1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126 /* Offset 04h HSFSTS */
127 union ich8_hws_flash_status
{
129 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
130 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
131 u16 dael
:1; /* bit 2 Direct Access error Log */
132 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
134 u16 reserved1
:2; /* bit 13:6 Reserved */
135 u16 reserved2
:6; /* bit 13:6 Reserved */
136 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
142 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143 /* Offset 06h FLCTL */
144 union ich8_hws_flash_ctrl
{
145 struct ich8_hsflctl
{
146 u16 flcgo
:1; /* 0 Flash Cycle Go */
147 u16 flcycle
:2; /* 2:1 Flash Cycle */
148 u16 reserved
:5; /* 7:3 Reserved */
149 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn
:6; /* 15:10 Reserved */
155 /* ICH Flash Region Access Permissions */
156 union ich8_hws_flash_regacc
{
158 u32 grra
:8; /* 0:7 GbE region Read Access */
159 u32 grwa
:8; /* 8:15 GbE region Write Access */
160 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
166 /* ICH Flash Protected Region */
167 union ich8_flash_protected_range
{
169 u32 base
:13; /* 0:12 Protected Range Base */
170 u32 reserved1
:2; /* 13:14 Reserved */
171 u32 rpe
:1; /* 15 Read Protection Enable */
172 u32 limit
:13; /* 16:28 Protected Range Limit */
173 u32 reserved2
:2; /* 29:30 Reserved */
174 u32 wpe
:1; /* 31 Write Protection Enable */
179 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
180 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
181 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
182 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
);
183 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
184 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
185 u32 offset
, u8 byte
);
186 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
188 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
190 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
192 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
193 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
194 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
195 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
196 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
197 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
198 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
199 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
200 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
201 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
202 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
204 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
206 return readw(hw
->flash_address
+ reg
);
209 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
211 return readl(hw
->flash_address
+ reg
);
214 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
216 writew(val
, hw
->flash_address
+ reg
);
219 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
221 writel(val
, hw
->flash_address
+ reg
);
224 #define er16flash(reg) __er16flash(hw, (reg))
225 #define er32flash(reg) __er32flash(hw, (reg))
226 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
233 * Initialize family-specific PHY parameters and function pointers.
235 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
237 struct e1000_phy_info
*phy
= &hw
->phy
;
241 phy
->reset_delay_us
= 100;
243 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
244 phy
->ops
.read_phy_reg
= e1000_read_phy_reg_hv
;
245 phy
->ops
.write_phy_reg
= e1000_write_phy_reg_hv
;
246 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
248 phy
->id
= e1000_phy_unknown
;
249 e1000e_get_phy_id(hw
);
250 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
252 if (phy
->type
== e1000_phy_82577
) {
253 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
254 phy
->ops
.force_speed_duplex
=
255 e1000_phy_force_speed_duplex_82577
;
256 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
257 phy
->ops
.get_phy_info
= e1000_get_phy_info_82577
;
258 phy
->ops
.commit_phy
= e1000e_phy_sw_reset
;
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
268 * Initialize family-specific PHY parameters and function pointers.
270 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
272 struct e1000_phy_info
*phy
= &hw
->phy
;
277 phy
->reset_delay_us
= 100;
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
283 ret_val
= e1000e_determine_phy_address(hw
);
285 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
286 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
287 ret_val
= e1000e_determine_phy_address(hw
);
293 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
296 ret_val
= e1000e_get_phy_id(hw
);
303 case IGP03E1000_E_PHY_ID
:
304 phy
->type
= e1000_phy_igp_3
;
305 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
308 case IFE_PLUS_E_PHY_ID
:
310 phy
->type
= e1000_phy_ife
;
311 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
313 case BME1000_E_PHY_ID
:
314 phy
->type
= e1000_phy_bm
;
315 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
316 hw
->phy
.ops
.read_phy_reg
= e1000e_read_phy_reg_bm
;
317 hw
->phy
.ops
.write_phy_reg
= e1000e_write_phy_reg_bm
;
318 hw
->phy
.ops
.commit_phy
= e1000e_phy_sw_reset
;
321 return -E1000_ERR_PHY
;
325 phy
->ops
.check_polarity
= e1000_check_polarity_ife_ich8lan
;
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
334 * Initialize family-specific NVM parameters and function
337 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
339 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
340 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
342 u32 sector_base_addr
;
346 /* Can't read flash registers if the register set isn't mapped. */
347 if (!hw
->flash_address
) {
348 hw_dbg(hw
, "ERROR: Flash registers not mapped\n");
349 return -E1000_ERR_CONFIG
;
352 nvm
->type
= e1000_nvm_flash_sw
;
354 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
357 * sector_X_addr is a "sector"-aligned address (4096 bytes)
358 * Add 1 to sector_end_addr since this sector is included in
361 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
362 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
364 /* flash_base_addr is byte-aligned */
365 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
368 * find total size of the NVM, then cut in half since the total
369 * size represents two separate NVM banks.
371 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
372 << FLASH_SECTOR_ADDR_SHIFT
;
373 nvm
->flash_bank_size
/= 2;
374 /* Adjust to word count */
375 nvm
->flash_bank_size
/= sizeof(u16
);
377 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
379 /* Clear shadow ram */
380 for (i
= 0; i
< nvm
->word_size
; i
++) {
381 dev_spec
->shadow_ram
[i
].modified
= 0;
382 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
389 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
390 * @hw: pointer to the HW structure
392 * Initialize family-specific MAC parameters and function
395 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
397 struct e1000_hw
*hw
= &adapter
->hw
;
398 struct e1000_mac_info
*mac
= &hw
->mac
;
400 /* Set media type function pointer */
401 hw
->phy
.media_type
= e1000_media_type_copper
;
403 /* Set mta register count */
404 mac
->mta_reg_count
= 32;
405 /* Set rar entry count */
406 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
407 if (mac
->type
== e1000_ich8lan
)
408 mac
->rar_entry_count
--;
409 /* Set if manageability features are enabled. */
410 mac
->arc_subsystem_valid
= 1;
418 mac
->ops
.id_led_init
= e1000e_id_led_init
;
420 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
422 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
423 /* turn on/off LED */
424 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
425 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
429 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
431 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
433 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
434 /* turn on/off LED */
435 mac
->ops
.led_on
= e1000_led_on_pchlan
;
436 mac
->ops
.led_off
= e1000_led_off_pchlan
;
442 /* Enable PCS Lock-loss workaround for ICH8 */
443 if (mac
->type
== e1000_ich8lan
)
444 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, 1);
449 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
451 struct e1000_hw
*hw
= &adapter
->hw
;
454 rc
= e1000_init_mac_params_ich8lan(adapter
);
458 rc
= e1000_init_nvm_params_ich8lan(hw
);
462 if (hw
->mac
.type
== e1000_pchlan
)
463 rc
= e1000_init_phy_params_pchlan(hw
);
465 rc
= e1000_init_phy_params_ich8lan(hw
);
469 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
470 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
471 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
474 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
475 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
476 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
481 static DEFINE_MUTEX(nvm_mutex
);
484 * e1000_acquire_swflag_ich8lan - Acquire software control flag
485 * @hw: pointer to the HW structure
487 * Acquires the software control flag for performing NVM and PHY
488 * operations. This is a function pointer entry point only called by
489 * read/write routines for the PHY and NVM parts.
491 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
494 u32 timeout
= PHY_CFG_TIMEOUT
;
498 mutex_lock(&nvm_mutex
);
501 extcnf_ctrl
= er32(EXTCNF_CTRL
);
503 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)) {
504 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
505 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
507 extcnf_ctrl
= er32(EXTCNF_CTRL
);
508 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
516 hw_dbg(hw
, "FW or HW has locked the resource for too long.\n");
517 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
518 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
519 mutex_unlock(&nvm_mutex
);
520 return -E1000_ERR_CONFIG
;
527 * e1000_release_swflag_ich8lan - Release software control flag
528 * @hw: pointer to the HW structure
530 * Releases the software control flag for performing NVM and PHY operations.
