percpu: fix spurious alignment WARN in legacy SMP percpu allocator
[linux-2.6/verdex.git] / kernel / sched.c
blob0e5c38e1c8b5cdad3e2ab022fa8db8f79b88316c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group;
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
363 struct task_group *tg;
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
392 #else
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
397 return NULL;
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
407 u64 exec_clock;
408 u64 min_vruntime;
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
413 struct list_head tasks;
414 struct list_head *balance_iterator;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity *curr, *next, *last;
422 unsigned int nr_spread_over;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
438 #ifdef CONFIG_SMP
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
450 unsigned long h_load;
453 * this cpu's part of tg->shares
455 unsigned long shares;
458 * load.weight at the time we set shares
460 unsigned long rq_weight;
461 #endif
462 #endif
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
492 #ifdef CONFIG_SMP
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain;
532 #endif
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
562 struct cfs_rq cfs;
563 struct rt_rq rt;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
571 #endif
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible;
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
585 u64 clock;
587 atomic_t nr_iowait;
589 #ifdef CONFIG_SMP
590 struct root_domain *rd;
591 struct sched_domain *sd;
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
596 /* cpu of this runqueue: */
597 int cpu;
598 int online;
600 unsigned long avg_load_per_task;
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
604 #endif
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
647 static inline int cpu_of(struct rq *rq)
649 #ifdef CONFIG_SMP
650 return rq->cpu;
651 #else
652 return 0;
653 #endif
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq *rq)
673 rq->clock = sched_clock_cpu(cpu_of(rq));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
686 * runqueue_is_locked
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
710 enum {
711 #include "sched_features.h"
714 #undef SCHED_FEAT
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
723 #undef SCHED_FEAT
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
727 #name ,
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 NULL
734 #undef SCHED_FEAT
736 static int sched_feat_show(struct seq_file *m, void *v)
738 int i;
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
745 seq_puts(m, "\n");
747 return 0;
750 static ssize_t
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
759 if (cnt > 63)
760 cnt = 63;
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
765 buf[cnt] = 0;
767 if (strncmp(buf, "NO_", 3) == 0) {
768 neg = 1;
769 cmp += 3;
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
784 if (!sched_feat_names[i])
785 return -EINVAL;
787 filp->f_pos += cnt;
789 return cnt;
792 static int sched_feat_open(struct inode *inode, struct file *filp)
794 return single_open(filp, sched_feat_show, NULL);
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
805 static __init int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
810 return 0;
812 late_initcall(sched_init_debug);
814 #endif
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
825 * ratelimit for updating the group shares.
826 * default: 0.25ms
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
835 unsigned int sysctl_sched_shares_thresh = 4;
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
841 unsigned int sysctl_sched_rt_period = 1000000;
843 static __read_mostly int scheduler_running;
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
849 int sysctl_sched_rt_runtime = 950000;
851 static inline u64 global_rt_period(void)
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856 static inline u64 global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
871 static inline int task_current(struct rq *rq, struct task_struct *p)
873 return rq->curr == p;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
879 return task_current(rq, p);
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899 spin_unlock_irq(&rq->lock);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 #ifdef CONFIG_SMP
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 #ifdef CONFIG_SMP
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
970 struct rq *rq;
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 void task_rq_unlock_wait(struct task_struct *p)
984 struct rq *rq = task_rq(p);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
993 spin_unlock(&rq->lock);
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
999 spin_unlock_irqrestore(&rq->lock, *flags);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1008 struct rq *rq;
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1014 return rq;
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq *rq)
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043 static void hrtick_clear(struct rq *rq)
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1064 return HRTIMER_NORESTART;
1067 #ifdef CONFIG_SMP
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg)
1073 struct rq *rq = arg;
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq *rq, u64 delay)
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1091 hrtimer_set_expires(timer, time);
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1104 int cpu = (int)(long)hcpu;
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1117 return NOTIFY_DONE;
1120 static __init void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick, 0);
1124 #else
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq *rq, u64 delay)
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1187 return;
1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1264 #else
1265 # define WMULT_CONST (1UL << 32)
1266 #endif
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1282 u64 tmp;
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1292 tmp = (u64)delta_exec * weight;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp > WMULT_CONST))
1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1298 WMULT_SHIFT/2);
1299 else
1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1307 lw->weight += inc;
1308 lw->inv_weight = 0;
1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1313 lw->weight -= dec;
1314 lw->inv_weight = 0;
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1383 #ifdef CONFIG_SMP
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1390 static int
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
1394 #endif
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 #endif
1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_add(&rq->load, load);
1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_sub(&rq->load, load);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 struct task_group *parent, *child;
1422 int ret;
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426 down:
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1435 continue;
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
1445 out_unlock:
1446 rcu_read_unlock();
1448 return ret;
1451 static int tg_nop(struct task_group *tg, void *data)
1453 return 0;
1455 #endif
1457 #ifdef CONFIG_SMP
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1462 static unsigned long cpu_avg_load_per_task(int cpu)
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
1469 else
1470 rq->avg_load_per_task = 0;
1472 return rq->avg_load_per_task;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1480 * Calculate and set the cpu's group shares.
1482 static void
1483 update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1486 unsigned long shares;
1487 unsigned long rq_weight;
1489 if (!tg->se[cpu])
1490 return;
1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
1508 spin_lock_irqsave(&rq->lock, flags);
1509 tg->cfs_rq[cpu]->shares = shares;
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group *tg, void *data)
1523 unsigned long weight, rq_weight = 0;
1524 unsigned long shares = 0;
1525 struct sched_domain *sd = data;
1526 int i;
1528 for_each_cpu(i, sched_domain_span(sd)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
1540 shares += tg->cfs_rq[i]->shares;
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
1549 for_each_cpu(i, sched_domain_span(sd))
1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1552 return 0;
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group *tg, void *data)
1562 unsigned long load;
1563 long cpu = (long)data;
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 tg->cfs_rq[cpu]->h_load = load;
1575 return 0;
1578 static void update_shares(struct sched_domain *sd)
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
1589 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1596 static void update_h_load(long cpu)
1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 #else
1603 static inline void update_shares(struct sched_domain *sd)
1607 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 #endif
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1621 int ret = 0;
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1637 return ret;
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1646 #endif
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1651 #ifdef CONFIG_SMP
1652 cfs_rq->shares = shares;
1653 #endif
1655 #endif
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1663 #endif
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq *rq)
1671 rq->nr_running++;
1674 static void dec_nr_running(struct rq *rq)
1676 rq->nr_running--;
1679 static void set_load_weight(struct task_struct *p)
1681 if (task_has_rt_policy(p)) {
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1700 static void update_avg(u64 *avg, u64 sample)
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1706 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1708 sched_info_queued(p);
1709 p->sched_class->enqueue_task(rq, p, wakeup);
1710 p->se.on_rq = 1;
1713 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1721 sched_info_dequeued(p);
1722 p->sched_class->dequeue_task(rq, p, sleep);
1723 p->se.on_rq = 0;
1727 * __normal_prio - return the priority that is based on the static prio
1729 static inline int __normal_prio(struct task_struct *p)
1731 return p->static_prio;
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1741 static inline int normal_prio(struct task_struct *p)
1743 int prio;
1745 if (task_has_rt_policy(p))
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1759 static int effective_prio(struct task_struct *p)
1761 p->normal_prio = normal_prio(p);
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1773 * activate_task - move a task to the runqueue.
1775 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1777 if (task_contributes_to_load(p))
1778 rq->nr_uninterruptible--;
1780 enqueue_task(rq, p, wakeup);
1781 inc_nr_running(rq);
1785 * deactivate_task - remove a task from the runqueue.
1787 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1789 if (task_contributes_to_load(p))
1790 rq->nr_uninterruptible++;
1792 dequeue_task(rq, p, sleep);
1793 dec_nr_running(rq);
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1800 inline int task_curr(const struct task_struct *p)
1802 return cpu_curr(task_cpu(p)) == p;
1805 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1807 set_task_rq(p, cpu);
1808 #ifdef CONFIG_SMP
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1814 smp_wmb();
1815 task_thread_info(p)->cpu = cpu;
1816 #endif
1819 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1831 #ifdef CONFIG_SMP
1833 /* Used instead of source_load when we know the type == 0 */
1834 static unsigned long weighted_cpuload(const int cpu)
1836 return cpu_rq(cpu)->load.weight;
1840 * Is this task likely cache-hot:
1842 static int
1843 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1845 s64 delta;
1848 * Buddy candidates are cache hot:
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
1853 return 1;
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1863 delta = now - p->se.exec_start;
1865 return delta < (s64)sysctl_sched_migration_cost;
1869 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1875 u64 clock_offset;
1877 clock_offset = old_rq->clock - new_rq->clock;
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1881 #ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1893 #endif
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
1897 __set_task_cpu(p, new_cpu);
1900 struct migration_req {
1901 struct list_head list;
1903 struct task_struct *task;
1904 int dest_cpu;
1906 struct completion done;
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1913 static int
1914 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1916 struct rq *rq = task_rq(p);
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1922 if (!p->se.on_rq && !task_running(rq, p)) {
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1927 init_completion(&req->done);
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
1932 return 1;
1936 * wait_task_inactive - wait for a thread to unschedule.
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1951 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1953 unsigned long flags;
1954 int running, on_rq;
1955 unsigned long ncsw;
1956 struct rq *rq;
1958 for (;;) {
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1965 rq = task_rq(p);
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
1981 cpu_relax();
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq = task_rq_lock(p, &flags);
1990 trace_sched_wait_task(rq, p);
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
1993 ncsw = 0;
1994 if (!match_state || p->state == match_state)
1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1996 task_rq_unlock(rq, &flags);
1999 * If it changed from the expected state, bail out now.
2001 if (unlikely(!ncsw))
2002 break;
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2008 * Oops. Go back and try again..
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2034 break;
2037 return ncsw;
2040 /***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2053 void kick_process(struct task_struct *p)
2055 int cpu;
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2071 static unsigned long source_load(int cpu, int type)
2073 struct rq *rq = cpu_rq(cpu);
2074 unsigned long total = weighted_cpuload(cpu);
2076 if (type == 0 || !sched_feat(LB_BIAS))
2077 return total;
2079 return min(rq->cpu_load[type-1], total);
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
2086 static unsigned long target_load(int cpu, int type)
2088 struct rq *rq = cpu_rq(cpu);
2089 unsigned long total = weighted_cpuload(cpu);
2091 if (type == 0 || !sched_feat(LB_BIAS))
2092 return total;
2094 return max(rq->cpu_load[type-1], total);
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2101 static struct sched_group *
2102 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2114 /* Skip over this group if it has no CPUs allowed */
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
2117 continue;
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2125 for_each_cpu(i, sched_group_cpus(group)) {
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2132 avg_load += load;
2135 /* Adjust by relative CPU power of the group */
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2146 } while (group = group->next, group != sd->groups);
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2156 static int
2157 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2163 /* Traverse only the allowed CPUs */
2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2165 load = weighted_cpuload(i);
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2173 return idlest;
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2181 * Balance, ie. select the least loaded group.
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2185 * preempt must be disabled.
2187 static int sched_balance_self(int cpu, int flag)
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
2192 for_each_domain(cpu, tmp) {
2194 * If power savings logic is enabled for a domain, stop there.
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
2198 if (tmp->flags & flag)
2199 sd = tmp;
2202 if (sd)
2203 update_shares(sd);
2205 while (sd) {
2206 struct sched_group *group;
2207 int new_cpu, weight;
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2214 group = find_idlest_group(sd, t, cpu);
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2220 new_cpu = find_idlest_cpu(group, t, cpu);
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2227 /* Now try balancing at a lower domain level of new_cpu */
2228 cpu = new_cpu;
2229 weight = cpumask_weight(sched_domain_span(sd));
2230 sd = NULL;
2231 for_each_domain(cpu, tmp) {
2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2237 /* while loop will break here if sd == NULL */
2240 return cpu;
2243 #endif /* CONFIG_SMP */
2245 /***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2257 * returns failure only if the task is already active.
2259 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2261 int cpu, orig_cpu, this_cpu, success = 0;
2262 unsigned long flags;
2263 long old_state;
2264 struct rq *rq;
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2269 #ifdef CONFIG_SMP
2270 if (sched_feat(LB_WAKEUP_UPDATE)) {
2271 struct sched_domain *sd;
2273 this_cpu = raw_smp_processor_id();
2274 cpu = task_cpu(p);
2276 for_each_domain(this_cpu, sd) {
2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2278 update_shares(sd);
2279 break;
2283 #endif
2285 smp_wmb();
2286 rq = task_rq_lock(p, &flags);
2287 update_rq_clock(rq);
2288 old_state = p->state;
2289 if (!(old_state & state))
2290 goto out;
2292 if (p->se.on_rq)
2293 goto out_running;
2295 cpu = task_cpu(p);
2296 orig_cpu = cpu;
2297 this_cpu = smp_processor_id();
2299 #ifdef CONFIG_SMP
2300 if (unlikely(task_running(rq, p)))
2301 goto out_activate;
2303 cpu = p->sched_class->select_task_rq(p, sync);
2304 if (cpu != orig_cpu) {
2305 set_task_cpu(p, cpu);
2306 task_rq_unlock(rq, &flags);
2307 /* might preempt at this point */
2308 rq = task_rq_lock(p, &flags);
2309 old_state = p->state;
2310 if (!(old_state & state))
2311 goto out;
2312 if (p->se.on_rq)
2313 goto out_running;
2315 this_cpu = smp_processor_id();
2316 cpu = task_cpu(p);
2319 #ifdef CONFIG_SCHEDSTATS
2320 schedstat_inc(rq, ttwu_count);
2321 if (cpu == this_cpu)
2322 schedstat_inc(rq, ttwu_local);
2323 else {
2324 struct sched_domain *sd;
2325 for_each_domain(this_cpu, sd) {
2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2327 schedstat_inc(sd, ttwu_wake_remote);
2328 break;
2332 #endif /* CONFIG_SCHEDSTATS */
2334 out_activate:
2335 #endif /* CONFIG_SMP */
2336 schedstat_inc(p, se.nr_wakeups);
2337 if (sync)
2338 schedstat_inc(p, se.nr_wakeups_sync);
2339 if (orig_cpu != cpu)
2340 schedstat_inc(p, se.nr_wakeups_migrate);
2341 if (cpu == this_cpu)
2342 schedstat_inc(p, se.nr_wakeups_local);
2343 else
2344 schedstat_inc(p, se.nr_wakeups_remote);
2345 activate_task(rq, p, 1);
2346 success = 1;
2348 out_running:
2349 trace_sched_wakeup(rq, p, success);
2350 check_preempt_curr(rq, p, sync);
2352 p->state = TASK_RUNNING;
2353 #ifdef CONFIG_SMP
2354 if (p->sched_class->task_wake_up)
2355 p->sched_class->task_wake_up(rq, p);
2356 #endif
2357 out:
2358 current->se.last_wakeup = current->se.sum_exec_runtime;
2360 task_rq_unlock(rq, &flags);
2362 return success;
2365 int wake_up_process(struct task_struct *p)
2367 return try_to_wake_up(p, TASK_ALL, 0);
2369 EXPORT_SYMBOL(wake_up_process);
2371 int wake_up_state(struct task_struct *p, unsigned int state)
2373 return try_to_wake_up(p, state, 0);
2377 * Perform scheduler related setup for a newly forked process p.
2378 * p is forked by current.
2380 * __sched_fork() is basic setup used by init_idle() too:
2382 static void __sched_fork(struct task_struct *p)
2384 p->se.exec_start = 0;
2385 p->se.sum_exec_runtime = 0;
2386 p->se.prev_sum_exec_runtime = 0;
2387 p->se.last_wakeup = 0;
2388 p->se.avg_overlap = 0;
2390 #ifdef CONFIG_SCHEDSTATS
2391 p->se.wait_start = 0;
2392 p->se.sum_sleep_runtime = 0;
2393 p->se.sleep_start = 0;
2394 p->se.block_start = 0;
2395 p->se.sleep_max = 0;
2396 p->se.block_max = 0;
2397 p->se.exec_max = 0;
2398 p->se.slice_max = 0;
2399 p->se.wait_max = 0;
2400 #endif
2402 INIT_LIST_HEAD(&p->rt.run_list);
2403 p->se.on_rq = 0;
2404 INIT_LIST_HEAD(&p->se.group_node);
2406 #ifdef CONFIG_PREEMPT_NOTIFIERS
2407 INIT_HLIST_HEAD(&p->preempt_notifiers);
2408 #endif
2411 * We mark the process as running here, but have not actually
2412 * inserted it onto the runqueue yet. This guarantees that
2413 * nobody will actually run it, and a signal or other external
2414 * event cannot wake it up and insert it on the runqueue either.
2416 p->state = TASK_RUNNING;
2420 * fork()/clone()-time setup:
2422 void sched_fork(struct task_struct *p, int clone_flags)
2424 int cpu = get_cpu();
2426 __sched_fork(p);
2428 #ifdef CONFIG_SMP
2429 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2430 #endif
2431 set_task_cpu(p, cpu);
2434 * Make sure we do not leak PI boosting priority to the child:
2436 p->prio = current->normal_prio;
2437 if (!rt_prio(p->prio))
2438 p->sched_class = &fair_sched_class;
2440 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2441 if (likely(sched_info_on()))
2442 memset(&p->sched_info, 0, sizeof(p->sched_info));
2443 #endif
2444 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2445 p->oncpu = 0;
2446 #endif
2447 #ifdef CONFIG_PREEMPT
2448 /* Want to start with kernel preemption disabled. */
2449 task_thread_info(p)->preempt_count = 1;
2450 #endif
2451 put_cpu();
2455 * wake_up_new_task - wake up a newly created task for the first time.
2457 * This function will do some initial scheduler statistics housekeeping
2458 * that must be done for every newly created context, then puts the task
2459 * on the runqueue and wakes it.
2461 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2463 unsigned long flags;
2464 struct rq *rq;
2466 rq = task_rq_lock(p, &flags);
2467 BUG_ON(p->state != TASK_RUNNING);
2468 update_rq_clock(rq);
2470 p->prio = effective_prio(p);
2472 if (!p->sched_class->task_new || !current->se.on_rq) {
2473 activate_task(rq, p, 0);
2474 } else {
2476 * Let the scheduling class do new task startup
2477 * management (if any):
2479 p->sched_class->task_new(rq, p);
2480 inc_nr_running(rq);
2482 trace_sched_wakeup_new(rq, p, 1);
2483 check_preempt_curr(rq, p, 0);
2484 #ifdef CONFIG_SMP
2485 if (p->sched_class->task_wake_up)
2486 p->sched_class->task_wake_up(rq, p);
2487 #endif
2488 task_rq_unlock(rq, &flags);
2491 #ifdef CONFIG_PREEMPT_NOTIFIERS
2494 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495 * @notifier: notifier struct to register
2497 void preempt_notifier_register(struct preempt_notifier *notifier)
2499 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2501 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2504 * preempt_notifier_unregister - no longer interested in preemption notifications
2505 * @notifier: notifier struct to unregister
2507 * This is safe to call from within a preemption notifier.
2509 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2511 hlist_del(&notifier->link);
2513 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2515 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2517 struct preempt_notifier *notifier;
2518 struct hlist_node *node;
2520 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2521 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2524 static void
2525 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 struct task_struct *next)
2528 struct preempt_notifier *notifier;
2529 struct hlist_node *node;
2531 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2532 notifier->ops->sched_out(notifier, next);
2535 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2541 static void
2542 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 struct task_struct *next)
2547 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2550 * prepare_task_switch - prepare to switch tasks
2551 * @rq: the runqueue preparing to switch
2552 * @prev: the current task that is being switched out
2553 * @next: the task we are going to switch to.
2555 * This is called with the rq lock held and interrupts off. It must
2556 * be paired with a subsequent finish_task_switch after the context
2557 * switch.
2559 * prepare_task_switch sets up locking and calls architecture specific
2560 * hooks.
2562 static inline void
2563 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2564 struct task_struct *next)
2566 fire_sched_out_preempt_notifiers(prev, next);
2567 prepare_lock_switch(rq, next);
2568 prepare_arch_switch(next);
2572 * finish_task_switch - clean up after a task-switch
2573 * @rq: runqueue associated with task-switch
2574 * @prev: the thread we just switched away from.
2576 * finish_task_switch must be called after the context switch, paired
2577 * with a prepare_task_switch call before the context switch.
2578 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579 * and do any other architecture-specific cleanup actions.
2581 * Note that we may have delayed dropping an mm in context_switch(). If
2582 * so, we finish that here outside of the runqueue lock. (Doing it
2583 * with the lock held can cause deadlocks; see schedule() for
2584 * details.)
2586 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2587 __releases(rq->lock)
2589 struct mm_struct *mm = rq->prev_mm;
2590 long prev_state;
2592 rq->prev_mm = NULL;
2595 * A task struct has one reference for the use as "current".
2596 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2597 * schedule one last time. The schedule call will never return, and
2598 * the scheduled task must drop that reference.
2599 * The test for TASK_DEAD must occur while the runqueue locks are
2600 * still held, otherwise prev could be scheduled on another cpu, die
2601 * there before we look at prev->state, and then the reference would
2602 * be dropped twice.
2603 * Manfred Spraul <manfred@colorfullife.com>
2605 prev_state = prev->state;
2606 finish_arch_switch(prev);
2607 finish_lock_switch(rq, prev);
2608 #ifdef CONFIG_SMP
2609 if (current->sched_class->post_schedule)
2610 current->sched_class->post_schedule(rq);
2611 #endif
2613 fire_sched_in_preempt_notifiers(current);
2614 if (mm)
2615 mmdrop(mm);
2616 if (unlikely(prev_state == TASK_DEAD)) {
2618 * Remove function-return probe instances associated with this
2619 * task and put them back on the free list.
2621 kprobe_flush_task(prev);
2622 put_task_struct(prev);
2627 * schedule_tail - first thing a freshly forked thread must call.
2628 * @prev: the thread we just switched away from.
2630 asmlinkage void schedule_tail(struct task_struct *prev)
2631 __releases(rq->lock)
2633 struct rq *rq = this_rq();
2635 finish_task_switch(rq, prev);
2636 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 /* In this case, finish_task_switch does not reenable preemption */
2638 preempt_enable();
2639 #endif
2640 if (current->set_child_tid)
2641 put_user(task_pid_vnr(current), current->set_child_tid);
2645 * context_switch - switch to the new MM and the new
2646 * thread's register state.
2648 static inline void
2649 context_switch(struct rq *rq, struct task_struct *prev,
2650 struct task_struct *next)
2652 struct mm_struct *mm, *oldmm;
2654 prepare_task_switch(rq, prev, next);
2655 trace_sched_switch(rq, prev, next);
2656 mm = next->mm;
2657 oldmm = prev->active_mm;
2659 * For paravirt, this is coupled with an exit in switch_to to
2660 * combine the page table reload and the switch backend into
2661 * one hypercall.
2663 arch_enter_lazy_cpu_mode();
2665 if (unlikely(!mm)) {
2666 next->active_mm = oldmm;
2667 atomic_inc(&oldmm->mm_count);
2668 enter_lazy_tlb(oldmm, next);
2669 } else
2670 switch_mm(oldmm, mm, next);
2672 if (unlikely(!prev->mm)) {
2673 prev->active_mm = NULL;
2674 rq->prev_mm = oldmm;
2677 * Since the runqueue lock will be released by the next
2678 * task (which is an invalid locking op but in the case
2679 * of the scheduler it's an obvious special-case), so we
2680 * do an early lockdep release here:
2682 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2683 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2684 #endif
2686 /* Here we just switch the register state and the stack. */
2687 switch_to(prev, next, prev);
2689 barrier();
2691 * this_rq must be evaluated again because prev may have moved
2692 * CPUs since it called schedule(), thus the 'rq' on its stack
2693 * frame will be invalid.
2695 finish_task_switch(this_rq(), prev);
2699 * nr_running, nr_uninterruptible and nr_context_switches:
2701 * externally visible scheduler statistics: current number of runnable
2702 * threads, current number of uninterruptible-sleeping threads, total
2703 * number of context switches performed since bootup.
2705 unsigned long nr_running(void)
2707 unsigned long i, sum = 0;
2709 for_each_online_cpu(i)
2710 sum += cpu_rq(i)->nr_running;
2712 return sum;
2715 unsigned long nr_uninterruptible(void)
2717 unsigned long i, sum = 0;
2719 for_each_possible_cpu(i)
2720 sum += cpu_rq(i)->nr_uninterruptible;
2723 * Since we read the counters lockless, it might be slightly
2724 * inaccurate. Do not allow it to go below zero though:
2726 if (unlikely((long)sum < 0))
2727 sum = 0;
2729 return sum;
2732 unsigned long long nr_context_switches(void)
2734 int i;
2735 unsigned long long sum = 0;
2737 for_each_possible_cpu(i)
2738 sum += cpu_rq(i)->nr_switches;
2740 return sum;
2743 unsigned long nr_iowait(void)
2745 unsigned long i, sum = 0;
2747 for_each_possible_cpu(i)
2748 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2750 return sum;
2753 unsigned long nr_active(void)
2755 unsigned long i, running = 0, uninterruptible = 0;
2757 for_each_online_cpu(i) {
2758 running += cpu_rq(i)->nr_running;
2759 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2762 if (unlikely((long)uninterruptible < 0))
2763 uninterruptible = 0;
2765 return running + uninterruptible;
2769 * Update rq->cpu_load[] statistics. This function is usually called every
2770 * scheduler tick (TICK_NSEC).
