4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
137 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
146 sg
->__cpu_power
+= val
;
147 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
151 static inline int rt_policy(int policy
)
153 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
158 static inline int task_has_rt_policy(struct task_struct
*p
)
160 return rt_policy(p
->policy
);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array
{
167 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
168 struct list_head queue
[MAX_RT_PRIO
];
171 struct rt_bandwidth
{
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock
;
176 struct hrtimer rt_period_timer
;
179 static struct rt_bandwidth def_rt_bandwidth
;
181 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
183 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
185 struct rt_bandwidth
*rt_b
=
186 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
192 now
= hrtimer_cb_get_time(timer
);
193 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
198 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
201 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
205 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
207 rt_b
->rt_period
= ns_to_ktime(period
);
208 rt_b
->rt_runtime
= runtime
;
210 spin_lock_init(&rt_b
->rt_runtime_lock
);
212 hrtimer_init(&rt_b
->rt_period_timer
,
213 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
214 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime
>= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
229 if (hrtimer_active(&rt_b
->rt_period_timer
))
232 spin_lock(&rt_b
->rt_runtime_lock
);
234 if (hrtimer_active(&rt_b
->rt_period_timer
))
237 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
238 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 hrtimer_start_expires(&rt_b
->rt_period_timer
,
242 spin_unlock(&rt_b
->rt_runtime_lock
);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
248 hrtimer_cancel(&rt_b
->rt_period_timer
);
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex
);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
264 static LIST_HEAD(task_groups
);
266 /* task group related information */
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css
;
272 #ifdef CONFIG_USER_SCHED
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity
**se
;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq
**cfs_rq
;
281 unsigned long shares
;
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity
**rt_se
;
286 struct rt_rq
**rt_rq
;
288 struct rt_bandwidth rt_bandwidth
;
292 struct list_head list
;
294 struct task_group
*parent
;
295 struct list_head siblings
;
296 struct list_head children
;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct
*user
)
304 user
->tg
->uid
= user
->uid
;
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group
;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
323 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock
);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group
;
360 /* return group to which a task belongs */
361 static inline struct task_group
*task_group(struct task_struct
*p
)
363 struct task_group
*tg
;
365 #ifdef CONFIG_USER_SCHED
367 tg
= __task_cred(p
)->user
->tg
;
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
371 struct task_group
, css
);
373 tg
= &init_task_group
;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
383 p
->se
.parent
= task_group(p
)->se
[cpu
];
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
388 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
394 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
395 static inline struct task_group
*task_group(struct task_struct
*p
)
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
404 struct load_weight load
;
405 unsigned long nr_running
;
410 struct rb_root tasks_timeline
;
411 struct rb_node
*rb_leftmost
;
413 struct list_head tasks
;
414 struct list_head
*balance_iterator
;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity
*curr
, *next
, *last
;
422 unsigned int nr_spread_over
;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list
;
436 struct task_group
*tg
; /* group that "owns" this runqueue */
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight
;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
450 unsigned long h_load
;
453 * this cpu's part of tg->shares
455 unsigned long shares
;
458 * load.weight at the time we set shares
460 unsigned long rq_weight
;
465 /* Real-Time classes' related field in a runqueue: */
467 struct rt_prio_array active
;
468 unsigned long rt_nr_running
;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio
; /* highest queued rt task prio */
473 unsigned long rt_nr_migratory
;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock
;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted
;
486 struct list_head leaf_rt_rq_list
;
487 struct task_group
*tg
;
488 struct sched_rt_entity
*rt_se
;
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
505 cpumask_var_t online
;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask
;
514 struct cpupri cpupri
;
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu
;
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain
;
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running
;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
552 unsigned char idle_at_tick
;
554 unsigned long last_tick_seen
;
555 unsigned char in_nohz_recently
;
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load
;
559 unsigned long nr_load_updates
;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list
;
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list
;
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible
;
581 struct task_struct
*curr
, *idle
;
582 unsigned long next_balance
;
583 struct mm_struct
*prev_mm
;
590 struct root_domain
*rd
;
591 struct sched_domain
*sd
;
593 /* For active balancing */
596 /* cpu of this runqueue: */
600 unsigned long avg_load_per_task
;
602 struct task_struct
*migration_thread
;
603 struct list_head migration_queue
;
606 #ifdef CONFIG_SCHED_HRTICK
608 int hrtick_csd_pending
;
609 struct call_single_data hrtick_csd
;
611 struct hrtimer hrtick_timer
;
614 #ifdef CONFIG_SCHEDSTATS
616 struct sched_info rq_sched_info
;
617 unsigned long long rq_cpu_time
;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty
;
622 unsigned int yld_act_empty
;
623 unsigned int yld_both_empty
;
624 unsigned int yld_count
;
626 /* schedule() stats */
627 unsigned int sched_switch
;
628 unsigned int sched_count
;
629 unsigned int sched_goidle
;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count
;
633 unsigned int ttwu_local
;
636 unsigned int bkl_count
;
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
642 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
644 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
647 static inline int cpu_of(struct rq
*rq
)
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq
*rq
)
673 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
682 # define const_debug static const
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
695 struct rq
*rq
= cpu_rq(cpu
);
698 ret
= spin_is_locked(&rq
->lock
);
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
711 #include "sched_features.h"
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug
unsigned int sysctl_sched_features
=
720 #include "sched_features.h"
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
729 static __read_mostly
char *sched_feat_names
[] = {
730 #include "sched_features.h"
736 static int sched_feat_show(struct seq_file
*m
, void *v
)
740 for (i
= 0; sched_feat_names
[i
]; i
++) {
741 if (!(sysctl_sched_features
& (1UL << i
)))
743 seq_printf(m
, "%s ", sched_feat_names
[i
]);
751 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
752 size_t cnt
, loff_t
*ppos
)
762 if (copy_from_user(&buf
, ubuf
, cnt
))
767 if (strncmp(buf
, "NO_", 3) == 0) {
772 for (i
= 0; sched_feat_names
[i
]; i
++) {
773 int len
= strlen(sched_feat_names
[i
]);
775 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
777 sysctl_sched_features
&= ~(1UL << i
);
779 sysctl_sched_features
|= (1UL << i
);
784 if (!sched_feat_names
[i
])
792 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
794 return single_open(filp
, sched_feat_show
, NULL
);
797 static struct file_operations sched_feat_fops
= {
798 .open
= sched_feat_open
,
799 .write
= sched_feat_write
,
802 .release
= single_release
,
805 static __init
int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
812 late_initcall(sched_init_debug
);
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
825 * ratelimit for updating the group shares.
828 unsigned int sysctl_sched_shares_ratelimit
= 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
835 unsigned int sysctl_sched_shares_thresh
= 4;
838 * period over which we measure -rt task cpu usage in us.
841 unsigned int sysctl_sched_rt_period
= 1000000;
843 static __read_mostly
int scheduler_running
;
846 * part of the period that we allow rt tasks to run in us.
849 int sysctl_sched_rt_runtime
= 950000;
851 static inline u64
global_rt_period(void)
853 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
856 static inline u64
global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime
< 0)
861 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
871 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
873 return rq
->curr
== p
;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
879 return task_current(rq
, p
);
882 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
886 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq
->lock
.owner
= current
;
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
897 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
899 spin_unlock_irq(&rq
->lock
);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
908 return task_current(rq
, p
);
912 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq
->lock
);
925 spin_unlock(&rq
->lock
);
929 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
954 struct rq
*rq
= task_rq(p
);
955 spin_lock(&rq
->lock
);
956 if (likely(rq
== task_rq(p
)))
958 spin_unlock(&rq
->lock
);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
973 local_irq_save(*flags
);
975 spin_lock(&rq
->lock
);
976 if (likely(rq
== task_rq(p
)))
978 spin_unlock_irqrestore(&rq
->lock
, *flags
);
982 void task_rq_unlock_wait(struct task_struct
*p
)
984 struct rq
*rq
= task_rq(p
);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq
->lock
);
990 static void __task_rq_unlock(struct rq
*rq
)
993 spin_unlock(&rq
->lock
);
996 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
999 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq
*this_rq_lock(void)
1006 __acquires(rq
->lock
)
1010 local_irq_disable();
1012 spin_lock(&rq
->lock
);
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq
*rq
)
1036 if (!sched_feat(HRTICK
))
1038 if (!cpu_active(cpu_of(rq
)))
1040 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1043 static void hrtick_clear(struct rq
*rq
)
1045 if (hrtimer_active(&rq
->hrtick_timer
))
1046 hrtimer_cancel(&rq
->hrtick_timer
);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1055 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1057 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1059 spin_lock(&rq
->lock
);
1060 update_rq_clock(rq
);
1061 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1062 spin_unlock(&rq
->lock
);
1064 return HRTIMER_NORESTART
;
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg
)
1073 struct rq
*rq
= arg
;
1075 spin_lock(&rq
->lock
);
1076 hrtimer_restart(&rq
->hrtick_timer
);
1077 rq
->hrtick_csd_pending
= 0;
1078 spin_unlock(&rq
->lock
);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq
*rq
, u64 delay
)
1088 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1089 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1091 hrtimer_set_expires(timer
, time
);
1093 if (rq
== this_rq()) {
1094 hrtimer_restart(timer
);
1095 } else if (!rq
->hrtick_csd_pending
) {
1096 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1097 rq
->hrtick_csd_pending
= 1;
1102 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1104 int cpu
= (int)(long)hcpu
;
1107 case CPU_UP_CANCELED
:
1108 case CPU_UP_CANCELED_FROZEN
:
1109 case CPU_DOWN_PREPARE
:
1110 case CPU_DOWN_PREPARE_FROZEN
:
1112 case CPU_DEAD_FROZEN
:
1113 hrtick_clear(cpu_rq(cpu
));
1120 static __init
void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick
, 0);
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq
*rq
, u64 delay
)
1132 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq
*rq
)
1143 rq
->hrtick_csd_pending
= 0;
1145 rq
->hrtick_csd
.flags
= 0;
1146 rq
->hrtick_csd
.func
= __hrtick_start
;
1147 rq
->hrtick_csd
.info
= rq
;
1150 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1151 rq
->hrtick_timer
.function
= hrtick
;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq
*rq
)
1158 static inline void init_rq_hrtick(struct rq
*rq
)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1180 static void resched_task(struct task_struct
*p
)
1184 assert_spin_locked(&task_rq(p
)->lock
);
1186 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1189 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1192 if (cpu
== smp_processor_id())
1195 /* NEED_RESCHED must be visible before we test polling */
1197 if (!tsk_is_polling(p
))
1198 smp_send_reschedule(cpu
);
1201 static void resched_cpu(int cpu
)
1203 struct rq
*rq
= cpu_rq(cpu
);
1204 unsigned long flags
;
1206 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1208 resched_task(cpu_curr(cpu
));
1209 spin_unlock_irqrestore(&rq
->lock
, flags
);
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu
)
1225 struct rq
*rq
= cpu_rq(cpu
);
1227 if (cpu
== smp_processor_id())
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq
->curr
!= rq
->idle
)
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1247 /* NEED_RESCHED must be visible before we test polling */
1249 if (!tsk_is_polling(rq
->idle
))
1250 smp_send_reschedule(cpu
);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct
*p
)
1257 assert_spin_locked(&task_rq(p
)->lock
);
1258 set_tsk_need_resched(p
);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1265 # define WMULT_CONST (1UL << 32)
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1280 struct load_weight
*lw
)
1284 if (!lw
->inv_weight
) {
1285 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1288 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1292 tmp
= (u64
)delta_exec
* weight
;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp
> WMULT_CONST
))
1297 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1300 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1302 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1305 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1311 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight
[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult
[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator
{
1379 struct task_struct
*(*start
)(void *);
1380 struct task_struct
*(*next
)(void *);
1384 static unsigned long
1385 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1386 unsigned long max_load_move
, struct sched_domain
*sd
,
1387 enum cpu_idle_type idle
, int *all_pinned
,
1388 int *this_best_prio
, struct rq_iterator
*iterator
);
1391 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1392 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1393 struct rq_iterator
*iterator
);
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1399 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1402 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1404 update_load_add(&rq
->load
, load
);
1407 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1409 update_load_sub(&rq
->load
, load
);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor
)(struct task_group
*, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1421 struct task_group
*parent
, *child
;
1425 parent
= &root_task_group
;
1427 ret
= (*down
)(parent
, data
);
1430 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1437 ret
= (*up
)(parent
, data
);
1442 parent
= parent
->parent
;
1451 static int tg_nop(struct task_group
*tg
, void *data
)
1458 static unsigned long source_load(int cpu
, int type
);
1459 static unsigned long target_load(int cpu
, int type
);
1460 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1462 static unsigned long cpu_avg_load_per_task(int cpu
)
1464 struct rq
*rq
= cpu_rq(cpu
);
1465 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1468 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1470 rq
->avg_load_per_task
= 0;
1472 return rq
->avg_load_per_task
;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1480 * Calculate and set the cpu's group shares.