531 * This is a function pointer entry point only called by read/write
532 * routines for the PHY and NVM parts.
534 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
538 extcnf_ctrl
= er32(EXTCNF_CTRL
);
539 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
540 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
542 mutex_unlock(&nvm_mutex
);
546 * e1000_check_mng_mode_ich8lan - Checks management mode
547 * @hw: pointer to the HW structure
549 * This checks if the adapter has manageability enabled.
550 * This is a function pointer entry point only called by read/write
551 * routines for the PHY and NVM parts.
553 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
555 u32 fwsm
= er32(FWSM
);
557 return (fwsm
& E1000_FWSM_MODE_MASK
) ==
558 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
);
562 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
563 * @hw: pointer to the HW structure
565 * Checks if firmware is blocking the reset of the PHY.
566 * This is a function pointer entry point only called by
569 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
575 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
579 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
580 * @hw: pointer to the HW structure
582 * Forces the speed and duplex settings of the PHY.
583 * This is a function pointer entry point only called by
584 * PHY setup routines.
586 static s32
e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw
*hw
)
588 struct e1000_phy_info
*phy
= &hw
->phy
;
593 if (phy
->type
!= e1000_phy_ife
) {
594 ret_val
= e1000e_phy_force_speed_duplex_igp(hw
);
598 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
602 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
604 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
608 /* Disable MDI-X support for 10/100 */
609 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
613 data
&= ~IFE_PMC_AUTO_MDIX
;
614 data
&= ~IFE_PMC_FORCE_MDIX
;
616 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
620 hw_dbg(hw
, "IFE PMC: %X\n", data
);
624 if (phy
->autoneg_wait_to_complete
) {
625 hw_dbg(hw
, "Waiting for forced speed/duplex link on IFE phy.\n");
627 ret_val
= e1000e_phy_has_link_generic(hw
,
635 hw_dbg(hw
, "Link taking longer than expected.\n");
638 ret_val
= e1000e_phy_has_link_generic(hw
,
650 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
651 * done after every PHY reset.
653 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
657 if (hw
->mac
.type
!= e1000_pchlan
)
660 if (((hw
->phy
.type
== e1000_phy_82577
) &&
661 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
662 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
663 /* Disable generation of early preamble */
664 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
668 /* Preamble tuning for SSC */
669 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
674 if (hw
->phy
.type
== e1000_phy_82578
) {
676 * Return registers to default by doing a soft reset then
677 * writing 0x3140 to the control register.
679 if (hw
->phy
.revision
< 2) {
680 e1000e_phy_sw_reset(hw
);
681 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
686 ret_val
= hw
->phy
.ops
.acquire_phy(hw
);
690 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
691 hw
->phy
.ops
.release_phy(hw
);
697 * e1000_lan_init_done_ich8lan - Check for PHY config completion
698 * @hw: pointer to the HW structure
700 * Check the appropriate indication the MAC has finished configuring the
701 * PHY after a software reset.
703 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
705 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
707 /* Wait for basic configuration completes before proceeding */
710 data
&= E1000_STATUS_LAN_INIT_DONE
;
712 } while ((!data
) && --loop
);
715 * If basic configuration is incomplete before the above loop
716 * count reaches 0, loading the configuration from NVM will
717 * leave the PHY in a bad state possibly resulting in no link.
720 hw_dbg(hw
, "LAN_INIT_DONE not set, increase timeout\n");
722 /* Clear the Init Done bit for the next init event */
724 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
729 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
730 * @hw: pointer to the HW structure
733 * This is a function pointer entry point called by drivers
734 * or other shared routines.
736 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
738 struct e1000_phy_info
*phy
= &hw
->phy
;
740 u32 data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
742 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
744 ret_val
= e1000e_phy_hw_reset_generic(hw
);
748 /* Allow time for h/w to get to a quiescent state after reset */
751 if (hw
->mac
.type
== e1000_pchlan
) {
752 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
758 * Initialize the PHY from the NVM on ICH platforms. This
759 * is needed due to an issue where the NVM configuration is
760 * not properly autoloaded after power transitions.
761 * Therefore, after each PHY reset, we will load the
762 * configuration data out of the NVM manually.
764 if (hw
->mac
.type
== e1000_ich8lan
&& phy
->type
== e1000_phy_igp_3
) {
765 struct e1000_adapter
*adapter
= hw
->adapter
;
767 /* Check if SW needs configure the PHY */
768 if ((adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M_AMT
) ||
769 (adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_M
))
770 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
772 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
774 data
= er32(FEXTNVM
);
775 if (!(data
& sw_cfg_mask
))
778 /* Wait for basic configuration completes before proceeding */
779 e1000_lan_init_done_ich8lan(hw
);
782 * Make sure HW does not configure LCD from PHY
783 * extended configuration before SW configuration
785 data
= er32(EXTCNF_CTRL
);
786 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
789 cnf_size
= er32(EXTCNF_SIZE
);
790 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
791 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
795 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
796 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
798 /* Configure LCD from extended configuration region. */
800 /* cnf_base_addr is in DWORD */
801 word_addr
= (u16
)(cnf_base_addr
<< 1);
803 for (i
= 0; i
< cnf_size
; i
++) {
804 ret_val
= e1000_read_nvm(hw
,
811 ret_val
= e1000_read_nvm(hw
,
812 (word_addr
+ i
* 2 + 1),
818 /* Save off the PHY page for future writes. */
819 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
824 reg_addr
|= phy_page
;
826 ret_val
= e1e_wphy(hw
, (u32
)reg_addr
, reg_data
);
836 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
837 * @hw: pointer to the HW structure
839 * Populates "phy" structure with various feature states.
840 * This function is only called by other family-specific
843 static s32
e1000_get_phy_info_ife_ich8lan(struct e1000_hw
*hw
)
845 struct e1000_phy_info
*phy
= &hw
->phy
;
850 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
855 hw_dbg(hw
, "Phy info is only valid if link is up\n");
856 return -E1000_ERR_CONFIG
;
859 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
862 phy
->polarity_correction
= (!(data
& IFE_PSC_AUTO_POLARITY_DISABLE
));
864 if (phy
->polarity_correction
) {
865 ret_val
= phy
->ops
.check_polarity(hw
);
869 /* Polarity is forced */
870 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
871 ? e1000_rev_polarity_reversed
872 : e1000_rev_polarity_normal
;
875 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
879 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
);
881 /* The following parameters are undefined for 10/100 operation. */
882 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
883 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
884 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
890 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
891 * @hw: pointer to the HW structure
893 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
894 * This is a function pointer entry point called by drivers
895 * or other shared routines.
897 static s32
e1000_get_phy_info_ich8lan(struct e1000_hw
*hw
)
899 switch (hw
->phy
.type
) {
901 return e1000_get_phy_info_ife_ich8lan(hw
);
903 case e1000_phy_igp_3
:
905 case e1000_phy_82578
:
906 case e1000_phy_82577
:
907 return e1000e_get_phy_info_igp(hw
);
913 return -E1000_ERR_PHY_TYPE
;
917 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
918 * @hw: pointer to the HW structure
920 * Polarity is determined on the polarity reversal feature being enabled.
921 * This function is only called by other family-specific
924 static s32
e1000_check_polarity_ife_ich8lan(struct e1000_hw
*hw
)
926 struct e1000_phy_info
*phy
= &hw
->phy
;
928 u16 phy_data
, offset
, mask
;
931 * Polarity is determined based on the reversal feature being enabled.