2772 static void update_cpu_load(struct rq *this_rq)
2774 unsigned long this_load = this_rq->load.weight;
2775 int i, scale;
2777 this_rq->nr_load_updates++;
2779 /* Update our load: */
2780 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2781 unsigned long old_load, new_load;
2783 /* scale is effectively 1 << i now, and >> i divides by scale */
2785 old_load = this_rq->cpu_load[i];
2786 new_load = this_load;
2788 * Round up the averaging division if load is increasing. This
2789 * prevents us from getting stuck on 9 if the load is 10, for
2790 * example.
2792 if (new_load > old_load)
2793 new_load += scale-1;
2794 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2798 #ifdef CONFIG_SMP
2801 * double_rq_lock - safely lock two runqueues
2803 * Note this does not disable interrupts like task_rq_lock,
2804 * you need to do so manually before calling.
2806 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2807 __acquires(rq1->lock)
2808 __acquires(rq2->lock)
2810 BUG_ON(!irqs_disabled());
2811 if (rq1 == rq2) {
2812 spin_lock(&rq1->lock);
2813 __acquire(rq2->lock); /* Fake it out ;) */
2814 } else {
2815 if (rq1 < rq2) {
2816 spin_lock(&rq1->lock);
2817 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2818 } else {
2819 spin_lock(&rq2->lock);
2820 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2823 update_rq_clock(rq1);
2824 update_rq_clock(rq2);
2828 * double_rq_unlock - safely unlock two runqueues
2830 * Note this does not restore interrupts like task_rq_unlock,
2831 * you need to do so manually after calling.
2833 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2834 __releases(rq1->lock)
2835 __releases(rq2->lock)
2837 spin_unlock(&rq1->lock);
2838 if (rq1 != rq2)
2839 spin_unlock(&rq2->lock);
2840 else
2841 __release(rq2->lock);
2845 * If dest_cpu is allowed for this process, migrate the task to it.
2846 * This is accomplished by forcing the cpu_allowed mask to only
2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2848 * the cpu_allowed mask is restored.
2850 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2852 struct migration_req req;
2853 unsigned long flags;
2854 struct rq *rq;
2856 rq = task_rq_lock(p, &flags);
2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2858 || unlikely(!cpu_active(dest_cpu)))
2859 goto out;
2861 /* force the process onto the specified CPU */
2862 if (migrate_task(p, dest_cpu, &req)) {
2863 /* Need to wait for migration thread (might exit: take ref). */
2864 struct task_struct *mt = rq->migration_thread;
2866 get_task_struct(mt);
2867 task_rq_unlock(rq, &flags);
2868 wake_up_process(mt);
2869 put_task_struct(mt);
2870 wait_for_completion(&req.done);
2872 return;
2874 out:
2875 task_rq_unlock(rq, &flags);
2879 * sched_exec - execve() is a valuable balancing opportunity, because at
2880 * this point the task has the smallest effective memory and cache footprint.
2882 void sched_exec(void)
2884 int new_cpu, this_cpu = get_cpu();
2885 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2886 put_cpu();
2887 if (new_cpu != this_cpu)
2888 sched_migrate_task(current, new_cpu);
2892 * pull_task - move a task from a remote runqueue to the local runqueue.
2893 * Both runqueues must be locked.
2895 static void pull_task(struct rq *src_rq, struct task_struct *p,
2896 struct rq *this_rq, int this_cpu)
2898 deactivate_task(src_rq, p, 0);
2899 set_task_cpu(p, this_cpu);
2900 activate_task(this_rq, p, 0);
2902 * Note that idle threads have a prio of MAX_PRIO, for this test
2903 * to be always true for them.
2905 check_preempt_curr(this_rq, p, 0);
2909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2911 static
2912 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2913 struct sched_domain *sd, enum cpu_idle_type idle,
2914 int *all_pinned)
2917 * We do not migrate tasks that are:
2918 * 1) running (obviously), or
2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2920 * 3) are cache-hot on their current CPU.
2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2923 schedstat_inc(p, se.nr_failed_migrations_affine);
2924 return 0;
2926 *all_pinned = 0;
2928 if (task_running(rq, p)) {
2929 schedstat_inc(p, se.nr_failed_migrations_running);
2930 return 0;
2934 * Aggressive migration if:
2935 * 1) task is cache cold, or
2936 * 2) too many balance attempts have failed.
2939 if (!task_hot(p, rq->clock, sd) ||
2940 sd->nr_balance_failed > sd->cache_nice_tries) {
2941 #ifdef CONFIG_SCHEDSTATS
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(sd, lb_hot_gained[idle]);
2944 schedstat_inc(p, se.nr_forced_migrations);
2946 #endif
2947 return 1;
2950 if (task_hot(p, rq->clock, sd)) {
2951 schedstat_inc(p, se.nr_failed_migrations_hot);
2952 return 0;
2954 return 1;
2957 static unsigned long
2958 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2959 unsigned long max_load_move, struct sched_domain *sd,
2960 enum cpu_idle_type idle, int *all_pinned,
2961 int *this_best_prio, struct rq_iterator *iterator)
2963 int loops = 0, pulled = 0, pinned = 0;
2964 struct task_struct *p;
2965 long rem_load_move = max_load_move;
2967 if (max_load_move == 0)
2968 goto out;
2970 pinned = 1;
2973 * Start the load-balancing iterator:
2975 p = iterator->start(iterator->arg);
2976 next:
2977 if (!p || loops++ > sysctl_sched_nr_migrate)
2978 goto out;
2980 if ((p->se.load.weight >> 1) > rem_load_move ||
2981 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2982 p = iterator->next(iterator->arg);
2983 goto next;
2986 pull_task(busiest, p, this_rq, this_cpu);
2987 pulled++;
2988 rem_load_move -= p->se.load.weight;
2991 * We only want to steal up to the prescribed amount of weighted load.
2993 if (rem_load_move > 0) {
2994 if (p->prio < *this_best_prio)
2995 *this_best_prio = p->prio;
2996 p = iterator->next(iterator->arg);
2997 goto next;
2999 out:
3001 * Right now, this is one of only two places pull_task() is called,
3002 * so we can safely collect pull_task() stats here rather than
3003 * inside pull_task().
3005 schedstat_add(sd, lb_gained[idle], pulled);
3007 if (all_pinned)
3008 *all_pinned = pinned;
3010 return max_load_move - rem_load_move;
3014 * move_tasks tries to move up to max_load_move weighted load from busiest to
3015 * this_rq, as part of a balancing operation within domain "sd".
3016 * Returns 1 if successful and 0 otherwise.
3018 * Called with both runqueues locked.
3020 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3021 unsigned long max_load_move,
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 int *all_pinned)
3025 const struct sched_class *class = sched_class_highest;
3026 unsigned long total_load_moved = 0;
3027 int this_best_prio = this_rq->curr->prio;
3029 do {
3030 total_load_moved +=
3031 class->load_balance(this_rq, this_cpu, busiest,
3032 max_load_move - total_load_moved,
3033 sd, idle, all_pinned, &this_best_prio);
3034 class = class->next;
3036 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3037 break;
3039 } while (class && max_load_move > total_load_moved);
3041 return total_load_moved > 0;
3044 static int
3045 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3046 struct sched_domain *sd, enum cpu_idle_type idle,
3047 struct rq_iterator *iterator)
3049 struct task_struct *p = iterator->start(iterator->arg);
3050 int pinned = 0;
3052 while (p) {
3053 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3054 pull_task(busiest, p, this_rq, this_cpu);
3056 * Right now, this is only the second place pull_task()
3057 * is called, so we can safely collect pull_task()
3058 * stats here rather than inside pull_task().
3060 schedstat_inc(sd, lb_gained[idle]);
3062 return 1;
3064 p = iterator->next(iterator->arg);
3067 return 0;
3071 * move_one_task tries to move exactly one task from busiest to this_rq, as
3072 * part of active balancing operations within "domain".
3073 * Returns 1 if successful and 0 otherwise.
3075 * Called with both runqueues locked.
3077 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3078 struct sched_domain *sd, enum cpu_idle_type idle)
3080 const struct sched_class *class;
3082 for (class = sched_class_highest; class; class = class->next)
3083 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3084 return 1;
3086 return 0;
3090 * find_busiest_group finds and returns the busiest CPU group within the
3091 * domain. It calculates and returns the amount of weighted load which
3092 * should be moved to restore balance via the imbalance parameter.
3094 static struct sched_group *
3095 find_busiest_group(struct sched_domain *sd, int this_cpu,
3096 unsigned long *imbalance, enum cpu_idle_type idle,
3097 int *sd_idle, const struct cpumask *cpus, int *balance)
3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3101 unsigned long max_pull;
3102 unsigned long busiest_load_per_task, busiest_nr_running;
3103 unsigned long this_load_per_task, this_nr_running;
3104 int load_idx, group_imb = 0;
3105 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3106 int power_savings_balance = 1;
3107 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3108 unsigned long min_nr_running = ULONG_MAX;
3109 struct sched_group *group_min = NULL, *group_leader = NULL;
3110 #endif
3112 max_load = this_load = total_load = total_pwr = 0;
3113 busiest_load_per_task = busiest_nr_running = 0;
3114 this_load_per_task = this_nr_running = 0;
3116 if (idle == CPU_NOT_IDLE)
3117 load_idx = sd->busy_idx;
3118 else if (idle == CPU_NEWLY_IDLE)
3119 load_idx = sd->newidle_idx;
3120 else
3121 load_idx = sd->idle_idx;
3123 do {
3124 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3125 int local_group;
3126 int i;
3127 int __group_imb = 0;
3128 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3129 unsigned long sum_nr_running, sum_weighted_load;
3130 unsigned long sum_avg_load_per_task;
3131 unsigned long avg_load_per_task;
3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
3136 if (local_group)
3137 balance_cpu = cpumask_first(sched_group_cpus(group));
3139 /* Tally up the load of all CPUs in the group */
3140 sum_weighted_load = sum_nr_running = avg_load = 0;
3141 sum_avg_load_per_task = avg_load_per_task = 0;
3143 max_cpu_load = 0;
3144 min_cpu_load = ~0UL;
3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3147 struct rq *rq = cpu_rq(i);
3149 if (*sd_idle && rq->nr_running)
3150 *sd_idle = 0;
3152 /* Bias balancing toward cpus of our domain */
3153 if (local_group) {
3154 if (idle_cpu(i) && !first_idle_cpu) {
3155 first_idle_cpu = 1;
3156 balance_cpu = i;
3159 load = target_load(i, load_idx);
3160 } else {
3161 load = source_load(i, load_idx);
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3168 avg_load += load;
3169 sum_nr_running += rq->nr_running;
3170 sum_weighted_load += weighted_cpuload(i);
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
3183 *balance = 0;
3184 goto ret;
3187 total_load += avg_load;
3188 total_pwr += group->__cpu_power;
3190 /* Adjust by relative CPU power of the group */
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3208 __group_imb = 1;
3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3212 if (local_group) {
3213 this_load = avg_load;
3214 this = group;
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
3218 (sum_nr_running > group_capacity || __group_imb)) {
3219 max_load = avg_load;
3220 busiest = group;
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
3223 group_imb = __group_imb;
3226 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3228 * Busy processors will not participate in power savings
3229 * balance.
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3233 goto group_next;
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3239 if (local_group && (this_nr_running >= group_capacity ||
3240 !this_nr_running))
3241 power_savings_balance = 0;
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
3248 || !sum_nr_running)
3249 goto group_next;
3252 * Calculate the group which has the least non-idle load.
3253 * This is the group from where we need to pick up the load
3254 * for saving power
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
3258 cpumask_first(sched_group_cpus(group)) >
3259 cpumask_first(sched_group_cpus(group_min)))) {
3260 group_min = group;
3261 min_nr_running = sum_nr_running;
3262 min_load_per_task = sum_weighted_load /
3263 sum_nr_running;
3267 * Calculate the group which is almost near its
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
3274 cpumask_first(sched_group_cpus(group)) <
3275 cpumask_first(sched_group_cpus(group_leader)))) {
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3280 group_next:
3281 #endif
3282 group = group->next;
3283 } while (group != sd->groups);
3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3286 goto out_balanced;
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3292 goto out_balanced;
3294 busiest_load_per_task /= busiest_nr_running;
3295 if (group_imb)
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
3306 * by pulling tasks to us. Be careful of negative numbers as they'll
3307 * appear as very large values with unsigned longs.
3309 if (max_load <= busiest_load_per_task)
3310 goto out_balanced;
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3317 if (max_load < avg_load) {
3318 *imbalance = 0;
3319 goto small_imbalance;
3322 /* Don't want to pull so many tasks that a group would go idle */
3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3325 /* How much load to actually move to equalise the imbalance */
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
3328 / SCHED_LOAD_SCALE;
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3334 * moved
3336 if (*imbalance < busiest_load_per_task) {
3337 unsigned long tmp, pwr_now, pwr_move;
3338 unsigned int imbn;
3340 small_imbalance:
3341 pwr_move = pwr_now = 0;
3342 imbn = 2;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3346 imbn = 1;
3347 } else
3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3350 if (max_load - this_load + busiest_load_per_task >=
3351 busiest_load_per_task * imbn) {
3352 *imbalance = busiest_load_per_task;
3353 return busiest;
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3359 * moving them.
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
3366 pwr_now /= SCHED_LOAD_SCALE;
3368 /* Amount of load we'd subtract */
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
3371 if (max_load > tmp)
3372 pwr_move += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load - tmp);
3375 /* Amount of load we'd add */
3376 if (max_load * busiest->__cpu_power <
3377 busiest_load_per_task * SCHED_LOAD_SCALE)
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
3380 else
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
3385 pwr_move /= SCHED_LOAD_SCALE;
3387 /* Move if we gain throughput */
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
3392 return busiest;
3394 out_balanced:
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3397 goto ret;
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3403 cpumask_first(sched_group_cpus(group_leader));
3405 return group_min;
3407 #endif
3408 ret:
3409 *imbalance = 0;
3410 return NULL;
3414 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3416 static struct rq *
3417 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3418 unsigned long imbalance, const struct cpumask *cpus)
3420 struct rq *busiest = NULL, *rq;
3421 unsigned long max_load = 0;
3422 int i;
3424 for_each_cpu(i, sched_group_cpus(group)) {
3425 unsigned long wl;
3427 if (!cpumask_test_cpu(i, cpus))
3428 continue;
3430 rq = cpu_rq(i);
3431 wl = weighted_cpuload(i);
3433 if (rq->nr_running == 1 && wl > imbalance)
3434 continue;
3436 if (wl > max_load) {
3437 max_load = wl;
3438 busiest = rq;
3442 return busiest;
3446 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3447 * so long as it is large enough.
3449 #define MAX_PINNED_INTERVAL 512
3452 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3453 * tasks if there is an imbalance.
3455 static int load_balance(int this_cpu, struct rq *this_rq,
3456 struct sched_domain *sd, enum cpu_idle_type idle,
3457 int *balance, struct cpumask *cpus)
3459 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3460 struct sched_group *group;
3461 unsigned long imbalance;
3462 struct rq *busiest;
3463 unsigned long flags;
3465 cpumask_setall(cpus);
3468 * When power savings policy is enabled for the parent domain, idle
3469 * sibling can pick up load irrespective of busy siblings. In this case,
3470 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3471 * portraying it as CPU_NOT_IDLE.
3473 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3474 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3475 sd_idle = 1;
3477 schedstat_inc(sd, lb_count[idle]);
3479 redo:
3480 update_shares(sd);
3481 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3482 cpus, balance);
3484 if (*balance == 0)
3485 goto out_balanced;
3487 if (!group) {
3488 schedstat_inc(sd, lb_nobusyg[idle]);
3489 goto out_balanced;
3492 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3493 if (!busiest) {
3494 schedstat_inc(sd, lb_nobusyq[idle]);
3495 goto out_balanced;
3498 BUG_ON(busiest == this_rq);
3500 schedstat_add(sd, lb_imbalance[idle], imbalance);
3502 ld_moved = 0;
3503 if (busiest->nr_running > 1) {
3505 * Attempt to move tasks. If find_busiest_group has found
3506 * an imbalance but busiest->nr_running <= 1, the group is
3507 * still unbalanced. ld_moved simply stays zero, so it is
3508 * correctly treated as an imbalance.
3510 local_irq_save(flags);
3511 double_rq_lock(this_rq, busiest);
3512 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3513 imbalance, sd, idle, &all_pinned);
3514 double_rq_unlock(this_rq, busiest);
3515 local_irq_restore(flags);
3518 * some other cpu did the load balance for us.
3520 if (ld_moved && this_cpu != smp_processor_id())
3521 resched_cpu(this_cpu);
3523 /* All tasks on this runqueue were pinned by CPU affinity */
3524 if (unlikely(all_pinned)) {
3525 cpumask_clear_cpu(cpu_of(busiest), cpus);
3526 if (!cpumask_empty(cpus))
3527 goto redo;
3528 goto out_balanced;
3532 if (!ld_moved) {
3533 schedstat_inc(sd, lb_failed[idle]);
3534 sd->nr_balance_failed++;
3536 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3538 spin_lock_irqsave(&busiest->lock, flags);
3540 /* don't kick the migration_thread, if the curr
3541 * task on busiest cpu can't be moved to this_cpu
3543 if (!cpumask_test_cpu(this_cpu,
3544 &busiest->curr->cpus_allowed)) {
3545 spin_unlock_irqrestore(&busiest->lock, flags);
3546 all_pinned = 1;
3547 goto out_one_pinned;
3550 if (!busiest->active_balance) {
3551 busiest->active_balance = 1;
3552 busiest->push_cpu = this_cpu;
3553 active_balance = 1;
3555 spin_unlock_irqrestore(&busiest->lock, flags);
3556 if (active_balance)
3557 wake_up_process(busiest->migration_thread);
3560 * We've kicked active balancing, reset the failure
3561 * counter.
3563 sd->nr_balance_failed = sd->cache_nice_tries+1;
3565 } else
3566 sd->nr_balance_failed = 0;
3568 if (likely(!active_balance)) {
3569 /* We were unbalanced, so reset the balancing interval */
3570 sd->balance_interval = sd->min_interval;
3571 } else {
3573 * If we've begun active balancing, start to back off. This
3574 * case may not be covered by the all_pinned logic if there
3575 * is only 1 task on the busy runqueue (because we don't call
3576 * move_tasks).
3578 if (sd->balance_interval < sd->max_interval)
3579 sd->balance_interval *= 2;
3582 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3583 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3584 ld_moved = -1;
3586 goto out;
3588 out_balanced:
3589 schedstat_inc(sd, lb_balanced[idle]);
3591 sd->nr_balance_failed = 0;
3593 out_one_pinned:
3594 /* tune up the balancing interval */
3595 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3596 (sd->balance_interval < sd->max_interval))
3597 sd->balance_interval *= 2;
3599 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3600 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3601 ld_moved = -1;
3602 else
3603 ld_moved = 0;
3604 out:
3605 if (ld_moved)
3606 update_shares(sd);
3607 return ld_moved;
3611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3612 * tasks if there is an imbalance.
3614 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3615 * this_rq is locked.
3617 static int
3618 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3619 struct cpumask *cpus)
3621 struct sched_group *group;
3622 struct rq *busiest = NULL;
3623 unsigned long imbalance;
3624 int ld_moved = 0;
3625 int sd_idle = 0;
3626 int all_pinned = 0;
3628 cpumask_setall(cpus);
3631 * When power savings policy is enabled for the parent domain, idle
3632 * sibling can pick up load irrespective of busy siblings. In this case,
3633 * let the state of idle sibling percolate up as IDLE, instead of
3634 * portraying it as CPU_NOT_IDLE.
3636 if (sd->flags & SD_SHARE_CPUPOWER &&
3637 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3638 sd_idle = 1;
3640 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3641 redo:
3642 update_shares_locked(this_rq, sd);
3643 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3644 &sd_idle, cpus, NULL);
3645 if (!group) {
3646 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3647 goto out_balanced;
3650 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3651 if (!busiest) {
3652 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3653 goto out_balanced;
3656 BUG_ON(busiest == this_rq);
3658 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3660 ld_moved = 0;
3661 if (busiest->nr_running > 1) {
3662 /* Attempt to move tasks */
3663 double_lock_balance(this_rq, busiest);
3664 /* this_rq->clock is already updated */
3665 update_rq_clock(busiest);
3666 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3667 imbalance, sd, CPU_NEWLY_IDLE,
3668 &all_pinned);
3669 double_unlock_balance(this_rq, busiest);
3671 if (unlikely(all_pinned)) {
3672 cpumask_clear_cpu(cpu_of(busiest), cpus);
3673 if (!cpumask_empty(cpus))
3674 goto redo;
3678 if (!ld_moved) {
3679 int active_balance = 0;
3681 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3684 return -1;
3686 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3687 return -1;
3689 if (sd->nr_balance_failed++ < 2)
3690 return -1;
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq, busiest);
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3721 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3722 double_unlock_balance(this_rq, busiest);
3723 all_pinned = 1;
3724 return ld_moved;
3727 if (!busiest->active_balance) {
3728 busiest->active_balance = 1;
3729 busiest->push_cpu = this_cpu;
3730 active_balance = 1;
3733 double_unlock_balance(this_rq, busiest);
3735 * Should not call ttwu while holding a rq->lock
3737 spin_unlock(&this_rq->lock);
3738 if (active_balance)
3739 wake_up_process(busiest->migration_thread);
3740 spin_lock(&this_rq->lock);
3742 } else
3743 sd->nr_balance_failed = 0;
3745 update_shares_locked(this_rq, sd);
3746 return ld_moved;
3748 out_balanced:
3749 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3750 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3751 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3752 return -1;
3753 sd->nr_balance_failed = 0;
3755 return 0;
3759 * idle_balance is called by schedule() if this_cpu is about to become
3760 * idle. Attempts to pull tasks from other CPUs.
3762 static void idle_balance(int this_cpu, struct rq *this_rq)
3764 struct sched_domain *sd;
3765 int pulled_task = 0;
3766 unsigned long next_balance = jiffies + HZ;
3767 cpumask_var_t tmpmask;
3769 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3770 return;
3772 for_each_domain(this_cpu, sd) {
3773 unsigned long interval;
3775 if (!(sd->flags & SD_LOAD_BALANCE))
3776 continue;
3778 if (sd->flags & SD_BALANCE_NEWIDLE)
3779 /* If we've pulled tasks over stop searching: */
3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
3781 sd, tmpmask);
3783 interval = msecs_to_jiffies(sd->balance_interval);
3784 if (time_after(next_balance, sd->last_balance + interval))
3785 next_balance = sd->last_balance + interval;
3786 if (pulled_task)
3787 break;
3789 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3791 * We are going idle. next_balance may be set based on
3792 * a busy processor. So reset next_balance.
3794 this_rq->next_balance = next_balance;
3796 free_cpumask_var(tmpmask);
3800 * active_load_balance is run by migration threads. It pushes running tasks
3801 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3802 * running on each physical CPU where possible, and avoids physical /
3803 * logical imbalances.
3805 * Called with busiest_rq locked.
3807 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3809 int target_cpu = busiest_rq->push_cpu;
3810 struct sched_domain *sd;
3811 struct rq *target_rq;
3813 /* Is there any task to move? */
3814 if (busiest_rq->nr_running <= 1)
3815 return;
3817 target_rq = cpu_rq(target_cpu);
3820 * This condition is "impossible", if it occurs
3821 * we need to fix it. Originally reported by
3822 * Bjorn Helgaas on a 128-cpu setup.
3824 BUG_ON(busiest_rq == target_rq);
3826 /* move a task from busiest_rq to target_rq */
3827 double_lock_balance(busiest_rq, target_rq);
3828 update_rq_clock(busiest_rq);
3829 update_rq_clock(target_rq);
3831 /* Search for an sd spanning us and the target CPU. */
3832 for_each_domain(target_cpu, sd) {
3833 if ((sd->flags & SD_LOAD_BALANCE) &&
3834 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3835 break;
3838 if (likely(sd)) {
3839 schedstat_inc(sd, alb_count);
3841 if (move_one_task(target_rq, target_cpu, busiest_rq,
3842 sd, CPU_IDLE))
3843 schedstat_inc(sd, alb_pushed);
3844 else
3845 schedstat_inc(sd, alb_failed);
3847 double_unlock_balance(busiest_rq, target_rq);
3850 #ifdef CONFIG_NO_HZ
3851 static struct {
3852 atomic_t load_balancer;
3853 cpumask_var_t cpu_mask;
3854 } nohz ____cacheline_aligned = {
3855 .load_balancer = ATOMIC_INIT(-1),
3859 * This routine will try to nominate the ilb (idle load balancing)
3860 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3861 * load balancing on behalf of all those cpus. If all the cpus in the system
3862 * go into this tickless mode, then there will be no ilb owner (as there is
3863 * no need for one) and all the cpus will sleep till the next wakeup event
3864 * arrives...