1483 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1484 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1486 unsigned long shares
;
1487 unsigned long rq_weight
;
1492 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1500 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1501 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1503 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1504 sysctl_sched_shares_thresh
) {
1505 struct rq
*rq
= cpu_rq(cpu
);
1506 unsigned long flags
;
1508 spin_lock_irqsave(&rq
->lock
, flags
);
1509 tg
->cfs_rq
[cpu
]->shares
= shares
;
1511 __set_se_shares(tg
->se
[cpu
], shares
);
1512 spin_unlock_irqrestore(&rq
->lock
, flags
);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group
*tg
, void *data
)
1523 unsigned long weight
, rq_weight
= 0;
1524 unsigned long shares
= 0;
1525 struct sched_domain
*sd
= data
;
1528 for_each_cpu(i
, sched_domain_span(sd
)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1536 weight
= NICE_0_LOAD
;
1538 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1539 rq_weight
+= weight
;
1540 shares
+= tg
->cfs_rq
[i
]->shares
;
1543 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1544 shares
= tg
->shares
;
1546 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1547 shares
= tg
->shares
;
1549 for_each_cpu(i
, sched_domain_span(sd
))
1550 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group
*tg
, void *data
)
1563 long cpu
= (long)data
;
1566 load
= cpu_rq(cpu
)->load
.weight
;
1568 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1569 load
*= tg
->cfs_rq
[cpu
]->shares
;
1570 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1573 tg
->cfs_rq
[cpu
]->h_load
= load
;
1578 static void update_shares(struct sched_domain
*sd
)
1580 u64 now
= cpu_clock(raw_smp_processor_id());
1581 s64 elapsed
= now
- sd
->last_update
;
1583 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1584 sd
->last_update
= now
;
1585 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1589 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1591 spin_unlock(&rq
->lock
);
1593 spin_lock(&rq
->lock
);
1596 static void update_h_load(long cpu
)
1598 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1603 static inline void update_shares(struct sched_domain
*sd
)
1607 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1617 __releases(this_rq
->lock
)
1618 __acquires(busiest
->lock
)
1619 __acquires(this_rq
->lock
)
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq
->lock
);
1628 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1629 if (busiest
< this_rq
) {
1630 spin_unlock(&this_rq
->lock
);
1631 spin_lock(&busiest
->lock
);
1632 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1635 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1640 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1641 __releases(busiest
->lock
)
1643 spin_unlock(&busiest
->lock
);
1644 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1652 cfs_rq
->shares
= shares
;
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq
*rq
)
1674 static void dec_nr_running(struct rq
*rq
)
1679 static void set_load_weight(struct task_struct
*p
)
1681 if (task_has_rt_policy(p
)) {
1682 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1683 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p
->policy
== SCHED_IDLE
) {
1691 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1692 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1696 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1697 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1700 static void update_avg(u64
*avg
, u64 sample
)
1702 s64 diff
= sample
- *avg
;
1706 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1708 sched_info_queued(p
);
1709 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1713 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1715 if (sleep
&& p
->se
.last_wakeup
) {
1716 update_avg(&p
->se
.avg_overlap
,
1717 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1718 p
->se
.last_wakeup
= 0;
1721 sched_info_dequeued(p
);
1722 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1727 * __normal_prio - return the priority that is based on the static prio
1729 static inline int __normal_prio(struct task_struct
*p
)
1731 return p
->static_prio
;
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1741 static inline int normal_prio(struct task_struct
*p
)
1745 if (task_has_rt_policy(p
))
1746 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1748 prio
= __normal_prio(p
);
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1759 static int effective_prio(struct task_struct
*p
)
1761 p
->normal_prio
= normal_prio(p
);
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1767 if (!rt_prio(p
->prio
))
1768 return p
->normal_prio
;
1773 * activate_task - move a task to the runqueue.
1775 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1777 if (task_contributes_to_load(p
))
1778 rq
->nr_uninterruptible
--;
1780 enqueue_task(rq
, p
, wakeup
);
1785 * deactivate_task - remove a task from the runqueue.
1787 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1789 if (task_contributes_to_load(p
))
1790 rq
->nr_uninterruptible
++;
1792 dequeue_task(rq
, p
, sleep
);
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1800 inline int task_curr(const struct task_struct
*p
)
1802 return cpu_curr(task_cpu(p
)) == p
;
1805 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1807 set_task_rq(p
, cpu
);
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1815 task_thread_info(p
)->cpu
= cpu
;
1819 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1820 const struct sched_class
*prev_class
,
1821 int oldprio
, int running
)
1823 if (prev_class
!= p
->sched_class
) {
1824 if (prev_class
->switched_from
)
1825 prev_class
->switched_from(rq
, p
, running
);
1826 p
->sched_class
->switched_to(rq
, p
, running
);
1828 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1833 /* Used instead of source_load when we know the type == 0 */
1834 static unsigned long weighted_cpuload(const int cpu
)
1836 return cpu_rq(cpu
)->load
.weight
;
1840 * Is this task likely cache-hot:
1843 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1848 * Buddy candidates are cache hot:
1850 if (sched_feat(CACHE_HOT_BUDDY
) &&
1851 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1852 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1855 if (p
->sched_class
!= &fair_sched_class
)
1858 if (sysctl_sched_migration_cost
== -1)
1860 if (sysctl_sched_migration_cost
== 0)
1863 delta
= now
- p
->se
.exec_start
;
1865 return delta
< (s64
)sysctl_sched_migration_cost
;
1869 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1871 int old_cpu
= task_cpu(p
);
1872 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1873 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1874 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1877 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1879 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1881 #ifdef CONFIG_SCHEDSTATS
1882 if (p
->se
.wait_start
)
1883 p
->se
.wait_start
-= clock_offset
;
1884 if (p
->se
.sleep_start
)
1885 p
->se
.sleep_start
-= clock_offset
;
1886 if (p
->se
.block_start
)
1887 p
->se
.block_start
-= clock_offset
;
1888 if (old_cpu
!= new_cpu
) {
1889 schedstat_inc(p
, se
.nr_migrations
);
1890 if (task_hot(p
, old_rq
->clock
, NULL
))
1891 schedstat_inc(p
, se
.nr_forced2_migrations
);
1894 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1895 new_cfsrq
->min_vruntime
;
1897 __set_task_cpu(p
, new_cpu
);
1900 struct migration_req
{
1901 struct list_head list
;
1903 struct task_struct
*task
;
1906 struct completion done
;
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1914 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1916 struct rq
*rq
= task_rq(p
);
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1922 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1923 set_task_cpu(p
, dest_cpu
);
1927 init_completion(&req
->done
);
1929 req
->dest_cpu
= dest_cpu
;
1930 list_add(&req
->list
, &rq
->migration_queue
);
1936 * wait_task_inactive - wait for a thread to unschedule.
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1951 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1953 unsigned long flags
;
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1978 while (task_running(rq
, p
)) {
1979 if (match_state
&& unlikely(p
->state
!= match_state
))
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq
= task_rq_lock(p
, &flags
);
1990 trace_sched_wait_task(rq
, p
);
1991 running
= task_running(rq
, p
);
1992 on_rq
= p
->se
.on_rq
;
1994 if (!match_state
|| p
->state
== match_state
)
1995 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1996 task_rq_unlock(rq
, &flags
);
1999 * If it changed from the expected state, bail out now.
2001 if (unlikely(!ncsw
))
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2008 * Oops. Go back and try again..
2010 if (unlikely(running
)) {
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2024 if (unlikely(on_rq
)) {
2025 schedule_timeout_uninterruptible(1);
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2053 void kick_process(struct task_struct
*p
)
2059 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2060 smp_send_reschedule(cpu
);
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2071 static unsigned long source_load(int cpu
, int type
)
2073 struct rq
*rq
= cpu_rq(cpu
);
2074 unsigned long total
= weighted_cpuload(cpu
);
2076 if (type
== 0 || !sched_feat(LB_BIAS
))
2079 return min(rq
->cpu_load
[type
-1], total
);
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
2086 static unsigned long target_load(int cpu
, int type
)
2088 struct rq
*rq
= cpu_rq(cpu
);
2089 unsigned long total
= weighted_cpuload(cpu
);
2091 if (type
== 0 || !sched_feat(LB_BIAS
))
2094 return max(rq
->cpu_load
[type
-1], total
);
2098 * find_idlest_group finds and returns the least busy CPU group within the
2101 static struct sched_group
*
2102 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2104 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2105 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2106 int load_idx
= sd
->forkexec_idx
;
2107 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2110 unsigned long load
, avg_load
;
2114 /* Skip over this group if it has no CPUs allowed */
2115 if (!cpumask_intersects(sched_group_cpus(group
),
2119 local_group
= cpumask_test_cpu(this_cpu
,
2120 sched_group_cpus(group
));
2122 /* Tally up the load of all CPUs in the group */
2125 for_each_cpu(i
, sched_group_cpus(group
)) {
2126 /* Bias balancing toward cpus of our domain */
2128 load
= source_load(i
, load_idx
);
2130 load
= target_load(i
, load_idx
);
2135 /* Adjust by relative CPU power of the group */
2136 avg_load
= sg_div_cpu_power(group
,
2137 avg_load
* SCHED_LOAD_SCALE
);
2140 this_load
= avg_load
;
2142 } else if (avg_load
< min_load
) {
2143 min_load
= avg_load
;
2146 } while (group
= group
->next
, group
!= sd
->groups
);
2148 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2157 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2159 unsigned long load
, min_load
= ULONG_MAX
;
2163 /* Traverse only the allowed CPUs */
2164 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2165 load
= weighted_cpuload(i
);
2167 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2181 * Balance, ie. select the least loaded group.
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2185 * preempt must be disabled.
2187 static int sched_balance_self(int cpu
, int flag
)
2189 struct task_struct
*t
= current
;
2190 struct sched_domain
*tmp
, *sd
= NULL
;
2192 for_each_domain(cpu
, tmp
) {
2194 * If power savings logic is enabled for a domain, stop there.
2196 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2198 if (tmp
->flags
& flag
)
2206 struct sched_group
*group
;
2207 int new_cpu
, weight
;
2209 if (!(sd
->flags
& flag
)) {
2214 group
= find_idlest_group(sd
, t
, cpu
);
2220 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2221 if (new_cpu
== -1 || new_cpu
== cpu
) {
2222 /* Now try balancing at a lower domain level of cpu */
2227 /* Now try balancing at a lower domain level of new_cpu */
2229 weight
= cpumask_weight(sched_domain_span(sd
));
2231 for_each_domain(cpu
, tmp
) {
2232 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2234 if (tmp
->flags
& flag
)
2237 /* while loop will break here if sd == NULL */
2243 #endif /* CONFIG_SMP */
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2257 * returns failure only if the task is already active.
2259 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2261 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2262 unsigned long flags
;
2266 if (!sched_feat(SYNC_WAKEUPS
))
2270 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2271 struct sched_domain
*sd
;
2273 this_cpu
= raw_smp_processor_id();
2276 for_each_domain(this_cpu
, sd
) {
2277 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2286 rq
= task_rq_lock(p
, &flags
);
2287 update_rq_clock(rq
);
2288 old_state
= p
->state
;
2289 if (!(old_state
& state
))
2297 this_cpu
= smp_processor_id();
2300 if (unlikely(task_running(rq
, p
)))
2303 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2304 if (cpu
!= orig_cpu
) {
2305 set_task_cpu(p
, cpu
);
2306 task_rq_unlock(rq
, &flags
);
2307 /* might preempt at this point */
2308 rq
= task_rq_lock(p
, &flags
);
2309 old_state
= p
->state
;
2310 if (!(old_state
& state
))
2315 this_cpu
= smp_processor_id();
2319 #ifdef CONFIG_SCHEDSTATS
2320 schedstat_inc(rq
, ttwu_count
);
2321 if (cpu
== this_cpu
)
2322 schedstat_inc(rq
, ttwu_local
);
2324 struct sched_domain
*sd
;
2325 for_each_domain(this_cpu
, sd
) {
2326 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2327 schedstat_inc(sd
, ttwu_wake_remote
);
2332 #endif /* CONFIG_SCHEDSTATS */
2335 #endif /* CONFIG_SMP */
2336 schedstat_inc(p
, se
.nr_wakeups
);
2338 schedstat_inc(p
, se
.nr_wakeups_sync
);
2339 if (orig_cpu
!= cpu
)
2340 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2341 if (cpu
== this_cpu
)
2342 schedstat_inc(p
, se
.nr_wakeups_local
);
2344 schedstat_inc(p
, se
.nr_wakeups_remote
);
2345 activate_task(rq
, p
, 1);
2349 trace_sched_wakeup(rq
, p
, success
);
2350 check_preempt_curr(rq
, p
, sync
);
2352 p
->state
= TASK_RUNNING
;
2354 if (p
->sched_class
->task_wake_up
)
2355 p
->sched_class
->task_wake_up(rq
, p
);
2358 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2360 task_rq_unlock(rq
, &flags
);
2365 int wake_up_process(struct task_struct
*p
)
2367 return try_to_wake_up(p
, TASK_ALL
, 0);
2369 EXPORT_SYMBOL(wake_up_process
);
2371 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2373 return try_to_wake_up(p
, state
, 0);
2377 * Perform scheduler related setup for a newly forked process p.
2378 * p is forked by current.
2380 * __sched_fork() is basic setup used by init_idle() too:
2382 static void __sched_fork(struct task_struct
*p
)
2384 p
->se
.exec_start
= 0;
2385 p
->se
.sum_exec_runtime
= 0;
2386 p
->se
.prev_sum_exec_runtime
= 0;
2387 p
->se
.last_wakeup
= 0;
2388 p
->se
.avg_overlap
= 0;
2390 #ifdef CONFIG_SCHEDSTATS
2391 p
->se
.wait_start
= 0;
2392 p
->se
.sum_sleep_runtime
= 0;
2393 p
->se
.sleep_start
= 0;
2394 p
->se
.block_start
= 0;
2395 p
->se
.sleep_max
= 0;
2396 p
->se
.block_max
= 0;
2398 p
->se
.slice_max
= 0;
2402 INIT_LIST_HEAD(&p
->rt
.run_list
);
2404 INIT_LIST_HEAD(&p
->se
.group_node
);
2406 #ifdef CONFIG_PREEMPT_NOTIFIERS
2407 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2411 * We mark the process as running here, but have not actually
2412 * inserted it onto the runqueue yet. This guarantees that
2413 * nobody will actually run it, and a signal or other external
2414 * event cannot wake it up and insert it on the runqueue either.
2416 p
->state
= TASK_RUNNING
;
2420 * fork()/clone()-time setup:
2422 void sched_fork(struct task_struct
*p
, int clone_flags
)
2424 int cpu
= get_cpu();
2429 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2431 set_task_cpu(p
, cpu
);
2434 * Make sure we do not leak PI boosting priority to the child:
2436 p
->prio
= current
->normal_prio
;
2437 if (!rt_prio(p
->prio
))
2438 p
->sched_class
= &fair_sched_class
;
2440 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2441 if (likely(sched_info_on()))
2442 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2444 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2447 #ifdef CONFIG_PREEMPT
2448 /* Want to start with kernel preemption disabled. */
2449 task_thread_info(p
)->preempt_count
= 1;
2455 * wake_up_new_task - wake up a newly created task for the first time.
2457 * This function will do some initial scheduler statistics housekeeping
2458 * that must be done for every newly created context, then puts the task
2459 * on the runqueue and wakes it.
2461 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2463 unsigned long flags
;
2466 rq
= task_rq_lock(p
, &flags
);
2467 BUG_ON(p
->state
!= TASK_RUNNING
);
2468 update_rq_clock(rq
);
2470 p
->prio
= effective_prio(p
);
2472 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2473 activate_task(rq
, p
, 0);
2476 * Let the scheduling class do new task startup
2477 * management (if any):
2479 p
->sched_class
->task_new(rq
, p
);
2482 trace_sched_wakeup_new(rq
, p
, 1);
2483 check_preempt_curr(rq
, p
, 0);
2485 if (p
->sched_class
->task_wake_up
)
2486 p
->sched_class
->task_wake_up(rq
, p
);
2488 task_rq_unlock(rq
, &flags
);
2491 #ifdef CONFIG_PREEMPT_NOTIFIERS
2494 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495 * @notifier: notifier struct to register
2497 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2499 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2501 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2504 * preempt_notifier_unregister - no longer interested in preemption notifications
2505 * @notifier: notifier struct to unregister
2507 * This is safe to call from within a preemption notifier.