933 if (phy
->polarity_correction
) {
934 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
935 mask
= IFE_PESC_POLARITY_REVERSED
;
937 offset
= IFE_PHY_SPECIAL_CONTROL
;
938 mask
= IFE_PSC_FORCE_POLARITY
;
941 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
944 phy
->cable_polarity
= (phy_data
& mask
)
945 ? e1000_rev_polarity_reversed
946 : e1000_rev_polarity_normal
;
952 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
953 * @hw: pointer to the HW structure
954 * @active: TRUE to enable LPLU, FALSE to disable
956 * Sets the LPLU D0 state according to the active flag. When
957 * activating LPLU this function also disables smart speed
958 * and vice versa. LPLU will not be activated unless the
959 * device autonegotiation advertisement meets standards of
960 * either 10 or 10/100 or 10/100/1000 at all duplexes.
961 * This is a function pointer entry point only called by
962 * PHY setup routines.
964 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
966 struct e1000_phy_info
*phy
= &hw
->phy
;
971 if (phy
->type
== e1000_phy_ife
)
974 phy_ctrl
= er32(PHY_CTRL
);
977 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
978 ew32(PHY_CTRL
, phy_ctrl
);
980 if (phy
->type
!= e1000_phy_igp_3
)
984 * Call gig speed drop workaround on LPLU before accessing
987 if (hw
->mac
.type
== e1000_ich8lan
)
988 e1000e_gig_downshift_workaround_ich8lan(hw
);
990 /* When LPLU is enabled, we should disable SmartSpeed */
991 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
992 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
993 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
997 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
998 ew32(PHY_CTRL
, phy_ctrl
);
1000 if (phy
->type
!= e1000_phy_igp_3
)
1004 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1005 * during Dx states where the power conservation is most
1006 * important. During driver activity we should enable
1007 * SmartSpeed, so performance is maintained.
1009 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1010 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1015 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1016 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1020 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1021 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1026 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1027 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1038 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1039 * @hw: pointer to the HW structure
1040 * @active: TRUE to enable LPLU, FALSE to disable
1042 * Sets the LPLU D3 state according to the active flag. When
1043 * activating LPLU this function also disables smart speed
1044 * and vice versa. LPLU will not be activated unless the
1045 * device autonegotiation advertisement meets standards of
1046 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1047 * This is a function pointer entry point only called by
1048 * PHY setup routines.
1050 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1052 struct e1000_phy_info
*phy
= &hw
->phy
;
1057 phy_ctrl
= er32(PHY_CTRL
);
1060 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1061 ew32(PHY_CTRL
, phy_ctrl
);
1063 if (phy
->type
!= e1000_phy_igp_3
)
1067 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1068 * during Dx states where the power conservation is most
1069 * important. During driver activity we should enable
1070 * SmartSpeed, so performance is maintained.
1072 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1073 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1078 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1079 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1083 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1084 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1089 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1090 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1095 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1096 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1097 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1098 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1099 ew32(PHY_CTRL
, phy_ctrl
);
1101 if (phy
->type
!= e1000_phy_igp_3
)
1105 * Call gig speed drop workaround on LPLU before accessing
1108 if (hw
->mac
.type
== e1000_ich8lan
)
1109 e1000e_gig_downshift_workaround_ich8lan(hw
);
1111 /* When LPLU is enabled, we should disable SmartSpeed */
1112 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1116 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1117 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1124 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1125 * @hw: pointer to the HW structure
1126 * @bank: pointer to the variable that returns the active bank
1128 * Reads signature byte from the NVM using the flash access registers.
1129 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1131 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1134 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1135 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1136 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1140 switch (hw
->mac
.type
) {
1144 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1145 E1000_EECD_SEC1VAL_VALID_MASK
) {
1146 if (eecd
& E1000_EECD_SEC1VAL
)
1153 hw_dbg(hw
, "Unable to determine valid NVM bank via EEC - "
1154 "reading flash signature\n");
1157 /* set bank to 0 in case flash read fails */
1161 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
1165 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1166 E1000_ICH_NVM_SIG_VALUE
) {
1172 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
1177 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1178 E1000_ICH_NVM_SIG_VALUE
) {
1183 hw_dbg(hw
, "ERROR: No valid NVM bank present\n");
1184 return -E1000_ERR_NVM
;
1191 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1192 * @hw: pointer to the HW structure
1193 * @offset: The offset (in bytes) of the word(s) to read.
1194 * @words: Size of data to read in words
1195 * @data: Pointer to the word(s) to read at offset.
1197 * Reads a word(s) from the NVM using the flash access registers.
1199 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1202 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1203 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1209 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1211 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1212 return -E1000_ERR_NVM
;
1215 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1219 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1223 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1224 act_offset
+= offset
;
1226 for (i
= 0; i
< words
; i
++) {
1227 if ((dev_spec
->shadow_ram
) &&
1228 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1229 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
1231 ret_val
= e1000_read_flash_word_ich8lan(hw
,
1241 e1000_release_swflag_ich8lan(hw
);
1245 hw_dbg(hw
, "NVM read error: %d\n", ret_val
);
1251 * e1000_flash_cycle_init_ich8lan - Initialize flash
1252 * @hw: pointer to the HW structure
1254 * This function does initial flash setup so that a new read/write/erase cycle
1257 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
1259 union ich8_hws_flash_status hsfsts
;
1260 s32 ret_val
= -E1000_ERR_NVM
;
1263 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1265 /* Check if the flash descriptor is valid */
1266 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
1267 hw_dbg(hw
, "Flash descriptor invalid. "
1268 "SW Sequencing must be used.");
1269 return -E1000_ERR_NVM
;
1272 /* Clear FCERR and DAEL in hw status by writing 1 */
1273 hsfsts
.hsf_status
.flcerr
= 1;
1274 hsfsts
.hsf_status
.dael
= 1;
1276 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1279 * Either we should have a hardware SPI cycle in progress
1280 * bit to check against, in order to start a new cycle or
1281 * FDONE bit should be changed in the hardware so that it
1282 * is 1 after hardware reset, which can then be used as an
1283 * indication whether a cycle is in progress or has been
1287 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1289 * There is no cycle running at present,
1290 * so we can start a cycle
1291 * Begin by setting Flash Cycle Done.
1293 hsfsts
.hsf_status
.flcdone
= 1;
1294 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1298 * otherwise poll for sometime so the current
1299 * cycle has a chance to end before giving up.
1301 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
1302 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
1303 if (hsfsts
.hsf_status
.flcinprog
== 0) {
1311 * Successful in waiting for previous cycle to timeout,
1312 * now set the Flash Cycle Done.
1314 hsfsts
.hsf_status
.flcdone
= 1;
1315 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1317 hw_dbg(hw
, "Flash controller busy, cannot get access");
1325 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1326 * @hw: pointer to the HW structure
1327 * @timeout: maximum time to wait for completion
1329 * This function starts a flash cycle and waits for its completion.
1331 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
1333 union ich8_hws_flash_ctrl hsflctl
;
1334 union ich8_hws_flash_status hsfsts
;
1335 s32 ret_val
= -E1000_ERR_NVM
;
1338 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1339 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1340 hsflctl
.hsf_ctrl
.flcgo
= 1;
1341 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1343 /* wait till FDONE bit is set to 1 */
1345 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1346 if (hsfsts
.hsf_status
.flcdone
== 1)
1349 } while (i
++ < timeout
);
1351 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
1358 * e1000_read_flash_word_ich8lan - Read word from flash
1359 * @hw: pointer to the HW structure
1360 * @offset: offset to data location
1361 * @data: pointer to the location for storing the data
1363 * Reads the flash word at offset into data. Offset is converted
1364 * to bytes before read.
1366 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1369 /* Must convert offset into bytes. */
1372 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
1376 * e1000_read_flash_byte_ich8lan - Read byte from flash
1377 * @hw: pointer to the HW structure
1378 * @offset: The offset of the byte to read.
1379 * @data: Pointer to a byte to store the value read.