3866 * For the ilb owner, tick is not stopped. And this tick will be used
3867 * for idle load balancing. ilb owner will still be part of
3868 * nohz.cpu_mask..
3870 * While stopping the tick, this cpu will become the ilb owner if there
3871 * is no other owner. And will be the owner till that cpu becomes busy
3872 * or if all cpus in the system stop their ticks at which point
3873 * there is no need for ilb owner.
3875 * When the ilb owner becomes busy, it nominates another owner, during the
3876 * next busy scheduler_tick()
3878 int select_nohz_load_balancer(int stop_tick)
3880 int cpu = smp_processor_id();
3882 if (stop_tick) {
3883 cpu_rq(cpu)->in_nohz_recently = 1;
3885 if (!cpu_active(cpu)) {
3886 if (atomic_read(&nohz.load_balancer) != cpu)
3887 return 0;
3890 * If we are going offline and still the leader,
3891 * give up!
3893 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3894 BUG();
3896 return 0;
3899 cpumask_set_cpu(cpu, nohz.cpu_mask);
3901 /* time for ilb owner also to sleep */
3902 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3903 if (atomic_read(&nohz.load_balancer) == cpu)
3904 atomic_set(&nohz.load_balancer, -1);
3905 return 0;
3908 if (atomic_read(&nohz.load_balancer) == -1) {
3909 /* make me the ilb owner */
3910 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3911 return 1;
3912 } else if (atomic_read(&nohz.load_balancer) == cpu)
3913 return 1;
3914 } else {
3915 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3916 return 0;
3918 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3920 if (atomic_read(&nohz.load_balancer) == cpu)
3921 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3922 BUG();
3924 return 0;
3926 #endif
3928 static DEFINE_SPINLOCK(balancing);
3931 * It checks each scheduling domain to see if it is due to be balanced,
3932 * and initiates a balancing operation if so.
3934 * Balancing parameters are set up in arch_init_sched_domains.
3936 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3938 int balance = 1;
3939 struct rq *rq = cpu_rq(cpu);
3940 unsigned long interval;
3941 struct sched_domain *sd;
3942 /* Earliest time when we have to do rebalance again */
3943 unsigned long next_balance = jiffies + 60*HZ;
3944 int update_next_balance = 0;
3945 int need_serialize;
3946 cpumask_var_t tmp;
3948 /* Fails alloc? Rebalancing probably not a priority right now. */
3949 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3950 return;
3952 for_each_domain(cpu, sd) {
3953 if (!(sd->flags & SD_LOAD_BALANCE))
3954 continue;
3956 interval = sd->balance_interval;
3957 if (idle != CPU_IDLE)
3958 interval *= sd->busy_factor;
3960 /* scale ms to jiffies */
3961 interval = msecs_to_jiffies(interval);
3962 if (unlikely(!interval))
3963 interval = 1;
3964 if (interval > HZ*NR_CPUS/10)
3965 interval = HZ*NR_CPUS/10;
3967 need_serialize = sd->flags & SD_SERIALIZE;
3969 if (need_serialize) {
3970 if (!spin_trylock(&balancing))
3971 goto out;
3974 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3975 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3977 * We've pulled tasks over so either we're no
3978 * longer idle, or one of our SMT siblings is
3979 * not idle.
3981 idle = CPU_NOT_IDLE;
3983 sd->last_balance = jiffies;
3985 if (need_serialize)
3986 spin_unlock(&balancing);
3987 out:
3988 if (time_after(next_balance, sd->last_balance + interval)) {
3989 next_balance = sd->last_balance + interval;
3990 update_next_balance = 1;
3994 * Stop the load balance at this level. There is another
3995 * CPU in our sched group which is doing load balancing more
3996 * actively.
3998 if (!balance)
3999 break;
4003 * next_balance will be updated only when there is a need.
4004 * When the cpu is attached to null domain for ex, it will not be
4005 * updated.
4007 if (likely(update_next_balance))
4008 rq->next_balance = next_balance;
4010 free_cpumask_var(tmp);
4014 * run_rebalance_domains is triggered when needed from the scheduler tick.
4015 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4018 static void run_rebalance_domains(struct softirq_action *h)
4020 int this_cpu = smp_processor_id();
4021 struct rq *this_rq = cpu_rq(this_cpu);
4022 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4023 CPU_IDLE : CPU_NOT_IDLE;
4025 rebalance_domains(this_cpu, idle);
4027 #ifdef CONFIG_NO_HZ
4029 * If this cpu is the owner for idle load balancing, then do the
4030 * balancing on behalf of the other idle cpus whose ticks are
4031 * stopped.
4033 if (this_rq->idle_at_tick &&
4034 atomic_read(&nohz.load_balancer) == this_cpu) {
4035 struct rq *rq;
4036 int balance_cpu;
4038 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4039 if (balance_cpu == this_cpu)
4040 continue;
4043 * If this cpu gets work to do, stop the load balancing
4044 * work being done for other cpus. Next load
4045 * balancing owner will pick it up.
4047 if (need_resched())
4048 break;
4050 rebalance_domains(balance_cpu, CPU_IDLE);
4052 rq = cpu_rq(balance_cpu);
4053 if (time_after(this_rq->next_balance, rq->next_balance))
4054 this_rq->next_balance = rq->next_balance;
4057 #endif
4061 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4063 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4064 * idle load balancing owner or decide to stop the periodic load balancing,
4065 * if the whole system is idle.
4067 static inline void trigger_load_balance(struct rq *rq, int cpu)
4069 #ifdef CONFIG_NO_HZ
4071 * If we were in the nohz mode recently and busy at the current
4072 * scheduler tick, then check if we need to nominate new idle
4073 * load balancer.
4075 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4076 rq->in_nohz_recently = 0;
4078 if (atomic_read(&nohz.load_balancer) == cpu) {
4079 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4080 atomic_set(&nohz.load_balancer, -1);
4083 if (atomic_read(&nohz.load_balancer) == -1) {
4085 * simple selection for now: Nominate the
4086 * first cpu in the nohz list to be the next
4087 * ilb owner.
4089 * TBD: Traverse the sched domains and nominate
4090 * the nearest cpu in the nohz.cpu_mask.
4092 int ilb = cpumask_first(nohz.cpu_mask);
4094 if (ilb < nr_cpu_ids)
4095 resched_cpu(ilb);
4100 * If this cpu is idle and doing idle load balancing for all the
4101 * cpus with ticks stopped, is it time for that to stop?
4103 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4104 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4105 resched_cpu(cpu);
4106 return;
4110 * If this cpu is idle and the idle load balancing is done by
4111 * someone else, then no need raise the SCHED_SOFTIRQ
4113 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4114 cpumask_test_cpu(cpu, nohz.cpu_mask))
4115 return;
4116 #endif
4117 if (time_after_eq(jiffies, rq->next_balance))
4118 raise_softirq(SCHED_SOFTIRQ);
4121 #else /* CONFIG_SMP */
4124 * on UP we do not need to balance between CPUs:
4126 static inline void idle_balance(int cpu, struct rq *rq)
4130 #endif
4132 DEFINE_PER_CPU(struct kernel_stat, kstat);
4134 EXPORT_PER_CPU_SYMBOL(kstat);
4137 * Return any ns on the sched_clock that have not yet been banked in
4138 * @p in case that task is currently running.
4140 unsigned long long task_delta_exec(struct task_struct *p)
4142 unsigned long flags;
4143 struct rq *rq;
4144 u64 ns = 0;
4146 rq = task_rq_lock(p, &flags);
4148 if (task_current(rq, p)) {
4149 u64 delta_exec;
4151 update_rq_clock(rq);
4152 delta_exec = rq->clock - p->se.exec_start;
4153 if ((s64)delta_exec > 0)
4154 ns = delta_exec;
4157 task_rq_unlock(rq, &flags);
4159 return ns;
4163 * Account user cpu time to a process.
4164 * @p: the process that the cpu time gets accounted to
4165 * @cputime: the cpu time spent in user space since the last update
4166 * @cputime_scaled: cputime scaled by cpu frequency
4168 void account_user_time(struct task_struct *p, cputime_t cputime,
4169 cputime_t cputime_scaled)
4171 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4172 cputime64_t tmp;
4174 /* Add user time to process. */
4175 p->utime = cputime_add(p->utime, cputime);
4176 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4177 account_group_user_time(p, cputime);
4179 /* Add user time to cpustat. */
4180 tmp = cputime_to_cputime64(cputime);
4181 if (TASK_NICE(p) > 0)
4182 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4183 else
4184 cpustat->user = cputime64_add(cpustat->user, tmp);
4185 /* Account for user time used */
4186 acct_update_integrals(p);
4190 * Account guest cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @cputime: the cpu time spent in virtual machine since the last update
4193 * @cputime_scaled: cputime scaled by cpu frequency
4195 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4196 cputime_t cputime_scaled)
4198 cputime64_t tmp;
4199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4201 tmp = cputime_to_cputime64(cputime);
4203 /* Add guest time to process. */
4204 p->utime = cputime_add(p->utime, cputime);
4205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4206 account_group_user_time(p, cputime);
4207 p->gtime = cputime_add(p->gtime, cputime);
4209 /* Add guest time to cpustat. */
4210 cpustat->user = cputime64_add(cpustat->user, tmp);
4211 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4215 * Account system cpu time to a process.
4216 * @p: the process that the cpu time gets accounted to
4217 * @hardirq_offset: the offset to subtract from hardirq_count()
4218 * @cputime: the cpu time spent in kernel space since the last update
4219 * @cputime_scaled: cputime scaled by cpu frequency
4221 void account_system_time(struct task_struct *p, int hardirq_offset,
4222 cputime_t cputime, cputime_t cputime_scaled)
4224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4225 cputime64_t tmp;
4227 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4228 account_guest_time(p, cputime, cputime_scaled);
4229 return;
4232 /* Add system time to process. */
4233 p->stime = cputime_add(p->stime, cputime);
4234 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4235 account_group_system_time(p, cputime);
4237 /* Add system time to cpustat. */
4238 tmp = cputime_to_cputime64(cputime);
4239 if (hardirq_count() - hardirq_offset)
4240 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4241 else if (softirq_count())
4242 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4243 else
4244 cpustat->system = cputime64_add(cpustat->system, tmp);
4246 /* Account for system time used */
4247 acct_update_integrals(p);
4251 * Account for involuntary wait time.
4252 * @steal: the cpu time spent in involuntary wait
4254 void account_steal_time(cputime_t cputime)
4256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4257 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4259 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4263 * Account for idle time.
4264 * @cputime: the cpu time spent in idle wait
4266 void account_idle_time(cputime_t cputime)
4268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4269 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4270 struct rq *rq = this_rq();
4272 if (atomic_read(&rq->nr_iowait) > 0)
4273 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4274 else
4275 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4278 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4281 * Account a single tick of cpu time.
4282 * @p: the process that the cpu time gets accounted to
4283 * @user_tick: indicates if the tick is a user or a system tick
4285 void account_process_tick(struct task_struct *p, int user_tick)
4287 cputime_t one_jiffy = jiffies_to_cputime(1);
4288 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4289 struct rq *rq = this_rq();
4291 if (user_tick)
4292 account_user_time(p, one_jiffy, one_jiffy_scaled);
4293 else if (p != rq->idle)
4294 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4295 one_jiffy_scaled);
4296 else
4297 account_idle_time(one_jiffy);
4301 * Account multiple ticks of steal time.
4302 * @p: the process from which the cpu time has been stolen
4303 * @ticks: number of stolen ticks
4305 void account_steal_ticks(unsigned long ticks)
4307 account_steal_time(jiffies_to_cputime(ticks));
4311 * Account multiple ticks of idle time.
4312 * @ticks: number of stolen ticks
4314 void account_idle_ticks(unsigned long ticks)
4316 account_idle_time(jiffies_to_cputime(ticks));
4319 #endif
4322 * Use precise platform statistics if available:
4324 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4325 cputime_t task_utime(struct task_struct *p)
4327 return p->utime;
4330 cputime_t task_stime(struct task_struct *p)
4332 return p->stime;
4334 #else
4335 cputime_t task_utime(struct task_struct *p)
4337 clock_t utime = cputime_to_clock_t(p->utime),
4338 total = utime + cputime_to_clock_t(p->stime);
4339 u64 temp;
4342 * Use CFS's precise accounting:
4344 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4346 if (total) {
4347 temp *= utime;
4348 do_div(temp, total);
4350 utime = (clock_t)temp;
4352 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4353 return p->prev_utime;
4356 cputime_t task_stime(struct task_struct *p)
4358 clock_t stime;
4361 * Use CFS's precise accounting. (we subtract utime from
4362 * the total, to make sure the total observed by userspace
4363 * grows monotonically - apps rely on that):
4365 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4366 cputime_to_clock_t(task_utime(p));
4368 if (stime >= 0)
4369 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4371 return p->prev_stime;
4373 #endif
4375 inline cputime_t task_gtime(struct task_struct *p)
4377 return p->gtime;
4381 * This function gets called by the timer code, with HZ frequency.
4382 * We call it with interrupts disabled.
4384 * It also gets called by the fork code, when changing the parent's
4385 * timeslices.
4387 void scheduler_tick(void)
4389 int cpu = smp_processor_id();
4390 struct rq *rq = cpu_rq(cpu);
4391 struct task_struct *curr = rq->curr;
4393 sched_clock_tick();
4395 spin_lock(&rq->lock);
4396 update_rq_clock(rq);
4397 update_cpu_load(rq);
4398 curr->sched_class->task_tick(rq, curr, 0);
4399 spin_unlock(&rq->lock);
4401 #ifdef CONFIG_SMP
4402 rq->idle_at_tick = idle_cpu(cpu);
4403 trigger_load_balance(rq, cpu);
4404 #endif
4407 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4408 defined(CONFIG_PREEMPT_TRACER))
4410 static inline unsigned long get_parent_ip(unsigned long addr)
4412 if (in_lock_functions(addr)) {
4413 addr = CALLER_ADDR2;
4414 if (in_lock_functions(addr))
4415 addr = CALLER_ADDR3;
4417 return addr;
4420 void __kprobes add_preempt_count(int val)
4422 #ifdef CONFIG_DEBUG_PREEMPT
4424 * Underflow?
4426 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4427 return;
4428 #endif
4429 preempt_count() += val;
4430 #ifdef CONFIG_DEBUG_PREEMPT
4432 * Spinlock count overflowing soon?
4434 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4435 PREEMPT_MASK - 10);
4436 #endif
4437 if (preempt_count() == val)
4438 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4440 EXPORT_SYMBOL(add_preempt_count);
4442 void __kprobes sub_preempt_count(int val)
4444 #ifdef CONFIG_DEBUG_PREEMPT
4446 * Underflow?
4448 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4449 return;
4451 * Is the spinlock portion underflowing?
4453 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4454 !(preempt_count() & PREEMPT_MASK)))
4455 return;
4456 #endif
4458 if (preempt_count() == val)
4459 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4460 preempt_count() -= val;
4462 EXPORT_SYMBOL(sub_preempt_count);
4464 #endif
4467 * Print scheduling while atomic bug:
4469 static noinline void __schedule_bug(struct task_struct *prev)
4471 struct pt_regs *regs = get_irq_regs();
4473 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4474 prev->comm, prev->pid, preempt_count());
4476 debug_show_held_locks(prev);
4477 print_modules();
4478 if (irqs_disabled())
4479 print_irqtrace_events(prev);
4481 if (regs)
4482 show_regs(regs);
4483 else
4484 dump_stack();
4488 * Various schedule()-time debugging checks and statistics:
4490 static inline void schedule_debug(struct task_struct *prev)
4493 * Test if we are atomic. Since do_exit() needs to call into
4494 * schedule() atomically, we ignore that path for now.
4495 * Otherwise, whine if we are scheduling when we should not be.
4497 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4498 __schedule_bug(prev);
4500 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4502 schedstat_inc(this_rq(), sched_count);
4503 #ifdef CONFIG_SCHEDSTATS
4504 if (unlikely(prev->lock_depth >= 0)) {
4505 schedstat_inc(this_rq(), bkl_count);
4506 schedstat_inc(prev, sched_info.bkl_count);
4508 #endif
4512 * Pick up the highest-prio task:
4514 static inline struct task_struct *
4515 pick_next_task(struct rq *rq, struct task_struct *prev)
4517 const struct sched_class *class;
4518 struct task_struct *p;
4521 * Optimization: we know that if all tasks are in
4522 * the fair class we can call that function directly:
4524 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4525 p = fair_sched_class.pick_next_task(rq);
4526 if (likely(p))
4527 return p;
4530 class = sched_class_highest;
4531 for ( ; ; ) {
4532 p = class->pick_next_task(rq);
4533 if (p)
4534 return p;
4536 * Will never be NULL as the idle class always
4537 * returns a non-NULL p:
4539 class = class->next;
4544 * schedule() is the main scheduler function.
4546 asmlinkage void __sched schedule(void)
4548 struct task_struct *prev, *next;
4549 unsigned long *switch_count;
4550 struct rq *rq;
4551 int cpu;
4553 need_resched:
4554 preempt_disable();
4555 cpu = smp_processor_id();
4556 rq = cpu_rq(cpu);
4557 rcu_qsctr_inc(cpu);
4558 prev = rq->curr;
4559 switch_count = &prev->nivcsw;
4561 release_kernel_lock(prev);
4562 need_resched_nonpreemptible:
4564 schedule_debug(prev);
4566 if (sched_feat(HRTICK))
4567 hrtick_clear(rq);
4569 spin_lock_irq(&rq->lock);
4570 update_rq_clock(rq);
4571 clear_tsk_need_resched(prev);
4573 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4574 if (unlikely(signal_pending_state(prev->state, prev)))
4575 prev->state = TASK_RUNNING;
4576 else
4577 deactivate_task(rq, prev, 1);
4578 switch_count = &prev->nvcsw;
4581 #ifdef CONFIG_SMP
4582 if (prev->sched_class->pre_schedule)
4583 prev->sched_class->pre_schedule(rq, prev);
4584 #endif
4586 if (unlikely(!rq->nr_running))
4587 idle_balance(cpu, rq);
4589 prev->sched_class->put_prev_task(rq, prev);
4590 next = pick_next_task(rq, prev);
4592 if (likely(prev != next)) {
4593 sched_info_switch(prev, next);
4595 rq->nr_switches++;
4596 rq->curr = next;
4597 ++*switch_count;
4599 context_switch(rq, prev, next); /* unlocks the rq */
4601 * the context switch might have flipped the stack from under
4602 * us, hence refresh the local variables.
4604 cpu = smp_processor_id();
4605 rq = cpu_rq(cpu);
4606 } else
4607 spin_unlock_irq(&rq->lock);
4609 if (unlikely(reacquire_kernel_lock(current) < 0))
4610 goto need_resched_nonpreemptible;
4612 preempt_enable_no_resched();
4613 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4614 goto need_resched;
4616 EXPORT_SYMBOL(schedule);
4618 #ifdef CONFIG_PREEMPT
4620 * this is the entry point to schedule() from in-kernel preemption
4621 * off of preempt_enable. Kernel preemptions off return from interrupt
4622 * occur there and call schedule directly.
4624 asmlinkage void __sched preempt_schedule(void)
4626 struct thread_info *ti = current_thread_info();
4629 * If there is a non-zero preempt_count or interrupts are disabled,
4630 * we do not want to preempt the current task. Just return..
4632 if (likely(ti->preempt_count || irqs_disabled()))
4633 return;
4635 do {
4636 add_preempt_count(PREEMPT_ACTIVE);
4637 schedule();
4638 sub_preempt_count(PREEMPT_ACTIVE);
4641 * Check again in case we missed a preemption opportunity
4642 * between schedule and now.
4644 barrier();
4645 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4647 EXPORT_SYMBOL(preempt_schedule);
4650 * this is the entry point to schedule() from kernel preemption
4651 * off of irq context.
4652 * Note, that this is called and return with irqs disabled. This will
4653 * protect us against recursive calling from irq.
4655 asmlinkage void __sched preempt_schedule_irq(void)
4657 struct thread_info *ti = current_thread_info();
4659 /* Catch callers which need to be fixed */
4660 BUG_ON(ti->preempt_count || !irqs_disabled());
4662 do {
4663 add_preempt_count(PREEMPT_ACTIVE);
4664 local_irq_enable();
4665 schedule();
4666 local_irq_disable();
4667 sub_preempt_count(PREEMPT_ACTIVE);
4670 * Check again in case we missed a preemption opportunity
4671 * between schedule and now.
4673 barrier();
4674 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4677 #endif /* CONFIG_PREEMPT */
4679 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4680 void *key)
4682 return try_to_wake_up(curr->private, mode, sync);
4684 EXPORT_SYMBOL(default_wake_function);
4687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4689 * number) then we wake all the non-exclusive tasks and one exclusive task.
4691 * There are circumstances in which we can try to wake a task which has already
4692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4695 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4696 int nr_exclusive, int sync, void *key)
4698 wait_queue_t *curr, *next;
4700 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4701 unsigned flags = curr->flags;
4703 if (curr->func(curr, mode, sync, key) &&
4704 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4705 break;
4710 * __wake_up - wake up threads blocked on a waitqueue.
4711 * @q: the waitqueue
4712 * @mode: which threads
4713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4714 * @key: is directly passed to the wakeup function
4716 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4717 int nr_exclusive, void *key)
4719 unsigned long flags;
4721 spin_lock_irqsave(&q->lock, flags);
4722 __wake_up_common(q, mode, nr_exclusive, 0, key);
4723 spin_unlock_irqrestore(&q->lock, flags);
4725 EXPORT_SYMBOL(__wake_up);
4728 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4730 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4732 __wake_up_common(q, mode, 1, 0, NULL);
4736 * __wake_up_sync - wake up threads blocked on a waitqueue.
4737 * @q: the waitqueue
4738 * @mode: which threads
4739 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4741 * The sync wakeup differs that the waker knows that it will schedule
4742 * away soon, so while the target thread will be woken up, it will not
4743 * be migrated to another CPU - ie. the two threads are 'synchronized'
4744 * with each other. This can prevent needless bouncing between CPUs.
4746 * On UP it can prevent extra preemption.
4748 void
4749 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4751 unsigned long flags;
4752 int sync = 1;
4754 if (unlikely(!q))
4755 return;
4757 if (unlikely(!nr_exclusive))
4758 sync = 0;
4760 spin_lock_irqsave(&q->lock, flags);
4761 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4762 spin_unlock_irqrestore(&q->lock, flags);
4764 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4767 * complete: - signals a single thread waiting on this completion
4768 * @x: holds the state of this particular completion
4770 * This will wake up a single thread waiting on this completion. Threads will be
4771 * awakened in the same order in which they were queued.
4773 * See also complete_all(), wait_for_completion() and related routines.
4775 void complete(struct completion *x)
4777 unsigned long flags;
4779 spin_lock_irqsave(&x->wait.lock, flags);
4780 x->done++;
4781 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4782 spin_unlock_irqrestore(&x->wait.lock, flags);
4784 EXPORT_SYMBOL(complete);
4787 * complete_all: - signals all threads waiting on this completion
4788 * @x: holds the state of this particular completion
4790 * This will wake up all threads waiting on this particular completion event.
4792 void complete_all(struct completion *x)
4794 unsigned long flags;
4796 spin_lock_irqsave(&x->wait.lock, flags);
4797 x->done += UINT_MAX/2;
4798 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4799 spin_unlock_irqrestore(&x->wait.lock, flags);
4801 EXPORT_SYMBOL(complete_all);
4803 static inline long __sched
4804 do_wait_for_common(struct completion *x, long timeout, int state)
4806 if (!x->done) {
4807 DECLARE_WAITQUEUE(wait, current);
4809 wait.flags |= WQ_FLAG_EXCLUSIVE;
4810 __add_wait_queue_tail(&x->wait, &wait);
4811 do {
4812 if (signal_pending_state(state, current)) {
4813 timeout = -ERESTARTSYS;
4814 break;
4816 __set_current_state(state);
4817 spin_unlock_irq(&x->wait.lock);
4818 timeout = schedule_timeout(timeout);
4819 spin_lock_irq(&x->wait.lock);
4820 } while (!x->done && timeout);
4821 __remove_wait_queue(&x->wait, &wait);
4822 if (!x->done)
4823 return timeout;
4825 x->done--;
4826 return timeout ?: 1;
4829 static long __sched
4830 wait_for_common(struct completion *x, long timeout, int state)
4832 might_sleep();
4834 spin_lock_irq(&x->wait.lock);
4835 timeout = do_wait_for_common(x, timeout, state);
4836 spin_unlock_irq(&x->wait.lock);
4837 return timeout;
4841 * wait_for_completion: - waits for completion of a task
4842 * @x: holds the state of this particular completion
4844 * This waits to be signaled for completion of a specific task. It is NOT
4845 * interruptible and there is no timeout.