2509 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2511 hlist_del(¬ifier
->link
);
2513 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2515 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2517 struct preempt_notifier
*notifier
;
2518 struct hlist_node
*node
;
2520 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2521 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2525 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2526 struct task_struct
*next
)
2528 struct preempt_notifier
*notifier
;
2529 struct hlist_node
*node
;
2531 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2532 notifier
->ops
->sched_out(notifier
, next
);
2535 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2542 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2543 struct task_struct
*next
)
2547 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2550 * prepare_task_switch - prepare to switch tasks
2551 * @rq: the runqueue preparing to switch
2552 * @prev: the current task that is being switched out
2553 * @next: the task we are going to switch to.
2555 * This is called with the rq lock held and interrupts off. It must
2556 * be paired with a subsequent finish_task_switch after the context
2559 * prepare_task_switch sets up locking and calls architecture specific
2563 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2564 struct task_struct
*next
)
2566 fire_sched_out_preempt_notifiers(prev
, next
);
2567 prepare_lock_switch(rq
, next
);
2568 prepare_arch_switch(next
);
2572 * finish_task_switch - clean up after a task-switch
2573 * @rq: runqueue associated with task-switch
2574 * @prev: the thread we just switched away from.
2576 * finish_task_switch must be called after the context switch, paired
2577 * with a prepare_task_switch call before the context switch.
2578 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579 * and do any other architecture-specific cleanup actions.
2581 * Note that we may have delayed dropping an mm in context_switch(). If
2582 * so, we finish that here outside of the runqueue lock. (Doing it
2583 * with the lock held can cause deadlocks; see schedule() for
2586 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2587 __releases(rq
->lock
)
2589 struct mm_struct
*mm
= rq
->prev_mm
;
2595 * A task struct has one reference for the use as "current".
2596 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2597 * schedule one last time. The schedule call will never return, and
2598 * the scheduled task must drop that reference.
2599 * The test for TASK_DEAD must occur while the runqueue locks are
2600 * still held, otherwise prev could be scheduled on another cpu, die
2601 * there before we look at prev->state, and then the reference would
2603 * Manfred Spraul <manfred@colorfullife.com>
2605 prev_state
= prev
->state
;
2606 finish_arch_switch(prev
);
2607 finish_lock_switch(rq
, prev
);
2609 if (current
->sched_class
->post_schedule
)
2610 current
->sched_class
->post_schedule(rq
);
2613 fire_sched_in_preempt_notifiers(current
);
2616 if (unlikely(prev_state
== TASK_DEAD
)) {
2618 * Remove function-return probe instances associated with this
2619 * task and put them back on the free list.
2621 kprobe_flush_task(prev
);
2622 put_task_struct(prev
);
2627 * schedule_tail - first thing a freshly forked thread must call.
2628 * @prev: the thread we just switched away from.
2630 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2631 __releases(rq
->lock
)
2633 struct rq
*rq
= this_rq();
2635 finish_task_switch(rq
, prev
);
2636 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 /* In this case, finish_task_switch does not reenable preemption */
2640 if (current
->set_child_tid
)
2641 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2645 * context_switch - switch to the new MM and the new
2646 * thread's register state.
2649 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2650 struct task_struct
*next
)
2652 struct mm_struct
*mm
, *oldmm
;
2654 prepare_task_switch(rq
, prev
, next
);
2655 trace_sched_switch(rq
, prev
, next
);
2657 oldmm
= prev
->active_mm
;
2659 * For paravirt, this is coupled with an exit in switch_to to
2660 * combine the page table reload and the switch backend into
2663 arch_enter_lazy_cpu_mode();
2665 if (unlikely(!mm
)) {
2666 next
->active_mm
= oldmm
;
2667 atomic_inc(&oldmm
->mm_count
);
2668 enter_lazy_tlb(oldmm
, next
);
2670 switch_mm(oldmm
, mm
, next
);
2672 if (unlikely(!prev
->mm
)) {
2673 prev
->active_mm
= NULL
;
2674 rq
->prev_mm
= oldmm
;
2677 * Since the runqueue lock will be released by the next
2678 * task (which is an invalid locking op but in the case
2679 * of the scheduler it's an obvious special-case), so we
2680 * do an early lockdep release here:
2682 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2683 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2686 /* Here we just switch the register state and the stack. */
2687 switch_to(prev
, next
, prev
);
2691 * this_rq must be evaluated again because prev may have moved
2692 * CPUs since it called schedule(), thus the 'rq' on its stack
2693 * frame will be invalid.
2695 finish_task_switch(this_rq(), prev
);
2699 * nr_running, nr_uninterruptible and nr_context_switches:
2701 * externally visible scheduler statistics: current number of runnable
2702 * threads, current number of uninterruptible-sleeping threads, total
2703 * number of context switches performed since bootup.
2705 unsigned long nr_running(void)
2707 unsigned long i
, sum
= 0;
2709 for_each_online_cpu(i
)
2710 sum
+= cpu_rq(i
)->nr_running
;
2715 unsigned long nr_uninterruptible(void)
2717 unsigned long i
, sum
= 0;
2719 for_each_possible_cpu(i
)
2720 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2723 * Since we read the counters lockless, it might be slightly
2724 * inaccurate. Do not allow it to go below zero though:
2726 if (unlikely((long)sum
< 0))
2732 unsigned long long nr_context_switches(void)
2735 unsigned long long sum
= 0;
2737 for_each_possible_cpu(i
)
2738 sum
+= cpu_rq(i
)->nr_switches
;
2743 unsigned long nr_iowait(void)
2745 unsigned long i
, sum
= 0;
2747 for_each_possible_cpu(i
)
2748 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2753 unsigned long nr_active(void)
2755 unsigned long i
, running
= 0, uninterruptible
= 0;
2757 for_each_online_cpu(i
) {
2758 running
+= cpu_rq(i
)->nr_running
;
2759 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2762 if (unlikely((long)uninterruptible
< 0))
2763 uninterruptible
= 0;
2765 return running
+ uninterruptible
;
2769 * Update rq->cpu_load[] statistics. This function is usually called every
2770 * scheduler tick (TICK_NSEC).
2772 static void update_cpu_load(struct rq
*this_rq
)
2774 unsigned long this_load
= this_rq
->load
.weight
;
2777 this_rq
->nr_load_updates
++;
2779 /* Update our load: */
2780 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2781 unsigned long old_load
, new_load
;
2783 /* scale is effectively 1 << i now, and >> i divides by scale */
2785 old_load
= this_rq
->cpu_load
[i
];
2786 new_load
= this_load
;
2788 * Round up the averaging division if load is increasing. This
2789 * prevents us from getting stuck on 9 if the load is 10, for
2792 if (new_load
> old_load
)
2793 new_load
+= scale
-1;
2794 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2801 * double_rq_lock - safely lock two runqueues
2803 * Note this does not disable interrupts like task_rq_lock,
2804 * you need to do so manually before calling.
2806 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2807 __acquires(rq1
->lock
)
2808 __acquires(rq2
->lock
)
2810 BUG_ON(!irqs_disabled());
2812 spin_lock(&rq1
->lock
);
2813 __acquire(rq2
->lock
); /* Fake it out ;) */
2816 spin_lock(&rq1
->lock
);
2817 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2819 spin_lock(&rq2
->lock
);
2820 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2823 update_rq_clock(rq1
);
2824 update_rq_clock(rq2
);
2828 * double_rq_unlock - safely unlock two runqueues
2830 * Note this does not restore interrupts like task_rq_unlock,
2831 * you need to do so manually after calling.
2833 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2834 __releases(rq1
->lock
)
2835 __releases(rq2
->lock
)
2837 spin_unlock(&rq1
->lock
);
2839 spin_unlock(&rq2
->lock
);
2841 __release(rq2
->lock
);
2845 * If dest_cpu is allowed for this process, migrate the task to it.
2846 * This is accomplished by forcing the cpu_allowed mask to only
2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2848 * the cpu_allowed mask is restored.
2850 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2852 struct migration_req req
;
2853 unsigned long flags
;
2856 rq
= task_rq_lock(p
, &flags
);
2857 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2858 || unlikely(!cpu_active(dest_cpu
)))
2861 /* force the process onto the specified CPU */
2862 if (migrate_task(p
, dest_cpu
, &req
)) {
2863 /* Need to wait for migration thread (might exit: take ref). */
2864 struct task_struct
*mt
= rq
->migration_thread
;
2866 get_task_struct(mt
);
2867 task_rq_unlock(rq
, &flags
);
2868 wake_up_process(mt
);
2869 put_task_struct(mt
);
2870 wait_for_completion(&req
.done
);
2875 task_rq_unlock(rq
, &flags
);
2879 * sched_exec - execve() is a valuable balancing opportunity, because at
2880 * this point the task has the smallest effective memory and cache footprint.
2882 void sched_exec(void)
2884 int new_cpu
, this_cpu
= get_cpu();
2885 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2887 if (new_cpu
!= this_cpu
)
2888 sched_migrate_task(current
, new_cpu
);
2892 * pull_task - move a task from a remote runqueue to the local runqueue.
2893 * Both runqueues must be locked.
2895 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2896 struct rq
*this_rq
, int this_cpu
)
2898 deactivate_task(src_rq
, p
, 0);
2899 set_task_cpu(p
, this_cpu
);
2900 activate_task(this_rq
, p
, 0);
2902 * Note that idle threads have a prio of MAX_PRIO, for this test
2903 * to be always true for them.
2905 check_preempt_curr(this_rq
, p
, 0);
2909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2912 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2913 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2917 * We do not migrate tasks that are:
2918 * 1) running (obviously), or
2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2920 * 3) are cache-hot on their current CPU.
2922 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2923 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2928 if (task_running(rq
, p
)) {
2929 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2934 * Aggressive migration if:
2935 * 1) task is cache cold, or
2936 * 2) too many balance attempts have failed.
2939 if (!task_hot(p
, rq
->clock
, sd
) ||
2940 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2941 #ifdef CONFIG_SCHEDSTATS
2942 if (task_hot(p
, rq
->clock
, sd
)) {
2943 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2944 schedstat_inc(p
, se
.nr_forced_migrations
);
2950 if (task_hot(p
, rq
->clock
, sd
)) {
2951 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2957 static unsigned long
2958 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2959 unsigned long max_load_move
, struct sched_domain
*sd
,
2960 enum cpu_idle_type idle
, int *all_pinned
,
2961 int *this_best_prio
, struct rq_iterator
*iterator
)
2963 int loops
= 0, pulled
= 0, pinned
= 0;
2964 struct task_struct
*p
;
2965 long rem_load_move
= max_load_move
;
2967 if (max_load_move
== 0)
2973 * Start the load-balancing iterator:
2975 p
= iterator
->start(iterator
->arg
);
2977 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2980 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2981 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2982 p
= iterator
->next(iterator
->arg
);
2986 pull_task(busiest
, p
, this_rq
, this_cpu
);
2988 rem_load_move
-= p
->se
.load
.weight
;
2991 * We only want to steal up to the prescribed amount of weighted load.
2993 if (rem_load_move
> 0) {
2994 if (p
->prio
< *this_best_prio
)
2995 *this_best_prio
= p
->prio
;
2996 p
= iterator
->next(iterator
->arg
);
3001 * Right now, this is one of only two places pull_task() is called,
3002 * so we can safely collect pull_task() stats here rather than
3003 * inside pull_task().
3005 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3008 *all_pinned
= pinned
;
3010 return max_load_move
- rem_load_move
;
3014 * move_tasks tries to move up to max_load_move weighted load from busiest to
3015 * this_rq, as part of a balancing operation within domain "sd".
3016 * Returns 1 if successful and 0 otherwise.
3018 * Called with both runqueues locked.
3020 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3021 unsigned long max_load_move
,
3022 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3025 const struct sched_class
*class = sched_class_highest
;
3026 unsigned long total_load_moved
= 0;
3027 int this_best_prio
= this_rq
->curr
->prio
;
3031 class->load_balance(this_rq
, this_cpu
, busiest
,
3032 max_load_move
- total_load_moved
,
3033 sd
, idle
, all_pinned
, &this_best_prio
);
3034 class = class->next
;
3036 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3039 } while (class && max_load_move
> total_load_moved
);
3041 return total_load_moved
> 0;
3045 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3046 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3047 struct rq_iterator
*iterator
)
3049 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3053 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3054 pull_task(busiest
, p
, this_rq
, this_cpu
);
3056 * Right now, this is only the second place pull_task()
3057 * is called, so we can safely collect pull_task()
3058 * stats here rather than inside pull_task().
3060 schedstat_inc(sd
, lb_gained
[idle
]);
3064 p
= iterator
->next(iterator
->arg
);
3071 * move_one_task tries to move exactly one task from busiest to this_rq, as
3072 * part of active balancing operations within "domain".
3073 * Returns 1 if successful and 0 otherwise.
3075 * Called with both runqueues locked.
3077 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3078 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3080 const struct sched_class
*class;
3082 for (class = sched_class_highest
; class; class = class->next
)
3083 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3090 * find_busiest_group finds and returns the busiest CPU group within the
3091 * domain. It calculates and returns the amount of weighted load which
3092 * should be moved to restore balance via the imbalance parameter.