1381 * Reads a single byte from the NVM using the flash access registers.
1383 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1389 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
1399 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1400 * @hw: pointer to the HW structure
1401 * @offset: The offset (in bytes) of the byte or word to read.
1402 * @size: Size of data to read, 1=byte 2=word
1403 * @data: Pointer to the word to store the value read.
1405 * Reads a byte or word from the NVM using the flash access registers.
1407 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1410 union ich8_hws_flash_status hsfsts
;
1411 union ich8_hws_flash_ctrl hsflctl
;
1412 u32 flash_linear_addr
;
1414 s32 ret_val
= -E1000_ERR_NVM
;
1417 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1418 return -E1000_ERR_NVM
;
1420 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1421 hw
->nvm
.flash_base_addr
;
1426 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1430 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1431 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1432 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
1433 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
1434 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1436 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1438 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1439 ICH_FLASH_READ_COMMAND_TIMEOUT
);
1442 * Check if FCERR is set to 1, if set to 1, clear it
1443 * and try the whole sequence a few more times, else
1444 * read in (shift in) the Flash Data0, the order is
1445 * least significant byte first msb to lsb
1448 flash_data
= er32flash(ICH_FLASH_FDATA0
);
1450 *data
= (u8
)(flash_data
& 0x000000FF);
1451 } else if (size
== 2) {
1452 *data
= (u16
)(flash_data
& 0x0000FFFF);
1457 * If we've gotten here, then things are probably
1458 * completely hosed, but if the error condition is
1459 * detected, it won't hurt to give it another try...
1460 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1462 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1463 if (hsfsts
.hsf_status
.flcerr
== 1) {
1464 /* Repeat for some time before giving up. */
1466 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
1467 hw_dbg(hw
, "Timeout error - flash cycle "
1468 "did not complete.");
1472 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1478 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1479 * @hw: pointer to the HW structure
1480 * @offset: The offset (in bytes) of the word(s) to write.
1481 * @words: Size of data to write in words
1482 * @data: Pointer to the word(s) to write at offset.
1484 * Writes a byte or word to the NVM using the flash access registers.
1486 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1489 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1490 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1494 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1496 hw_dbg(hw
, "nvm parameter(s) out of bounds\n");
1497 return -E1000_ERR_NVM
;
1500 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1504 for (i
= 0; i
< words
; i
++) {
1505 dev_spec
->shadow_ram
[offset
+i
].modified
= 1;
1506 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
1509 e1000_release_swflag_ich8lan(hw
);
1515 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1516 * @hw: pointer to the HW structure
1518 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1519 * which writes the checksum to the shadow ram. The changes in the shadow
1520 * ram are then committed to the EEPROM by processing each bank at a time
1521 * checking for the modified bit and writing only the pending changes.
1522 * After a successful commit, the shadow ram is cleared and is ready for
1525 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1527 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1528 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1529 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
1533 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
1537 if (nvm
->type
!= e1000_nvm_flash_sw
)
1540 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1545 * We're writing to the opposite bank so if we're on bank 1,
1546 * write to bank 0 etc. We also need to erase the segment that
1547 * is going to be written
1549 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1551 e1000_release_swflag_ich8lan(hw
);
1556 new_bank_offset
= nvm
->flash_bank_size
;
1557 old_bank_offset
= 0;
1558 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
1560 e1000_release_swflag_ich8lan(hw
);
1564 old_bank_offset
= nvm
->flash_bank_size
;
1565 new_bank_offset
= 0;
1566 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
1568 e1000_release_swflag_ich8lan(hw
);
1573 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1575 * Determine whether to write the value stored
1576 * in the other NVM bank or a modified value stored
1579 if (dev_spec
->shadow_ram
[i
].modified
) {
1580 data
= dev_spec
->shadow_ram
[i
].value
;
1582 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
1590 * If the word is 0x13, then make sure the signature bits
1591 * (15:14) are 11b until the commit has completed.
1592 * This will allow us to write 10b which indicates the
1593 * signature is valid. We want to do this after the write
1594 * has completed so that we don't mark the segment valid
1595 * while the write is still in progress
1597 if (i
== E1000_ICH_NVM_SIG_WORD
)
1598 data
|= E1000_ICH_NVM_SIG_MASK
;
1600 /* Convert offset to bytes. */
1601 act_offset
= (i
+ new_bank_offset
) << 1;
1604 /* Write the bytes to the new bank. */
1605 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1612 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1620 * Don't bother writing the segment valid bits if sector
1621 * programming failed.
1624 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1625 hw_dbg(hw
, "Flash commit failed.\n");
1626 e1000_release_swflag_ich8lan(hw
);
1631 * Finally validate the new segment by setting bit 15:14
1632 * to 10b in word 0x13 , this can be done without an
1633 * erase as well since these bits are 11 to start with
1634 * and we need to change bit 14 to 0b
1636 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
1637 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
1639 e1000_release_swflag_ich8lan(hw
);
1643 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
1647 e1000_release_swflag_ich8lan(hw
);
1652 * And invalidate the previously valid segment by setting
1653 * its signature word (0x13) high_byte to 0b. This can be
1654 * done without an erase because flash erase sets all bits
1655 * to 1's. We can write 1's to 0's without an erase
1657 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
1658 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
1660 e1000_release_swflag_ich8lan(hw
);
1664 /* Great! Everything worked, we can now clear the cached entries. */
1665 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
1666 dev_spec
->shadow_ram
[i
].modified
= 0;
1667 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
1670 e1000_release_swflag_ich8lan(hw
);
1673 * Reload the EEPROM, or else modifications will not appear
1674 * until after the next adapter reset.
1676 e1000e_reload_nvm(hw
);
1681 hw_dbg(hw
, "NVM update error: %d\n", ret_val
);
1687 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1688 * @hw: pointer to the HW structure
1690 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1691 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1692 * calculated, in which case we need to calculate the checksum and set bit 6.
1694 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
1700 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1701 * needs to be fixed. This bit is an indication that the NVM
1702 * was prepared by OEM software and did not calculate the
1703 * checksum...a likely scenario.
1705 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
1709 if ((data
& 0x40) == 0) {
1711 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
1714 ret_val
= e1000e_update_nvm_checksum(hw
);
1719 return e1000e_validate_nvm_checksum_generic(hw
);
1723 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1724 * @hw: pointer to the HW structure
1726 * To prevent malicious write/erase of the NVM, set it to be read-only
1727 * so that the hardware ignores all write/erase cycles of the NVM via
1728 * the flash control registers. The shadow-ram copy of the NVM will
1729 * still be updated, however any updates to this copy will not stick
1730 * across driver reloads.
1732 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
1734 union ich8_flash_protected_range pr0
;
1735 union ich8_hws_flash_status hsfsts
;
1739 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1743 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
1745 /* Write-protect GbE Sector of NVM */
1746 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
1747 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
1748 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
1749 pr0
.range
.wpe
= true;
1750 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
1753 * Lock down a subset of GbE Flash Control Registers, e.g.
1754 * PR0 to prevent the write-protection from being lifted.
1755 * Once FLOCKDN is set, the registers protected by it cannot
1756 * be written until FLOCKDN is cleared by a hardware reset.
1758 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1759 hsfsts
.hsf_status
.flockdn
= true;
1760 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
1762 e1000_release_swflag_ich8lan(hw
);
1766 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1767 * @hw: pointer to the HW structure
1768 * @offset: The offset (in bytes) of the byte/word to read.
1769 * @size: Size of data to read, 1=byte 2=word
1770 * @data: The byte(s) to write to the NVM.
1772 * Writes one/two bytes to the NVM using the flash access registers.