4847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4848 * and interrupt capability. Also see complete().
4850 void __sched wait_for_completion(struct completion *x)
4852 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4854 EXPORT_SYMBOL(wait_for_completion);
4857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4858 * @x: holds the state of this particular completion
4859 * @timeout: timeout value in jiffies
4861 * This waits for either a completion of a specific task to be signaled or for a
4862 * specified timeout to expire. The timeout is in jiffies. It is not
4863 * interruptible.
4865 unsigned long __sched
4866 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4868 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4870 EXPORT_SYMBOL(wait_for_completion_timeout);
4873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4874 * @x: holds the state of this particular completion
4876 * This waits for completion of a specific task to be signaled. It is
4877 * interruptible.
4879 int __sched wait_for_completion_interruptible(struct completion *x)
4881 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4882 if (t == -ERESTARTSYS)
4883 return t;
4884 return 0;
4886 EXPORT_SYMBOL(wait_for_completion_interruptible);
4889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4890 * @x: holds the state of this particular completion
4891 * @timeout: timeout value in jiffies
4893 * This waits for either a completion of a specific task to be signaled or for a
4894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4896 unsigned long __sched
4897 wait_for_completion_interruptible_timeout(struct completion *x,
4898 unsigned long timeout)
4900 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4902 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4905 * wait_for_completion_killable: - waits for completion of a task (killable)
4906 * @x: holds the state of this particular completion
4908 * This waits to be signaled for completion of a specific task. It can be
4909 * interrupted by a kill signal.
4911 int __sched wait_for_completion_killable(struct completion *x)
4913 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4914 if (t == -ERESTARTSYS)
4915 return t;
4916 return 0;
4918 EXPORT_SYMBOL(wait_for_completion_killable);
4921 * try_wait_for_completion - try to decrement a completion without blocking
4922 * @x: completion structure
4924 * Returns: 0 if a decrement cannot be done without blocking
4925 * 1 if a decrement succeeded.
4927 * If a completion is being used as a counting completion,
4928 * attempt to decrement the counter without blocking. This
4929 * enables us to avoid waiting if the resource the completion
4930 * is protecting is not available.
4932 bool try_wait_for_completion(struct completion *x)
4934 int ret = 1;
4936 spin_lock_irq(&x->wait.lock);
4937 if (!x->done)
4938 ret = 0;
4939 else
4940 x->done--;
4941 spin_unlock_irq(&x->wait.lock);
4942 return ret;
4944 EXPORT_SYMBOL(try_wait_for_completion);
4947 * completion_done - Test to see if a completion has any waiters
4948 * @x: completion structure
4950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4951 * 1 if there are no waiters.
4954 bool completion_done(struct completion *x)
4956 int ret = 1;
4958 spin_lock_irq(&x->wait.lock);
4959 if (!x->done)
4960 ret = 0;
4961 spin_unlock_irq(&x->wait.lock);
4962 return ret;
4964 EXPORT_SYMBOL(completion_done);
4966 static long __sched
4967 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4969 unsigned long flags;
4970 wait_queue_t wait;
4972 init_waitqueue_entry(&wait, current);
4974 __set_current_state(state);
4976 spin_lock_irqsave(&q->lock, flags);
4977 __add_wait_queue(q, &wait);
4978 spin_unlock(&q->lock);
4979 timeout = schedule_timeout(timeout);
4980 spin_lock_irq(&q->lock);
4981 __remove_wait_queue(q, &wait);
4982 spin_unlock_irqrestore(&q->lock, flags);
4984 return timeout;
4987 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4991 EXPORT_SYMBOL(interruptible_sleep_on);
4993 long __sched
4994 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4998 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5000 void __sched sleep_on(wait_queue_head_t *q)
5002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5004 EXPORT_SYMBOL(sleep_on);
5006 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5010 EXPORT_SYMBOL(sleep_on_timeout);
5012 #ifdef CONFIG_RT_MUTEXES
5015 * rt_mutex_setprio - set the current priority of a task
5016 * @p: task
5017 * @prio: prio value (kernel-internal form)
5019 * This function changes the 'effective' priority of a task. It does
5020 * not touch ->normal_prio like __setscheduler().
5022 * Used by the rt_mutex code to implement priority inheritance logic.
5024 void rt_mutex_setprio(struct task_struct *p, int prio)
5026 unsigned long flags;
5027 int oldprio, on_rq, running;
5028 struct rq *rq;
5029 const struct sched_class *prev_class = p->sched_class;
5031 BUG_ON(prio < 0 || prio > MAX_PRIO);
5033 rq = task_rq_lock(p, &flags);
5034 update_rq_clock(rq);
5036 oldprio = p->prio;
5037 on_rq = p->se.on_rq;
5038 running = task_current(rq, p);
5039 if (on_rq)
5040 dequeue_task(rq, p, 0);
5041 if (running)
5042 p->sched_class->put_prev_task(rq, p);
5044 if (rt_prio(prio))
5045 p->sched_class = &rt_sched_class;
5046 else
5047 p->sched_class = &fair_sched_class;
5049 p->prio = prio;
5051 if (running)
5052 p->sched_class->set_curr_task(rq);
5053 if (on_rq) {
5054 enqueue_task(rq, p, 0);
5056 check_class_changed(rq, p, prev_class, oldprio, running);
5058 task_rq_unlock(rq, &flags);
5061 #endif
5063 void set_user_nice(struct task_struct *p, long nice)
5065 int old_prio, delta, on_rq;
5066 unsigned long flags;
5067 struct rq *rq;
5069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5070 return;
5072 * We have to be careful, if called from sys_setpriority(),
5073 * the task might be in the middle of scheduling on another CPU.
5075 rq = task_rq_lock(p, &flags);
5076 update_rq_clock(rq);
5078 * The RT priorities are set via sched_setscheduler(), but we still
5079 * allow the 'normal' nice value to be set - but as expected
5080 * it wont have any effect on scheduling until the task is
5081 * SCHED_FIFO/SCHED_RR:
5083 if (task_has_rt_policy(p)) {
5084 p->static_prio = NICE_TO_PRIO(nice);
5085 goto out_unlock;
5087 on_rq = p->se.on_rq;
5088 if (on_rq)
5089 dequeue_task(rq, p, 0);
5091 p->static_prio = NICE_TO_PRIO(nice);
5092 set_load_weight(p);
5093 old_prio = p->prio;
5094 p->prio = effective_prio(p);
5095 delta = p->prio - old_prio;
5097 if (on_rq) {
5098 enqueue_task(rq, p, 0);
5100 * If the task increased its priority or is running and
5101 * lowered its priority, then reschedule its CPU:
5103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5104 resched_task(rq->curr);
5106 out_unlock:
5107 task_rq_unlock(rq, &flags);
5109 EXPORT_SYMBOL(set_user_nice);
5112 * can_nice - check if a task can reduce its nice value
5113 * @p: task
5114 * @nice: nice value
5116 int can_nice(const struct task_struct *p, const int nice)
5118 /* convert nice value [19,-20] to rlimit style value [1,40] */
5119 int nice_rlim = 20 - nice;
5121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5122 capable(CAP_SYS_NICE));
5125 #ifdef __ARCH_WANT_SYS_NICE
5128 * sys_nice - change the priority of the current process.
5129 * @increment: priority increment
5131 * sys_setpriority is a more generic, but much slower function that
5132 * does similar things.
5134 SYSCALL_DEFINE1(nice, int, increment)
5136 long nice, retval;
5139 * Setpriority might change our priority at the same moment.
5140 * We don't have to worry. Conceptually one call occurs first
5141 * and we have a single winner.
5143 if (increment < -40)
5144 increment = -40;
5145 if (increment > 40)
5146 increment = 40;
5148 nice = PRIO_TO_NICE(current->static_prio) + increment;
5149 if (nice < -20)
5150 nice = -20;
5151 if (nice > 19)
5152 nice = 19;
5154 if (increment < 0 && !can_nice(current, nice))
5155 return -EPERM;
5157 retval = security_task_setnice(current, nice);
5158 if (retval)
5159 return retval;
5161 set_user_nice(current, nice);
5162 return 0;
5165 #endif
5168 * task_prio - return the priority value of a given task.
5169 * @p: the task in question.
5171 * This is the priority value as seen by users in /proc.
5172 * RT tasks are offset by -200. Normal tasks are centered
5173 * around 0, value goes from -16 to +15.
5175 int task_prio(const struct task_struct *p)
5177 return p->prio - MAX_RT_PRIO;
5181 * task_nice - return the nice value of a given task.
5182 * @p: the task in question.
5184 int task_nice(const struct task_struct *p)
5186 return TASK_NICE(p);
5188 EXPORT_SYMBOL(task_nice);
5191 * idle_cpu - is a given cpu idle currently?
5192 * @cpu: the processor in question.
5194 int idle_cpu(int cpu)
5196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5200 * idle_task - return the idle task for a given cpu.
5201 * @cpu: the processor in question.
5203 struct task_struct *idle_task(int cpu)
5205 return cpu_rq(cpu)->idle;
5209 * find_process_by_pid - find a process with a matching PID value.
5210 * @pid: the pid in question.
5212 static struct task_struct *find_process_by_pid(pid_t pid)
5214 return pid ? find_task_by_vpid(pid) : current;
5217 /* Actually do priority change: must hold rq lock. */
5218 static void
5219 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5221 BUG_ON(p->se.on_rq);
5223 p->policy = policy;
5224 switch (p->policy) {
5225 case SCHED_NORMAL:
5226 case SCHED_BATCH:
5227 case SCHED_IDLE:
5228 p->sched_class = &fair_sched_class;
5229 break;
5230 case SCHED_FIFO:
5231 case SCHED_RR:
5232 p->sched_class = &rt_sched_class;
5233 break;
5236 p->rt_priority = prio;
5237 p->normal_prio = normal_prio(p);
5238 /* we are holding p->pi_lock already */
5239 p->prio = rt_mutex_getprio(p);
5240 set_load_weight(p);
5244 * check the target process has a UID that matches the current process's
5246 static bool check_same_owner(struct task_struct *p)
5248 const struct cred *cred = current_cred(), *pcred;
5249 bool match;
5251 rcu_read_lock();
5252 pcred = __task_cred(p);
5253 match = (cred->euid == pcred->euid ||
5254 cred->euid == pcred->uid);
5255 rcu_read_unlock();
5256 return match;
5259 static int __sched_setscheduler(struct task_struct *p, int policy,
5260 struct sched_param *param, bool user)
5262 int retval, oldprio, oldpolicy = -1, on_rq, running;
5263 unsigned long flags;
5264 const struct sched_class *prev_class = p->sched_class;
5265 struct rq *rq;
5267 /* may grab non-irq protected spin_locks */
5268 BUG_ON(in_interrupt());
5269 recheck:
5270 /* double check policy once rq lock held */
5271 if (policy < 0)
5272 policy = oldpolicy = p->policy;
5273 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5274 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5275 policy != SCHED_IDLE)
5276 return -EINVAL;
5278 * Valid priorities for SCHED_FIFO and SCHED_RR are
5279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5280 * SCHED_BATCH and SCHED_IDLE is 0.
5282 if (param->sched_priority < 0 ||
5283 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5284 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5285 return -EINVAL;
5286 if (rt_policy(policy) != (param->sched_priority != 0))
5287 return -EINVAL;
5290 * Allow unprivileged RT tasks to decrease priority:
5292 if (user && !capable(CAP_SYS_NICE)) {
5293 if (rt_policy(policy)) {
5294 unsigned long rlim_rtprio;
5296 if (!lock_task_sighand(p, &flags))
5297 return -ESRCH;
5298 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5299 unlock_task_sighand(p, &flags);
5301 /* can't set/change the rt policy */
5302 if (policy != p->policy && !rlim_rtprio)
5303 return -EPERM;
5305 /* can't increase priority */
5306 if (param->sched_priority > p->rt_priority &&
5307 param->sched_priority > rlim_rtprio)
5308 return -EPERM;
5311 * Like positive nice levels, dont allow tasks to
5312 * move out of SCHED_IDLE either:
5314 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5315 return -EPERM;
5317 /* can't change other user's priorities */
5318 if (!check_same_owner(p))
5319 return -EPERM;
5322 if (user) {
5323 #ifdef CONFIG_RT_GROUP_SCHED
5325 * Do not allow realtime tasks into groups that have no runtime
5326 * assigned.
5328 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5329 task_group(p)->rt_bandwidth.rt_runtime == 0)
5330 return -EPERM;
5331 #endif
5333 retval = security_task_setscheduler(p, policy, param);
5334 if (retval)
5335 return retval;
5339 * make sure no PI-waiters arrive (or leave) while we are
5340 * changing the priority of the task:
5342 spin_lock_irqsave(&p->pi_lock, flags);
5344 * To be able to change p->policy safely, the apropriate
5345 * runqueue lock must be held.
5347 rq = __task_rq_lock(p);
5348 /* recheck policy now with rq lock held */
5349 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5350 policy = oldpolicy = -1;
5351 __task_rq_unlock(rq);
5352 spin_unlock_irqrestore(&p->pi_lock, flags);
5353 goto recheck;
5355 update_rq_clock(rq);
5356 on_rq = p->se.on_rq;
5357 running = task_current(rq, p);
5358 if (on_rq)
5359 deactivate_task(rq, p, 0);
5360 if (running)
5361 p->sched_class->put_prev_task(rq, p);
5363 oldprio = p->prio;
5364 __setscheduler(rq, p, policy, param->sched_priority);
5366 if (running)
5367 p->sched_class->set_curr_task(rq);
5368 if (on_rq) {
5369 activate_task(rq, p, 0);
5371 check_class_changed(rq, p, prev_class, oldprio, running);
5373 __task_rq_unlock(rq);
5374 spin_unlock_irqrestore(&p->pi_lock, flags);
5376 rt_mutex_adjust_pi(p);
5378 return 0;
5382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5383 * @p: the task in question.
5384 * @policy: new policy.
5385 * @param: structure containing the new RT priority.
5387 * NOTE that the task may be already dead.
5389 int sched_setscheduler(struct task_struct *p, int policy,
5390 struct sched_param *param)
5392 return __sched_setscheduler(p, policy, param, true);
5394 EXPORT_SYMBOL_GPL(sched_setscheduler);
5397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5398 * @p: the task in question.
5399 * @policy: new policy.
5400 * @param: structure containing the new RT priority.
5402 * Just like sched_setscheduler, only don't bother checking if the
5403 * current context has permission. For example, this is needed in
5404 * stop_machine(): we create temporary high priority worker threads,
5405 * but our caller might not have that capability.
5407 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5408 struct sched_param *param)
5410 return __sched_setscheduler(p, policy, param, false);
5413 static int
5414 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5416 struct sched_param lparam;
5417 struct task_struct *p;
5418 int retval;
5420 if (!param || pid < 0)
5421 return -EINVAL;
5422 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5423 return -EFAULT;
5425 rcu_read_lock();
5426 retval = -ESRCH;
5427 p = find_process_by_pid(pid);
5428 if (p != NULL)
5429 retval = sched_setscheduler(p, policy, &lparam);
5430 rcu_read_unlock();
5432 return retval;
5436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5437 * @pid: the pid in question.
5438 * @policy: new policy.
5439 * @param: structure containing the new RT priority.
5441 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5442 struct sched_param __user *, param)
5444 /* negative values for policy are not valid */
5445 if (policy < 0)
5446 return -EINVAL;
5448 return do_sched_setscheduler(pid, policy, param);
5452 * sys_sched_setparam - set/change the RT priority of a thread
5453 * @pid: the pid in question.
5454 * @param: structure containing the new RT priority.
5456 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5458 return do_sched_setscheduler(pid, -1, param);
5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5463 * @pid: the pid in question.
5465 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5467 struct task_struct *p;
5468 int retval;
5470 if (pid < 0)
5471 return -EINVAL;
5473 retval = -ESRCH;
5474 read_lock(&tasklist_lock);
5475 p = find_process_by_pid(pid);
5476 if (p) {
5477 retval = security_task_getscheduler(p);
5478 if (!retval)
5479 retval = p->policy;
5481 read_unlock(&tasklist_lock);
5482 return retval;
5486 * sys_sched_getscheduler - get the RT priority of a thread
5487 * @pid: the pid in question.
5488 * @param: structure containing the RT priority.
5490 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5492 struct sched_param lp;
5493 struct task_struct *p;
5494 int retval;
5496 if (!param || pid < 0)
5497 return -EINVAL;
5499 read_lock(&tasklist_lock);
5500 p = find_process_by_pid(pid);
5501 retval = -ESRCH;
5502 if (!p)
5503 goto out_unlock;
5505 retval = security_task_getscheduler(p);
5506 if (retval)
5507 goto out_unlock;
5509 lp.sched_priority = p->rt_priority;
5510 read_unlock(&tasklist_lock);
5513 * This one might sleep, we cannot do it with a spinlock held ...
5515 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5517 return retval;
5519 out_unlock:
5520 read_unlock(&tasklist_lock);
5521 return retval;
5524 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5526 cpumask_var_t cpus_allowed, new_mask;
5527 struct task_struct *p;
5528 int retval;
5530 get_online_cpus();
5531 read_lock(&tasklist_lock);
5533 p = find_process_by_pid(pid);
5534 if (!p) {
5535 read_unlock(&tasklist_lock);
5536 put_online_cpus();
5537 return -ESRCH;
5541 * It is not safe to call set_cpus_allowed with the
5542 * tasklist_lock held. We will bump the task_struct's
5543 * usage count and then drop tasklist_lock.
5545 get_task_struct(p);
5546 read_unlock(&tasklist_lock);
5548 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5549 retval = -ENOMEM;
5550 goto out_put_task;
5552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5553 retval = -ENOMEM;
5554 goto out_free_cpus_allowed;
5556 retval = -EPERM;
5557 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5558 goto out_unlock;
5560 retval = security_task_setscheduler(p, 0, NULL);
5561 if (retval)
5562 goto out_unlock;
5564 cpuset_cpus_allowed(p, cpus_allowed);
5565 cpumask_and(new_mask, in_mask, cpus_allowed);
5566 again:
5567 retval = set_cpus_allowed_ptr(p, new_mask);
5569 if (!retval) {
5570 cpuset_cpus_allowed(p, cpus_allowed);
5571 if (!cpumask_subset(new_mask, cpus_allowed)) {
5573 * We must have raced with a concurrent cpuset
5574 * update. Just reset the cpus_allowed to the
5575 * cpuset's cpus_allowed
5577 cpumask_copy(new_mask, cpus_allowed);
5578 goto again;
5581 out_unlock:
5582 free_cpumask_var(new_mask);
5583 out_free_cpus_allowed:
5584 free_cpumask_var(cpus_allowed);
5585 out_put_task:
5586 put_task_struct(p);
5587 put_online_cpus();
5588 return retval;
5591 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5592 struct cpumask *new_mask)
5594 if (len < cpumask_size())
5595 cpumask_clear(new_mask);
5596 else if (len > cpumask_size())
5597 len = cpumask_size();
5599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5603 * sys_sched_setaffinity - set the cpu affinity of a process
5604 * @pid: pid of the process
5605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5606 * @user_mask_ptr: user-space pointer to the new cpu mask
5608 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5609 unsigned long __user *, user_mask_ptr)
5611 cpumask_var_t new_mask;
5612 int retval;
5614 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5615 return -ENOMEM;
5617 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5618 if (retval == 0)
5619 retval = sched_setaffinity(pid, new_mask);
5620 free_cpumask_var(new_mask);
5621 return retval;
5624 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5626 struct task_struct *p;
5627 int retval;
5629 get_online_cpus();
5630 read_lock(&tasklist_lock);
5632 retval = -ESRCH;
5633 p = find_process_by_pid(pid);
5634 if (!p)
5635 goto out_unlock;
5637 retval = security_task_getscheduler(p);
5638 if (retval)
5639 goto out_unlock;
5641 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5643 out_unlock:
5644 read_unlock(&tasklist_lock);
5645 put_online_cpus();
5647 return retval;
5651 * sys_sched_getaffinity - get the cpu affinity of a process
5652 * @pid: pid of the process
5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5656 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5657 unsigned long __user *, user_mask_ptr)
5659 int ret;
5660 cpumask_var_t mask;
5662 if (len < cpumask_size())
5663 return -EINVAL;
5665 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5666 return -ENOMEM;
5668 ret = sched_getaffinity(pid, mask);
5669 if (ret == 0) {
5670 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5671 ret = -EFAULT;
5672 else
5673 ret = cpumask_size();
5675 free_cpumask_var(mask);
5677 return ret;
5681 * sys_sched_yield - yield the current processor to other threads.
5683 * This function yields the current CPU to other tasks. If there are no
5684 * other threads running on this CPU then this function will return.
5686 SYSCALL_DEFINE0(sched_yield)
5688 struct rq *rq = this_rq_lock();
5690 schedstat_inc(rq, yld_count);
5691 current->sched_class->yield_task(rq);
5694 * Since we are going to call schedule() anyway, there's
5695 * no need to preempt or enable interrupts:
5697 __release(rq->lock);
5698 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5699 _raw_spin_unlock(&rq->lock);
5700 preempt_enable_no_resched();
5702 schedule();
5704 return 0;
5707 static void __cond_resched(void)
5709 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5710 __might_sleep(__FILE__, __LINE__);
5711 #endif
5713 * The BKS might be reacquired before we have dropped
5714 * PREEMPT_ACTIVE, which could trigger a second
5715 * cond_resched() call.
5717 do {
5718 add_preempt_count(PREEMPT_ACTIVE);
5719 schedule();
5720 sub_preempt_count(PREEMPT_ACTIVE);
5721 } while (need_resched());
5724 int __sched _cond_resched(void)
5726 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5727 system_state == SYSTEM_RUNNING) {
5728 __cond_resched();
5729 return 1;
5731 return 0;
5733 EXPORT_SYMBOL(_cond_resched);
5736 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5737 * call schedule, and on return reacquire the lock.
5739 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5740 * operations here to prevent schedule() from being called twice (once via
5741 * spin_unlock(), once by hand).
5743 int cond_resched_lock(spinlock_t *lock)
5745 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5746 int ret = 0;
5748 if (spin_needbreak(lock) || resched) {
5749 spin_unlock(lock);
5750 if (resched && need_resched())
5751 __cond_resched();
5752 else
5753 cpu_relax();
5754 ret = 1;
5755 spin_lock(lock);
5757 return ret;
5759 EXPORT_SYMBOL(cond_resched_lock);
5761 int __sched cond_resched_softirq(void)
5763 BUG_ON(!in_softirq());
5765 if (need_resched() && system_state == SYSTEM_RUNNING) {
5766 local_bh_enable();
5767 __cond_resched();
5768 local_bh_disable();
5769 return 1;
5771 return 0;
5773 EXPORT_SYMBOL(cond_resched_softirq);
5776 * yield - yield the current processor to other threads.
5778 * This is a shortcut for kernel-space yielding - it marks the
5779 * thread runnable and calls sys_sched_yield().
5781 void __sched yield(void)
5783 set_current_state(TASK_RUNNING);
5784 sys_sched_yield();
5786 EXPORT_SYMBOL(yield);
5789 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5790 * that process accounting knows that this is a task in IO wait state.
5792 * But don't do that if it is a deliberate, throttling IO wait (this task
5793 * has set its backing_dev_info: the queue against which it should throttle)
5795 void __sched io_schedule(void)
5797 struct rq *rq = &__raw_get_cpu_var(runqueues);
5799 delayacct_blkio_start();
5800 atomic_inc(&rq->nr_iowait);
5801 schedule();
5802 atomic_dec(&rq->nr_iowait);
5803 delayacct_blkio_end();
5805 EXPORT_SYMBOL(io_schedule);
5807 long __sched io_schedule_timeout(long timeout)
5809 struct rq *rq = &__raw_get_cpu_var(runqueues);
5810 long ret;
5812 delayacct_blkio_start();
5813 atomic_inc(&rq->nr_iowait);
5814 ret = schedule_timeout(timeout);
5815 atomic_dec(&rq->nr_iowait);
5816 delayacct_blkio_end();
5817 return ret;
5821 * sys_sched_get_priority_max - return maximum RT priority.
5822 * @policy: scheduling class.
5824 * this syscall returns the maximum rt_priority that can be used
5825 * by a given scheduling class.
5827 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5829 int ret = -EINVAL;
5831 switch (policy) {
5832 case SCHED_FIFO:
5833 case SCHED_RR:
5834 ret = MAX_USER_RT_PRIO-1;
5835 break;
5836 case SCHED_NORMAL:
5837 case SCHED_BATCH:
5838 case SCHED_IDLE:
5839 ret = 0;
5840 break;
5842 return ret;
5846 * sys_sched_get_priority_min - return minimum RT priority.