3094 static struct sched_group
*
3095 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3096 unsigned long *imbalance
, enum cpu_idle_type idle
,
3097 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3099 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3100 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3101 unsigned long max_pull
;
3102 unsigned long busiest_load_per_task
, busiest_nr_running
;
3103 unsigned long this_load_per_task
, this_nr_running
;
3104 int load_idx
, group_imb
= 0;
3105 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3106 int power_savings_balance
= 1;
3107 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3108 unsigned long min_nr_running
= ULONG_MAX
;
3109 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3112 max_load
= this_load
= total_load
= total_pwr
= 0;
3113 busiest_load_per_task
= busiest_nr_running
= 0;
3114 this_load_per_task
= this_nr_running
= 0;
3116 if (idle
== CPU_NOT_IDLE
)
3117 load_idx
= sd
->busy_idx
;
3118 else if (idle
== CPU_NEWLY_IDLE
)
3119 load_idx
= sd
->newidle_idx
;
3121 load_idx
= sd
->idle_idx
;
3124 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3127 int __group_imb
= 0;
3128 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3129 unsigned long sum_nr_running
, sum_weighted_load
;
3130 unsigned long sum_avg_load_per_task
;
3131 unsigned long avg_load_per_task
;
3133 local_group
= cpumask_test_cpu(this_cpu
,
3134 sched_group_cpus(group
));
3137 balance_cpu
= cpumask_first(sched_group_cpus(group
));
3139 /* Tally up the load of all CPUs in the group */
3140 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3141 sum_avg_load_per_task
= avg_load_per_task
= 0;
3144 min_cpu_load
= ~0UL;
3146 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3147 struct rq
*rq
= cpu_rq(i
);
3149 if (*sd_idle
&& rq
->nr_running
)
3152 /* Bias balancing toward cpus of our domain */
3154 if (idle_cpu(i
) && !first_idle_cpu
) {
3159 load
= target_load(i
, load_idx
);
3161 load
= source_load(i
, load_idx
);
3162 if (load
> max_cpu_load
)
3163 max_cpu_load
= load
;
3164 if (min_cpu_load
> load
)
3165 min_cpu_load
= load
;
3169 sum_nr_running
+= rq
->nr_running
;
3170 sum_weighted_load
+= weighted_cpuload(i
);
3172 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
3181 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3182 balance_cpu
!= this_cpu
&& balance
) {
3187 total_load
+= avg_load
;
3188 total_pwr
+= group
->__cpu_power
;
3190 /* Adjust by relative CPU power of the group */
3191 avg_load
= sg_div_cpu_power(group
,
3192 avg_load
* SCHED_LOAD_SCALE
);
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3204 avg_load_per_task
= sg_div_cpu_power(group
,
3205 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3207 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3210 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3213 this_load
= avg_load
;
3215 this_nr_running
= sum_nr_running
;
3216 this_load_per_task
= sum_weighted_load
;
3217 } else if (avg_load
> max_load
&&
3218 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3219 max_load
= avg_load
;
3221 busiest_nr_running
= sum_nr_running
;
3222 busiest_load_per_task
= sum_weighted_load
;
3223 group_imb
= __group_imb
;
3226 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3228 * Busy processors will not participate in power savings
3231 if (idle
== CPU_NOT_IDLE
||
3232 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3239 if (local_group
&& (this_nr_running
>= group_capacity
||
3241 power_savings_balance
= 0;
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
3247 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3252 * Calculate the group which has the least non-idle load.
3253 * This is the group from where we need to pick up the load
3256 if ((sum_nr_running
< min_nr_running
) ||
3257 (sum_nr_running
== min_nr_running
&&
3258 cpumask_first(sched_group_cpus(group
)) >
3259 cpumask_first(sched_group_cpus(group_min
)))) {
3261 min_nr_running
= sum_nr_running
;
3262 min_load_per_task
= sum_weighted_load
/
3267 * Calculate the group which is almost near its
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3271 if (sum_nr_running
<= group_capacity
- 1) {
3272 if (sum_nr_running
> leader_nr_running
||
3273 (sum_nr_running
== leader_nr_running
&&
3274 cpumask_first(sched_group_cpus(group
)) <
3275 cpumask_first(sched_group_cpus(group_leader
)))) {
3276 group_leader
= group
;
3277 leader_nr_running
= sum_nr_running
;
3282 group
= group
->next
;
3283 } while (group
!= sd
->groups
);
3285 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3288 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3290 if (this_load
>= avg_load
||
3291 100*max_load
<= sd
->imbalance_pct
*this_load
)
3294 busiest_load_per_task
/= busiest_nr_running
;
3296 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
3306 * by pulling tasks to us. Be careful of negative numbers as they'll
3307 * appear as very large values with unsigned longs.
3309 if (max_load
<= busiest_load_per_task
)
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3317 if (max_load
< avg_load
) {
3319 goto small_imbalance
;
3322 /* Don't want to pull so many tasks that a group would go idle */
3323 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3325 /* How much load to actually move to equalise the imbalance */
3326 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3327 (avg_load
- this_load
) * this->__cpu_power
)
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3336 if (*imbalance
< busiest_load_per_task
) {
3337 unsigned long tmp
, pwr_now
, pwr_move
;
3341 pwr_move
= pwr_now
= 0;
3343 if (this_nr_running
) {
3344 this_load_per_task
/= this_nr_running
;
3345 if (busiest_load_per_task
> this_load_per_task
)
3348 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3350 if (max_load
- this_load
+ busiest_load_per_task
>=
3351 busiest_load_per_task
* imbn
) {
3352 *imbalance
= busiest_load_per_task
;
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3362 pwr_now
+= busiest
->__cpu_power
*
3363 min(busiest_load_per_task
, max_load
);
3364 pwr_now
+= this->__cpu_power
*
3365 min(this_load_per_task
, this_load
);
3366 pwr_now
/= SCHED_LOAD_SCALE
;
3368 /* Amount of load we'd subtract */
3369 tmp
= sg_div_cpu_power(busiest
,
3370 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3372 pwr_move
+= busiest
->__cpu_power
*
3373 min(busiest_load_per_task
, max_load
- tmp
);
3375 /* Amount of load we'd add */
3376 if (max_load
* busiest
->__cpu_power
<
3377 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3378 tmp
= sg_div_cpu_power(this,
3379 max_load
* busiest
->__cpu_power
);
3381 tmp
= sg_div_cpu_power(this,
3382 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3383 pwr_move
+= this->__cpu_power
*
3384 min(this_load_per_task
, this_load
+ tmp
);
3385 pwr_move
/= SCHED_LOAD_SCALE
;
3387 /* Move if we gain throughput */
3388 if (pwr_move
> pwr_now
)
3389 *imbalance
= busiest_load_per_task
;
3395 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3399 if (this == group_leader
&& group_leader
!= group_min
) {
3400 *imbalance
= min_load_per_task
;
3401 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3402 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3403 cpumask_first(sched_group_cpus(group_leader
));
3414 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3417 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3418 unsigned long imbalance
, const struct cpumask
*cpus
)
3420 struct rq
*busiest
= NULL
, *rq
;
3421 unsigned long max_load
= 0;
3424 for_each_cpu(i
, sched_group_cpus(group
)) {
3427 if (!cpumask_test_cpu(i
, cpus
))
3431 wl
= weighted_cpuload(i
);
3433 if (rq
->nr_running
== 1 && wl
> imbalance
)
3436 if (wl
> max_load
) {
3446 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3447 * so long as it is large enough.
3449 #define MAX_PINNED_INTERVAL 512
3452 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3453 * tasks if there is an imbalance.
3455 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3456 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3457 int *balance
, struct cpumask
*cpus
)
3459 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3460 struct sched_group
*group
;
3461 unsigned long imbalance
;
3463 unsigned long flags
;
3465 cpumask_setall(cpus
);
3468 * When power savings policy is enabled for the parent domain, idle
3469 * sibling can pick up load irrespective of busy siblings. In this case,
3470 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3471 * portraying it as CPU_NOT_IDLE.
3473 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3474 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3477 schedstat_inc(sd
, lb_count
[idle
]);
3481 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3488 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3492 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3494 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3498 BUG_ON(busiest
== this_rq
);
3500 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3503 if (busiest
->nr_running
> 1) {
3505 * Attempt to move tasks. If find_busiest_group has found
3506 * an imbalance but busiest->nr_running <= 1, the group is
3507 * still unbalanced. ld_moved simply stays zero, so it is
3508 * correctly treated as an imbalance.
3510 local_irq_save(flags
);
3511 double_rq_lock(this_rq
, busiest
);
3512 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3513 imbalance
, sd
, idle
, &all_pinned
);
3514 double_rq_unlock(this_rq
, busiest
);
3515 local_irq_restore(flags
);
3518 * some other cpu did the load balance for us.
3520 if (ld_moved
&& this_cpu
!= smp_processor_id())
3521 resched_cpu(this_cpu
);
3523 /* All tasks on this runqueue were pinned by CPU affinity */
3524 if (unlikely(all_pinned
)) {
3525 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3526 if (!cpumask_empty(cpus
))
3533 schedstat_inc(sd
, lb_failed
[idle
]);
3534 sd
->nr_balance_failed
++;
3536 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3538 spin_lock_irqsave(&busiest
->lock
, flags
);
3540 /* don't kick the migration_thread, if the curr
3541 * task on busiest cpu can't be moved to this_cpu
3543 if (!cpumask_test_cpu(this_cpu
,
3544 &busiest
->curr
->cpus_allowed
)) {
3545 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3547 goto out_one_pinned
;
3550 if (!busiest
->active_balance
) {
3551 busiest
->active_balance
= 1;
3552 busiest
->push_cpu
= this_cpu
;
3555 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3557 wake_up_process(busiest
->migration_thread
);
3560 * We've kicked active balancing, reset the failure
3563 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3566 sd
->nr_balance_failed
= 0;
3568 if (likely(!active_balance
)) {
3569 /* We were unbalanced, so reset the balancing interval */
3570 sd
->balance_interval
= sd
->min_interval
;
3573 * If we've begun active balancing, start to back off. This
3574 * case may not be covered by the all_pinned logic if there
3575 * is only 1 task on the busy runqueue (because we don't call
3578 if (sd
->balance_interval
< sd
->max_interval
)
3579 sd
->balance_interval
*= 2;
3582 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3583 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3589 schedstat_inc(sd
, lb_balanced
[idle
]);
3591 sd
->nr_balance_failed
= 0;
3594 /* tune up the balancing interval */
3595 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3596 (sd
->balance_interval
< sd
->max_interval
))
3597 sd
->balance_interval
*= 2;
3599 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3600 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3612 * tasks if there is an imbalance.
3614 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3615 * this_rq is locked.
3618 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3619 struct cpumask
*cpus
)
3621 struct sched_group
*group
;
3622 struct rq
*busiest
= NULL
;
3623 unsigned long imbalance
;
3628 cpumask_setall(cpus
);
3631 * When power savings policy is enabled for the parent domain, idle
3632 * sibling can pick up load irrespective of busy siblings. In this case,
3633 * let the state of idle sibling percolate up as IDLE, instead of
3634 * portraying it as CPU_NOT_IDLE.
3636 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3637 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3640 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3642 update_shares_locked(this_rq
, sd
);
3643 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3644 &sd_idle
, cpus
, NULL
);
3646 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3650 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3652 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3656 BUG_ON(busiest
== this_rq
);
3658 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3661 if (busiest
->nr_running
> 1) {
3662 /* Attempt to move tasks */
3663 double_lock_balance(this_rq
, busiest
);
3664 /* this_rq->clock is already updated */
3665 update_rq_clock(busiest
);
3666 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3667 imbalance
, sd
, CPU_NEWLY_IDLE
,
3669 double_unlock_balance(this_rq
, busiest
);
3671 if (unlikely(all_pinned
)) {
3672 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3673 if (!cpumask_empty(cpus
))
3679 int active_balance
= 0;
3681 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3682 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3683 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3686 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3689 if (sd
->nr_balance_failed
++ < 2)
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq
, busiest
);
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3721 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
3722 double_unlock_balance(this_rq
, busiest
);
3727 if (!busiest
->active_balance
) {
3728 busiest
->active_balance
= 1;
3729 busiest
->push_cpu
= this_cpu
;
3733 double_unlock_balance(this_rq
, busiest
);
3735 * Should not call ttwu while holding a rq->lock
3737 spin_unlock(&this_rq
->lock
);
3739 wake_up_process(busiest
->migration_thread
);
3740 spin_lock(&this_rq
->lock
);
3743 sd
->nr_balance_failed
= 0;
3745 update_shares_locked(this_rq
, sd
);
3749 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3750 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3751 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3753 sd
->nr_balance_failed
= 0;
3759 * idle_balance is called by schedule() if this_cpu is about to become
3760 * idle. Attempts to pull tasks from other CPUs.
3762 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3764 struct sched_domain
*sd
;
3765 int pulled_task
= 0;
3766 unsigned long next_balance
= jiffies
+ HZ
;
3767 cpumask_var_t tmpmask
;
3769 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3772 for_each_domain(this_cpu
, sd
) {
3773 unsigned long interval
;
3775 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3778 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3779 /* If we've pulled tasks over stop searching: */
3780 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3783 interval
= msecs_to_jiffies(sd
->balance_interval
);
3784 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3785 next_balance
= sd
->last_balance
+ interval
;
3789 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3791 * We are going idle. next_balance may be set based on
3792 * a busy processor. So reset next_balance.
3794 this_rq
->next_balance
= next_balance
;
3796 free_cpumask_var(tmpmask
);
3800 * active_load_balance is run by migration threads. It pushes running tasks
3801 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3802 * running on each physical CPU where possible, and avoids physical /
3803 * logical imbalances.
3805 * Called with busiest_rq locked.
3807 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3809 int target_cpu
= busiest_rq
->push_cpu
;
3810 struct sched_domain
*sd
;
3811 struct rq
*target_rq
;
3813 /* Is there any task to move? */
3814 if (busiest_rq
->nr_running
<= 1)
3817 target_rq
= cpu_rq(target_cpu
);
3820 * This condition is "impossible", if it occurs
3821 * we need to fix it. Originally reported by
3822 * Bjorn Helgaas on a 128-cpu setup.
3824 BUG_ON(busiest_rq
== target_rq
);
3826 /* move a task from busiest_rq to target_rq */
3827 double_lock_balance(busiest_rq
, target_rq
);
3828 update_rq_clock(busiest_rq
);
3829 update_rq_clock(target_rq
);
3831 /* Search for an sd spanning us and the target CPU. */
3832 for_each_domain(target_cpu
, sd
) {
3833 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3834 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3839 schedstat_inc(sd
, alb_count
);
3841 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3843 schedstat_inc(sd
, alb_pushed
);
3845 schedstat_inc(sd
, alb_failed
);
3847 double_unlock_balance(busiest_rq
, target_rq
);
3852 atomic_t load_balancer
;
3853 cpumask_var_t cpu_mask
;
3854 } nohz ____cacheline_aligned
= {
3855 .load_balancer
= ATOMIC_INIT(-1),
3859 * This routine will try to nominate the ilb (idle load balancing)
3860 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3861 * load balancing on behalf of all those cpus. If all the cpus in the system
3862 * go into this tickless mode, then there will be no ilb owner (as there is
3863 * no need for one) and all the cpus will sleep till the next wakeup event
3866 * For the ilb owner, tick is not stopped. And this tick will be used
3867 * for idle load balancing. ilb owner will still be part of
3870 * While stopping the tick, this cpu will become the ilb owner if there
3871 * is no other owner. And will be the owner till that cpu becomes busy
3872 * or if all cpus in the system stop their ticks at which point
3873 * there is no need for ilb owner.