1774 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1777 union ich8_hws_flash_status hsfsts
;
1778 union ich8_hws_flash_ctrl hsflctl
;
1779 u32 flash_linear_addr
;
1784 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
1785 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
1786 return -E1000_ERR_NVM
;
1788 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
1789 hw
->nvm
.flash_base_addr
;
1794 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1798 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1799 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1800 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
1801 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
1802 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1804 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1807 flash_data
= (u32
)data
& 0x00FF;
1809 flash_data
= (u32
)data
;
1811 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
1814 * check if FCERR is set to 1 , if set to 1, clear it
1815 * and try the whole sequence a few more times else done
1817 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1818 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
1823 * If we're here, then things are most likely
1824 * completely hosed, but if the error condition
1825 * is detected, it won't hurt to give it another
1826 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1828 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1829 if (hsfsts
.hsf_status
.flcerr
== 1)
1830 /* Repeat for some time before giving up. */
1832 if (hsfsts
.hsf_status
.flcdone
== 0) {
1833 hw_dbg(hw
, "Timeout error - flash cycle "
1834 "did not complete.");
1837 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
1843 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1844 * @hw: pointer to the HW structure
1845 * @offset: The index of the byte to read.
1846 * @data: The byte to write to the NVM.
1848 * Writes a single byte to the NVM using the flash access registers.
1850 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
1853 u16 word
= (u16
)data
;
1855 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
1859 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1860 * @hw: pointer to the HW structure
1861 * @offset: The offset of the byte to write.
1862 * @byte: The byte to write to the NVM.
1864 * Writes a single byte to the NVM using the flash access registers.
1865 * Goes through a retry algorithm before giving up.
1867 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
1868 u32 offset
, u8 byte
)
1871 u16 program_retries
;
1873 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1877 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
1878 hw_dbg(hw
, "Retrying Byte %2.2X at offset %u\n", byte
, offset
);
1880 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
1884 if (program_retries
== 100)
1885 return -E1000_ERR_NVM
;
1891 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1892 * @hw: pointer to the HW structure
1893 * @bank: 0 for first bank, 1 for second bank, etc.
1895 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1896 * bank N is 4096 * N + flash_reg_addr.
1898 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
1900 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1901 union ich8_hws_flash_status hsfsts
;
1902 union ich8_hws_flash_ctrl hsflctl
;
1903 u32 flash_linear_addr
;
1904 /* bank size is in 16bit words - adjust to bytes */
1905 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
1912 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1915 * Determine HW Sector size: Read BERASE bits of hw flash status
1917 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1918 * consecutive sectors. The start index for the nth Hw sector
1919 * can be calculated as = bank * 4096 + n * 256
1920 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1921 * The start index for the nth Hw sector can be calculated
1923 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1924 * (ich9 only, otherwise error condition)
1925 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1927 switch (hsfsts
.hsf_status
.berasesz
) {
1929 /* Hw sector size 256 */
1930 sector_size
= ICH_FLASH_SEG_SIZE_256
;
1931 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
1934 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
1935 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_4K
;
1938 if (hw
->mac
.type
== e1000_ich9lan
) {
1939 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
1940 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_8K
;
1942 return -E1000_ERR_NVM
;
1946 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
1947 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_64K
;
1950 return -E1000_ERR_NVM
;
1953 /* Start with the base address, then add the sector offset. */
1954 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
1955 flash_linear_addr
+= (bank
) ? (sector_size
* iteration
) : 0;
1957 for (j
= 0; j
< iteration
; j
++) {
1960 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
1965 * Write a value 11 (block Erase) in Flash
1966 * Cycle field in hw flash control
1968 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
1969 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
1970 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
1973 * Write the last 24 bits of an index within the
1974 * block into Flash Linear address field in Flash
1977 flash_linear_addr
+= (j
* sector_size
);
1978 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
1980 ret_val
= e1000_flash_cycle_ich8lan(hw
,
1981 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
1986 * Check if FCERR is set to 1. If 1,
1987 * clear it and try the whole sequence
1988 * a few more times else Done
1990 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
1991 if (hsfsts
.hsf_status
.flcerr
== 1)
1992 /* repeat for some time before giving up */
1994 else if (hsfsts
.hsf_status
.flcdone
== 0)
1996 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2003 * e1000_valid_led_default_ich8lan - Set the default LED settings
2004 * @hw: pointer to the HW structure
2005 * @data: Pointer to the LED settings
2007 * Reads the LED default settings from the NVM to data. If the NVM LED
2008 * settings is all 0's or F's, set the LED default to a valid LED default
2011 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2015 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2017 hw_dbg(hw
, "NVM Read Error\n");
2021 if (*data
== ID_LED_RESERVED_0000
||
2022 *data
== ID_LED_RESERVED_FFFF
)
2023 *data
= ID_LED_DEFAULT_ICH8LAN
;
2029 * e1000_id_led_init_pchlan - store LED configurations
2030 * @hw: pointer to the HW structure
2032 * PCH does not control LEDs via the LEDCTL register, rather it uses
2033 * the PHY LED configuration register.
2035 * PCH also does not have an "always on" or "always off" mode which
2036 * complicates the ID feature. Instead of using the "on" mode to indicate
2037 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2038 * use "link_up" mode. The LEDs will still ID on request if there is no
2039 * link based on logic in e1000_led_[on|off]_pchlan().
2041 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2043 struct e1000_mac_info
*mac
= &hw
->mac
;
2045 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2046 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2047 u16 data
, i
, temp
, shift
;
2049 /* Get default ID LED modes */
2050 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2054 mac
->ledctl_default
= er32(LEDCTL
);
2055 mac
->ledctl_mode1
= mac
->ledctl_default
;
2056 mac
->ledctl_mode2
= mac
->ledctl_default
;
2058 for (i
= 0; i
< 4; i
++) {
2059 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2062 case ID_LED_ON1_DEF2
:
2063 case ID_LED_ON1_ON2
:
2064 case ID_LED_ON1_OFF2
:
2065 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2066 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2068 case ID_LED_OFF1_DEF2
:
2069 case ID_LED_OFF1_ON2
:
2070 case ID_LED_OFF1_OFF2
:
2071 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2072 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2079 case ID_LED_DEF1_ON2
:
2080 case ID_LED_ON1_ON2
:
2081 case ID_LED_OFF1_ON2
:
2082 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2083 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2085 case ID_LED_DEF1_OFF2
:
2086 case ID_LED_ON1_OFF2
:
2087 case ID_LED_OFF1_OFF2
:
2088 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2089 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2102 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2103 * @hw: pointer to the HW structure
2105 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2106 * register, so the the bus width is hard coded.
2108 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2110 struct e1000_bus_info
*bus
= &hw
->bus
;
2113 ret_val
= e1000e_get_bus_info_pcie(hw
);
2116 * ICH devices are "PCI Express"-ish. They have
2117 * a configuration space, but do not contain
2118 * PCI Express Capability registers, so bus width
2119 * must be hardcoded.
2121 if (bus
->width
== e1000_bus_width_unknown
)
2122 bus
->width
= e1000_bus_width_pcie_x1
;
2128 * e1000_reset_hw_ich8lan - Reset the hardware
2129 * @hw: pointer to the HW structure
2131 * Does a full reset of the hardware which includes a reset of the PHY and
2134 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2140 * Prevent the PCI-E bus from sticking if there is no TLP connection
2141 * on the last TLP read/write transaction when MAC is reset.
2143 ret_val
= e1000e_disable_pcie_master(hw
);
2145 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
2148 hw_dbg(hw
, "Masking off all interrupts\n");
2149 ew32(IMC
, 0xffffffff);
2152 * Disable the Transmit and Receive units. Then delay to allow
2153 * any pending transactions to complete before we hit the MAC
2154 * with the global reset.
