->end_sector = rq_end_sector(rq);
706 q->boundary_rq = rq;
708 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
709 where == ELEVATOR_INSERT_SORT)
710 where = ELEVATOR_INSERT_BACK;
712 if (plug)
713 blk_plug_device(q);
715 elv_insert(q, rq, where);
717 EXPORT_SYMBOL(__elv_add_request);
719 void elv_add_request(struct request_queue *q, struct request *rq, int where,
720 int plug)
722 unsigned long flags;
724 spin_lock_irqsave(q->queue_lock, flags);
725 __elv_add_request(q, rq, where, plug);
726 spin_unlock_irqrestore(q->queue_lock, flags);
728 EXPORT_SYMBOL(elv_add_request);
730 static inline struct request *__elv_next_request(struct request_queue *q)
732 struct request *rq;
734 while (1) {
735 while (!list_empty(&q->queue_head)) {
736 rq = list_entry_rq(q->queue_head.next);
737 if (blk_do_ordered(q, &rq))
738 return rq;
741 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
742 return NULL;
746 struct request *elv_next_request(struct request_queue *q)
748 struct request *rq;
749 int ret;
751 while ((rq = __elv_next_request(q)) != NULL) {
753 * Kill the empty barrier place holder, the driver must
754 * not ever see it.
756 if (blk_empty_barrier(rq)) {
757 __blk_end_request(rq, 0, blk_rq_bytes(rq));
758 continue;
760 if (!(rq->cmd_flags & REQ_STARTED)) {
762 * This is the first time the device driver
763 * sees this request (possibly after
764 * requeueing). Notify IO scheduler.
766 if (blk_sorted_rq(rq))
767 elv_activate_rq(q, rq);
770 * just mark as started even if we don't start
771 * it, a request that has been delayed should
772 * not be passed by new incoming requests
774 rq->cmd_flags |= REQ_STARTED;
775 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
778 if (!q->boundary_rq || q->boundary_rq == rq) {
779 q->end_sector = rq_end_sector(rq);
780 q->boundary_rq = NULL;
783 if (rq->cmd_flags & REQ_DONTPREP)
784 break;
786 if (q->dma_drain_size && rq->data_len) {
788 * make sure space for the drain appears we
789 * know we can do this because max_hw_segments
790 * has been adjusted to be one fewer than the
791 * device can handle
793 rq->nr_phys_segments++;
796 if (!q->prep_rq_fn)
797 break;
799 ret = q->prep_rq_fn(q, rq);
800 if (ret == BLKPREP_OK) {
801 break;
802 } else if (ret == BLKPREP_DEFER) {
804 * the request may have been (partially) prepped.
805 * we need to keep this request in the front to
806 * avoid resource deadlock. REQ_STARTED will
807 * prevent other fs requests from passing this one.
809 if (q->dma_drain_size && rq->data_len &&
810 !(rq->cmd_flags & REQ_DONTPREP)) {
812 * remove the space for the drain we added
813 * so that we don't add it again
815 --rq->nr_phys_segments;
818 rq = NULL;
819 break;
820 } else if (ret == BLKPREP_KILL) {
821 rq->cmd_flags |= REQ_QUIET;
822 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
823 } else {
824 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
825 break;
829 return rq;
831 EXPORT_SYMBOL(elv_next_request);
833 void elv_dequeue_request(struct request_queue *q, struct request *rq)
835 BUG_ON(list_empty(&rq->queuelist));
836 BUG_ON(ELV_ON_HASH(rq));
838 list_del_init(&rq->queuelist);
841 * the time frame between a request being removed from the lists
842 * and to it is freed is accounted as io that is in progress at
843 * the driver side.
845 if (blk_account_rq(rq))
846 q->in_flight++;
849 * We are now handing the request to the hardware, add the
850 * timeout handler.