5847 * @policy: scheduling class.
5849 * this syscall returns the minimum rt_priority that can be used
5850 * by a given scheduling class.
5852 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5854 int ret = -EINVAL;
5856 switch (policy) {
5857 case SCHED_FIFO:
5858 case SCHED_RR:
5859 ret = 1;
5860 break;
5861 case SCHED_NORMAL:
5862 case SCHED_BATCH:
5863 case SCHED_IDLE:
5864 ret = 0;
5866 return ret;
5870 * sys_sched_rr_get_interval - return the default timeslice of a process.
5871 * @pid: pid of the process.
5872 * @interval: userspace pointer to the timeslice value.
5874 * this syscall writes the default timeslice value of a given process
5875 * into the user-space timespec buffer. A value of '0' means infinity.
5877 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5878 struct timespec __user *, interval)
5880 struct task_struct *p;
5881 unsigned int time_slice;
5882 int retval;
5883 struct timespec t;
5885 if (pid < 0)
5886 return -EINVAL;
5888 retval = -ESRCH;
5889 read_lock(&tasklist_lock);
5890 p = find_process_by_pid(pid);
5891 if (!p)
5892 goto out_unlock;
5894 retval = security_task_getscheduler(p);
5895 if (retval)
5896 goto out_unlock;
5899 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5900 * tasks that are on an otherwise idle runqueue:
5902 time_slice = 0;
5903 if (p->policy == SCHED_RR) {
5904 time_slice = DEF_TIMESLICE;
5905 } else if (p->policy != SCHED_FIFO) {
5906 struct sched_entity *se = &p->se;
5907 unsigned long flags;
5908 struct rq *rq;
5910 rq = task_rq_lock(p, &flags);
5911 if (rq->cfs.load.weight)
5912 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5913 task_rq_unlock(rq, &flags);
5915 read_unlock(&tasklist_lock);
5916 jiffies_to_timespec(time_slice, &t);
5917 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5918 return retval;
5920 out_unlock:
5921 read_unlock(&tasklist_lock);
5922 return retval;
5925 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5927 void sched_show_task(struct task_struct *p)
5929 unsigned long free = 0;
5930 unsigned state;
5932 state = p->state ? __ffs(p->state) + 1 : 0;
5933 printk(KERN_INFO "%-13.13s %c", p->comm,
5934 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5935 #if BITS_PER_LONG == 32
5936 if (state == TASK_RUNNING)
5937 printk(KERN_CONT " running ");
5938 else
5939 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5940 #else
5941 if (state == TASK_RUNNING)
5942 printk(KERN_CONT " running task ");
5943 else
5944 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5945 #endif
5946 #ifdef CONFIG_DEBUG_STACK_USAGE
5947 free = stack_not_used(p);
5948 #endif
5949 printk(KERN_CONT "%5lu %5d %6d\n", free,
5950 task_pid_nr(p), task_pid_nr(p->real_parent));
5952 show_stack(p, NULL);
5955 void show_state_filter(unsigned long state_filter)
5957 struct task_struct *g, *p;
5959 #if BITS_PER_LONG == 32
5960 printk(KERN_INFO
5961 " task PC stack pid father\n");
5962 #else
5963 printk(KERN_INFO
5964 " task PC stack pid father\n");
5965 #endif
5966 read_lock(&tasklist_lock);
5967 do_each_thread(g, p) {
5969 * reset the NMI-timeout, listing all files on a slow
5970 * console might take alot of time:
5972 touch_nmi_watchdog();
5973 if (!state_filter || (p->state & state_filter))
5974 sched_show_task(p);
5975 } while_each_thread(g, p);
5977 touch_all_softlockup_watchdogs();
5979 #ifdef CONFIG_SCHED_DEBUG
5980 sysrq_sched_debug_show();
5981 #endif
5982 read_unlock(&tasklist_lock);
5984 * Only show locks if all tasks are dumped:
5986 if (state_filter == -1)
5987 debug_show_all_locks();
5990 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5992 idle->sched_class = &idle_sched_class;
5996 * init_idle - set up an idle thread for a given CPU
5997 * @idle: task in question
5998 * @cpu: cpu the idle task belongs to
6000 * NOTE: this function does not set the idle thread's NEED_RESCHED
6001 * flag, to make booting more robust.
6003 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6005 struct rq *rq = cpu_rq(cpu);
6006 unsigned long flags;
6008 spin_lock_irqsave(&rq->lock, flags);
6010 __sched_fork(idle);
6011 idle->se.exec_start = sched_clock();
6013 idle->prio = idle->normal_prio = MAX_PRIO;
6014 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6015 __set_task_cpu(idle, cpu);
6017 rq->curr = rq->idle = idle;
6018 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6019 idle->oncpu = 1;
6020 #endif
6021 spin_unlock_irqrestore(&rq->lock, flags);
6023 /* Set the preempt count _outside_ the spinlocks! */
6024 #if defined(CONFIG_PREEMPT)
6025 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6026 #else
6027 task_thread_info(idle)->preempt_count = 0;
6028 #endif
6030 * The idle tasks have their own, simple scheduling class:
6032 idle->sched_class = &idle_sched_class;
6033 ftrace_graph_init_task(idle);
6037 * In a system that switches off the HZ timer nohz_cpu_mask
6038 * indicates which cpus entered this state. This is used
6039 * in the rcu update to wait only for active cpus. For system
6040 * which do not switch off the HZ timer nohz_cpu_mask should
6041 * always be CPU_BITS_NONE.
6043 cpumask_var_t nohz_cpu_mask;
6046 * Increase the granularity value when there are more CPUs,
6047 * because with more CPUs the 'effective latency' as visible
6048 * to users decreases. But the relationship is not linear,
6049 * so pick a second-best guess by going with the log2 of the
6050 * number of CPUs.
6052 * This idea comes from the SD scheduler of Con Kolivas:
6054 static inline void sched_init_granularity(void)
6056 unsigned int factor = 1 + ilog2(num_online_cpus());
6057 const unsigned long limit = 200000000;
6059 sysctl_sched_min_granularity *= factor;
6060 if (sysctl_sched_min_granularity > limit)
6061 sysctl_sched_min_granularity = limit;
6063 sysctl_sched_latency *= factor;
6064 if (sysctl_sched_latency > limit)
6065 sysctl_sched_latency = limit;
6067 sysctl_sched_wakeup_granularity *= factor;
6069 sysctl_sched_shares_ratelimit *= factor;
6072 #ifdef CONFIG_SMP
6074 * This is how migration works:
6076 * 1) we queue a struct migration_req structure in the source CPU's
6077 * runqueue and wake up that CPU's migration thread.
6078 * 2) we down() the locked semaphore => thread blocks.
6079 * 3) migration thread wakes up (implicitly it forces the migrated
6080 * thread off the CPU)
6081 * 4) it gets the migration request and checks whether the migrated
6082 * task is still in the wrong runqueue.
6083 * 5) if it's in the wrong runqueue then the migration thread removes
6084 * it and puts it into the right queue.
6085 * 6) migration thread up()s the semaphore.
6086 * 7) we wake up and the migration is done.
6090 * Change a given task's CPU affinity. Migrate the thread to a
6091 * proper CPU and schedule it away if the CPU it's executing on
6092 * is removed from the allowed bitmask.
6094 * NOTE: the caller must have a valid reference to the task, the
6095 * task must not exit() & deallocate itself prematurely. The
6096 * call is not atomic; no spinlocks may be held.
6098 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6100 struct migration_req req;
6101 unsigned long flags;
6102 struct rq *rq;
6103 int ret = 0;
6105 rq = task_rq_lock(p, &flags);
6106 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6107 ret = -EINVAL;
6108 goto out;
6111 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6112 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6113 ret = -EINVAL;
6114 goto out;
6117 if (p->sched_class->set_cpus_allowed)
6118 p->sched_class->set_cpus_allowed(p, new_mask);
6119 else {
6120 cpumask_copy(&p->cpus_allowed, new_mask);
6121 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6124 /* Can the task run on the task's current CPU? If so, we're done */
6125 if (cpumask_test_cpu(task_cpu(p), new_mask))
6126 goto out;
6128 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6129 /* Need help from migration thread: drop lock and wait. */
6130 task_rq_unlock(rq, &flags);
6131 wake_up_process(rq->migration_thread);
6132 wait_for_completion(&req.done);
6133 tlb_migrate_finish(p->mm);
6134 return 0;
6136 out:
6137 task_rq_unlock(rq, &flags);
6139 return ret;
6141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6144 * Move (not current) task off this cpu, onto dest cpu. We're doing
6145 * this because either it can't run here any more (set_cpus_allowed()
6146 * away from this CPU, or CPU going down), or because we're
6147 * attempting to rebalance this task on exec (sched_exec).
6149 * So we race with normal scheduler movements, but that's OK, as long
6150 * as the task is no longer on this CPU.
6152 * Returns non-zero if task was successfully migrated.
6154 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6156 struct rq *rq_dest, *rq_src;
6157 int ret = 0, on_rq;
6159 if (unlikely(!cpu_active(dest_cpu)))
6160 return ret;
6162 rq_src = cpu_rq(src_cpu);
6163 rq_dest = cpu_rq(dest_cpu);
6165 double_rq_lock(rq_src, rq_dest);
6166 /* Already moved. */
6167 if (task_cpu(p) != src_cpu)
6168 goto done;
6169 /* Affinity changed (again). */
6170 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6171 goto fail;
6173 on_rq = p->se.on_rq;
6174 if (on_rq)
6175 deactivate_task(rq_src, p, 0);
6177 set_task_cpu(p, dest_cpu);
6178 if (on_rq) {
6179 activate_task(rq_dest, p, 0);
6180 check_preempt_curr(rq_dest, p, 0);
6182 done:
6183 ret = 1;
6184 fail:
6185 double_rq_unlock(rq_src, rq_dest);
6186 return ret;
6190 * migration_thread - this is a highprio system thread that performs
6191 * thread migration by bumping thread off CPU then 'pushing' onto
6192 * another runqueue.
6194 static int migration_thread(void *data)
6196 int cpu = (long)data;
6197 struct rq *rq;
6199 rq = cpu_rq(cpu);
6200 BUG_ON(rq->migration_thread != current);
6202 set_current_state(TASK_INTERRUPTIBLE);
6203 while (!kthread_should_stop()) {
6204 struct migration_req *req;
6205 struct list_head *head;
6207 spin_lock_irq(&rq->lock);
6209 if (cpu_is_offline(cpu)) {
6210 spin_unlock_irq(&rq->lock);
6211 goto wait_to_die;
6214 if (rq->active_balance) {
6215 active_load_balance(rq, cpu);
6216 rq->active_balance = 0;
6219 head = &rq->migration_queue;
6221 if (list_empty(head)) {
6222 spin_unlock_irq(&rq->lock);
6223 schedule();
6224 set_current_state(TASK_INTERRUPTIBLE);
6225 continue;
6227 req = list_entry(head->next, struct migration_req, list);
6228 list_del_init(head->next);
6230 spin_unlock(&rq->lock);
6231 __migrate_task(req->task, cpu, req->dest_cpu);
6232 local_irq_enable();
6234 complete(&req->done);
6236 __set_current_state(TASK_RUNNING);
6237 return 0;
6239 wait_to_die:
6240 /* Wait for kthread_stop */
6241 set_current_state(TASK_INTERRUPTIBLE);
6242 while (!kthread_should_stop()) {
6243 schedule();
6244 set_current_state(TASK_INTERRUPTIBLE);
6246 __set_current_state(TASK_RUNNING);
6247 return 0;
6250 #ifdef CONFIG_HOTPLUG_CPU
6252 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6254 int ret;
6256 local_irq_disable();
6257 ret = __migrate_task(p, src_cpu, dest_cpu);
6258 local_irq_enable();
6259 return ret;
6263 * Figure out where task on dead CPU should go, use force if necessary.
6265 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6267 int dest_cpu;
6268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6270 again:
6271 /* Look for allowed, online CPU in same node. */
6272 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6273 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6274 goto move;
6276 /* Any allowed, online CPU? */
6277 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6278 if (dest_cpu < nr_cpu_ids)
6279 goto move;
6281 /* No more Mr. Nice Guy. */
6282 if (dest_cpu >= nr_cpu_ids) {
6283 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6284 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6287 * Don't tell them about moving exiting tasks or
6288 * kernel threads (both mm NULL), since they never
6289 * leave kernel.
6291 if (p->mm && printk_ratelimit()) {
6292 printk(KERN_INFO "process %d (%s) no "
6293 "longer affine to cpu%d\n",
6294 task_pid_nr(p), p->comm, dead_cpu);
6298 move:
6299 /* It can have affinity changed while we were choosing. */
6300 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6301 goto again;
6305 * While a dead CPU has no uninterruptible tasks queued at this point,
6306 * it might still have a nonzero ->nr_uninterruptible counter, because
6307 * for performance reasons the counter is not stricly tracking tasks to
6308 * their home CPUs. So we just add the counter to another CPU's counter,
6309 * to keep the global sum constant after CPU-down:
6311 static void migrate_nr_uninterruptible(struct rq *rq_src)
6313 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6314 unsigned long flags;
6316 local_irq_save(flags);
6317 double_rq_lock(rq_src, rq_dest);
6318 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6319 rq_src->nr_uninterruptible = 0;
6320 double_rq_unlock(rq_src, rq_dest);
6321 local_irq_restore(flags);
6324 /* Run through task list and migrate tasks from the dead cpu. */
6325 static void migrate_live_tasks(int src_cpu)
6327 struct task_struct *p, *t;
6329 read_lock(&tasklist_lock);
6331 do_each_thread(t, p) {
6332 if (p == current)
6333 continue;
6335 if (task_cpu(p) == src_cpu)
6336 move_task_off_dead_cpu(src_cpu, p);
6337 } while_each_thread(t, p);
6339 read_unlock(&tasklist_lock);
6343 * Schedules idle task to be the next runnable task on current CPU.
6344 * It does so by boosting its priority to highest possible.
6345 * Used by CPU offline code.
6347 void sched_idle_next(void)
6349 int this_cpu = smp_processor_id();
6350 struct rq *rq = cpu_rq(this_cpu);
6351 struct task_struct *p = rq->idle;
6352 unsigned long flags;
6354 /* cpu has to be offline */
6355 BUG_ON(cpu_online(this_cpu));
6358 * Strictly not necessary since rest of the CPUs are stopped by now
6359 * and interrupts disabled on the current cpu.
6361 spin_lock_irqsave(&rq->lock, flags);
6363 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6365 update_rq_clock(rq);
6366 activate_task(rq, p, 0);
6368 spin_unlock_irqrestore(&rq->lock, flags);
6372 * Ensures that the idle task is using init_mm right before its cpu goes
6373 * offline.
6375 void idle_task_exit(void)
6377 struct mm_struct *mm = current->active_mm;
6379 BUG_ON(cpu_online(smp_processor_id()));
6381 if (mm != &init_mm)
6382 switch_mm(mm, &init_mm, current);
6383 mmdrop(mm);
6386 /* called under rq->lock with disabled interrupts */
6387 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6389 struct rq *rq = cpu_rq(dead_cpu);
6391 /* Must be exiting, otherwise would be on tasklist. */
6392 BUG_ON(!p->exit_state);
6394 /* Cannot have done final schedule yet: would have vanished. */
6395 BUG_ON(p->state == TASK_DEAD);
6397 get_task_struct(p);
6400 * Drop lock around migration; if someone else moves it,
6401 * that's OK. No task can be added to this CPU, so iteration is
6402 * fine.
6404 spin_unlock_irq(&rq->lock);
6405 move_task_off_dead_cpu(dead_cpu, p);
6406 spin_lock_irq(&rq->lock);
6408 put_task_struct(p);
6411 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6412 static void migrate_dead_tasks(unsigned int dead_cpu)
6414 struct rq *rq = cpu_rq(dead_cpu);
6415 struct task_struct *next;
6417 for ( ; ; ) {
6418 if (!rq->nr_running)
6419 break;
6420 update_rq_clock(rq);
6421 next = pick_next_task(rq, rq->curr);
6422 if (!next)
6423 break;
6424 next->sched_class->put_prev_task(rq, next);
6425 migrate_dead(dead_cpu, next);
6429 #endif /* CONFIG_HOTPLUG_CPU */
6431 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6433 static struct ctl_table sd_ctl_dir[] = {
6435 .procname = "sched_domain",
6436 .mode = 0555,
6438 {0, },
6441 static struct ctl_table sd_ctl_root[] = {
6443 .ctl_name = CTL_KERN,
6444 .procname = "kernel",
6445 .mode = 0555,
6446 .child = sd_ctl_dir,
6448 {0, },
6451 static struct ctl_table *sd_alloc_ctl_entry(int n)
6453 struct ctl_table *entry =
6454 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6456 return entry;
6459 static void sd_free_ctl_entry(struct ctl_table **tablep)
6461 struct ctl_table *entry;
6464 * In the intermediate directories, both the child directory and
6465 * procname are dynamically allocated and could fail but the mode
6466 * will always be set. In the lowest directory the names are
6467 * static strings and all have proc handlers.
6469 for (entry = *tablep; entry->mode; entry++) {
6470 if (entry->child)
6471 sd_free_ctl_entry(&entry->child);
6472 if (entry->proc_handler == NULL)
6473 kfree(entry->procname);
6476 kfree(*tablep);
6477 *tablep = NULL;
6480 static void
6481 set_table_entry(struct ctl_table *entry,
6482 const char *procname, void *data, int maxlen,
6483 mode_t mode, proc_handler *proc_handler)
6485 entry->procname = procname;
6486 entry->data = data;
6487 entry->maxlen = maxlen;
6488 entry->mode = mode;
6489 entry->proc_handler = proc_handler;
6492 static struct ctl_table *
6493 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6495 struct ctl_table *table = sd_alloc_ctl_entry(13);
6497 if (table == NULL)
6498 return NULL;
6500 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6501 sizeof(long), 0644, proc_doulongvec_minmax);
6502 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6503 sizeof(long), 0644, proc_doulongvec_minmax);
6504 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6505 sizeof(int), 0644, proc_dointvec_minmax);
6506 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6507 sizeof(int), 0644, proc_dointvec_minmax);
6508 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6509 sizeof(int), 0644, proc_dointvec_minmax);
6510 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6511 sizeof(int), 0644, proc_dointvec_minmax);
6512 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6513 sizeof(int), 0644, proc_dointvec_minmax);
6514 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6515 sizeof(int), 0644, proc_dointvec_minmax);
6516 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6517 sizeof(int), 0644, proc_dointvec_minmax);
6518 set_table_entry(&table[9], "cache_nice_tries",
6519 &sd->cache_nice_tries,
6520 sizeof(int), 0644, proc_dointvec_minmax);
6521 set_table_entry(&table[10], "flags", &sd->flags,
6522 sizeof(int), 0644, proc_dointvec_minmax);
6523 set_table_entry(&table[11], "name", sd->name,
6524 CORENAME_MAX_SIZE, 0444, proc_dostring);
6525 /* &table[12] is terminator */
6527 return table;
6530 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6532 struct ctl_table *entry, *table;
6533 struct sched_domain *sd;
6534 int domain_num = 0, i;
6535 char buf[32];
6537 for_each_domain(cpu, sd)
6538 domain_num++;
6539 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6540 if (table == NULL)
6541 return NULL;
6543 i = 0;
6544 for_each_domain(cpu, sd) {
6545 snprintf(buf, 32, "domain%d", i);
6546 entry->procname = kstrdup(buf, GFP_KERNEL);
6547 entry->mode = 0555;
6548 entry->child = sd_alloc_ctl_domain_table(sd);
6549 entry++;
6550 i++;
6552 return table;
6555 static struct ctl_table_header *sd_sysctl_header;
6556 static void register_sched_domain_sysctl(void)
6558 int i, cpu_num = num_online_cpus();
6559 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6560 char buf[32];
6562 WARN_ON(sd_ctl_dir[0].child);
6563 sd_ctl_dir[0].child = entry;
6565 if (entry == NULL)
6566 return;
6568 for_each_online_cpu(i) {
6569 snprintf(buf, 32, "cpu%d", i);
6570 entry->procname = kstrdup(buf, GFP_KERNEL);
6571 entry->mode = 0555;
6572 entry->child = sd_alloc_ctl_cpu_table(i);
6573 entry++;
6576 WARN_ON(sd_sysctl_header);
6577 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6580 /* may be called multiple times per register */
6581 static void unregister_sched_domain_sysctl(void)
6583 if (sd_sysctl_header)
6584 unregister_sysctl_table(sd_sysctl_header);
6585 sd_sysctl_header = NULL;
6586 if (sd_ctl_dir[0].child)
6587 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6589 #else
6590 static void register_sched_domain_sysctl(void)
6593 static void unregister_sched_domain_sysctl(void)
6596 #endif
6598 static void set_rq_online(struct rq *rq)
6600 if (!rq->online) {
6601 const struct sched_class *class;
6603 cpumask_set_cpu(rq->cpu, rq->rd->online);
6604 rq->online = 1;
6606 for_each_class(class) {
6607 if (class->rq_online)
6608 class->rq_online(rq);
6613 static void set_rq_offline(struct rq *rq)
6615 if (rq->online) {
6616 const struct sched_class *class;
6618 for_each_class(class) {
6619 if (class->rq_offline)
6620 class->rq_offline(rq);
6623 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6624 rq->online = 0;
6629 * migration_call - callback that gets triggered when a CPU is added.
6630 * Here we can start up the necessary migration thread for the new CPU.
6632 static int __cpuinit
6633 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6635 struct task_struct *p;
6636 int cpu = (long)hcpu;
6637 unsigned long flags;
6638 struct rq *rq;
6640 switch (action) {
6642 case CPU_UP_PREPARE:
6643 case CPU_UP_PREPARE_FROZEN:
6644 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6645 if (IS_ERR(p))
6646 return NOTIFY_BAD;
6647 kthread_bind(p, cpu);
6648 /* Must be high prio: stop_machine expects to yield to it. */
6649 rq = task_rq_lock(p, &flags);
6650 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6651 task_rq_unlock(rq, &flags);
6652 cpu_rq(cpu)->migration_thread = p;
6653 break;
6655 case CPU_ONLINE:
6656 case CPU_ONLINE_FROZEN:
6657 /* Strictly unnecessary, as first user will wake it. */
6658 wake_up_process(cpu_rq(cpu)->migration_thread);
6660 /* Update our root-domain */
6661 rq = cpu_rq(cpu);
6662 spin_lock_irqsave(&rq->lock, flags);
6663 if (rq->rd) {
6664 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6666 set_rq_online(rq);
6668 spin_unlock_irqrestore(&rq->lock, flags);
6669 break;
6671 #ifdef CONFIG_HOTPLUG_CPU
6672 case CPU_UP_CANCELED:
6673 case CPU_UP_CANCELED_FROZEN:
6674 if (!cpu_rq(cpu)->migration_thread)
6675 break;
6676 /* Unbind it from offline cpu so it can run. Fall thru. */
6677 kthread_bind(cpu_rq(cpu)->migration_thread,
6678 cpumask_any(cpu_online_mask));
6679 kthread_stop(cpu_rq(cpu)->migration_thread);
6680 cpu_rq(cpu)->migration_thread = NULL;
6681 break;
6683 case CPU_DEAD:
6684 case CPU_DEAD_FROZEN:
6685 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6686 migrate_live_tasks(cpu);
6687 rq = cpu_rq(cpu);
6688 kthread_stop(rq->migration_thread);
6689 rq->migration_thread = NULL;
6690 /* Idle task back to normal (off runqueue, low prio) */
6691 spin_lock_irq(&rq->lock);
6692 update_rq_clock(rq);
6693 deactivate_task(rq, rq->idle, 0);
6694 rq->idle->static_prio = MAX_PRIO;
6695 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6696 rq->idle->sched_class = &idle_sched_class;
6697 migrate_dead_tasks(cpu);
6698 spin_unlock_irq(&rq->lock);
6699 cpuset_unlock();
6700 migrate_nr_uninterruptible(rq);
6701 BUG_ON(rq->nr_running != 0);
6704 * No need to migrate the tasks: it was best-effort if
6705 * they didn't take sched_hotcpu_mutex. Just wake up
6706 * the requestors.
6708 spin_lock_irq(&rq->lock);
6709 while (!list_empty(&rq->migration_queue)) {
6710 struct migration_req *req;
6712 req = list_entry(rq->migration_queue.next,
6713 struct migration_req, list);
6714 list_del_init(&req->list);
6715 spin_unlock_irq(&rq->lock);
6716 complete(&req->done);
6717 spin_lock_irq(&rq->lock);
6719 spin_unlock_irq(&rq->lock);
6720 break;
6722 case CPU_DYING:
6723 case CPU_DYING_FROZEN:
6724 /* Update our root-domain */
6725 rq = cpu_rq(cpu);
6726 spin_lock_irqsave(&rq->lock, flags);
6727 if (rq->rd) {
6728 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6729 set_rq_offline(rq);
6731 spin_unlock_irqrestore(&rq->lock, flags);
6732 break;
6733 #endif
6735 return NOTIFY_OK;
6738 /* Register at highest priority so that task migration (migrate_all_tasks)
6739 * happens before everything else.