2157 ew32(TCTL
, E1000_TCTL_PSP
);
2162 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2163 if (hw
->mac
.type
== e1000_ich8lan
) {
2164 /* Set Tx and Rx buffer allocation to 8k apiece. */
2165 ew32(PBA
, E1000_PBA_8K
);
2166 /* Set Packet Buffer Size to 16k. */
2167 ew32(PBS
, E1000_PBS_16K
);
2172 if (!e1000_check_reset_block(hw
)) {
2173 /* Clear PHY Reset Asserted bit */
2174 if (hw
->mac
.type
>= e1000_pchlan
) {
2175 u32 status
= er32(STATUS
);
2176 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
2180 * PHY HW reset requires MAC CORE reset at the same
2181 * time to make sure the interface between MAC and the
2182 * external PHY is reset.
2184 ctrl
|= E1000_CTRL_PHY_RST
;
2186 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2187 /* Whether or not the swflag was acquired, we need to reset the part */
2188 hw_dbg(hw
, "Issuing a global reset to ich8lan\n");
2189 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
2193 e1000_release_swflag_ich8lan(hw
);
2195 if (ctrl
& E1000_CTRL_PHY_RST
)
2196 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
2198 if (hw
->mac
.type
>= e1000_ich10lan
) {
2199 e1000_lan_init_done_ich8lan(hw
);
2201 ret_val
= e1000e_get_auto_rd_done(hw
);
2204 * When auto config read does not complete, do not
2205 * return with an error. This can happen in situations
2206 * where there is no eeprom and prevents getting link.
2208 hw_dbg(hw
, "Auto Read Done did not complete\n");
2212 ew32(IMC
, 0xffffffff);
2215 kab
= er32(KABGTXD
);
2216 kab
|= E1000_KABGTXD_BGSQLBIAS
;
2219 if (hw
->mac
.type
== e1000_pchlan
)
2220 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2226 * e1000_init_hw_ich8lan - Initialize the hardware
2227 * @hw: pointer to the HW structure
2229 * Prepares the hardware for transmit and receive by doing the following:
2230 * - initialize hardware bits
2231 * - initialize LED identification
2232 * - setup receive address registers
2233 * - setup flow control
2234 * - setup transmit descriptors
2235 * - clear statistics
2237 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
2239 struct e1000_mac_info
*mac
= &hw
->mac
;
2240 u32 ctrl_ext
, txdctl
, snoop
;
2244 e1000_initialize_hw_bits_ich8lan(hw
);
2246 /* Initialize identification LED */
2247 ret_val
= mac
->ops
.id_led_init(hw
);
2249 hw_dbg(hw
, "Error initializing identification LED\n");
2253 /* Setup the receive address. */
2254 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
2256 /* Zero out the Multicast HASH table */
2257 hw_dbg(hw
, "Zeroing the MTA\n");
2258 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
2259 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
2262 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2263 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2264 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2266 if (hw
->phy
.type
== e1000_phy_82578
) {
2267 hw
->phy
.ops
.read_phy_reg(hw
, BM_WUC
, &i
);
2268 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
2273 /* Setup link and flow control */
2274 ret_val
= e1000_setup_link_ich8lan(hw
);
2276 /* Set the transmit descriptor write-back policy for both queues */
2277 txdctl
= er32(TXDCTL(0));
2278 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2279 E1000_TXDCTL_FULL_TX_DESC_WB
;
2280 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2281 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2282 ew32(TXDCTL(0), txdctl
);
2283 txdctl
= er32(TXDCTL(1));
2284 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
2285 E1000_TXDCTL_FULL_TX_DESC_WB
;
2286 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
2287 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
2288 ew32(TXDCTL(1), txdctl
);
2291 * ICH8 has opposite polarity of no_snoop bits.
2292 * By default, we should use snoop behavior.
2294 if (mac
->type
== e1000_ich8lan
)
2295 snoop
= PCIE_ICH8_SNOOP_ALL
;
2297 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
2298 e1000e_set_pcie_no_snoop(hw
, snoop
);
2300 ctrl_ext
= er32(CTRL_EXT
);
2301 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
2302 ew32(CTRL_EXT
, ctrl_ext
);
2305 * Clear all of the statistics registers (clear on read). It is
2306 * important that we do this after we have tried to establish link
2307 * because the symbol error count will increment wildly if there
2310 e1000_clear_hw_cntrs_ich8lan(hw
);
2315 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2316 * @hw: pointer to the HW structure
2318 * Sets/Clears required hardware bits necessary for correctly setting up the
2319 * hardware for transmit and receive.
2321 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
2325 /* Extended Device Control */
2326 reg
= er32(CTRL_EXT
);
2328 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2329 if (hw
->mac
.type
>= e1000_pchlan
)
2330 reg
|= E1000_CTRL_EXT_PHYPDEN
;
2331 ew32(CTRL_EXT
, reg
);
2333 /* Transmit Descriptor Control 0 */
2334 reg
= er32(TXDCTL(0));
2336 ew32(TXDCTL(0), reg
);
2338 /* Transmit Descriptor Control 1 */
2339 reg
= er32(TXDCTL(1));
2341 ew32(TXDCTL(1), reg
);
2343 /* Transmit Arbitration Control 0 */
2344 reg
= er32(TARC(0));
2345 if (hw
->mac
.type
== e1000_ich8lan
)
2346 reg
|= (1 << 28) | (1 << 29);
2347 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2350 /* Transmit Arbitration Control 1 */
2351 reg
= er32(TARC(1));
2352 if (er32(TCTL
) & E1000_TCTL_MULR
)
2356 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
2360 if (hw
->mac
.type
== e1000_ich8lan
) {
2368 * e1000_setup_link_ich8lan - Setup flow control and link settings
2369 * @hw: pointer to the HW structure
2371 * Determines which flow control settings to use, then configures flow
2372 * control. Calls the appropriate media-specific link configuration
2373 * function. Assuming the adapter has a valid link partner, a valid link
2374 * should be established. Assumes the hardware has previously been reset
2375 * and the transmitter and receiver are not enabled.
2377 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
2381 if (e1000_check_reset_block(hw
))
2385 * ICH parts do not have a word in the NVM to determine
2386 * the default flow control setting, so we explicitly
2389 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
2390 /* Workaround h/w hang when Tx flow control enabled */
2391 if (hw
->mac
.type
== e1000_pchlan
)
2392 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
2394 hw
->fc
.requested_mode
= e1000_fc_full
;
2398 * Save off the requested flow control mode for use later. Depending
2399 * on the link partner's capabilities, we may or may not use this mode.
2401 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2403 hw_dbg(hw
, "After fix-ups FlowControl is now = %x\n",
2404 hw
->fc
.current_mode
);
2406 /* Continue to configure the copper link. */
2407 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
2411 ew32(FCTTV
, hw
->fc
.pause_time
);
2412 if ((hw
->phy
.type
== e1000_phy_82578
) ||
2413 (hw
->phy
.type
== e1000_phy_82577
)) {
2414 ret_val
= hw
->phy
.ops
.write_phy_reg(hw
,
2415 PHY_REG(BM_PORT_CTRL_PAGE
, 27),
2421 return e1000e_set_fc_watermarks(hw
);
2425 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2426 * @hw: pointer to the HW structure
2428 * Configures the kumeran interface to the PHY to wait the appropriate time
2429 * when polling the PHY, then call the generic setup_copper_link to finish
2430 * configuring the copper link.
2432 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
2439 ctrl
|= E1000_CTRL_SLU
;
2440 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
2444 * Set the mac to wait the maximum time between each iteration
2445 * and increase the max iterations when polling the phy;
2446 * this fixes erroneous timeouts at 10Mbps.