852 blk_add_timer(rq);
854 EXPORT_SYMBOL(elv_dequeue_request);
856 int elv_queue_empty(struct request_queue *q)
858 elevator_t *e = q->elevator;
860 if (!list_empty(&q->queue_head))
861 return 0;
863 if (e->ops->elevator_queue_empty_fn)
864 return e->ops->elevator_queue_empty_fn(q);
866 return 1;
868 EXPORT_SYMBOL(elv_queue_empty);
870 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
872 elevator_t *e = q->elevator;
874 if (e->ops->elevator_latter_req_fn)
875 return e->ops->elevator_latter_req_fn(q, rq);
876 return NULL;
879 struct request *elv_former_request(struct request_queue *q, struct request *rq)
881 elevator_t *e = q->elevator;
883 if (e->ops->elevator_former_req_fn)
884 return e->ops->elevator_former_req_fn(q, rq);
885 return NULL;
888 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
890 elevator_t *e = q->elevator;
892 if (e->ops->elevator_set_req_fn)
893 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
895 rq->elevator_private = NULL;
896 return 0;
899 void elv_put_request(struct request_queue *q, struct request *rq)
901 elevator_t *e = q->elevator;
903 if (e->ops->elevator_put_req_fn)
904 e->ops->elevator_put_req_fn(rq);
907 int elv_may_queue(struct request_queue *q, int rw)
909 elevator_t *e = q->elevator;
911 if (e->ops->elevator_may_queue_fn)
912 return e->ops->elevator_may_queue_fn(q, rw);
914 return ELV_MQUEUE_MAY;
917 void elv_abort_queue(struct request_queue *q)
919 struct request *rq;
921 while (!list_empty(&q->queue_head)) {
922 rq = list_entry_rq(q->queue_head.next);
923 rq->cmd_flags |= REQ_QUIET;
924 blk_add_trace_rq(q, rq, BLK_TA_ABORT);
925 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
928 EXPORT_SYMBOL(elv_abort_queue);
930 void elv_completed_request(struct request_queue *q, struct request *rq)
932 elevator_t *e = q->elevator;
935 * request is released from the driver, io must be done
937 if (blk_account_rq(rq)) {
938 q->in_flight--;
939 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
940 e->ops->elevator_completed_req_fn(q, rq);
944 * Check if the queue is waiting for fs requests to be
945 * drained for flush sequence.
947 if (unlikely(q->ordseq)) {
948 struct request *first_rq = list_entry_rq(q->queue_head.next);
949 if (q->in_flight == 0 &&
950 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
951 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
952 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
953 blk_start_queueing(q);
958 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
960 static ssize_t
961 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
963 elevator_t *e = container_of(kobj, elevator_t, kobj);
964 struct elv_fs_entry *entry = to_elv(attr);
965 ssize_t error;
967 if (!entry->show)
968 return -EIO;
970 mutex_lock(&e->sysfs_lock);
971 error = e->ops ? entry->show(e, page) : -ENOENT;
972 mutex_unlock(&e->sysfs_lock);
973 return error;
976 static ssize_t
977 elv_attr_store(struct kobject *kobj, struct attribute *attr,
978 const char *page, size_t length)
980 elevator_t *e = container_of(kobj, elevator_t, kobj);
981 struct elv_fs_entry *entry = to_elv(attr);
982 ssize_t error;
984 if (!entry->store)
985 return -EIO;
987 mutex_lock(&e->sysfs_lock);
988 error = e->ops ? entry->store(e, page, length) : -ENOENT;
989 mutex_unlock(&e->sysfs_lock);
990 return error;
993 static struct sysfs_ops elv_sysfs_ops = {
994 .show = elv_attr_show,
995 .store = elv_attr_store,
998 static struct kobj_type elv_ktype = {
999 .sysfs_ops = &elv_sysfs_ops,
1000 .release = elevator_release,
1003 int elv_register_queue(struct request_queue *q)
1005 elevator_t *e = q->elevator;
1006 int error;
1008 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1009 if (!error) {
1010 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1011 if (attr) {
1012 while (attr->attr.name) {
1013 if (sysfs_create_file(&e->kobj, &attr->attr))
1014 break;
1015 attr++;
1018 kobject_uevent(&e->kobj, KOBJ_ADD);
1020 return error;
1023 static void __elv_unregister_queue(elevator_t *e)
1025 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1026 kobject_del(&e->kobj);
1029 void elv_unregister_queue(struct request_queue *q)
1031 if (q)
1032 __elv_unregister_queue(q->elevator);
1035 void elv_register(struct elevator_type *e)
1037 char *def = "";
1039 spin_lock(&elv_list_lock);
1040 BUG_ON(elevator_find(e->elevator_name));
1041 list_add_tail(&e->list, &elv_list);
1042 spin_unlock(&elv_list_lock);
1044 if (!strcmp(e->elevator_name, chosen_elevator) ||
1045 (!*chosen_elevator &&
1046 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1047 def = " (default)";
1049 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1050 def);
1052 EXPORT_SYMBOL_GPL(elv_register);
1054 void elv_unregister(struct elevator_type *e)
1056 struct task_struct *g, *p;
1059 * Iterate every thread in the process to remove the io contexts.