6741 static struct notifier_block __cpuinitdata migration_notifier = {
6742 .notifier_call = migration_call,
6743 .priority = 10
6746 static int __init migration_init(void)
6748 void *cpu = (void *)(long)smp_processor_id();
6749 int err;
6751 /* Start one for the boot CPU: */
6752 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6753 BUG_ON(err == NOTIFY_BAD);
6754 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6755 register_cpu_notifier(&migration_notifier);
6757 return err;
6759 early_initcall(migration_init);
6760 #endif
6762 #ifdef CONFIG_SMP
6764 #ifdef CONFIG_SCHED_DEBUG
6766 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6767 struct cpumask *groupmask)
6769 struct sched_group *group = sd->groups;
6770 char str[256];
6772 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6773 cpumask_clear(groupmask);
6775 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6777 if (!(sd->flags & SD_LOAD_BALANCE)) {
6778 printk("does not load-balance\n");
6779 if (sd->parent)
6780 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6781 " has parent");
6782 return -1;
6785 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6787 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6788 printk(KERN_ERR "ERROR: domain->span does not contain "
6789 "CPU%d\n", cpu);
6791 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6792 printk(KERN_ERR "ERROR: domain->groups does not contain"
6793 " CPU%d\n", cpu);
6796 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6797 do {
6798 if (!group) {
6799 printk("\n");
6800 printk(KERN_ERR "ERROR: group is NULL\n");
6801 break;
6804 if (!group->__cpu_power) {
6805 printk(KERN_CONT "\n");
6806 printk(KERN_ERR "ERROR: domain->cpu_power not "
6807 "set\n");
6808 break;
6811 if (!cpumask_weight(sched_group_cpus(group))) {
6812 printk(KERN_CONT "\n");
6813 printk(KERN_ERR "ERROR: empty group\n");
6814 break;
6817 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6818 printk(KERN_CONT "\n");
6819 printk(KERN_ERR "ERROR: repeated CPUs\n");
6820 break;
6823 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6825 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6826 printk(KERN_CONT " %s", str);
6828 group = group->next;
6829 } while (group != sd->groups);
6830 printk(KERN_CONT "\n");
6832 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6833 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6835 if (sd->parent &&
6836 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6837 printk(KERN_ERR "ERROR: parent span is not a superset "
6838 "of domain->span\n");
6839 return 0;
6842 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6844 cpumask_var_t groupmask;
6845 int level = 0;
6847 if (!sd) {
6848 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6849 return;
6852 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6854 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6855 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6856 return;
6859 for (;;) {
6860 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6861 break;
6862 level++;
6863 sd = sd->parent;
6864 if (!sd)
6865 break;
6867 free_cpumask_var(groupmask);
6869 #else /* !CONFIG_SCHED_DEBUG */
6870 # define sched_domain_debug(sd, cpu) do { } while (0)
6871 #endif /* CONFIG_SCHED_DEBUG */
6873 static int sd_degenerate(struct sched_domain *sd)
6875 if (cpumask_weight(sched_domain_span(sd)) == 1)
6876 return 1;
6878 /* Following flags need at least 2 groups */
6879 if (sd->flags & (SD_LOAD_BALANCE |
6880 SD_BALANCE_NEWIDLE |
6881 SD_BALANCE_FORK |
6882 SD_BALANCE_EXEC |
6883 SD_SHARE_CPUPOWER |
6884 SD_SHARE_PKG_RESOURCES)) {
6885 if (sd->groups != sd->groups->next)
6886 return 0;
6889 /* Following flags don't use groups */
6890 if (sd->flags & (SD_WAKE_IDLE |
6891 SD_WAKE_AFFINE |
6892 SD_WAKE_BALANCE))
6893 return 0;
6895 return 1;
6898 static int
6899 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6901 unsigned long cflags = sd->flags, pflags = parent->flags;
6903 if (sd_degenerate(parent))
6904 return 1;
6906 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6907 return 0;
6909 /* Does parent contain flags not in child? */
6910 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6911 if (cflags & SD_WAKE_AFFINE)
6912 pflags &= ~SD_WAKE_BALANCE;
6913 /* Flags needing groups don't count if only 1 group in parent */
6914 if (parent->groups == parent->groups->next) {
6915 pflags &= ~(SD_LOAD_BALANCE |
6916 SD_BALANCE_NEWIDLE |
6917 SD_BALANCE_FORK |
6918 SD_BALANCE_EXEC |
6919 SD_SHARE_CPUPOWER |
6920 SD_SHARE_PKG_RESOURCES);
6921 if (nr_node_ids == 1)
6922 pflags &= ~SD_SERIALIZE;
6924 if (~cflags & pflags)
6925 return 0;
6927 return 1;
6930 static void free_rootdomain(struct root_domain *rd)
6932 cpupri_cleanup(&rd->cpupri);
6934 free_cpumask_var(rd->rto_mask);
6935 free_cpumask_var(rd->online);
6936 free_cpumask_var(rd->span);
6937 kfree(rd);
6940 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6942 struct root_domain *old_rd = NULL;
6943 unsigned long flags;
6945 spin_lock_irqsave(&rq->lock, flags);
6947 if (rq->rd) {
6948 old_rd = rq->rd;
6950 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6951 set_rq_offline(rq);
6953 cpumask_clear_cpu(rq->cpu, old_rd->span);
6956 * If we dont want to free the old_rt yet then
6957 * set old_rd to NULL to skip the freeing later
6958 * in this function:
6960 if (!atomic_dec_and_test(&old_rd->refcount))
6961 old_rd = NULL;
6964 atomic_inc(&rd->refcount);
6965 rq->rd = rd;
6967 cpumask_set_cpu(rq->cpu, rd->span);
6968 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6969 set_rq_online(rq);
6971 spin_unlock_irqrestore(&rq->lock, flags);
6973 if (old_rd)
6974 free_rootdomain(old_rd);
6977 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6979 memset(rd, 0, sizeof(*rd));
6981 if (bootmem) {
6982 alloc_bootmem_cpumask_var(&def_root_domain.span);
6983 alloc_bootmem_cpumask_var(&def_root_domain.online);
6984 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6985 cpupri_init(&rd->cpupri, true);
6986 return 0;
6989 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6990 goto out;
6991 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6992 goto free_span;
6993 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6994 goto free_online;
6996 if (cpupri_init(&rd->cpupri, false) != 0)
6997 goto free_rto_mask;
6998 return 0;
7000 free_rto_mask:
7001 free_cpumask_var(rd->rto_mask);
7002 free_online:
7003 free_cpumask_var(rd->online);
7004 free_span:
7005 free_cpumask_var(rd->span);
7006 out:
7007 return -ENOMEM;
7010 static void init_defrootdomain(void)
7012 init_rootdomain(&def_root_domain, true);
7014 atomic_set(&def_root_domain.refcount, 1);
7017 static struct root_domain *alloc_rootdomain(void)
7019 struct root_domain *rd;
7021 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7022 if (!rd)
7023 return NULL;
7025 if (init_rootdomain(rd, false) != 0) {
7026 kfree(rd);
7027 return NULL;
7030 return rd;
7034 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7035 * hold the hotplug lock.
7037 static void
7038 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7040 struct rq *rq = cpu_rq(cpu);
7041 struct sched_domain *tmp;
7043 /* Remove the sched domains which do not contribute to scheduling. */
7044 for (tmp = sd; tmp; ) {
7045 struct sched_domain *parent = tmp->parent;
7046 if (!parent)
7047 break;
7049 if (sd_parent_degenerate(tmp, parent)) {
7050 tmp->parent = parent->parent;
7051 if (parent->parent)
7052 parent->parent->child = tmp;
7053 } else
7054 tmp = tmp->parent;
7057 if (sd && sd_degenerate(sd)) {
7058 sd = sd->parent;
7059 if (sd)
7060 sd->child = NULL;
7063 sched_domain_debug(sd, cpu);
7065 rq_attach_root(rq, rd);
7066 rcu_assign_pointer(rq->sd, sd);
7069 /* cpus with isolated domains */
7070 static cpumask_var_t cpu_isolated_map;
7072 /* Setup the mask of cpus configured for isolated domains */
7073 static int __init isolated_cpu_setup(char *str)
7075 cpulist_parse(str, cpu_isolated_map);
7076 return 1;
7079 __setup("isolcpus=", isolated_cpu_setup);
7082 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7083 * to a function which identifies what group(along with sched group) a CPU
7084 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7085 * (due to the fact that we keep track of groups covered with a struct cpumask).
7087 * init_sched_build_groups will build a circular linked list of the groups
7088 * covered by the given span, and will set each group's ->cpumask correctly,
7089 * and ->cpu_power to 0.
7091 static void
7092 init_sched_build_groups(const struct cpumask *span,
7093 const struct cpumask *cpu_map,
7094 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7095 struct sched_group **sg,
7096 struct cpumask *tmpmask),
7097 struct cpumask *covered, struct cpumask *tmpmask)
7099 struct sched_group *first = NULL, *last = NULL;
7100 int i;
7102 cpumask_clear(covered);
7104 for_each_cpu(i, span) {
7105 struct sched_group *sg;
7106 int group = group_fn(i, cpu_map, &sg, tmpmask);
7107 int j;
7109 if (cpumask_test_cpu(i, covered))
7110 continue;
7112 cpumask_clear(sched_group_cpus(sg));
7113 sg->__cpu_power = 0;
7115 for_each_cpu(j, span) {
7116 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7117 continue;
7119 cpumask_set_cpu(j, covered);
7120 cpumask_set_cpu(j, sched_group_cpus(sg));
7122 if (!first)
7123 first = sg;
7124 if (last)
7125 last->next = sg;
7126 last = sg;
7128 last->next = first;
7131 #define SD_NODES_PER_DOMAIN 16
7133 #ifdef CONFIG_NUMA
7136 * find_next_best_node - find the next node to include in a sched_domain
7137 * @node: node whose sched_domain we're building
7138 * @used_nodes: nodes already in the sched_domain
7140 * Find the next node to include in a given scheduling domain. Simply
7141 * finds the closest node not already in the @used_nodes map.
7143 * Should use nodemask_t.
7145 static int find_next_best_node(int node, nodemask_t *used_nodes)
7147 int i, n, val, min_val, best_node = 0;
7149 min_val = INT_MAX;
7151 for (i = 0; i < nr_node_ids; i++) {
7152 /* Start at @node */
7153 n = (node + i) % nr_node_ids;
7155 if (!nr_cpus_node(n))
7156 continue;
7158 /* Skip already used nodes */
7159 if (node_isset(n, *used_nodes))
7160 continue;
7162 /* Simple min distance search */
7163 val = node_distance(node, n);
7165 if (val < min_val) {
7166 min_val = val;
7167 best_node = n;
7171 node_set(best_node, *used_nodes);
7172 return best_node;
7176 * sched_domain_node_span - get a cpumask for a node's sched_domain
7177 * @node: node whose cpumask we're constructing
7178 * @span: resulting cpumask
7180 * Given a node, construct a good cpumask for its sched_domain to span. It
7181 * should be one that prevents unnecessary balancing, but also spreads tasks
7182 * out optimally.
7184 static void sched_domain_node_span(int node, struct cpumask *span)
7186 nodemask_t used_nodes;
7187 int i;
7189 cpumask_clear(span);
7190 nodes_clear(used_nodes);
7192 cpumask_or(span, span, cpumask_of_node(node));
7193 node_set(node, used_nodes);
7195 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7196 int next_node = find_next_best_node(node, &used_nodes);
7198 cpumask_or(span, span, cpumask_of_node(next_node));
7201 #endif /* CONFIG_NUMA */
7203 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7206 * The cpus mask in sched_group and sched_domain hangs off the end.
7207 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7208 * for nr_cpu_ids < CONFIG_NR_CPUS.
7210 struct static_sched_group {
7211 struct sched_group sg;
7212 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7215 struct static_sched_domain {
7216 struct sched_domain sd;
7217 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7221 * SMT sched-domains:
7223 #ifdef CONFIG_SCHED_SMT
7224 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7225 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7227 static int
7228 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7229 struct sched_group **sg, struct cpumask *unused)
7231 if (sg)
7232 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7233 return cpu;
7235 #endif /* CONFIG_SCHED_SMT */
7238 * multi-core sched-domains:
7240 #ifdef CONFIG_SCHED_MC
7241 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7242 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7243 #endif /* CONFIG_SCHED_MC */
7245 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7246 static int
7247 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7248 struct sched_group **sg, struct cpumask *mask)
7250 int group;
7252 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7253 group = cpumask_first(mask);
7254 if (sg)
7255 *sg = &per_cpu(sched_group_core, group).sg;
7256 return group;
7258 #elif defined(CONFIG_SCHED_MC)
7259 static int
7260 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7261 struct sched_group **sg, struct cpumask *unused)
7263 if (sg)
7264 *sg = &per_cpu(sched_group_core, cpu).sg;
7265 return cpu;
7267 #endif
7269 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7270 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7272 static int
7273 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7274 struct sched_group **sg, struct cpumask *mask)
7276 int group;
7277 #ifdef CONFIG_SCHED_MC
7278 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7279 group = cpumask_first(mask);
7280 #elif defined(CONFIG_SCHED_SMT)
7281 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7282 group = cpumask_first(mask);
7283 #else
7284 group = cpu;
7285 #endif
7286 if (sg)
7287 *sg = &per_cpu(sched_group_phys, group).sg;
7288 return group;
7291 #ifdef CONFIG_NUMA
7293 * The init_sched_build_groups can't handle what we want to do with node
7294 * groups, so roll our own. Now each node has its own list of groups which
7295 * gets dynamically allocated.
7297 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7298 static struct sched_group ***sched_group_nodes_bycpu;
7300 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7301 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7303 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7304 struct sched_group **sg,
7305 struct cpumask *nodemask)
7307 int group;
7309 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7310 group = cpumask_first(nodemask);
7312 if (sg)
7313 *sg = &per_cpu(sched_group_allnodes, group).sg;
7314 return group;
7317 static void init_numa_sched_groups_power(struct sched_group *group_head)
7319 struct sched_group *sg = group_head;
7320 int j;
7322 if (!sg)
7323 return;
7324 do {
7325 for_each_cpu(j, sched_group_cpus(sg)) {
7326 struct sched_domain *sd;
7328 sd = &per_cpu(phys_domains, j).sd;
7329 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7331 * Only add "power" once for each
7332 * physical package.
7334 continue;
7337 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7339 sg = sg->next;
7340 } while (sg != group_head);
7342 #endif /* CONFIG_NUMA */
7344 #ifdef CONFIG_NUMA
7345 /* Free memory allocated for various sched_group structures */
7346 static void free_sched_groups(const struct cpumask *cpu_map,
7347 struct cpumask *nodemask)
7349 int cpu, i;
7351 for_each_cpu(cpu, cpu_map) {
7352 struct sched_group **sched_group_nodes
7353 = sched_group_nodes_bycpu[cpu];
7355 if (!sched_group_nodes)
7356 continue;
7358 for (i = 0; i < nr_node_ids; i++) {
7359 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7361 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7362 if (cpumask_empty(nodemask))
7363 continue;
7365 if (sg == NULL)
7366 continue;
7367 sg = sg->next;
7368 next_sg:
7369 oldsg = sg;
7370 sg = sg->next;
7371 kfree(oldsg);
7372 if (oldsg != sched_group_nodes[i])
7373 goto next_sg;
7375 kfree(sched_group_nodes);
7376 sched_group_nodes_bycpu[cpu] = NULL;
7379 #else /* !CONFIG_NUMA */
7380 static void free_sched_groups(const struct cpumask *cpu_map,
7381 struct cpumask *nodemask)
7384 #endif /* CONFIG_NUMA */
7387 * Initialize sched groups cpu_power.
7389 * cpu_power indicates the capacity of sched group, which is used while
7390 * distributing the load between different sched groups in a sched domain.
7391 * Typically cpu_power for all the groups in a sched domain will be same unless
7392 * there are asymmetries in the topology. If there are asymmetries, group
7393 * having more cpu_power will pickup more load compared to the group having
7394 * less cpu_power.
7396 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7397 * the maximum number of tasks a group can handle in the presence of other idle
7398 * or lightly loaded groups in the same sched domain.
7400 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7402 struct sched_domain *child;
7403 struct sched_group *group;
7405 WARN_ON(!sd || !sd->groups);
7407 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7408 return;
7410 child = sd->child;
7412 sd->groups->__cpu_power = 0;
7415 * For perf policy, if the groups in child domain share resources
7416 * (for example cores sharing some portions of the cache hierarchy
7417 * or SMT), then set this domain groups cpu_power such that each group
7418 * can handle only one task, when there are other idle groups in the
7419 * same sched domain.
7421 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7422 (child->flags &
7423 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7424 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7425 return;
7429 * add cpu_power of each child group to this groups cpu_power
7431 group = child->groups;
7432 do {
7433 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7434 group = group->next;
7435 } while (group != child->groups);
7439 * Initializers for schedule domains
7440 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7443 #ifdef CONFIG_SCHED_DEBUG
7444 # define SD_INIT_NAME(sd, type) sd->name = #type
7445 #else
7446 # define SD_INIT_NAME(sd, type) do { } while (0)
7447 #endif
7449 #define SD_INIT(sd, type) sd_init_##type(sd)
7451 #define SD_INIT_FUNC(type) \
7452 static noinline void sd_init_##type(struct sched_domain *sd) \
7454 memset(sd, 0, sizeof(*sd)); \
7455 *sd = SD_##type##_INIT; \
7456 sd->level = SD_LV_##type; \
7457 SD_INIT_NAME(sd, type); \
7460 SD_INIT_FUNC(CPU)
7461 #ifdef CONFIG_NUMA
7462 SD_INIT_FUNC(ALLNODES)
7463 SD_INIT_FUNC(NODE)
7464 #endif
7465 #ifdef CONFIG_SCHED_SMT
7466 SD_INIT_FUNC(SIBLING)
7467 #endif
7468 #ifdef CONFIG_SCHED_MC
7469 SD_INIT_FUNC(MC)
7470 #endif
7472 static int default_relax_domain_level = -1;
7474 static int __init setup_relax_domain_level(char *str)
7476 unsigned long val;
7478 val = simple_strtoul(str, NULL, 0);
7479 if (val < SD_LV_MAX)
7480 default_relax_domain_level = val;
7482 return 1;
7484 __setup("relax_domain_level=", setup_relax_domain_level);
7486 static void set_domain_attribute(struct sched_domain *sd,
7487 struct sched_domain_attr *attr)
7489 int request;
7491 if (!attr || attr->relax_domain_level < 0) {
7492 if (default_relax_domain_level < 0)
7493 return;
7494 else
7495 request = default_relax_domain_level;
7496 } else
7497 request = attr->relax_domain_level;
7498 if (request < sd->level) {
7499 /* turn off idle balance on this domain */
7500 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7501 } else {
7502 /* turn on idle balance on this domain */
7503 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7508 * Build sched domains for a given set of cpus and attach the sched domains
7509 * to the individual cpus
7511 static int __build_sched_domains(const struct cpumask *cpu_map,
7512 struct sched_domain_attr *attr)
7514 int i, err = -ENOMEM;
7515 struct root_domain *rd;
7516 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7517 tmpmask;
7518 #ifdef CONFIG_NUMA
7519 cpumask_var_t domainspan, covered, notcovered;
7520 struct sched_group **sched_group_nodes = NULL;
7521 int sd_allnodes = 0;
7523 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7524 goto out;
7525 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7526 goto free_domainspan;
7527 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7528 goto free_covered;
7529 #endif
7531 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7532 goto free_notcovered;
7533 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7534 goto free_nodemask;
7535 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7536 goto free_this_sibling_map;
7537 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7538 goto free_this_core_map;
7539 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7540 goto free_send_covered;
7542 #ifdef CONFIG_NUMA
7544 * Allocate the per-node list of sched groups
7546 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7547 GFP_KERNEL);
7548 if (!sched_group_nodes) {
7549 printk(KERN_WARNING "Can not alloc sched group node list\n");
7550 goto free_tmpmask;
7552 #endif
7554 rd = alloc_rootdomain();
7555 if (!rd) {
7556 printk(KERN_WARNING "Cannot alloc root domain\n");
7557 goto free_sched_groups;
7560 #ifdef CONFIG_NUMA
7561 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7562 #endif
7565 * Set up domains for cpus specified by the cpu_map.
7567 for_each_cpu(i, cpu_map) {
7568 struct sched_domain *sd = NULL, *p;
7570 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7572 #ifdef CONFIG_NUMA
7573 if (cpumask_weight(cpu_map) >
7574 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7575 sd = &per_cpu(allnodes_domains, i).sd;
7576 SD_INIT(sd, ALLNODES);
7577 set_domain_attribute(sd, attr);
7578 cpumask_copy(sched_domain_span(sd), cpu_map);
7579 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7580 p = sd;
7581 sd_allnodes = 1;
7582 } else
7583 p = NULL;
7585 sd = &per_cpu(node_domains, i).sd;
7586 SD_INIT(sd, NODE);
7587 set_domain_attribute(sd, attr);
7588 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7589 sd->parent = p;
7590 if (p)
7591 p->child = sd;
7592 cpumask_and(sched_domain_span(sd),
7593 sched_domain_span(sd), cpu_map);
7594 #endif
7596 p = sd;
7597 sd = &per_cpu(phys_domains, i).sd;
7598 SD_INIT(sd, CPU);
7599 set_domain_attribute(sd, attr);
7600 cpumask_copy(sched_domain_span(sd), nodemask);
7601 sd->parent = p;
7602 if (p)
7603 p->child = sd;
7604 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7606 #ifdef CONFIG_SCHED_MC
7607 p = sd;
7608 sd = &per_cpu(core_domains, i).sd;
7609 SD_INIT(sd, MC);
7610 set_domain_attribute(sd, attr);
7611 cpumask_and(sched_domain_span(sd), cpu_map,
7612 cpu_coregroup_mask(i));
7613 sd->parent = p;
7614 p->child = sd;
7615 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7616 #endif
7618 #ifdef CONFIG_SCHED_SMT
7619 p = sd;
7620 sd = &per_cpu(cpu_domains, i).sd;
7621 SD_INIT(sd, SIBLING);
7622 set_domain_attribute(sd, attr);
7623 cpumask_and(sched_domain_span(sd),
7624 &per_cpu(cpu_sibling_map, i), cpu_map);
7625 sd->parent = p;
7626 p->child = sd;
7627 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7628 #endif
7631 #ifdef CONFIG_SCHED_SMT
7632 /* Set up CPU (sibling) groups */
7633 for_each_cpu(i, cpu_map) {
7634 cpumask_and(this_sibling_map,
7635 &per_cpu(cpu_sibling_map, i), cpu_map);
7636 if (i != cpumask_first(this_sibling_map))
7637 continue;
7639 init_sched_build_groups(this_sibling_map, cpu_map,
7640 &cpu_to_cpu_group,
7641 send_covered, tmpmask);
7643 #endif
7645 #ifdef CONFIG_SCHED_MC
7646 /* Set up multi-core groups */
7647 for_each_cpu(i, cpu_map) {
7648 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7649 if (i != cpumask_first(this_core_map))
7650 continue;
7652 init_sched_build_groups(this_core_map, cpu_map,
7653 &cpu_to_core_group,
7654 send_covered, tmpmask);
7656 #endif
7658 /* Set up physical groups */
7659 for (i = 0; i < nr_node_ids; i++) {
7660 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7661 if (cpumask_empty(nodemask))
7662 continue;
7664 init_sched_build_groups(nodemask, cpu_map,
7665 &cpu_to_phys_group,
7666 send_covered, tmpmask);
7669 #ifdef CONFIG_NUMA
7670 /* Set up node groups */
7671 if (sd_allnodes) {
7672 init_sched_build_groups(cpu_map, cpu_map,
7673 &cpu_to_allnodes_group,
7674 send_covered, tmpmask);
7677 for (i = 0; i < nr_node_ids; i++) {
7678 /* Set up node groups */
7679 struct sched_group *sg, *prev;
7680 int j;
7682 cpumask_clear(covered);
7683 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7684 if (cpumask_empty(nodemask)) {
7685 sched_group_nodes[i] = NULL;
7686 continue;
7689 sched_domain_node_span(i, domainspan);
7690 cpumask_and(domainspan, domainspan, cpu_map);
7692 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7693 GFP_KERNEL, i);
7694 if (!sg) {
7695 printk(KERN_WARNING "Can not alloc domain group for "
7696 "node %d\n", i);
7697 goto error;
7699 sched_group_nodes[i] = sg;
7700 for_each_cpu(j, nodemask) {
7701 struct sched_domain *sd;
7703 sd = &per_cpu(node_domains, j).sd;
7704 sd->groups = sg;
7706 sg->__cpu_power = 0;
7707 cpumask_copy(sched_group_cpus(sg), nodemask);
7708 sg->next = sg;
7709 cpumask_or(covered, covered, nodemask);
7710 prev = sg;
7712 for (j = 0; j < nr_node_ids; j++) {
7713 int n = (i + j) % nr_node_ids;
7715 cpumask_complement(notcovered, covered);
7716 cpumask_and(tmpmask, notcovered, cpu_map);
7717 cpumask_and(tmpmask, tmpmask, domainspan);
7718 if (cpumask_empty(tmpmask))
7719 break;
7721 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7722 if (cpumask_empty(tmpmask))
7723 continue;
7725 sg = kmalloc_node(sizeof(struct sched_group) +
7726 cpumask_size(),
7727 GFP_KERNEL, i);
7728 if (!sg) {
7729 printk(KERN_WARNING
7730 "Can not alloc domain group for node %d\n", j);
7731 goto error;
7733 sg->__cpu_power = 0;
7734 cpumask_copy(sched_group_cpus(sg), tmpmask);
7735 sg->next = prev->next;
7736 cpumask_or(covered, covered, tmpmask);
7737 prev->next = sg;
7738 prev = sg;
7741 #endif
7743 /* Calculate CPU power for physical packages and nodes */
7744 #ifdef CONFIG_SCHED_SMT
7745 for_each_cpu(i, cpu_map) {
7746 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7748 init_sched_groups_power(i, sd);
7750 #endif
7751 #ifdef CONFIG_SCHED_MC
7752 for_each_cpu(i, cpu_map) {
7753 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7755 init_sched_groups_power(i, sd);
7757 #endif
7759 for_each_cpu(i, cpu_map) {
7760 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7762 init_sched_groups_power(i, sd);
7765 #ifdef CONFIG_NUMA
7766 for (i = 0; i < nr_node_ids; i++)
7767 init_numa_sched_groups_power(sched_group_nodes[i]);
7769 if (sd_allnodes) {
7770 struct sched_group *sg;
7772 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7773 tmpmask);
7774 init_numa_sched_groups_power(sg);
7776 #endif
7778 /* Attach the domains */
7779 for_each_cpu(i, cpu_map) {
7780 struct sched_domain *sd;
7781 #ifdef CONFIG_SCHED_SMT
7782 sd = &per_cpu(cpu_domains, i).sd;
7783 #elif defined(CONFIG_SCHED_MC)
7784 sd = &per_cpu(core_domains, i).sd;
7785 #else
7786 sd = &per_cpu(phys_domains, i).sd;
7787 #endif
7788 cpu_attach_domain(sd, rd, i);
7791 err = 0;
7793 free_tmpmask:
7794 free_cpumask_var(tmpmask);
7795 free_send_covered:
7796 free_cpumask_var(send_covered);
7797 free_this_core_map:
7798 free_cpumask_var(this_core_map);
7799 free_this_sibling_map:
7800 free_cpumask_var(this_sibling_map);
7801 free_nodemask:
7802 free_cpumask_var(nodemask);
7803 free_notcovered:
7804 #ifdef CONFIG_NUMA
7805 free_cpumask_var(notcovered);
7806 free_covered:
7807 free_cpumask_var(covered);
7808 free_domainspan:
7809 free_cpumask_var(domainspan);
7810 out:
7811 #endif
7812 return err;
7814 free_sched_groups:
7815 #ifdef CONFIG_NUMA
7816 kfree(sched_group_nodes);
7817 #endif
7818 goto free_tmpmask;
7820 #ifdef CONFIG_NUMA
7821 error:
7822 free_sched_groups(cpu_map, tmpmask);
7823 free_rootdomain(rd);
7824 goto free_tmpmask;
7825 #endif
7828 static int build_sched_domains(const struct cpumask *cpu_map)
7830 return __build_sched_domains(cpu_map, NULL);
7833 static struct cpumask *doms_cur; /* current sched domains */
7834 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7835 static struct sched_domain_attr *dattr_cur;
7836 /* attribues of custom domains in 'doms_cur' */
7839 * Special case: If a kmalloc of a doms_cur partition (array of
7840 * cpumask) fails, then fallback to a single sched domain,
7841 * as determined by the single cpumask fallback_doms.