2448 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 4), 0xFFFF);
2451 ret_val
= e1000e_read_kmrn_reg(hw
, GG82563_REG(0x34, 9), ®_data
);
2455 ret_val
= e1000e_write_kmrn_reg(hw
, GG82563_REG(0x34, 9), reg_data
);
2459 switch (hw
->phy
.type
) {
2460 case e1000_phy_igp_3
:
2461 ret_val
= e1000e_copper_link_setup_igp(hw
);
2466 case e1000_phy_82578
:
2467 ret_val
= e1000e_copper_link_setup_m88(hw
);
2471 case e1000_phy_82577
:
2472 ret_val
= e1000_copper_link_setup_82577(hw
);
2477 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2482 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
2484 switch (hw
->phy
.mdix
) {
2486 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
2489 reg_data
|= IFE_PMC_FORCE_MDIX
;
2493 reg_data
|= IFE_PMC_AUTO_MDIX
;
2496 ret_val
= hw
->phy
.ops
.write_phy_reg(hw
, IFE_PHY_MDIX_CONTROL
,
2504 return e1000e_setup_copper_link(hw
);
2508 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2509 * @hw: pointer to the HW structure
2510 * @speed: pointer to store current link speed
2511 * @duplex: pointer to store the current link duplex
2513 * Calls the generic get_speed_and_duplex to retrieve the current link
2514 * information and then calls the Kumeran lock loss workaround for links at
2517 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
2522 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
2526 if ((hw
->mac
.type
== e1000_ich8lan
) &&
2527 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2528 (*speed
== SPEED_1000
)) {
2529 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
2536 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2537 * @hw: pointer to the HW structure
2539 * Work-around for 82566 Kumeran PCS lock loss:
2540 * On link status change (i.e. PCI reset, speed change) and link is up and
2542 * 0) if workaround is optionally disabled do nothing
2543 * 1) wait 1ms for Kumeran link to come up
2544 * 2) check Kumeran Diagnostic register PCS lock loss bit
2545 * 3) if not set the link is locked (all is good), otherwise...
2547 * 5) repeat up to 10 times
2548 * Note: this is only called for IGP3 copper when speed is 1gb.
2550 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
2552 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2558 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
2562 * Make sure link is up before proceeding. If not just return.
2563 * Attempting this while link is negotiating fouled up link
2566 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2570 for (i
= 0; i
< 10; i
++) {
2571 /* read once to clear */
2572 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2575 /* and again to get new status */
2576 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
2580 /* check for PCS lock */
2581 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
2584 /* Issue PHY reset */
2585 e1000_phy_hw_reset(hw
);
2588 /* Disable GigE link negotiation */
2589 phy_ctrl
= er32(PHY_CTRL
);
2590 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2591 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2592 ew32(PHY_CTRL
, phy_ctrl
);
2595 * Call gig speed drop workaround on Gig disable before accessing
2598 e1000e_gig_downshift_workaround_ich8lan(hw
);
2600 /* unable to acquire PCS lock */
2601 return -E1000_ERR_PHY
;
2605 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2606 * @hw: pointer to the HW structure
2607 * @state: boolean value used to set the current Kumeran workaround state
2609 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2610 * /disabled - FALSE).
2612 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
2615 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2617 if (hw
->mac
.type
!= e1000_ich8lan
) {
2618 hw_dbg(hw
, "Workaround applies to ICH8 only.\n");
2622 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
2626 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2627 * @hw: pointer to the HW structure
2629 * Workaround for 82566 power-down on D3 entry:
2630 * 1) disable gigabit link
2631 * 2) write VR power-down enable
2633 * Continue if successful, else issue LCD reset and repeat
2635 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
2641 if (hw
->phy
.type
!= e1000_phy_igp_3
)
2644 /* Try the workaround twice (if needed) */
2647 reg
= er32(PHY_CTRL
);
2648 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
2649 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
2650 ew32(PHY_CTRL
, reg
);
2653 * Call gig speed drop workaround on Gig disable before
2654 * accessing any PHY registers
2656 if (hw
->mac
.type
== e1000_ich8lan
)
2657 e1000e_gig_downshift_workaround_ich8lan(hw
);
2659 /* Write VR power-down enable */
2660 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2661 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2662 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
2664 /* Read it back and test */
2665 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
2666 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
2667 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
2670 /* Issue PHY reset and repeat at most one more time */
2672 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
2678 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2679 * @hw: pointer to the HW structure
2681 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2682 * LPLU, Gig disable, MDIC PHY reset):
2683 * 1) Set Kumeran Near-end loopback
2684 * 2) Clear Kumeran Near-end loopback
2685 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2687 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
2692 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
2693 (hw
->phy
.type
!= e1000_phy_igp_3
))
2696 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2700 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2701 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2705 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
2706 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
2711 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2712 * @hw: pointer to the HW structure
2714 * During S0 to Sx transition, it is possible the link remains at gig
2715 * instead of negotiating to a lower speed. Before going to Sx, set
2716 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2719 * Should only be called for applicable parts.
2721 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
2725 switch (hw
->mac
.type
) {
2727 case e1000_ich10lan
:
2729 phy_ctrl
= er32(PHY_CTRL
);
2730 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
|
2731 E1000_PHY_CTRL_GBE_DISABLE
;
2732 ew32(PHY_CTRL
, phy_ctrl
);
2734 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2735 if (hw
->mac
.type
== e1000_pchlan
)
2745 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2746 * @hw: pointer to the HW structure
2748 * Return the LED back to the default configuration.
2750 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
2752 if (hw
->phy
.type
== e1000_phy_ife
)
2753 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
2755 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
2760 * e1000_led_on_ich8lan - Turn LEDs on
2761 * @hw: pointer to the HW structure
2765 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
2767 if (hw
->phy
.type
== e1000_phy_ife
)
2768 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2769 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
2771 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
2776 * e1000_led_off_ich8lan - Turn LEDs off
2777 * @hw: pointer to the HW structure
2779 * Turn off the LEDs.
2781 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
2783 if (hw
->phy
.type
== e1000_phy_ife
)
2784 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
2785 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
2787 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
2792 * e1000_setup_led_pchlan - Configures SW controllable LED
2793 * @hw: pointer to the HW structure
2795 * This prepares the SW controllable LED for use.
2797 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
2799 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
,
2800 (u16
)hw
->mac
.ledctl_mode1
);
2804 * e1000_cleanup_led_pchlan - Restore the default LED operation
2805 * @hw: pointer to the HW structure
2807 * Return the LED back to the default configuration.
2809 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
2811 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
,
2812 (u16
)hw
->mac
.ledctl_default
);
2816 * e1000_led_on_pchlan - Turn LEDs on
2817 * @hw: pointer to the HW structure
2821 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
2823 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
2827 * If no link, then turn LED on by setting the invert bit
2828 * for each LED that's mode is "link_up" in ledctl_mode2.
2830 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
2831 for (i
= 0; i
< 3; i
++) {
2832 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
2833 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
2834 E1000_LEDCTL_MODE_LINK_UP
)
2836 if (led
& E1000_PHY_LED0_IVRT
)
2837 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
2839 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
2843 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
, data
);
2847 * e1000_led_off_pchlan - Turn LEDs off
2848 * @hw: pointer to the HW structure
2850 * Turn off the LEDs.
2852 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
2854 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
2858 * If no link, then turn LED off by clearing the invert bit
2859 * for each LED that's mode is "link_up" in ledctl_mode1.
2861 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
2862 for (i
= 0; i
< 3; i
++) {
2863 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
2864 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
2865 E1000_LEDCTL_MODE_LINK_UP
)
2867 if (led
& E1000_PHY_LED0_IVRT
)
2868 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
2870 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
2874 return hw
->phy
.ops
.write_phy_reg(hw
, HV_LED_CONFIG
, data
);
2878 * e1000_get_cfg_done_ich8lan - Read config done bit
2879 * @hw: pointer to the HW structure
2881 * Read the management control register for the config done bit for
2882 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2883 * to read the config done bit, so an error is *ONLY* logged and returns
2884 * 0. If we were to return with error, EEPROM-less silicon
2885 * would not be able to be reset or change link.