3875 * When the ilb owner becomes busy, it nominates another owner, during the
3876 * next busy scheduler_tick()
3878 int select_nohz_load_balancer(int stop_tick
)
3880 int cpu
= smp_processor_id();
3883 cpu_rq(cpu
)->in_nohz_recently
= 1;
3885 if (!cpu_active(cpu
)) {
3886 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3890 * If we are going offline and still the leader,
3893 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3899 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3901 /* time for ilb owner also to sleep */
3902 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3903 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3904 atomic_set(&nohz
.load_balancer
, -1);
3908 if (atomic_read(&nohz
.load_balancer
) == -1) {
3909 /* make me the ilb owner */
3910 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3912 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3915 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3918 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3920 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3921 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3928 static DEFINE_SPINLOCK(balancing
);
3931 * It checks each scheduling domain to see if it is due to be balanced,
3932 * and initiates a balancing operation if so.
3934 * Balancing parameters are set up in arch_init_sched_domains.
3936 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3939 struct rq
*rq
= cpu_rq(cpu
);
3940 unsigned long interval
;
3941 struct sched_domain
*sd
;
3942 /* Earliest time when we have to do rebalance again */
3943 unsigned long next_balance
= jiffies
+ 60*HZ
;
3944 int update_next_balance
= 0;
3948 /* Fails alloc? Rebalancing probably not a priority right now. */
3949 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
3952 for_each_domain(cpu
, sd
) {
3953 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3956 interval
= sd
->balance_interval
;
3957 if (idle
!= CPU_IDLE
)
3958 interval
*= sd
->busy_factor
;
3960 /* scale ms to jiffies */
3961 interval
= msecs_to_jiffies(interval
);
3962 if (unlikely(!interval
))
3964 if (interval
> HZ
*NR_CPUS
/10)
3965 interval
= HZ
*NR_CPUS
/10;
3967 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3969 if (need_serialize
) {
3970 if (!spin_trylock(&balancing
))
3974 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3975 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
3977 * We've pulled tasks over so either we're no
3978 * longer idle, or one of our SMT siblings is
3981 idle
= CPU_NOT_IDLE
;
3983 sd
->last_balance
= jiffies
;
3986 spin_unlock(&balancing
);
3988 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3989 next_balance
= sd
->last_balance
+ interval
;
3990 update_next_balance
= 1;
3994 * Stop the load balance at this level. There is another
3995 * CPU in our sched group which is doing load balancing more
4003 * next_balance will be updated only when there is a need.
4004 * When the cpu is attached to null domain for ex, it will not be
4007 if (likely(update_next_balance
))
4008 rq
->next_balance
= next_balance
;
4010 free_cpumask_var(tmp
);
4014 * run_rebalance_domains is triggered when needed from the scheduler tick.
4015 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4018 static void run_rebalance_domains(struct softirq_action
*h
)
4020 int this_cpu
= smp_processor_id();
4021 struct rq
*this_rq
= cpu_rq(this_cpu
);
4022 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4023 CPU_IDLE
: CPU_NOT_IDLE
;
4025 rebalance_domains(this_cpu
, idle
);
4029 * If this cpu is the owner for idle load balancing, then do the
4030 * balancing on behalf of the other idle cpus whose ticks are
4033 if (this_rq
->idle_at_tick
&&
4034 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4038 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4039 if (balance_cpu
== this_cpu
)
4043 * If this cpu gets work to do, stop the load balancing
4044 * work being done for other cpus. Next load
4045 * balancing owner will pick it up.
4050 rebalance_domains(balance_cpu
, CPU_IDLE
);
4052 rq
= cpu_rq(balance_cpu
);
4053 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4054 this_rq
->next_balance
= rq
->next_balance
;
4061 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4063 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4064 * idle load balancing owner or decide to stop the periodic load balancing,
4065 * if the whole system is idle.
4067 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4071 * If we were in the nohz mode recently and busy at the current
4072 * scheduler tick, then check if we need to nominate new idle
4075 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4076 rq
->in_nohz_recently
= 0;
4078 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4079 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4080 atomic_set(&nohz
.load_balancer
, -1);
4083 if (atomic_read(&nohz
.load_balancer
) == -1) {
4085 * simple selection for now: Nominate the
4086 * first cpu in the nohz list to be the next
4089 * TBD: Traverse the sched domains and nominate
4090 * the nearest cpu in the nohz.cpu_mask.
4092 int ilb
= cpumask_first(nohz
.cpu_mask
);
4094 if (ilb
< nr_cpu_ids
)
4100 * If this cpu is idle and doing idle load balancing for all the
4101 * cpus with ticks stopped, is it time for that to stop?
4103 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4104 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4110 * If this cpu is idle and the idle load balancing is done by
4111 * someone else, then no need raise the SCHED_SOFTIRQ
4113 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4114 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4117 if (time_after_eq(jiffies
, rq
->next_balance
))
4118 raise_softirq(SCHED_SOFTIRQ
);
4121 #else /* CONFIG_SMP */
4124 * on UP we do not need to balance between CPUs:
4126 static inline void idle_balance(int cpu
, struct rq
*rq
)
4132 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4134 EXPORT_PER_CPU_SYMBOL(kstat
);
4137 * Return any ns on the sched_clock that have not yet been banked in
4138 * @p in case that task is currently running.
4140 unsigned long long task_delta_exec(struct task_struct
*p
)
4142 unsigned long flags
;
4146 rq
= task_rq_lock(p
, &flags
);
4148 if (task_current(rq
, p
)) {
4151 update_rq_clock(rq
);
4152 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4153 if ((s64
)delta_exec
> 0)
4157 task_rq_unlock(rq
, &flags
);
4163 * Account user cpu time to a process.
4164 * @p: the process that the cpu time gets accounted to
4165 * @cputime: the cpu time spent in user space since the last update
4166 * @cputime_scaled: cputime scaled by cpu frequency
4168 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4169 cputime_t cputime_scaled
)
4171 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4174 /* Add user time to process. */
4175 p
->utime
= cputime_add(p
->utime
, cputime
);
4176 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4177 account_group_user_time(p
, cputime
);
4179 /* Add user time to cpustat. */
4180 tmp
= cputime_to_cputime64(cputime
);
4181 if (TASK_NICE(p
) > 0)
4182 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4184 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4185 /* Account for user time used */
4186 acct_update_integrals(p
);
4190 * Account guest cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @cputime: the cpu time spent in virtual machine since the last update
4193 * @cputime_scaled: cputime scaled by cpu frequency
4195 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4196 cputime_t cputime_scaled
)
4199 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4201 tmp
= cputime_to_cputime64(cputime
);
4203 /* Add guest time to process. */
4204 p
->utime
= cputime_add(p
->utime
, cputime
);
4205 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4206 account_group_user_time(p
, cputime
);
4207 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4209 /* Add guest time to cpustat. */
4210 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4211 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4215 * Account system cpu time to a process.
4216 * @p: the process that the cpu time gets accounted to
4217 * @hardirq_offset: the offset to subtract from hardirq_count()
4218 * @cputime: the cpu time spent in kernel space since the last update
4219 * @cputime_scaled: cputime scaled by cpu frequency
4221 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4222 cputime_t cputime
, cputime_t cputime_scaled
)
4224 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4227 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4228 account_guest_time(p
, cputime
, cputime_scaled
);
4232 /* Add system time to process. */
4233 p
->stime
= cputime_add(p
->stime
, cputime
);
4234 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4235 account_group_system_time(p
, cputime
);
4237 /* Add system time to cpustat. */
4238 tmp
= cputime_to_cputime64(cputime
);
4239 if (hardirq_count() - hardirq_offset
)
4240 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4241 else if (softirq_count())
4242 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4244 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4246 /* Account for system time used */
4247 acct_update_integrals(p
);
4251 * Account for involuntary wait time.
4252 * @steal: the cpu time spent in involuntary wait
4254 void account_steal_time(cputime_t cputime
)
4256 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4257 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4259 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4263 * Account for idle time.
4264 * @cputime: the cpu time spent in idle wait
4266 void account_idle_time(cputime_t cputime
)
4268 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4269 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4270 struct rq
*rq
= this_rq();
4272 if (atomic_read(&rq
->nr_iowait
) > 0)
4273 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4275 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4278 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4281 * Account a single tick of cpu time.
4282 * @p: the process that the cpu time gets accounted to
4283 * @user_tick: indicates if the tick is a user or a system tick
4285 void account_process_tick(struct task_struct
*p
, int user_tick
)
4287 cputime_t one_jiffy
= jiffies_to_cputime(1);
4288 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
4289 struct rq
*rq
= this_rq();
4292 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
4293 else if (p
!= rq
->idle
)
4294 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
4297 account_idle_time(one_jiffy
);
4301 * Account multiple ticks of steal time.
4302 * @p: the process from which the cpu time has been stolen
4303 * @ticks: number of stolen ticks
4305 void account_steal_ticks(unsigned long ticks
)
4307 account_steal_time(jiffies_to_cputime(ticks
));
4311 * Account multiple ticks of idle time.
4312 * @ticks: number of stolen ticks
4314 void account_idle_ticks(unsigned long ticks
)
4316 account_idle_time(jiffies_to_cputime(ticks
));
4322 * Use precise platform statistics if available:
4324 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4325 cputime_t
task_utime(struct task_struct
*p
)
4330 cputime_t
task_stime(struct task_struct
*p
)
4335 cputime_t
task_utime(struct task_struct
*p
)
4337 clock_t utime
= cputime_to_clock_t(p
->utime
),
4338 total
= utime
+ cputime_to_clock_t(p
->stime
);
4342 * Use CFS's precise accounting:
4344 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4348 do_div(temp
, total
);
4350 utime
= (clock_t)temp
;
4352 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4353 return p
->prev_utime
;
4356 cputime_t
task_stime(struct task_struct
*p
)
4361 * Use CFS's precise accounting. (we subtract utime from
4362 * the total, to make sure the total observed by userspace
4363 * grows monotonically - apps rely on that):
4365 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4366 cputime_to_clock_t(task_utime(p
));
4369 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4371 return p
->prev_stime
;
4375 inline cputime_t
task_gtime(struct task_struct
*p
)
4381 * This function gets called by the timer code, with HZ frequency.
4382 * We call it with interrupts disabled.
4384 * It also gets called by the fork code, when changing the parent's
4387 void scheduler_tick(void)
4389 int cpu
= smp_processor_id();
4390 struct rq
*rq
= cpu_rq(cpu
);
4391 struct task_struct
*curr
= rq
->curr
;
4395 spin_lock(&rq
->lock
);
4396 update_rq_clock(rq
);
4397 update_cpu_load(rq
);
4398 curr
->sched_class
->task_tick(rq
, curr
, 0);
4399 spin_unlock(&rq
->lock
);
4402 rq
->idle_at_tick
= idle_cpu(cpu
);
4403 trigger_load_balance(rq
, cpu
);
4407 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4408 defined(CONFIG_PREEMPT_TRACER))
4410 static inline unsigned long get_parent_ip(unsigned long addr
)
4412 if (in_lock_functions(addr
)) {
4413 addr
= CALLER_ADDR2
;
4414 if (in_lock_functions(addr
))
4415 addr
= CALLER_ADDR3
;
4420 void __kprobes
add_preempt_count(int val
)
4422 #ifdef CONFIG_DEBUG_PREEMPT
4426 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4429 preempt_count() += val
;
4430 #ifdef CONFIG_DEBUG_PREEMPT
4432 * Spinlock count overflowing soon?
4434 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4437 if (preempt_count() == val
)
4438 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4440 EXPORT_SYMBOL(add_preempt_count
);
4442 void __kprobes
sub_preempt_count(int val
)
4444 #ifdef CONFIG_DEBUG_PREEMPT
4448 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4451 * Is the spinlock portion underflowing?
4453 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4454 !(preempt_count() & PREEMPT_MASK
)))
4458 if (preempt_count() == val
)
4459 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4460 preempt_count() -= val
;
4462 EXPORT_SYMBOL(sub_preempt_count
);
4467 * Print scheduling while atomic bug:
4469 static noinline
void __schedule_bug(struct task_struct
*prev
)
4471 struct pt_regs
*regs
= get_irq_regs();
4473 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4474 prev
->comm
, prev
->pid
, preempt_count());
4476 debug_show_held_locks(prev
);
4478 if (irqs_disabled())
4479 print_irqtrace_events(prev
);
4488 * Various schedule()-time debugging checks and statistics:
4490 static inline void schedule_debug(struct task_struct
*prev
)
4493 * Test if we are atomic. Since do_exit() needs to call into
4494 * schedule() atomically, we ignore that path for now.
4495 * Otherwise, whine if we are scheduling when we should not be.
4497 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4498 __schedule_bug(prev
);
4500 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4502 schedstat_inc(this_rq(), sched_count
);
4503 #ifdef CONFIG_SCHEDSTATS
4504 if (unlikely(prev
->lock_depth
>= 0)) {
4505 schedstat_inc(this_rq(), bkl_count
);
4506 schedstat_inc(prev
, sched_info
.bkl_count
);
4512 * Pick up the highest-prio task:
4514 static inline struct task_struct
*
4515 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4517 const struct sched_class
*class;
4518 struct task_struct
*p
;
4521 * Optimization: we know that if all tasks are in
4522 * the fair class we can call that function directly:
4524 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4525 p
= fair_sched_class
.pick_next_task(rq
);
4530 class = sched_class_highest
;
4532 p
= class->pick_next_task(rq
);
4536 * Will never be NULL as the idle class always
4537 * returns a non-NULL p:
4539 class = class->next
;
4544 * schedule() is the main scheduler function.
4546 asmlinkage
void __sched
schedule(void)
4548 struct task_struct
*prev
, *next
;
4549 unsigned long *switch_count
;
4555 cpu
= smp_processor_id();
4559 switch_count
= &prev
->nivcsw
;
4561 release_kernel_lock(prev
);
4562 need_resched_nonpreemptible
:
4564 schedule_debug(prev
);
4566 if (sched_feat(HRTICK
))
4569 spin_lock_irq(&rq
->lock
);
4570 update_rq_clock(rq
);
4571 clear_tsk_need_resched(prev
);
4573 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4574 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4575 prev
->state
= TASK_RUNNING
;
4577 deactivate_task(rq
, prev
, 1);
4578 switch_count
= &prev
->nvcsw
;
4582 if (prev
->sched_class
->pre_schedule
)
4583 prev
->sched_class
->pre_schedule(rq
, prev
);
4586 if (unlikely(!rq
->nr_running
))
4587 idle_balance(cpu
, rq
);
4589 prev
->sched_class
->put_prev_task(rq
, prev
);
4590 next
= pick_next_task(rq
, prev
);
4592 if (likely(prev
!= next
)) {
4593 sched_info_switch(prev
, next
);
4599 context_switch(rq
, prev
, next
); /* unlocks the rq */
4601 * the context switch might have flipped the stack from under
4602 * us, hence refresh the local variables.