7843 static cpumask_var_t fallback_doms;
7846 * arch_update_cpu_topology lets virtualized architectures update the
7847 * cpu core maps. It is supposed to return 1 if the topology changed
7848 * or 0 if it stayed the same.
7850 int __attribute__((weak)) arch_update_cpu_topology(void)
7852 return 0;
7856 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7857 * For now this just excludes isolated cpus, but could be used to
7858 * exclude other special cases in the future.
7860 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7862 int err;
7864 arch_update_cpu_topology();
7865 ndoms_cur = 1;
7866 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7867 if (!doms_cur)
7868 doms_cur = fallback_doms;
7869 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7870 dattr_cur = NULL;
7871 err = build_sched_domains(doms_cur);
7872 register_sched_domain_sysctl();
7874 return err;
7877 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7878 struct cpumask *tmpmask)
7880 free_sched_groups(cpu_map, tmpmask);
7884 * Detach sched domains from a group of cpus specified in cpu_map
7885 * These cpus will now be attached to the NULL domain
7887 static void detach_destroy_domains(const struct cpumask *cpu_map)
7889 /* Save because hotplug lock held. */
7890 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7891 int i;
7893 for_each_cpu(i, cpu_map)
7894 cpu_attach_domain(NULL, &def_root_domain, i);
7895 synchronize_sched();
7896 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7899 /* handle null as "default" */
7900 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7901 struct sched_domain_attr *new, int idx_new)
7903 struct sched_domain_attr tmp;
7905 /* fast path */
7906 if (!new && !cur)
7907 return 1;
7909 tmp = SD_ATTR_INIT;
7910 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7911 new ? (new + idx_new) : &tmp,
7912 sizeof(struct sched_domain_attr));
7916 * Partition sched domains as specified by the 'ndoms_new'
7917 * cpumasks in the array doms_new[] of cpumasks. This compares
7918 * doms_new[] to the current sched domain partitioning, doms_cur[].
7919 * It destroys each deleted domain and builds each new domain.
7921 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7922 * The masks don't intersect (don't overlap.) We should setup one
7923 * sched domain for each mask. CPUs not in any of the cpumasks will
7924 * not be load balanced. If the same cpumask appears both in the
7925 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7926 * it as it is.
7928 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7929 * ownership of it and will kfree it when done with it. If the caller
7930 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7931 * ndoms_new == 1, and partition_sched_domains() will fallback to
7932 * the single partition 'fallback_doms', it also forces the domains
7933 * to be rebuilt.
7935 * If doms_new == NULL it will be replaced with cpu_online_mask.
7936 * ndoms_new == 0 is a special case for destroying existing domains,
7937 * and it will not create the default domain.
7939 * Call with hotplug lock held
7941 /* FIXME: Change to struct cpumask *doms_new[] */
7942 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7943 struct sched_domain_attr *dattr_new)
7945 int i, j, n;
7946 int new_topology;
7948 mutex_lock(&sched_domains_mutex);
7950 /* always unregister in case we don't destroy any domains */
7951 unregister_sched_domain_sysctl();
7953 /* Let architecture update cpu core mappings. */
7954 new_topology = arch_update_cpu_topology();
7956 n = doms_new ? ndoms_new : 0;
7958 /* Destroy deleted domains */
7959 for (i = 0; i < ndoms_cur; i++) {
7960 for (j = 0; j < n && !new_topology; j++) {
7961 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7962 && dattrs_equal(dattr_cur, i, dattr_new, j))
7963 goto match1;
7965 /* no match - a current sched domain not in new doms_new[] */
7966 detach_destroy_domains(doms_cur + i);
7967 match1:
7971 if (doms_new == NULL) {
7972 ndoms_cur = 0;
7973 doms_new = fallback_doms;
7974 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7975 WARN_ON_ONCE(dattr_new);
7978 /* Build new domains */
7979 for (i = 0; i < ndoms_new; i++) {
7980 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7981 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7982 && dattrs_equal(dattr_new, i, dattr_cur, j))
7983 goto match2;
7985 /* no match - add a new doms_new */
7986 __build_sched_domains(doms_new + i,
7987 dattr_new ? dattr_new + i : NULL);
7988 match2:
7992 /* Remember the new sched domains */
7993 if (doms_cur != fallback_doms)
7994 kfree(doms_cur);
7995 kfree(dattr_cur); /* kfree(NULL) is safe */
7996 doms_cur = doms_new;
7997 dattr_cur = dattr_new;
7998 ndoms_cur = ndoms_new;
8000 register_sched_domain_sysctl();
8002 mutex_unlock(&sched_domains_mutex);
8005 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8006 static void arch_reinit_sched_domains(void)
8008 get_online_cpus();
8010 /* Destroy domains first to force the rebuild */
8011 partition_sched_domains(0, NULL, NULL);
8013 rebuild_sched_domains();
8014 put_online_cpus();
8017 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8019 unsigned int level = 0;
8021 if (sscanf(buf, "%u", &level) != 1)
8022 return -EINVAL;
8025 * level is always be positive so don't check for
8026 * level < POWERSAVINGS_BALANCE_NONE which is 0
8027 * What happens on 0 or 1 byte write,
8028 * need to check for count as well?
8031 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8032 return -EINVAL;
8034 if (smt)
8035 sched_smt_power_savings = level;
8036 else
8037 sched_mc_power_savings = level;
8039 arch_reinit_sched_domains();
8041 return count;
8044 #ifdef CONFIG_SCHED_MC
8045 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8046 char *page)
8048 return sprintf(page, "%u\n", sched_mc_power_savings);
8050 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8051 const char *buf, size_t count)
8053 return sched_power_savings_store(buf, count, 0);
8055 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8056 sched_mc_power_savings_show,
8057 sched_mc_power_savings_store);
8058 #endif
8060 #ifdef CONFIG_SCHED_SMT
8061 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8062 char *page)
8064 return sprintf(page, "%u\n", sched_smt_power_savings);
8066 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8067 const char *buf, size_t count)
8069 return sched_power_savings_store(buf, count, 1);
8071 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8072 sched_smt_power_savings_show,
8073 sched_smt_power_savings_store);
8074 #endif
8076 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8078 int err = 0;
8080 #ifdef CONFIG_SCHED_SMT
8081 if (smt_capable())
8082 err = sysfs_create_file(&cls->kset.kobj,
8083 &attr_sched_smt_power_savings.attr);
8084 #endif
8085 #ifdef CONFIG_SCHED_MC
8086 if (!err && mc_capable())
8087 err = sysfs_create_file(&cls->kset.kobj,
8088 &attr_sched_mc_power_savings.attr);
8089 #endif
8090 return err;
8092 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8094 #ifndef CONFIG_CPUSETS
8096 * Add online and remove offline CPUs from the scheduler domains.
8097 * When cpusets are enabled they take over this function.
8099 static int update_sched_domains(struct notifier_block *nfb,
8100 unsigned long action, void *hcpu)
8102 switch (action) {
8103 case CPU_ONLINE:
8104 case CPU_ONLINE_FROZEN:
8105 case CPU_DEAD:
8106 case CPU_DEAD_FROZEN:
8107 partition_sched_domains(1, NULL, NULL);
8108 return NOTIFY_OK;
8110 default:
8111 return NOTIFY_DONE;
8114 #endif
8116 static int update_runtime(struct notifier_block *nfb,
8117 unsigned long action, void *hcpu)
8119 int cpu = (int)(long)hcpu;
8121 switch (action) {
8122 case CPU_DOWN_PREPARE:
8123 case CPU_DOWN_PREPARE_FROZEN:
8124 disable_runtime(cpu_rq(cpu));
8125 return NOTIFY_OK;
8127 case CPU_DOWN_FAILED:
8128 case CPU_DOWN_FAILED_FROZEN:
8129 case CPU_ONLINE:
8130 case CPU_ONLINE_FROZEN:
8131 enable_runtime(cpu_rq(cpu));
8132 return NOTIFY_OK;
8134 default:
8135 return NOTIFY_DONE;
8139 void __init sched_init_smp(void)
8141 cpumask_var_t non_isolated_cpus;
8143 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8145 #if defined(CONFIG_NUMA)
8146 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8147 GFP_KERNEL);
8148 BUG_ON(sched_group_nodes_bycpu == NULL);
8149 #endif
8150 get_online_cpus();
8151 mutex_lock(&sched_domains_mutex);
8152 arch_init_sched_domains(cpu_online_mask);
8153 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8154 if (cpumask_empty(non_isolated_cpus))
8155 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8156 mutex_unlock(&sched_domains_mutex);
8157 put_online_cpus();
8159 #ifndef CONFIG_CPUSETS
8160 /* XXX: Theoretical race here - CPU may be hotplugged now */
8161 hotcpu_notifier(update_sched_domains, 0);
8162 #endif
8164 /* RT runtime code needs to handle some hotplug events */
8165 hotcpu_notifier(update_runtime, 0);
8167 init_hrtick();
8169 /* Move init over to a non-isolated CPU */
8170 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8171 BUG();
8172 sched_init_granularity();
8173 free_cpumask_var(non_isolated_cpus);
8175 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8176 init_sched_rt_class();
8178 #else
8179 void __init sched_init_smp(void)
8181 sched_init_granularity();
8183 #endif /* CONFIG_SMP */
8185 int in_sched_functions(unsigned long addr)
8187 return in_lock_functions(addr) ||
8188 (addr >= (unsigned long)__sched_text_start
8189 && addr < (unsigned long)__sched_text_end);
8192 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8194 cfs_rq->tasks_timeline = RB_ROOT;
8195 INIT_LIST_HEAD(&cfs_rq->tasks);
8196 #ifdef CONFIG_FAIR_GROUP_SCHED
8197 cfs_rq->rq = rq;
8198 #endif
8199 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8202 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8204 struct rt_prio_array *array;
8205 int i;
8207 array = &rt_rq->active;
8208 for (i = 0; i < MAX_RT_PRIO; i++) {
8209 INIT_LIST_HEAD(array->queue + i);
8210 __clear_bit(i, array->bitmap);
8212 /* delimiter for bitsearch: */
8213 __set_bit(MAX_RT_PRIO, array->bitmap);
8215 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8216 rt_rq->highest_prio = MAX_RT_PRIO;
8217 #endif
8218 #ifdef CONFIG_SMP
8219 rt_rq->rt_nr_migratory = 0;
8220 rt_rq->overloaded = 0;
8221 #endif
8223 rt_rq->rt_time = 0;
8224 rt_rq->rt_throttled = 0;
8225 rt_rq->rt_runtime = 0;
8226 spin_lock_init(&rt_rq->rt_runtime_lock);
8228 #ifdef CONFIG_RT_GROUP_SCHED
8229 rt_rq->rt_nr_boosted = 0;
8230 rt_rq->rq = rq;
8231 #endif
8234 #ifdef CONFIG_FAIR_GROUP_SCHED
8235 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8236 struct sched_entity *se, int cpu, int add,
8237 struct sched_entity *parent)
8239 struct rq *rq = cpu_rq(cpu);
8240 tg->cfs_rq[cpu] = cfs_rq;
8241 init_cfs_rq(cfs_rq, rq);
8242 cfs_rq->tg = tg;
8243 if (add)
8244 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8246 tg->se[cpu] = se;
8247 /* se could be NULL for init_task_group */
8248 if (!se)
8249 return;
8251 if (!parent)
8252 se->cfs_rq = &rq->cfs;
8253 else
8254 se->cfs_rq = parent->my_q;
8256 se->my_q = cfs_rq;
8257 se->load.weight = tg->shares;
8258 se->load.inv_weight = 0;
8259 se->parent = parent;
8261 #endif
8263 #ifdef CONFIG_RT_GROUP_SCHED
8264 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8265 struct sched_rt_entity *rt_se, int cpu, int add,
8266 struct sched_rt_entity *parent)
8268 struct rq *rq = cpu_rq(cpu);
8270 tg->rt_rq[cpu] = rt_rq;
8271 init_rt_rq(rt_rq, rq);
8272 rt_rq->tg = tg;
8273 rt_rq->rt_se = rt_se;
8274 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8275 if (add)
8276 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8278 tg->rt_se[cpu] = rt_se;
8279 if (!rt_se)
8280 return;
8282 if (!parent)
8283 rt_se->rt_rq = &rq->rt;
8284 else
8285 rt_se->rt_rq = parent->my_q;
8287 rt_se->my_q = rt_rq;
8288 rt_se->parent = parent;
8289 INIT_LIST_HEAD(&rt_se->run_list);
8291 #endif
8293 void __init sched_init(void)
8295 int i, j;
8296 unsigned long alloc_size = 0, ptr;
8298 #ifdef CONFIG_FAIR_GROUP_SCHED
8299 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8300 #endif
8301 #ifdef CONFIG_RT_GROUP_SCHED
8302 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8303 #endif
8304 #ifdef CONFIG_USER_SCHED
8305 alloc_size *= 2;
8306 #endif
8308 * As sched_init() is called before page_alloc is setup,
8309 * we use alloc_bootmem().
8311 if (alloc_size) {
8312 ptr = (unsigned long)alloc_bootmem(alloc_size);
8314 #ifdef CONFIG_FAIR_GROUP_SCHED
8315 init_task_group.se = (struct sched_entity **)ptr;
8316 ptr += nr_cpu_ids * sizeof(void **);
8318 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
8321 #ifdef CONFIG_USER_SCHED
8322 root_task_group.se = (struct sched_entity **)ptr;
8323 ptr += nr_cpu_ids * sizeof(void **);
8325 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8326 ptr += nr_cpu_ids * sizeof(void **);
8327 #endif /* CONFIG_USER_SCHED */
8328 #endif /* CONFIG_FAIR_GROUP_SCHED */
8329 #ifdef CONFIG_RT_GROUP_SCHED
8330 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8331 ptr += nr_cpu_ids * sizeof(void **);
8333 init_task_group.rt_rq = (struct rt_rq **)ptr;
8334 ptr += nr_cpu_ids * sizeof(void **);
8336 #ifdef CONFIG_USER_SCHED
8337 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8338 ptr += nr_cpu_ids * sizeof(void **);
8340 root_task_group.rt_rq = (struct rt_rq **)ptr;
8341 ptr += nr_cpu_ids * sizeof(void **);
8342 #endif /* CONFIG_USER_SCHED */
8343 #endif /* CONFIG_RT_GROUP_SCHED */
8346 #ifdef CONFIG_SMP
8347 init_defrootdomain();
8348 #endif
8350 init_rt_bandwidth(&def_rt_bandwidth,
8351 global_rt_period(), global_rt_runtime());
8353 #ifdef CONFIG_RT_GROUP_SCHED
8354 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8355 global_rt_period(), global_rt_runtime());
8356 #ifdef CONFIG_USER_SCHED
8357 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8358 global_rt_period(), RUNTIME_INF);
8359 #endif /* CONFIG_USER_SCHED */
8360 #endif /* CONFIG_RT_GROUP_SCHED */
8362 #ifdef CONFIG_GROUP_SCHED
8363 list_add(&init_task_group.list, &task_groups);
8364 INIT_LIST_HEAD(&init_task_group.children);
8366 #ifdef CONFIG_USER_SCHED
8367 INIT_LIST_HEAD(&root_task_group.children);
8368 init_task_group.parent = &root_task_group;
8369 list_add(&init_task_group.siblings, &root_task_group.children);
8370 #endif /* CONFIG_USER_SCHED */
8371 #endif /* CONFIG_GROUP_SCHED */
8373 for_each_possible_cpu(i) {
8374 struct rq *rq;
8376 rq = cpu_rq(i);
8377 spin_lock_init(&rq->lock);
8378 rq->nr_running = 0;
8379 init_cfs_rq(&rq->cfs, rq);
8380 init_rt_rq(&rq->rt, rq);
8381 #ifdef CONFIG_FAIR_GROUP_SCHED
8382 init_task_group.shares = init_task_group_load;
8383 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8384 #ifdef CONFIG_CGROUP_SCHED
8386 * How much cpu bandwidth does init_task_group get?
8388 * In case of task-groups formed thr' the cgroup filesystem, it
8389 * gets 100% of the cpu resources in the system. This overall
8390 * system cpu resource is divided among the tasks of
8391 * init_task_group and its child task-groups in a fair manner,
8392 * based on each entity's (task or task-group's) weight
8393 * (se->load.weight).
8395 * In other words, if init_task_group has 10 tasks of weight
8396 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8397 * then A0's share of the cpu resource is:
8399 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8401 * We achieve this by letting init_task_group's tasks sit
8402 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8404 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8405 #elif defined CONFIG_USER_SCHED
8406 root_task_group.shares = NICE_0_LOAD;
8407 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8409 * In case of task-groups formed thr' the user id of tasks,
8410 * init_task_group represents tasks belonging to root user.
8411 * Hence it forms a sibling of all subsequent groups formed.
8412 * In this case, init_task_group gets only a fraction of overall
8413 * system cpu resource, based on the weight assigned to root
8414 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8415 * by letting tasks of init_task_group sit in a separate cfs_rq
8416 * (init_cfs_rq) and having one entity represent this group of
8417 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8419 init_tg_cfs_entry(&init_task_group,
8420 &per_cpu(init_cfs_rq, i),
8421 &per_cpu(init_sched_entity, i), i, 1,
8422 root_task_group.se[i]);
8424 #endif
8425 #endif /* CONFIG_FAIR_GROUP_SCHED */
8427 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8428 #ifdef CONFIG_RT_GROUP_SCHED
8429 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8430 #ifdef CONFIG_CGROUP_SCHED
8431 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8432 #elif defined CONFIG_USER_SCHED
8433 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8434 init_tg_rt_entry(&init_task_group,
8435 &per_cpu(init_rt_rq, i),
8436 &per_cpu(init_sched_rt_entity, i), i, 1,
8437 root_task_group.rt_se[i]);
8438 #endif
8439 #endif
8441 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8442 rq->cpu_load[j] = 0;
8443 #ifdef CONFIG_SMP
8444 rq->sd = NULL;
8445 rq->rd = NULL;
8446 rq->active_balance = 0;
8447 rq->next_balance = jiffies;
8448 rq->push_cpu = 0;
8449 rq->cpu = i;
8450 rq->online = 0;
8451 rq->migration_thread = NULL;
8452 INIT_LIST_HEAD(&rq->migration_queue);
8453 rq_attach_root(rq, &def_root_domain);
8454 #endif
8455 init_rq_hrtick(rq);
8456 atomic_set(&rq->nr_iowait, 0);
8459 set_load_weight(&init_task);
8461 #ifdef CONFIG_PREEMPT_NOTIFIERS
8462 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8463 #endif
8465 #ifdef CONFIG_SMP
8466 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8467 #endif
8469 #ifdef CONFIG_RT_MUTEXES
8470 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8471 #endif
8474 * The boot idle thread does lazy MMU switching as well:
8476 atomic_inc(&init_mm.mm_count);
8477 enter_lazy_tlb(&init_mm, current);
8480 * Make us the idle thread. Technically, schedule() should not be
8481 * called from this thread, however somewhere below it might be,
8482 * but because we are the idle thread, we just pick up running again
8483 * when this runqueue becomes "idle".
8485 init_idle(current, smp_processor_id());
8487 * During early bootup we pretend to be a normal task:
8489 current->sched_class = &fair_sched_class;
8491 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8492 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8493 #ifdef CONFIG_SMP
8494 #ifdef CONFIG_NO_HZ
8495 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8496 #endif
8497 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8498 #endif /* SMP */
8500 scheduler_running = 1;
8503 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8504 void __might_sleep(char *file, int line)
8506 #ifdef in_atomic
8507 static unsigned long prev_jiffy; /* ratelimiting */
8509 if ((!in_atomic() && !irqs_disabled()) ||
8510 system_state != SYSTEM_RUNNING || oops_in_progress)
8511 return;
8512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8513 return;
8514 prev_jiffy = jiffies;
8516 printk(KERN_ERR
8517 "BUG: sleeping function called from invalid context at %s:%d\n",
8518 file, line);
8519 printk(KERN_ERR
8520 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8521 in_atomic(), irqs_disabled(),
8522 current->pid, current->comm);
8524 debug_show_held_locks(current);
8525 if (irqs_disabled())
8526 print_irqtrace_events(current);
8527 dump_stack();
8528 #endif
8530 EXPORT_SYMBOL(__might_sleep);
8531 #endif
8533 #ifdef CONFIG_MAGIC_SYSRQ
8534 static void normalize_task(struct rq *rq, struct task_struct *p)
8536 int on_rq;
8538 update_rq_clock(rq);
8539 on_rq = p->se.on_rq;
8540 if (on_rq)
8541 deactivate_task(rq, p, 0);
8542 __setscheduler(rq, p, SCHED_NORMAL, 0);
8543 if (on_rq) {
8544 activate_task(rq, p, 0);
8545 resched_task(rq->curr);
8549 void normalize_rt_tasks(void)
8551 struct task_struct *g, *p;
8552 unsigned long flags;
8553 struct rq *rq;
8555 read_lock_irqsave(&tasklist_lock, flags);
8556 do_each_thread(g, p) {
8558 * Only normalize user tasks:
8560 if (!p->mm)
8561 continue;
8563 p->se.exec_start = 0;
8564 #ifdef CONFIG_SCHEDSTATS
8565 p->se.wait_start = 0;
8566 p->se.sleep_start = 0;
8567 p->se.block_start = 0;
8568 #endif
8570 if (!rt_task(p)) {
8572 * Renice negative nice level userspace
8573 * tasks back to 0:
8575 if (TASK_NICE(p) < 0 && p->mm)
8576 set_user_nice(p, 0);
8577 continue;
8580 spin_lock(&p->pi_lock);
8581 rq = __task_rq_lock(p);
8583 normalize_task(rq, p);
8585 __task_rq_unlock(rq);
8586 spin_unlock(&p->pi_lock);
8587 } while_each_thread(g, p);
8589 read_unlock_irqrestore(&tasklist_lock, flags);
8592 #endif /* CONFIG_MAGIC_SYSRQ */
8594 #ifdef CONFIG_IA64
8596 * These functions are only useful for the IA64 MCA handling.