2887 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
2891 if (hw
->mac
.type
>= e1000_pchlan
) {
2892 u32 status
= er32(STATUS
);
2894 if (status
& E1000_STATUS_PHYRA
)
2895 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
2898 "PHY Reset Asserted not set - needs delay\n");
2901 e1000e_get_cfg_done(hw
);
2903 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2904 if ((hw
->mac
.type
!= e1000_ich10lan
) &&
2905 (hw
->mac
.type
!= e1000_pchlan
)) {
2906 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
2907 (hw
->phy
.type
== e1000_phy_igp_3
)) {
2908 e1000e_phy_init_script_igp3(hw
);
2911 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
2912 /* Maybe we should do a basic PHY config */
2913 hw_dbg(hw
, "EEPROM not present\n");
2914 return -E1000_ERR_CONFIG
;
2922 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2923 * @hw: pointer to the HW structure
2925 * Clears hardware counters specific to the silicon family and calls
2926 * clear_hw_cntrs_generic to clear all general purpose counters.
2928 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
2933 e1000e_clear_hw_cntrs_base(hw
);
2935 temp
= er32(ALGNERRC
);
2936 temp
= er32(RXERRC
);
2938 temp
= er32(CEXTERR
);
2940 temp
= er32(TSCTFC
);
2942 temp
= er32(MGTPRC
);
2943 temp
= er32(MGTPDC
);
2944 temp
= er32(MGTPTC
);
2947 temp
= er32(ICRXOC
);
2949 /* Clear PHY statistics registers */
2950 if ((hw
->phy
.type
== e1000_phy_82578
) ||
2951 (hw
->phy
.type
== e1000_phy_82577
)) {
2952 hw
->phy
.ops
.read_phy_reg(hw
, HV_SCC_UPPER
, &phy_data
);
2953 hw
->phy
.ops
.read_phy_reg(hw
, HV_SCC_LOWER
, &phy_data
);
2954 hw
->phy
.ops
.read_phy_reg(hw
, HV_ECOL_UPPER
, &phy_data
);
2955 hw
->phy
.ops
.read_phy_reg(hw
, HV_ECOL_LOWER
, &phy_data
);
2956 hw
->phy
.ops
.read_phy_reg(hw
, HV_MCC_UPPER
, &phy_data
);
2957 hw
->phy
.ops
.read_phy_reg(hw
, HV_MCC_LOWER
, &phy_data
);
2958 hw
->phy
.ops
.read_phy_reg(hw
, HV_LATECOL_UPPER
, &phy_data
);
2959 hw
->phy
.ops
.read_phy_reg(hw
, HV_LATECOL_LOWER
, &phy_data
);
2960 hw
->phy
.ops
.read_phy_reg(hw
, HV_COLC_UPPER
, &phy_data
);
2961 hw
->phy
.ops
.read_phy_reg(hw
, HV_COLC_LOWER
, &phy_data
);
2962 hw
->phy
.ops
.read_phy_reg(hw
, HV_DC_UPPER
, &phy_data
);
2963 hw
->phy
.ops
.read_phy_reg(hw
, HV_DC_LOWER
, &phy_data
);
2964 hw
->phy
.ops
.read_phy_reg(hw
, HV_TNCRS_UPPER
, &phy_data
);
2965 hw
->phy
.ops
.read_phy_reg(hw
, HV_TNCRS_LOWER
, &phy_data
);
2969 static struct e1000_mac_operations ich8_mac_ops
= {
2970 .id_led_init
= e1000e_id_led_init
,
2971 .check_mng_mode
= e1000_check_mng_mode_ich8lan
,
2972 .check_for_link
= e1000e_check_for_copper_link
,
2973 /* cleanup_led dependent on mac type */
2974 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
2975 .get_bus_info
= e1000_get_bus_info_ich8lan
,
2976 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
2977 /* led_on dependent on mac type */
2978 /* led_off dependent on mac type */
2979 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
2980 .reset_hw
= e1000_reset_hw_ich8lan
,
2981 .init_hw
= e1000_init_hw_ich8lan
,
2982 .setup_link
= e1000_setup_link_ich8lan
,
2983 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
2984 /* id_led_init dependent on mac type */
2987 static struct e1000_phy_operations ich8_phy_ops
= {
2988 .acquire_phy
= e1000_acquire_swflag_ich8lan
,
2989 .check_reset_block
= e1000_check_reset_block_ich8lan
,
2991 .force_speed_duplex
= e1000_phy_force_speed_duplex_ich8lan
,
2992 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
2993 .get_cable_length
= e1000e_get_cable_length_igp_2
,
2994 .get_phy_info
= e1000_get_phy_info_ich8lan
,
2995 .read_phy_reg
= e1000e_read_phy_reg_igp
,
2996 .release_phy
= e1000_release_swflag_ich8lan
,
2997 .reset_phy
= e1000_phy_hw_reset_ich8lan
,
2998 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
2999 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3000 .write_phy_reg
= e1000e_write_phy_reg_igp
,
3003 static struct e1000_nvm_operations ich8_nvm_ops
= {
3004 .acquire_nvm
= e1000_acquire_swflag_ich8lan
,
3005 .read_nvm
= e1000_read_nvm_ich8lan
,
3006 .release_nvm
= e1000_release_swflag_ich8lan
,
3007 .update_nvm
= e1000_update_nvm_checksum_ich8lan
,
3008 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3009 .validate_nvm
= e1000_validate_nvm_checksum_ich8lan
,
3010 .write_nvm
= e1000_write_nvm_ich8lan
,
3013 struct e1000_info e1000_ich8_info
= {
3014 .mac
= e1000_ich8lan
,
3015 .flags
= FLAG_HAS_WOL
3017 | FLAG_RX_CSUM_ENABLED
3018 | FLAG_HAS_CTRLEXT_ON_LOAD
3023 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3024 .get_variants
= e1000_get_variants_ich8lan
,
3025 .mac_ops
= &ich8_mac_ops
,
3026 .phy_ops
= &ich8_phy_ops
,
3027 .nvm_ops
= &ich8_nvm_ops
,
3030 struct e1000_info e1000_ich9_info
= {
3031 .mac
= e1000_ich9lan
,
3032 .flags
= FLAG_HAS_JUMBO_FRAMES
3035 | FLAG_RX_CSUM_ENABLED
3036 | FLAG_HAS_CTRLEXT_ON_LOAD
3042 .max_hw_frame_size
= DEFAULT_JUMBO
,
3043 .get_variants
= e1000_get_variants_ich8lan
,
3044 .mac_ops
= &ich8_mac_ops
,
3045 .phy_ops
= &ich8_phy_ops
,
3046 .nvm_ops
= &ich8_nvm_ops
,
3049 struct e1000_info e1000_ich10_info
= {
3050 .mac
= e1000_ich10lan
,
3051 .flags
= FLAG_HAS_JUMBO_FRAMES
3054 | FLAG_RX_CSUM_ENABLED
3055 | FLAG_HAS_CTRLEXT_ON_LOAD
3061 .max_hw_frame_size
= DEFAULT_JUMBO
,
3062 .get_variants
= e1000_get_variants_ich8lan
,
3063 .mac_ops
= &ich8_mac_ops
,
3064 .phy_ops
= &ich8_phy_ops
,
3065 .nvm_ops
= &ich8_nvm_ops
,
3068 struct e1000_info e1000_pch_info
= {
3069 .mac
= e1000_pchlan
,
3070 .flags
= FLAG_IS_ICH
3072 | FLAG_RX_CSUM_ENABLED
3073 | FLAG_HAS_CTRLEXT_ON_LOAD
3076 | FLAG_HAS_JUMBO_FRAMES
3079 .max_hw_frame_size
= 4096,
3080 .get_variants
= e1000_get_variants_ich8lan
,
3081 .mac_ops
= &ich8_mac_ops
,
3082 .phy_ops
= &ich8_phy_ops
,
3083 .nvm_ops
= &ich8_nvm_ops
,