4604 cpu
= smp_processor_id();
4607 spin_unlock_irq(&rq
->lock
);
4609 if (unlikely(reacquire_kernel_lock(current
) < 0))
4610 goto need_resched_nonpreemptible
;
4612 preempt_enable_no_resched();
4613 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4616 EXPORT_SYMBOL(schedule
);
4618 #ifdef CONFIG_PREEMPT
4620 * this is the entry point to schedule() from in-kernel preemption
4621 * off of preempt_enable. Kernel preemptions off return from interrupt
4622 * occur there and call schedule directly.
4624 asmlinkage
void __sched
preempt_schedule(void)
4626 struct thread_info
*ti
= current_thread_info();
4629 * If there is a non-zero preempt_count or interrupts are disabled,
4630 * we do not want to preempt the current task. Just return..
4632 if (likely(ti
->preempt_count
|| irqs_disabled()))
4636 add_preempt_count(PREEMPT_ACTIVE
);
4638 sub_preempt_count(PREEMPT_ACTIVE
);
4641 * Check again in case we missed a preemption opportunity
4642 * between schedule and now.
4645 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4647 EXPORT_SYMBOL(preempt_schedule
);
4650 * this is the entry point to schedule() from kernel preemption
4651 * off of irq context.
4652 * Note, that this is called and return with irqs disabled. This will
4653 * protect us against recursive calling from irq.
4655 asmlinkage
void __sched
preempt_schedule_irq(void)
4657 struct thread_info
*ti
= current_thread_info();
4659 /* Catch callers which need to be fixed */
4660 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4663 add_preempt_count(PREEMPT_ACTIVE
);
4666 local_irq_disable();
4667 sub_preempt_count(PREEMPT_ACTIVE
);
4670 * Check again in case we missed a preemption opportunity
4671 * between schedule and now.
4674 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4677 #endif /* CONFIG_PREEMPT */
4679 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4682 return try_to_wake_up(curr
->private, mode
, sync
);
4684 EXPORT_SYMBOL(default_wake_function
);
4687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4689 * number) then we wake all the non-exclusive tasks and one exclusive task.
4691 * There are circumstances in which we can try to wake a task which has already
4692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4695 void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4696 int nr_exclusive
, int sync
, void *key
)
4698 wait_queue_t
*curr
, *next
;
4700 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4701 unsigned flags
= curr
->flags
;
4703 if (curr
->func(curr
, mode
, sync
, key
) &&
4704 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4710 * __wake_up - wake up threads blocked on a waitqueue.
4712 * @mode: which threads
4713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4714 * @key: is directly passed to the wakeup function
4716 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4717 int nr_exclusive
, void *key
)
4719 unsigned long flags
;
4721 spin_lock_irqsave(&q
->lock
, flags
);
4722 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4723 spin_unlock_irqrestore(&q
->lock
, flags
);
4725 EXPORT_SYMBOL(__wake_up
);
4728 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4730 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4732 __wake_up_common(q
, mode
, 1, 0, NULL
);
4736 * __wake_up_sync - wake up threads blocked on a waitqueue.
4738 * @mode: which threads
4739 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4741 * The sync wakeup differs that the waker knows that it will schedule
4742 * away soon, so while the target thread will be woken up, it will not
4743 * be migrated to another CPU - ie. the two threads are 'synchronized'
4744 * with each other. This can prevent needless bouncing between CPUs.
4746 * On UP it can prevent extra preemption.
4749 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4751 unsigned long flags
;
4757 if (unlikely(!nr_exclusive
))
4760 spin_lock_irqsave(&q
->lock
, flags
);
4761 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4762 spin_unlock_irqrestore(&q
->lock
, flags
);
4764 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4767 * complete: - signals a single thread waiting on this completion
4768 * @x: holds the state of this particular completion
4770 * This will wake up a single thread waiting on this completion. Threads will be
4771 * awakened in the same order in which they were queued.
4773 * See also complete_all(), wait_for_completion() and related routines.
4775 void complete(struct completion
*x
)
4777 unsigned long flags
;
4779 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4781 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4782 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4784 EXPORT_SYMBOL(complete
);
4787 * complete_all: - signals all threads waiting on this completion
4788 * @x: holds the state of this particular completion
4790 * This will wake up all threads waiting on this particular completion event.
4792 void complete_all(struct completion
*x
)
4794 unsigned long flags
;
4796 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4797 x
->done
+= UINT_MAX
/2;
4798 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4799 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4801 EXPORT_SYMBOL(complete_all
);
4803 static inline long __sched
4804 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4807 DECLARE_WAITQUEUE(wait
, current
);
4809 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4810 __add_wait_queue_tail(&x
->wait
, &wait
);
4812 if (signal_pending_state(state
, current
)) {
4813 timeout
= -ERESTARTSYS
;
4816 __set_current_state(state
);
4817 spin_unlock_irq(&x
->wait
.lock
);
4818 timeout
= schedule_timeout(timeout
);
4819 spin_lock_irq(&x
->wait
.lock
);
4820 } while (!x
->done
&& timeout
);
4821 __remove_wait_queue(&x
->wait
, &wait
);
4826 return timeout
?: 1;
4830 wait_for_common(struct completion
*x
, long timeout
, int state
)
4834 spin_lock_irq(&x
->wait
.lock
);
4835 timeout
= do_wait_for_common(x
, timeout
, state
);
4836 spin_unlock_irq(&x
->wait
.lock
);
4841 * wait_for_completion: - waits for completion of a task
4842 * @x: holds the state of this particular completion
4844 * This waits to be signaled for completion of a specific task. It is NOT
4845 * interruptible and there is no timeout.
4847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4848 * and interrupt capability. Also see complete().
4850 void __sched
wait_for_completion(struct completion
*x
)
4852 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4854 EXPORT_SYMBOL(wait_for_completion
);
4857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4858 * @x: holds the state of this particular completion
4859 * @timeout: timeout value in jiffies
4861 * This waits for either a completion of a specific task to be signaled or for a
4862 * specified timeout to expire. The timeout is in jiffies. It is not
4865 unsigned long __sched
4866 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4868 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4870 EXPORT_SYMBOL(wait_for_completion_timeout
);
4873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4874 * @x: holds the state of this particular completion
4876 * This waits for completion of a specific task to be signaled. It is
4879 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4881 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4882 if (t
== -ERESTARTSYS
)
4886 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4890 * @x: holds the state of this particular completion
4891 * @timeout: timeout value in jiffies
4893 * This waits for either a completion of a specific task to be signaled or for a
4894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4896 unsigned long __sched
4897 wait_for_completion_interruptible_timeout(struct completion
*x
,
4898 unsigned long timeout
)
4900 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4902 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4905 * wait_for_completion_killable: - waits for completion of a task (killable)
4906 * @x: holds the state of this particular completion
4908 * This waits to be signaled for completion of a specific task. It can be
4909 * interrupted by a kill signal.
4911 int __sched
wait_for_completion_killable(struct completion
*x
)
4913 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4914 if (t
== -ERESTARTSYS
)
4918 EXPORT_SYMBOL(wait_for_completion_killable
);
4921 * try_wait_for_completion - try to decrement a completion without blocking
4922 * @x: completion structure
4924 * Returns: 0 if a decrement cannot be done without blocking
4925 * 1 if a decrement succeeded.
4927 * If a completion is being used as a counting completion,
4928 * attempt to decrement the counter without blocking. This
4929 * enables us to avoid waiting if the resource the completion
4930 * is protecting is not available.
4932 bool try_wait_for_completion(struct completion
*x
)
4936 spin_lock_irq(&x
->wait
.lock
);
4941 spin_unlock_irq(&x
->wait
.lock
);
4944 EXPORT_SYMBOL(try_wait_for_completion
);
4947 * completion_done - Test to see if a completion has any waiters
4948 * @x: completion structure
4950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4951 * 1 if there are no waiters.
4954 bool completion_done(struct completion
*x
)
4958 spin_lock_irq(&x
->wait
.lock
);
4961 spin_unlock_irq(&x
->wait
.lock
);
4964 EXPORT_SYMBOL(completion_done
);
4967 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4969 unsigned long flags
;
4972 init_waitqueue_entry(&wait
, current
);
4974 __set_current_state(state
);
4976 spin_lock_irqsave(&q
->lock
, flags
);
4977 __add_wait_queue(q
, &wait
);
4978 spin_unlock(&q
->lock
);
4979 timeout
= schedule_timeout(timeout
);
4980 spin_lock_irq(&q
->lock
);
4981 __remove_wait_queue(q
, &wait
);
4982 spin_unlock_irqrestore(&q
->lock
, flags
);
4987 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4989 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4991 EXPORT_SYMBOL(interruptible_sleep_on
);
4994 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4996 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4998 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5000 void __sched
sleep_on(wait_queue_head_t
*q
)
5002 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5004 EXPORT_SYMBOL(sleep_on
);
5006 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5008 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5010 EXPORT_SYMBOL(sleep_on_timeout
);
5012 #ifdef CONFIG_RT_MUTEXES
5015 * rt_mutex_setprio - set the current priority of a task
5017 * @prio: prio value (kernel-internal form)
5019 * This function changes the 'effective' priority of a task. It does
5020 * not touch ->normal_prio like __setscheduler().
5022 * Used by the rt_mutex code to implement priority inheritance logic.
5024 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5026 unsigned long flags
;
5027 int oldprio
, on_rq
, running
;
5029 const struct sched_class
*prev_class
= p
->sched_class
;
5031 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5033 rq
= task_rq_lock(p
, &flags
);
5034 update_rq_clock(rq
);
5037 on_rq
= p
->se
.on_rq
;
5038 running
= task_current(rq
, p
);
5040 dequeue_task(rq
, p
, 0);
5042 p
->sched_class
->put_prev_task(rq
, p
);
5045 p
->sched_class
= &rt_sched_class
;
5047 p
->sched_class
= &fair_sched_class
;
5052 p
->sched_class
->set_curr_task(rq
);
5054 enqueue_task(rq
, p
, 0);
5056 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5058 task_rq_unlock(rq
, &flags
);
5063 void set_user_nice(struct task_struct
*p
, long nice
)
5065 int old_prio
, delta
, on_rq
;
5066 unsigned long flags
;
5069 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5072 * We have to be careful, if called from sys_setpriority(),
5073 * the task might be in the middle of scheduling on another CPU.
5075 rq
= task_rq_lock(p
, &flags
);
5076 update_rq_clock(rq
);
5078 * The RT priorities are set via sched_setscheduler(), but we still
5079 * allow the 'normal' nice value to be set - but as expected
5080 * it wont have any effect on scheduling until the task is
5081 * SCHED_FIFO/SCHED_RR:
5083 if (task_has_rt_policy(p
)) {
5084 p
->static_prio
= NICE_TO_PRIO(nice
);
5087 on_rq
= p
->se
.on_rq
;
5089 dequeue_task(rq
, p
, 0);
5091 p
->static_prio
= NICE_TO_PRIO(nice
);
5094 p
->prio
= effective_prio(p
);
5095 delta
= p
->prio
- old_prio
;
5098 enqueue_task(rq
, p
, 0);
5100 * If the task increased its priority or is running and
5101 * lowered its priority, then reschedule its CPU:
5103 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5104 resched_task(rq
->curr
);
5107 task_rq_unlock(rq
, &flags
);
5109 EXPORT_SYMBOL(set_user_nice
);
5112 * can_nice - check if a task can reduce its nice value
5116 int can_nice(const struct task_struct
*p
, const int nice
)
5118 /* convert nice value [19,-20] to rlimit style value [1,40] */
5119 int nice_rlim
= 20 - nice
;
5121 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5122 capable(CAP_SYS_NICE
));
5125 #ifdef __ARCH_WANT_SYS_NICE
5128 * sys_nice - change the priority of the current process.
5129 * @increment: priority increment
5131 * sys_setpriority is a more generic, but much slower function that
5132 * does similar things.
5134 SYSCALL_DEFINE1(nice
, int, increment
)
5139 * Setpriority might change our priority at the same moment.
5140 * We don't have to worry. Conceptually one call occurs first
5141 * and we have a single winner.
5143 if (increment
< -40)
5148 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5154 if (increment
< 0 && !can_nice(current
, nice
))
5157 retval
= security_task_setnice(current
, nice
);
5161 set_user_nice(current
, nice
);
5168 * task_prio - return the priority value of a given task.
5169 * @p: the task in question.
5171 * This is the priority value as seen by users in /proc.
5172 * RT tasks are offset by -200. Normal tasks are centered
5173 * around 0, value goes from -16 to +15.
5175 int task_prio(const struct task_struct
*p
)
5177 return p
->prio
- MAX_RT_PRIO
;
5181 * task_nice - return the nice value of a given task.
5182 * @p: the task in question.
5184 int task_nice(const struct task_struct
*p
)
5186 return TASK_NICE(p
);
5188 EXPORT_SYMBOL(task_nice
);
5191 * idle_cpu - is a given cpu idle currently?
5192 * @cpu: the processor in question.
5194 int idle_cpu(int cpu
)
5196 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5200 * idle_task - return the idle task for a given cpu.
5201 * @cpu: the processor in question.
5203 struct task_struct
*idle_task(int cpu
)
5205 return cpu_rq(cpu
)->idle
;
5209 * find_process_by_pid - find a process with a matching PID value.
5210 * @pid: the pid in question.
5212 static struct task_struct
*find_process_by_pid(pid_t pid
)
5214 return pid
? find_task_by_vpid(pid
) : current
;
5217 /* Actually do priority change: must hold rq lock. */
5219 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5221 BUG_ON(p
->se
.on_rq
);
5224 switch (p
->policy
) {
5228 p
->sched_class
= &fair_sched_class
;
5232 p
->sched_class
= &rt_sched_class
;
5236 p
->rt_priority
= prio
;
5237 p
->normal_prio
= normal_prio(p
);
5238 /* we are holding p->pi_lock already */
5239 p
->prio
= rt_mutex_getprio(p
);
5244 * check the target process has a UID that matches the current process's
5246 static bool check_same_owner(struct task_struct
*p
)
5248 const struct cred
*cred
= current_cred(), *pcred
;
5252 pcred
= __task_cred(p
);
5253 match
= (cred
->euid
== pcred
->euid
||
5254 cred
->euid
== pcred
->uid
);
5259 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5260 struct sched_param
*param
, bool user
)
5262 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5263 unsigned long flags
;
5264 const struct sched_class
*prev_class
= p
->sched_class
;
5267 /* may grab non-irq protected spin_locks */
5268 BUG_ON(in_interrupt());
5270 /* double check policy once rq lock held */
5272 policy
= oldpolicy
= p
->policy
;
5273 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5274 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5275 policy
!= SCHED_IDLE
)
5278 * Valid priorities for SCHED_FIFO and SCHED_RR are
5279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5280 * SCHED_BATCH and SCHED_IDLE is 0.