8598 * They can only be called when the whole system has been
8599 * stopped - every CPU needs to be quiescent, and no scheduling
8600 * activity can take place. Using them for anything else would
8601 * be a serious bug, and as a result, they aren't even visible
8602 * under any other configuration.
8606 * curr_task - return the current task for a given cpu.
8607 * @cpu: the processor in question.
8609 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8611 struct task_struct *curr_task(int cpu)
8613 return cpu_curr(cpu);
8617 * set_curr_task - set the current task for a given cpu.
8618 * @cpu: the processor in question.
8619 * @p: the task pointer to set.
8621 * Description: This function must only be used when non-maskable interrupts
8622 * are serviced on a separate stack. It allows the architecture to switch the
8623 * notion of the current task on a cpu in a non-blocking manner. This function
8624 * must be called with all CPU's synchronized, and interrupts disabled, the
8625 * and caller must save the original value of the current task (see
8626 * curr_task() above) and restore that value before reenabling interrupts and
8627 * re-starting the system.
8629 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8631 void set_curr_task(int cpu, struct task_struct *p)
8633 cpu_curr(cpu) = p;
8636 #endif
8638 #ifdef CONFIG_FAIR_GROUP_SCHED
8639 static void free_fair_sched_group(struct task_group *tg)
8641 int i;
8643 for_each_possible_cpu(i) {
8644 if (tg->cfs_rq)
8645 kfree(tg->cfs_rq[i]);
8646 if (tg->se)
8647 kfree(tg->se[i]);
8650 kfree(tg->cfs_rq);
8651 kfree(tg->se);
8654 static
8655 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8657 struct cfs_rq *cfs_rq;
8658 struct sched_entity *se;
8659 struct rq *rq;
8660 int i;
8662 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8663 if (!tg->cfs_rq)
8664 goto err;
8665 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8666 if (!tg->se)
8667 goto err;
8669 tg->shares = NICE_0_LOAD;
8671 for_each_possible_cpu(i) {
8672 rq = cpu_rq(i);
8674 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8675 GFP_KERNEL, cpu_to_node(i));
8676 if (!cfs_rq)
8677 goto err;
8679 se = kzalloc_node(sizeof(struct sched_entity),
8680 GFP_KERNEL, cpu_to_node(i));
8681 if (!se)
8682 goto err;
8684 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8687 return 1;
8689 err:
8690 return 0;
8693 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8695 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8696 &cpu_rq(cpu)->leaf_cfs_rq_list);
8699 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8701 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8703 #else /* !CONFG_FAIR_GROUP_SCHED */
8704 static inline void free_fair_sched_group(struct task_group *tg)
8708 static inline
8709 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8711 return 1;
8714 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8718 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8721 #endif /* CONFIG_FAIR_GROUP_SCHED */
8723 #ifdef CONFIG_RT_GROUP_SCHED
8724 static void free_rt_sched_group(struct task_group *tg)
8726 int i;
8728 destroy_rt_bandwidth(&tg->rt_bandwidth);
8730 for_each_possible_cpu(i) {
8731 if (tg->rt_rq)
8732 kfree(tg->rt_rq[i]);
8733 if (tg->rt_se)
8734 kfree(tg->rt_se[i]);
8737 kfree(tg->rt_rq);
8738 kfree(tg->rt_se);
8741 static
8742 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8744 struct rt_rq *rt_rq;
8745 struct sched_rt_entity *rt_se;
8746 struct rq *rq;
8747 int i;
8749 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8750 if (!tg->rt_rq)
8751 goto err;
8752 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8753 if (!tg->rt_se)
8754 goto err;
8756 init_rt_bandwidth(&tg->rt_bandwidth,
8757 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8759 for_each_possible_cpu(i) {
8760 rq = cpu_rq(i);
8762 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8763 GFP_KERNEL, cpu_to_node(i));
8764 if (!rt_rq)
8765 goto err;
8767 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8768 GFP_KERNEL, cpu_to_node(i));
8769 if (!rt_se)
8770 goto err;
8772 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8775 return 1;
8777 err:
8778 return 0;
8781 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8783 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8784 &cpu_rq(cpu)->leaf_rt_rq_list);
8787 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8789 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8791 #else /* !CONFIG_RT_GROUP_SCHED */
8792 static inline void free_rt_sched_group(struct task_group *tg)
8796 static inline
8797 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8799 return 1;
8802 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8806 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8809 #endif /* CONFIG_RT_GROUP_SCHED */
8811 #ifdef CONFIG_GROUP_SCHED
8812 static void free_sched_group(struct task_group *tg)
8814 free_fair_sched_group(tg);
8815 free_rt_sched_group(tg);
8816 kfree(tg);
8819 /* allocate runqueue etc for a new task group */
8820 struct task_group *sched_create_group(struct task_group *parent)
8822 struct task_group *tg;
8823 unsigned long flags;
8824 int i;
8826 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8827 if (!tg)
8828 return ERR_PTR(-ENOMEM);
8830 if (!alloc_fair_sched_group(tg, parent))
8831 goto err;
8833 if (!alloc_rt_sched_group(tg, parent))
8834 goto err;
8836 spin_lock_irqsave(&task_group_lock, flags);
8837 for_each_possible_cpu(i) {
8838 register_fair_sched_group(tg, i);
8839 register_rt_sched_group(tg, i);
8841 list_add_rcu(&tg->list, &task_groups);
8843 WARN_ON(!parent); /* root should already exist */
8845 tg->parent = parent;
8846 INIT_LIST_HEAD(&tg->children);
8847 list_add_rcu(&tg->siblings, &parent->children);
8848 spin_unlock_irqrestore(&task_group_lock, flags);
8850 return tg;
8852 err:
8853 free_sched_group(tg);
8854 return ERR_PTR(-ENOMEM);
8857 /* rcu callback to free various structures associated with a task group */
8858 static void free_sched_group_rcu(struct rcu_head *rhp)
8860 /* now it should be safe to free those cfs_rqs */
8861 free_sched_group(container_of(rhp, struct task_group, rcu));
8864 /* Destroy runqueue etc associated with a task group */
8865 void sched_destroy_group(struct task_group *tg)
8867 unsigned long flags;
8868 int i;
8870 spin_lock_irqsave(&task_group_lock, flags);
8871 for_each_possible_cpu(i) {
8872 unregister_fair_sched_group(tg, i);
8873 unregister_rt_sched_group(tg, i);
8875 list_del_rcu(&tg->list);
8876 list_del_rcu(&tg->siblings);
8877 spin_unlock_irqrestore(&task_group_lock, flags);
8879 /* wait for possible concurrent references to cfs_rqs complete */
8880 call_rcu(&tg->rcu, free_sched_group_rcu);
8883 /* change task's runqueue when it moves between groups.
8884 * The caller of this function should have put the task in its new group
8885 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8886 * reflect its new group.
8888 void sched_move_task(struct task_struct *tsk)
8890 int on_rq, running;
8891 unsigned long flags;
8892 struct rq *rq;
8894 rq = task_rq_lock(tsk, &flags);
8896 update_rq_clock(rq);
8898 running = task_current(rq, tsk);
8899 on_rq = tsk->se.on_rq;
8901 if (on_rq)
8902 dequeue_task(rq, tsk, 0);
8903 if (unlikely(running))
8904 tsk->sched_class->put_prev_task(rq, tsk);
8906 set_task_rq(tsk, task_cpu(tsk));
8908 #ifdef CONFIG_FAIR_GROUP_SCHED
8909 if (tsk->sched_class->moved_group)
8910 tsk->sched_class->moved_group(tsk);
8911 #endif
8913 if (unlikely(running))
8914 tsk->sched_class->set_curr_task(rq);
8915 if (on_rq)
8916 enqueue_task(rq, tsk, 0);
8918 task_rq_unlock(rq, &flags);
8920 #endif /* CONFIG_GROUP_SCHED */
8922 #ifdef CONFIG_FAIR_GROUP_SCHED
8923 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8925 struct cfs_rq *cfs_rq = se->cfs_rq;
8926 int on_rq;
8928 on_rq = se->on_rq;
8929 if (on_rq)
8930 dequeue_entity(cfs_rq, se, 0);
8932 se->load.weight = shares;
8933 se->load.inv_weight = 0;
8935 if (on_rq)
8936 enqueue_entity(cfs_rq, se, 0);
8939 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8941 struct cfs_rq *cfs_rq = se->cfs_rq;
8942 struct rq *rq = cfs_rq->rq;
8943 unsigned long flags;
8945 spin_lock_irqsave(&rq->lock, flags);
8946 __set_se_shares(se, shares);
8947 spin_unlock_irqrestore(&rq->lock, flags);
8950 static DEFINE_MUTEX(shares_mutex);
8952 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8954 int i;
8955 unsigned long flags;
8958 * We can't change the weight of the root cgroup.
8960 if (!tg->se[0])
8961 return -EINVAL;
8963 if (shares < MIN_SHARES)
8964 shares = MIN_SHARES;
8965 else if (shares > MAX_SHARES)
8966 shares = MAX_SHARES;
8968 mutex_lock(&shares_mutex);
8969 if (tg->shares == shares)
8970 goto done;
8972 spin_lock_irqsave(&task_group_lock, flags);
8973 for_each_possible_cpu(i)
8974 unregister_fair_sched_group(tg, i);
8975 list_del_rcu(&tg->siblings);
8976 spin_unlock_irqrestore(&task_group_lock, flags);
8978 /* wait for any ongoing reference to this group to finish */
8979 synchronize_sched();
8982 * Now we are free to modify the group's share on each cpu
8983 * w/o tripping rebalance_share or load_balance_fair.
8985 tg->shares = shares;
8986 for_each_possible_cpu(i) {
8988 * force a rebalance
8990 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8991 set_se_shares(tg->se[i], shares);
8995 * Enable load balance activity on this group, by inserting it back on
8996 * each cpu's rq->leaf_cfs_rq_list.
8998 spin_lock_irqsave(&task_group_lock, flags);
8999 for_each_possible_cpu(i)
9000 register_fair_sched_group(tg, i);
9001 list_add_rcu(&tg->siblings, &tg->parent->children);
9002 spin_unlock_irqrestore(&task_group_lock, flags);
9003 done:
9004 mutex_unlock(&shares_mutex);
9005 return 0;
9008 unsigned long sched_group_shares(struct task_group *tg)
9010 return tg->shares;
9012 #endif
9014 #ifdef CONFIG_RT_GROUP_SCHED
9016 * Ensure that the real time constraints are schedulable.
9018 static DEFINE_MUTEX(rt_constraints_mutex);
9020 static unsigned long to_ratio(u64 period, u64 runtime)
9022 if (runtime == RUNTIME_INF)
9023 return 1ULL << 20;
9025 return div64_u64(runtime << 20, period);
9028 /* Must be called with tasklist_lock held */
9029 static inline int tg_has_rt_tasks(struct task_group *tg)
9031 struct task_struct *g, *p;
9033 do_each_thread(g, p) {
9034 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9035 return 1;
9036 } while_each_thread(g, p);
9038 return 0;
9041 struct rt_schedulable_data {
9042 struct task_group *tg;
9043 u64 rt_period;
9044 u64 rt_runtime;
9047 static int tg_schedulable(struct task_group *tg, void *data)
9049 struct rt_schedulable_data *d = data;
9050 struct task_group *child;
9051 unsigned long total, sum = 0;
9052 u64 period, runtime;
9054 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9055 runtime = tg->rt_bandwidth.rt_runtime;
9057 if (tg == d->tg) {
9058 period = d->rt_period;
9059 runtime = d->rt_runtime;
9062 #ifdef CONFIG_USER_SCHED
9063 if (tg == &root_task_group) {
9064 period = global_rt_period();
9065 runtime = global_rt_runtime();
9067 #endif
9070 * Cannot have more runtime than the period.
9072 if (runtime > period && runtime != RUNTIME_INF)
9073 return -EINVAL;
9076 * Ensure we don't starve existing RT tasks.
9078 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9079 return -EBUSY;
9081 total = to_ratio(period, runtime);
9084 * Nobody can have more than the global setting allows.
9086 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9087 return -EINVAL;
9090 * The sum of our children's runtime should not exceed our own.
9092 list_for_each_entry_rcu(child, &tg->children, siblings) {
9093 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9094 runtime = child->rt_bandwidth.rt_runtime;
9096 if (child == d->tg) {
9097 period = d->rt_period;
9098 runtime = d->rt_runtime;
9101 sum += to_ratio(period, runtime);
9104 if (sum > total)
9105 return -EINVAL;
9107 return 0;
9110 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9112 struct rt_schedulable_data data = {
9113 .tg = tg,
9114 .rt_period = period,
9115 .rt_runtime = runtime,
9118 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9121 static int tg_set_bandwidth(struct task_group *tg,
9122 u64 rt_period, u64 rt_runtime)
9124 int i, err = 0;
9126 mutex_lock(&rt_constraints_mutex);
9127 read_lock(&tasklist_lock);
9128 err = __rt_schedulable(tg, rt_period, rt_runtime);
9129 if (err)
9130 goto unlock;
9132 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9133 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9134 tg->rt_bandwidth.rt_runtime = rt_runtime;
9136 for_each_possible_cpu(i) {
9137 struct rt_rq *rt_rq = tg->rt_rq[i];
9139 spin_lock(&rt_rq->rt_runtime_lock);
9140 rt_rq->rt_runtime = rt_runtime;
9141 spin_unlock(&rt_rq->rt_runtime_lock);
9143 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9144 unlock:
9145 read_unlock(&tasklist_lock);
9146 mutex_unlock(&rt_constraints_mutex);
9148 return err;
9151 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9153 u64 rt_runtime, rt_period;
9155 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9156 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9157 if (rt_runtime_us < 0)
9158 rt_runtime = RUNTIME_INF;
9160 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9163 long sched_group_rt_runtime(struct task_group *tg)
9165 u64 rt_runtime_us;
9167 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9168 return -1;
9170 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9171 do_div(rt_runtime_us, NSEC_PER_USEC);
9172 return rt_runtime_us;
9175 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9177 u64 rt_runtime, rt_period;
9179 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9180 rt_runtime = tg->rt_bandwidth.rt_runtime;
9182 if (rt_period == 0)
9183 return -EINVAL;
9185 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9188 long sched_group_rt_period(struct task_group *tg)
9190 u64 rt_period_us;
9192 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9193 do_div(rt_period_us, NSEC_PER_USEC);
9194 return rt_period_us;
9197 static int sched_rt_global_constraints(void)
9199 u64 runtime, period;
9200 int ret = 0;
9202 if (sysctl_sched_rt_period <= 0)
9203 return -EINVAL;
9205 runtime = global_rt_runtime();
9206 period = global_rt_period();
9209 * Sanity check on the sysctl variables.
9211 if (runtime > period && runtime != RUNTIME_INF)
9212 return -EINVAL;
9214 mutex_lock(&rt_constraints_mutex);
9215 read_lock(&tasklist_lock);
9216 ret = __rt_schedulable(NULL, 0, 0);
9217 read_unlock(&tasklist_lock);
9218 mutex_unlock(&rt_constraints_mutex);
9220 return ret;
9222 #else /* !CONFIG_RT_GROUP_SCHED */
9223 static int sched_rt_global_constraints(void)
9225 unsigned long flags;
9226 int i;
9228 if (sysctl_sched_rt_period <= 0)
9229 return -EINVAL;
9231 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9232 for_each_possible_cpu(i) {
9233 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9235 spin_lock(&rt_rq->rt_runtime_lock);
9236 rt_rq->rt_runtime = global_rt_runtime();
9237 spin_unlock(&rt_rq->rt_runtime_lock);
9239 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9241 return 0;
9243 #endif /* CONFIG_RT_GROUP_SCHED */
9245 int sched_rt_handler(struct ctl_table *table, int write,
9246 struct file *filp, void __user *buffer, size_t *lenp,
9247 loff_t *ppos)
9249 int ret;
9250 int old_period, old_runtime;
9251 static DEFINE_MUTEX(mutex);
9253 mutex_lock(&mutex);
9254 old_period = sysctl_sched_rt_period;
9255 old_runtime = sysctl_sched_rt_runtime;
9257 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9259 if (!ret && write) {
9260 ret = sched_rt_global_constraints();
9261 if (ret) {
9262 sysctl_sched_rt_period = old_period;
9263 sysctl_sched_rt_runtime = old_runtime;
9264 } else {
9265 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9266 def_rt_bandwidth.rt_period =
9267 ns_to_ktime(global_rt_period());
9270 mutex_unlock(&mutex);
9272 return ret;
9275 #ifdef CONFIG_CGROUP_SCHED
9277 /* return corresponding task_group object of a cgroup */
9278 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9280 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9281 struct task_group, css);
9284 static struct cgroup_subsys_state *
9285 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9287 struct task_group *tg, *parent;
9289 if (!cgrp->parent) {
9290 /* This is early initialization for the top cgroup */
9291 return &init_task_group.css;
9294 parent = cgroup_tg(cgrp->parent);
9295 tg = sched_create_group(parent);
9296 if (IS_ERR(tg))
9297 return ERR_PTR(-ENOMEM);
9299 return &tg->css;
9302 static void
9303 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9305 struct task_group *tg = cgroup_tg(cgrp);
9307 sched_destroy_group(tg);
9310 static int
9311 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9312 struct task_struct *tsk)
9314 #ifdef CONFIG_RT_GROUP_SCHED
9315 /* Don't accept realtime tasks when there is no way for them to run */
9316 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9317 return -EINVAL;
9318 #else
9319 /* We don't support RT-tasks being in separate groups */
9320 if (tsk->sched_class != &fair_sched_class)
9321 return -EINVAL;
9322 #endif
9324 return 0;
9327 static void
9328 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9329 struct cgroup *old_cont, struct task_struct *tsk)
9331 sched_move_task(tsk);
9334 #ifdef CONFIG_FAIR_GROUP_SCHED
9335 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9336 u64 shareval)
9338 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9341 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9343 struct task_group *tg = cgroup_tg(cgrp);
9345 return (u64) tg->shares;
9347 #endif /* CONFIG_FAIR_GROUP_SCHED */
9349 #ifdef CONFIG_RT_GROUP_SCHED
9350 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9351 s64 val)
9353 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9356 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9358 return sched_group_rt_runtime(cgroup_tg(cgrp));
9361 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9362 u64 rt_period_us)
9364 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9367 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9369 return sched_group_rt_period(cgroup_tg(cgrp));
9371 #endif /* CONFIG_RT_GROUP_SCHED */
9373 static struct cftype cpu_files[] = {
9374 #ifdef CONFIG_FAIR_GROUP_SCHED
9376 .name = "shares",
9377 .read_u64 = cpu_shares_read_u64,
9378 .write_u64 = cpu_shares_write_u64,
9380 #endif
9381 #ifdef CONFIG_RT_GROUP_SCHED
9383 .name = "rt_runtime_us",
9384 .read_s64 = cpu_rt_runtime_read,
9385 .write_s64 = cpu_rt_runtime_write,
9388 .name = "rt_period_us",
9389 .read_u64 = cpu_rt_period_read_uint,
9390 .write_u64 = cpu_rt_period_write_uint,
9392 #endif
9395 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9397 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9400 struct cgroup_subsys cpu_cgroup_subsys = {
9401 .name = "cpu",
9402 .create = cpu_cgroup_create,
9403 .destroy = cpu_cgroup_destroy,
9404 .can_attach = cpu_cgroup_can_attach,
9405 .attach = cpu_cgroup_attach,
9406 .populate = cpu_cgroup_populate,
9407 .subsys_id = cpu_cgroup_subsys_id,
9408 .early_init = 1,
9411 #endif /* CONFIG_CGROUP_SCHED */
9413 #ifdef CONFIG_CGROUP_CPUACCT
9416 * CPU accounting code for task groups.
9418 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9419 * (balbir@in.ibm.com).
9422 /* track cpu usage of a group of tasks and its child groups */
9423 struct cpuacct {
9424 struct cgroup_subsys_state css;
9425 /* cpuusage holds pointer to a u64-type object on every cpu */
9426 u64 *cpuusage;
9427 struct cpuacct *parent;
9430 struct cgroup_subsys cpuacct_subsys;
9432 /* return cpu accounting group corresponding to this container */
9433 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9435 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9436 struct cpuacct, css);
9439 /* return cpu accounting group to which this task belongs */
9440 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9442 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9443 struct cpuacct, css);
9446 /* create a new cpu accounting group */
9447 static struct cgroup_subsys_state *cpuacct_create(
9448 struct cgroup_subsys *ss, struct cgroup *cgrp)
9450 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9452 if (!ca)
9453 return ERR_PTR(-ENOMEM);
9455 ca->cpuusage = alloc_percpu(u64);
9456 if (!ca->cpuusage) {
9457 kfree(ca);
9458 return ERR_PTR(-ENOMEM);
9461 if (cgrp->parent)
9462 ca->parent = cgroup_ca(cgrp->parent);
9464 return &ca->css;
9467 /* destroy an existing cpu accounting group */
9468 static void
9469 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9471 struct cpuacct *ca = cgroup_ca(cgrp);
9473 free_percpu(ca->cpuusage);
9474 kfree(ca);
9477 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9479 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9480 u64 data;
9482 #ifndef CONFIG_64BIT
9484 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9486 spin_lock_irq(&cpu_rq(cpu)->lock);
9487 data = *cpuusage;
9488 spin_unlock_irq(&cpu_rq(cpu)->lock);
9489 #else
9490 data = *cpuusage;
9491 #endif
9493 return data;
9496 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9498 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9500 #ifndef CONFIG_64BIT
9502 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9504 spin_lock_irq(&cpu_rq(cpu)->lock);
9505 *cpuusage = val;
9506 spin_unlock_irq(&cpu_rq(cpu)->lock);
9507 #else
9508 *cpuusage = val;
9509 #endif
9512 /* return total cpu usage (in nanoseconds) of a group */
9513 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9515 struct cpuacct *ca = cgroup_ca(cgrp);
9516 u64 totalcpuusage = 0;
9517 int i;
9519 for_each_present_cpu(i)
9520 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9522 return totalcpuusage;
9525 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9526 u64 reset)
9528 struct cpuacct *ca = cgroup_ca(cgrp);
9529 int err = 0;
9530 int i;
9532 if (reset) {
9533 err = -EINVAL;
9534 goto out;
9537 for_each_present_cpu(i)
9538 cpuacct_cpuusage_write(ca, i, 0);
9540 out:
9541 return err;
9544 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9545 struct seq_file *m)
9547 struct cpuacct *ca = cgroup_ca(cgroup);
9548 u64 percpu;
9549 int i;
9551 for_each_present_cpu(i) {
9552 percpu = cpuacct_cpuusage_read(ca, i);
9553 seq_printf(m, "%llu ", (unsigned long long) percpu);
9555 seq_printf(m, "\n");
9556 return 0;
9559 static struct cftype files[] = {
9561 .name = "usage",
9562 .read_u64 = cpuusage_read,
9563 .write_u64 = cpuusage_write,
9566 .name = "usage_percpu",
9567 .read_seq_string = cpuacct_percpu_seq_read,
9572 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9574 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9578 * charge this task's execution time to its accounting group.
9580 * called with rq->lock held.
9582 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9584 struct cpuacct *ca;
9585 int cpu;
9587 if (!cpuacct_subsys.active)
9588 return;
9590 cpu = task_cpu(tsk);
9591 ca = task_ca(tsk);
9593 for (; ca; ca = ca->parent) {
9594 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9595 *cpuusage += cputime;
9599 struct cgroup_subsys cpuacct_subsys = {
9600 .name = "cpuacct",
9601 .create = cpuacct_create,
9602 .destroy = cpuacct_destroy,
9603 .populate = cpuacct_populate,
9604 .subsys_id = cpuacct_subsys_id,
9606 #endif /* CONFIG_CGROUP_CPUACCT */