1061 if (e->ops.trim) {
1062 read_lock(&tasklist_lock);
1063 do_each_thread(g, p) {
1064 task_lock(p);
1065 if (p->io_context)
1066 e->ops.trim(p->io_context);
1067 task_unlock(p);
1068 } while_each_thread(g, p);
1069 read_unlock(&tasklist_lock);
1072 spin_lock(&elv_list_lock);
1073 list_del_init(&e->list);
1074 spin_unlock(&elv_list_lock);
1076 EXPORT_SYMBOL_GPL(elv_unregister);
1079 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1080 * we don't free the old io scheduler, before we have allocated what we
1081 * need for the new one. this way we have a chance of going back to the old
1082 * one, if the new one fails init for some reason.
1084 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1086 elevator_t *old_elevator, *e;
1087 void *data;
1090 * Allocate new elevator
1092 e = elevator_alloc(q, new_e);
1093 if (!e)
1094 return 0;
1096 data = elevator_init_queue(q, e);
1097 if (!data) {
1098 kobject_put(&e->kobj);
1099 return 0;
1103 * Turn on BYPASS and drain all requests w/ elevator private data
1105 spin_lock_irq(q->queue_lock);
1107 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1109 elv_drain_elevator(q);
1111 while (q->rq.elvpriv) {
1112 blk_start_queueing(q);
1113 spin_unlock_irq(q->queue_lock);
1114 msleep(10);
1115 spin_lock_irq(q->queue_lock);
1116 elv_drain_elevator(q);
1120 * Remember old elevator.
1122 old_elevator = q->elevator;
1125 * attach and start new elevator
1127 elevator_attach(q, e, data);
1129 spin_unlock_irq(q->queue_lock);
1131 __elv_unregister_queue(old_elevator);
1133 if (elv_register_queue(q))
1134 goto fail_register;
1137 * finally exit old elevator and turn off BYPASS.
1139 elevator_exit(old_elevator);
1140 spin_lock_irq(q->queue_lock);
1141 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1142 spin_unlock_irq(q->queue_lock);
1144 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1146 return 1;
1148 fail_register:
1150 * switch failed, exit the new io scheduler and reattach the old
1151 * one again (along with re-adding the sysfs dir)
1153 elevator_exit(e);
1154 q->elevator = old_elevator;
1155 elv_register_queue(q);
1157 spin_lock_irq(q->queue_lock);
1158 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1159 spin_unlock_irq(q->queue_lock);
1161 return 0;
1164 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1165 size_t count)
1167 char elevator_name[ELV_NAME_MAX];
1168 struct elevator_type *e;
1170 strlcpy(elevator_name, name, sizeof(elevator_name));
1171 strstrip(elevator_name);
1173 e = elevator_get(elevator_name);
1174 if (!e) {
1175 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1176 return -EINVAL;
1179 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1180 elevator_put(e);
1181 return count;
1184 if (!elevator_switch(q, e))
1185 printk(KERN_ERR "elevator: switch to %s failed\n",
1186 elevator_name);
1187 return count;
1190 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1192 elevator_t *e = q->elevator;
1193 struct elevator_type *elv = e->elevator_type;
1194 struct elevator_type *__e;
1195 int len = 0;
1197 spin_lock(&elv_list_lock);
1198 list_for_each_entry(__e, &elv_list, list) {
1199 if (!strcmp(elv->elevator_name, __e->elevator_name))
1200 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1201 else
1202 len += sprintf(name+len, "%s ", __e->elevator_name);
1204 spin_unlock(&elv_list_lock);
1206 len += sprintf(len+name, "\n");
1207 return len;
1210 struct request *elv_rb_former_request(struct request_queue *q,
1211 struct request *rq)
1213 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1215 if (rbprev)
1216 return rb_entry_rq(rbprev);
1218 return NULL;
1220 EXPORT_SYMBOL(elv_rb_former_request);
1222 struct request *elv_rb_latter_request(struct request_queue *q,
1223 struct request *rq)
1225 struct rb_node *rbnext = rb_next(&rq->rb_node);
1227 if (rbnext)
1228 return rb_entry_rq(rbnext);
1230 return NULL;
1232 EXPORT_SYMBOL(elv_rb_latter_request);