5282 if (param
->sched_priority
< 0 ||
5283 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5284 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5286 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5290 * Allow unprivileged RT tasks to decrease priority:
5292 if (user
&& !capable(CAP_SYS_NICE
)) {
5293 if (rt_policy(policy
)) {
5294 unsigned long rlim_rtprio
;
5296 if (!lock_task_sighand(p
, &flags
))
5298 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5299 unlock_task_sighand(p
, &flags
);
5301 /* can't set/change the rt policy */
5302 if (policy
!= p
->policy
&& !rlim_rtprio
)
5305 /* can't increase priority */
5306 if (param
->sched_priority
> p
->rt_priority
&&
5307 param
->sched_priority
> rlim_rtprio
)
5311 * Like positive nice levels, dont allow tasks to
5312 * move out of SCHED_IDLE either:
5314 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5317 /* can't change other user's priorities */
5318 if (!check_same_owner(p
))
5323 #ifdef CONFIG_RT_GROUP_SCHED
5325 * Do not allow realtime tasks into groups that have no runtime
5328 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5329 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5333 retval
= security_task_setscheduler(p
, policy
, param
);
5339 * make sure no PI-waiters arrive (or leave) while we are
5340 * changing the priority of the task:
5342 spin_lock_irqsave(&p
->pi_lock
, flags
);
5344 * To be able to change p->policy safely, the apropriate
5345 * runqueue lock must be held.
5347 rq
= __task_rq_lock(p
);
5348 /* recheck policy now with rq lock held */
5349 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5350 policy
= oldpolicy
= -1;
5351 __task_rq_unlock(rq
);
5352 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5355 update_rq_clock(rq
);
5356 on_rq
= p
->se
.on_rq
;
5357 running
= task_current(rq
, p
);
5359 deactivate_task(rq
, p
, 0);
5361 p
->sched_class
->put_prev_task(rq
, p
);
5364 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5367 p
->sched_class
->set_curr_task(rq
);
5369 activate_task(rq
, p
, 0);
5371 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5373 __task_rq_unlock(rq
);
5374 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5376 rt_mutex_adjust_pi(p
);
5382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5383 * @p: the task in question.
5384 * @policy: new policy.
5385 * @param: structure containing the new RT priority.
5387 * NOTE that the task may be already dead.
5389 int sched_setscheduler(struct task_struct
*p
, int policy
,
5390 struct sched_param
*param
)
5392 return __sched_setscheduler(p
, policy
, param
, true);
5394 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5398 * @p: the task in question.
5399 * @policy: new policy.
5400 * @param: structure containing the new RT priority.
5402 * Just like sched_setscheduler, only don't bother checking if the
5403 * current context has permission. For example, this is needed in
5404 * stop_machine(): we create temporary high priority worker threads,
5405 * but our caller might not have that capability.
5407 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5408 struct sched_param
*param
)
5410 return __sched_setscheduler(p
, policy
, param
, false);
5414 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5416 struct sched_param lparam
;
5417 struct task_struct
*p
;
5420 if (!param
|| pid
< 0)
5422 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5427 p
= find_process_by_pid(pid
);
5429 retval
= sched_setscheduler(p
, policy
, &lparam
);
5436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5437 * @pid: the pid in question.
5438 * @policy: new policy.
5439 * @param: structure containing the new RT priority.
5441 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5442 struct sched_param __user
*, param
)
5444 /* negative values for policy are not valid */
5448 return do_sched_setscheduler(pid
, policy
, param
);
5452 * sys_sched_setparam - set/change the RT priority of a thread
5453 * @pid: the pid in question.
5454 * @param: structure containing the new RT priority.
5456 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5458 return do_sched_setscheduler(pid
, -1, param
);
5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5463 * @pid: the pid in question.
5465 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5467 struct task_struct
*p
;
5474 read_lock(&tasklist_lock
);
5475 p
= find_process_by_pid(pid
);
5477 retval
= security_task_getscheduler(p
);
5481 read_unlock(&tasklist_lock
);
5486 * sys_sched_getscheduler - get the RT priority of a thread
5487 * @pid: the pid in question.
5488 * @param: structure containing the RT priority.
5490 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5492 struct sched_param lp
;
5493 struct task_struct
*p
;
5496 if (!param
|| pid
< 0)
5499 read_lock(&tasklist_lock
);
5500 p
= find_process_by_pid(pid
);
5505 retval
= security_task_getscheduler(p
);
5509 lp
.sched_priority
= p
->rt_priority
;
5510 read_unlock(&tasklist_lock
);
5513 * This one might sleep, we cannot do it with a spinlock held ...
5515 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5520 read_unlock(&tasklist_lock
);
5524 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5526 cpumask_var_t cpus_allowed
, new_mask
;
5527 struct task_struct
*p
;
5531 read_lock(&tasklist_lock
);
5533 p
= find_process_by_pid(pid
);
5535 read_unlock(&tasklist_lock
);
5541 * It is not safe to call set_cpus_allowed with the
5542 * tasklist_lock held. We will bump the task_struct's
5543 * usage count and then drop tasklist_lock.
5546 read_unlock(&tasklist_lock
);
5548 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5552 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5554 goto out_free_cpus_allowed
;
5557 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5560 retval
= security_task_setscheduler(p
, 0, NULL
);
5564 cpuset_cpus_allowed(p
, cpus_allowed
);
5565 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5567 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5570 cpuset_cpus_allowed(p
, cpus_allowed
);
5571 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5573 * We must have raced with a concurrent cpuset
5574 * update. Just reset the cpus_allowed to the
5575 * cpuset's cpus_allowed
5577 cpumask_copy(new_mask
, cpus_allowed
);
5582 free_cpumask_var(new_mask
);
5583 out_free_cpus_allowed
:
5584 free_cpumask_var(cpus_allowed
);
5591 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5592 struct cpumask
*new_mask
)
5594 if (len
< cpumask_size())
5595 cpumask_clear(new_mask
);
5596 else if (len
> cpumask_size())
5597 len
= cpumask_size();
5599 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5603 * sys_sched_setaffinity - set the cpu affinity of a process
5604 * @pid: pid of the process
5605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5606 * @user_mask_ptr: user-space pointer to the new cpu mask
5608 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5609 unsigned long __user
*, user_mask_ptr
)
5611 cpumask_var_t new_mask
;
5614 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5617 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5619 retval
= sched_setaffinity(pid
, new_mask
);
5620 free_cpumask_var(new_mask
);
5624 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5626 struct task_struct
*p
;
5630 read_lock(&tasklist_lock
);
5633 p
= find_process_by_pid(pid
);
5637 retval
= security_task_getscheduler(p
);
5641 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5644 read_unlock(&tasklist_lock
);
5651 * sys_sched_getaffinity - get the cpu affinity of a process
5652 * @pid: pid of the process
5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5656 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5657 unsigned long __user
*, user_mask_ptr
)
5662 if (len
< cpumask_size())
5665 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5668 ret
= sched_getaffinity(pid
, mask
);
5670 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5673 ret
= cpumask_size();
5675 free_cpumask_var(mask
);
5681 * sys_sched_yield - yield the current processor to other threads.
5683 * This function yields the current CPU to other tasks. If there are no
5684 * other threads running on this CPU then this function will return.
5686 SYSCALL_DEFINE0(sched_yield
)
5688 struct rq
*rq
= this_rq_lock();
5690 schedstat_inc(rq
, yld_count
);
5691 current
->sched_class
->yield_task(rq
);
5694 * Since we are going to call schedule() anyway, there's
5695 * no need to preempt or enable interrupts:
5697 __release(rq
->lock
);
5698 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5699 _raw_spin_unlock(&rq
->lock
);
5700 preempt_enable_no_resched();
5707 static void __cond_resched(void)
5709 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5710 __might_sleep(__FILE__
, __LINE__
);
5713 * The BKS might be reacquired before we have dropped
5714 * PREEMPT_ACTIVE, which could trigger a second
5715 * cond_resched() call.
5718 add_preempt_count(PREEMPT_ACTIVE
);
5720 sub_preempt_count(PREEMPT_ACTIVE
);
5721 } while (need_resched());
5724 int __sched
_cond_resched(void)
5726 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5727 system_state
== SYSTEM_RUNNING
) {
5733 EXPORT_SYMBOL(_cond_resched
);
5736 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5737 * call schedule, and on return reacquire the lock.
5739 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5740 * operations here to prevent schedule() from being called twice (once via
5741 * spin_unlock(), once by hand).
5743 int cond_resched_lock(spinlock_t
*lock
)
5745 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5748 if (spin_needbreak(lock
) || resched
) {
5750 if (resched
&& need_resched())
5759 EXPORT_SYMBOL(cond_resched_lock
);
5761 int __sched
cond_resched_softirq(void)
5763 BUG_ON(!in_softirq());
5765 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5773 EXPORT_SYMBOL(cond_resched_softirq
);
5776 * yield - yield the current processor to other threads.
5778 * This is a shortcut for kernel-space yielding - it marks the
5779 * thread runnable and calls sys_sched_yield().
5781 void __sched
yield(void)
5783 set_current_state(TASK_RUNNING
);
5786 EXPORT_SYMBOL(yield
);
5789 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5790 * that process accounting knows that this is a task in IO wait state.
5792 * But don't do that if it is a deliberate, throttling IO wait (this task
5793 * has set its backing_dev_info: the queue against which it should throttle)
5795 void __sched
io_schedule(void)
5797 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5799 delayacct_blkio_start();
5800 atomic_inc(&rq
->nr_iowait
);
5802 atomic_dec(&rq
->nr_iowait
);
5803 delayacct_blkio_end();
5805 EXPORT_SYMBOL(io_schedule
);
5807 long __sched
io_schedule_timeout(long timeout
)
5809 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5812 delayacct_blkio_start();
5813 atomic_inc(&rq
->nr_iowait
);
5814 ret
= schedule_timeout(timeout
);
5815 atomic_dec(&rq
->nr_iowait
);
5816 delayacct_blkio_end();
5821 * sys_sched_get_priority_max - return maximum RT priority.
5822 * @policy: scheduling class.
5824 * this syscall returns the maximum rt_priority that can be used
5825 * by a given scheduling class.
5827 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5834 ret
= MAX_USER_RT_PRIO
-1;
5846 * sys_sched_get_priority_min - return minimum RT priority.
5847 * @policy: scheduling class.
5849 * this syscall returns the minimum rt_priority that can be used
5850 * by a given scheduling class.
5852 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5870 * sys_sched_rr_get_interval - return the default timeslice of a process.
5871 * @pid: pid of the process.
5872 * @interval: userspace pointer to the timeslice value.
5874 * this syscall writes the default timeslice value of a given process
5875 * into the user-space timespec buffer. A value of '0' means infinity.
5877 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5878 struct timespec __user
*, interval
)
5880 struct task_struct
*p
;
5881 unsigned int time_slice
;
5889 read_lock(&tasklist_lock
);
5890 p
= find_process_by_pid(pid
);
5894 retval
= security_task_getscheduler(p
);
5899 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5900 * tasks that are on an otherwise idle runqueue:
5903 if (p
->policy
== SCHED_RR
) {
5904 time_slice
= DEF_TIMESLICE
;
5905 } else if (p
->policy
!= SCHED_FIFO
) {
5906 struct sched_entity
*se
= &p
->se
;
5907 unsigned long flags
;
5910 rq
= task_rq_lock(p
, &flags
);
5911 if (rq
->cfs
.load
.weight
)
5912 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5913 task_rq_unlock(rq
, &flags
);
5915 read_unlock(&tasklist_lock
);
5916 jiffies_to_timespec(time_slice
, &t
);
5917 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5921 read_unlock(&tasklist_lock
);
5925 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5927 void sched_show_task(struct task_struct
*p
)
5929 unsigned long free
= 0;
5932 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5933 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5934 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5935 #if BITS_PER_LONG == 32
5936 if (state
== TASK_RUNNING
)
5937 printk(KERN_CONT
" running ");
5939 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5941 if (state
== TASK_RUNNING
)
5942 printk(KERN_CONT
" running task ");
5944 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5946 #ifdef CONFIG_DEBUG_STACK_USAGE
5947 free
= stack_not_used(p
);
5949 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5950 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5952 show_stack(p
, NULL
);
5955 void show_state_filter(unsigned long state_filter
)
5957 struct task_struct
*g
, *p
;
5959 #if BITS_PER_LONG == 32
5961 " task PC stack pid father\n");
5964 " task PC stack pid father\n");
5966 read_lock(&tasklist_lock
);
5967 do_each_thread(g
, p
) {
5969 * reset the NMI-timeout, listing all files on a slow
5970 * console might take alot of time:
5972 touch_nmi_watchdog();
5973 if (!state_filter
|| (p
->state
& state_filter
))
5975 } while_each_thread(g
, p
);
5977 touch_all_softlockup_watchdogs();
5979 #ifdef CONFIG_SCHED_DEBUG
5980 sysrq_sched_debug_show();
5982 read_unlock(&tasklist_lock
);
5984 * Only show locks if all tasks are dumped:
5986 if (state_filter
== -1)
5987 debug_show_all_locks();
5990 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5992 idle
->sched_class
= &idle_sched_class
;
5996 * init_idle - set up an idle thread for a given CPU
5997 * @idle: task in question
5998 * @cpu: cpu the idle task belongs to
6000 * NOTE: this function does not set the idle thread's NEED_RESCHED
6001 * flag, to make booting more robust.
6003 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6005 struct rq
*rq
= cpu_rq(cpu
);
6006 unsigned long flags
;
6008 spin_lock_irqsave(&rq
->lock
, flags
);
6011 idle
->se
.exec_start
= sched_clock();
6013 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6014 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6015 __set_task_cpu(idle
, cpu
);
6017 rq
->curr
= rq
->idle
= idle
;
6018 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6021 spin_unlock_irqrestore(&rq
->lock
, flags
);
6023 /* Set the preempt count _outside_ the spinlocks! */
6024 #if defined(CONFIG_PREEMPT)
6025 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6027 task_thread_info(idle
)->preempt_count
= 0;
6030 * The idle tasks have their own, simple scheduling class:
6032 idle
->sched_class
= &idle_sched_class
;
6033 ftrace_graph_init_task(idle
);
6037 * In a system that switches off the HZ timer nohz_cpu_mask
6038 * indicates which cpus entered this state. This is used
6039 * in the rcu update to wait only for active cpus. For system
6040 * which do not switch off the HZ timer nohz_cpu_mask should
6041 * always be CPU_BITS_NONE.
6043 cpumask_var_t nohz_cpu_mask
;
6046 * Increase the granularity value when there are more CPUs,
6047 * because with more CPUs the 'effective latency' as visible
6048 * to users decreases. But the relationship is not linear,
6049 * so pick a second-best guess by going with the log2 of the
6052 * This idea comes from the SD scheduler of Con Kolivas:
6054 static inline void sched_init_granularity(void)
6056 unsigned int factor
= 1 + ilog2(num_online_cpus());
6057 const unsigned long limit
= 200000000;
6059 sysctl_sched_min_granularity
*= factor
;
6060 if (sysctl_sched_min_granularity
> limit
)
6061 sysctl_sched_min_granularity
= limit
;
6063 sysctl_sched_latency
*= factor
;
6064 if (sysctl_sched_latency
> limit
)
6065 sysctl_sched_latency
= limit
;
6067 sysctl_sched_wakeup_granularity
*= factor
;
6069 sysctl_sched_shares_ratelimit
*= factor
;
6074 * This is how migration works:
6076 * 1) we queue a struct migration_req structure in the source CPU's
6077 * runqueue and wake up that CPU's migration thread.
6078 * 2) we down() the locked semaphore => thread blocks.
6079 * 3) migration thread wakes up (implicitly it forces the migrated
6080 * thread off the CPU)
6081 * 4) it gets the migration request and checks whether the migrated
6082 * task is still in the wrong runqueue.
6083 * 5) if it's in the wrong runqueue then the migration thread removes
6084 * it and puts it into the right queue.
6085 * 6) migration thread up()s the semaphore.
6086 * 7) we wake up and the migration is done.
6090 * Change a given task's CPU affinity. Migrate the thread to a
6091 * proper CPU and schedule it away if the CPU it's executing on
6092 * is removed from the allowed bitmask.
6094 * NOTE: the caller must have a valid reference to the task, the
6095 * task must not exit() & deallocate itself prematurely. The
6096 * call is not atomic; no spinlocks may be held.
6098 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6100 struct migration_req req
;
6101 unsigned long flags
;
6105 rq
= task_rq_lock(p
, &flags
);
6106 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6111 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6112 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6117 if (p
->sched_class
->set_cpus_allowed
)
6118 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6120 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6121 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6124 /* Can the task run on the task's current CPU? If so, we're done */
6125 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6128 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6129 /* Need help from migration thread: drop lock and wait. */
6130 task_rq_unlock(rq
, &flags
);
6131 wake_up_process(rq
->migration_thread
);
6132 wait_for_completion(&req
.done
);
6133 tlb_migrate_finish(p
->mm
);
6137 task_rq_unlock(rq
, &flags
);
6141 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6144 * Move (not current) task off this cpu, onto dest cpu. We're doing
6145 * this because either it can't run here any more (set_cpus_allowed()
6146 * away from this CPU, or CPU going down), or because we're
6147 * attempting to rebalance this task on exec (sched_exec).
6149 * So we race with normal scheduler movements, but that's OK, as long
6150 * as the task is no longer on this CPU.
6152 * Returns non-zero if task was successfully migrated.
6154 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6156 struct rq
*rq_dest
, *rq_src
;
6159 if (unlikely(!cpu_active(dest_cpu
)))
6162 rq_src
= cpu_rq(src_cpu
);
6163 rq_dest
= cpu_rq(dest_cpu
);
6165 double_rq_lock(rq_src
, rq_dest
);
6166 /* Already moved. */
6167 if (task_cpu(p
) != src_cpu
)
6169 /* Affinity changed (again). */
6170 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6173 on_rq
= p
->se
.on_rq
;
6175 deactivate_task(rq_src
, p
, 0);
6177 set_task_cpu(p
, dest_cpu
);
6179 activate_task(rq_dest
, p
, 0);
6180 check_preempt_curr(rq_dest
, p
, 0);
6185 double_rq_unlock(rq_src
, rq_dest
);
6190 * migration_thread - this is a highprio system thread that performs
6191 * thread migration by bumping thread off CPU then 'pushing' onto
6194 static int migration_thread(void *data
)
6196 int cpu
= (long)data
;
6200 BUG_ON(rq
->migration_thread
!= current
);
6202 set_current_state(TASK_INTERRUPTIBLE
);
6203 while (!kthread_should_stop()) {
6204 struct migration_req
*req
;
6205 struct list_head
*head
;
6207 spin_lock_irq(&rq
->lock
);
6209 if (cpu_is_offline(cpu
)) {
6210 spin_unlock_irq(&rq
->lock
);
6214 if (rq
->active_balance
) {
6215 active_load_balance(rq
, cpu
);
6216 rq
->active_balance
= 0;
6219 head
= &rq
->migration_queue
;
6221 if (list_empty(head
)) {
6222 spin_unlock_irq(&rq
->lock
);
6224 set_current_state(TASK_INTERRUPTIBLE
);
6227 req
= list_entry(head
->next
, struct migration_req
, list
);
6228 list_del_init(head
->next
);
6230 spin_unlock(&rq
->lock
);
6231 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6234 complete(&req
->done
);
6236 __set_current_state(TASK_RUNNING
);
6240 /* Wait for kthread_stop */
6241 set_current_state(TASK_INTERRUPTIBLE
);
6242 while (!kthread_should_stop()) {
6244 set_current_state(TASK_INTERRUPTIBLE
);
6246 __set_current_state(TASK_RUNNING
);
6250 #ifdef CONFIG_HOTPLUG_CPU
6252 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6256 local_irq_disable();
6257 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6263 * Figure out where task on dead CPU should go, use force if necessary.
6265 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6268 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
6271 /* Look for allowed, online CPU in same node. */
6272 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6273 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6276 /* Any allowed, online CPU? */
6277 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6278 if (dest_cpu
< nr_cpu_ids
)
6281 /* No more Mr. Nice Guy. */
6282 if (dest_cpu
>= nr_cpu_ids
) {
6283 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6284 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6287 * Don't tell them about moving exiting tasks or
6288 * kernel threads (both mm NULL), since they never
6291 if (p
->mm
&& printk_ratelimit()) {
6292 printk(KERN_INFO
"process %d (%s) no "
6293 "longer affine to cpu%d\n",
6294 task_pid_nr(p
), p
->comm
, dead_cpu
);
6299 /* It can have affinity changed while we were choosing. */
6300 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6305 * While a dead CPU has no uninterruptible tasks queued at this point,
6306 * it might still have a nonzero ->nr_uninterruptible counter, because
6307 * for performance reasons the counter is not stricly tracking tasks to
6308 * their home CPUs. So we just add the counter to another CPU's counter,
6309 * to keep the global sum constant after CPU-down:
6311 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6313 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6314 unsigned long flags
;
6316 local_irq_save(flags
);
6317 double_rq_lock(rq_src
, rq_dest
);
6318 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6319 rq_src
->nr_uninterruptible
= 0;
6320 double_rq_unlock(rq_src
, rq_dest
);
6321 local_irq_restore(flags
);
6324 /* Run through task list and migrate tasks from the dead cpu. */
6325 static void migrate_live_tasks(int src_cpu
)
6327 struct task_struct
*p
, *t
;
6329 read_lock(&tasklist_lock
);
6331 do_each_thread(t
, p
) {
6335 if (task_cpu(p
) == src_cpu
)
6336 move_task_off_dead_cpu(src_cpu
, p
);
6337 } while_each_thread(t
, p
);
6339 read_unlock(&tasklist_lock
);
6343 * Schedules idle task to be the next runnable task on current CPU.
6344 * It does so by boosting its priority to highest possible.
6345 * Used by CPU offline code.
6347 void sched_idle_next(void)
6349 int this_cpu
= smp_processor_id();
6350 struct rq
*rq
= cpu_rq(this_cpu
);
6351 struct task_struct
*p
= rq
->idle
;
6352 unsigned long flags
;
6354 /* cpu has to be offline */
6355 BUG_ON(cpu_online(this_cpu
));
6358 * Strictly not necessary since rest of the CPUs are stopped by now
6359 * and interrupts disabled on the current cpu.
6361 spin_lock_irqsave(&rq
->lock
, flags
);
6363 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6365 update_rq_clock(rq
);
6366 activate_task(rq
, p
, 0);
6368 spin_unlock_irqrestore(&rq
->lock
, flags
);
6372 * Ensures that the idle task is using init_mm right before its cpu goes
6375 void idle_task_exit(void)
6377 struct mm_struct
*mm
= current
->active_mm
;
6379 BUG_ON(cpu_online(smp_processor_id()));
6382 switch_mm(mm
, &init_mm
, current
);
6386 /* called under rq->lock with disabled interrupts */
6387 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6389 struct rq
*rq
= cpu_rq(dead_cpu
);
6391 /* Must be exiting, otherwise would be on tasklist. */
6392 BUG_ON(!p
->exit_state
);
6394 /* Cannot have done final schedule yet: would have vanished. */
6395 BUG_ON(p
->state
== TASK_DEAD
);
6400 * Drop lock around migration; if someone else moves it,
6401 * that's OK. No task can be added to this CPU, so iteration is
6404 spin_unlock_irq(&rq
->lock
);
6405 move_task_off_dead_cpu(dead_cpu
, p
);
6406 spin_lock_irq(&rq
->lock
);
6411 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6412 static void migrate_dead_tasks(unsigned int dead_cpu
)
6414 struct rq
*rq
= cpu_rq(dead_cpu
);
6415 struct task_struct
*next
;
6418 if (!rq
->nr_running
)
6420 update_rq_clock(rq
);
6421 next
= pick_next_task(rq
, rq
->curr
);
6424 next
->sched_class
->put_prev_task(rq
, next
);
6425 migrate_dead(dead_cpu
, next
);
6429 #endif /* CONFIG_HOTPLUG_CPU */
6431 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6433 static struct ctl_table sd_ctl_dir
[] = {
6435 .procname
= "sched_domain",
6441 static struct ctl_table sd_ctl_root
[] = {
6443 .ctl_name
= CTL_KERN
,
6444 .procname
= "kernel",
6446 .child
= sd_ctl_dir
,
6451 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6453 struct ctl_table
*entry
=
6454 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6459 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6461 struct ctl_table
*entry
;
6464 * In the intermediate directories, both the child directory and
6465 * procname are dynamically allocated and could fail but the mode
6466 * will always be set. In the lowest directory the names are
6467 * static strings and all have proc handlers.
6469 for (entry
= *tablep
; entry
->mode
; entry
++) {
6471 sd_free_ctl_entry(&entry
->child
);
6472 if (entry
->proc_handler
== NULL
)
6473 kfree(entry
->procname
);
6481 set_table_entry(struct ctl_table
*entry
,
6482 const char *procname
, void *data
, int maxlen
,
6483 mode_t mode
, proc_handler
*proc_handler
)
6485 entry
->procname
= procname
;
6487 entry
->maxlen
= maxlen
;
6489 entry
->proc_handler
= proc_handler
;
6492 static struct ctl_table
*
6493 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6495 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6500 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6501 sizeof(long), 0644, proc_doulongvec_minmax
);
6502 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6503 sizeof(long), 0644, proc_doulongvec_minmax
);
6504 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6505 sizeof(int), 0644, proc_dointvec_minmax
);
6506 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6507 sizeof(int), 0644, proc_dointvec_minmax
);
6508 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6509 sizeof(int), 0644, proc_dointvec_minmax
);
6510 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6511 sizeof(int), 0644, proc_dointvec_minmax
);
6512 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6513 sizeof(int), 0644, proc_dointvec_minmax
);
6514 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6515 sizeof(int), 0644, proc_dointvec_minmax
);
6516 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6517 sizeof(int), 0644, proc_dointvec_minmax
);
6518 set_table_entry(&table
[9], "cache_nice_tries",
6519 &sd
->cache_nice_tries
,
6520 sizeof(int), 0644, proc_dointvec_minmax
);
6521 set_table_entry(&table
[10], "flags", &sd
->flags
,
6522 sizeof(int), 0644, proc_dointvec_minmax
);
6523 set_table_entry(&table
[11], "name", sd
->name
,
6524 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6525 /* &table[12] is terminator */
6530 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6532 struct ctl_table
*entry
, *table
;
6533 struct sched_domain
*sd
;
6534 int domain_num
= 0, i
;
6537 for_each_domain(cpu
, sd
)
6539 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6544 for_each_domain(cpu
, sd
) {
6545 snprintf(buf
, 32, "domain%d", i
);
6546 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6548 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6555 static struct ctl_table_header
*sd_sysctl_header
;
6556 static void register_sched_domain_sysctl(void)
6558 int i
, cpu_num
= num_online_cpus();
6559 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6562 WARN_ON(sd_ctl_dir
[0].child
);
6563 sd_ctl_dir
[0].child
= entry
;
6568 for_each_online_cpu(i
) {
6569 snprintf(buf
, 32, "cpu%d", i
);
6570 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6572 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6576 WARN_ON(sd_sysctl_header
);
6577 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6580 /* may be called multiple times per register */
6581 static void unregister_sched_domain_sysctl(void)
6583 if (sd_sysctl_header
)
6584 unregister_sysctl_table(sd_sysctl_header
);
6585 sd_sysctl_header
= NULL
;
6586 if (sd_ctl_dir
[0].child
)
6587 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6590 static void register_sched_domain_sysctl(void)
6593 static void unregister_sched_domain_sysctl(void)
6598 static void set_rq_online(struct rq
*rq
)
6601 const struct sched_class
*class;
6603 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6606 for_each_class(class) {
6607 if (class->rq_online
)
6608 class->rq_online(rq
);
6613 static void set_rq_offline(struct rq
*rq
)
6616 const struct sched_class
*class;
6618 for_each_class(class) {
6619 if (class->rq_offline
)
6620 class->rq_offline(rq
);
6623 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6629 * migration_call - callback that gets triggered when a CPU is added.
6630 * Here we can start up the necessary migration thread for the new CPU.
6632 static int __cpuinit
6633 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6635 struct task_struct
*p
;
6636 int cpu
= (long)hcpu
;
6637 unsigned long flags
;
6642 case CPU_UP_PREPARE
:
6643 case CPU_UP_PREPARE_FROZEN
:
6644 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6647 kthread_bind(p
, cpu
);
6648 /* Must be high prio: stop_machine expects to yield to it. */
6649 rq
= task_rq_lock(p
, &flags
);
6650 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6651 task_rq_unlock(rq
, &flags
);
6652 cpu_rq(cpu
)->migration_thread
= p
;
6656 case CPU_ONLINE_FROZEN
:
6657 /* Strictly unnecessary, as first user will wake it. */
6658 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6660 /* Update our root-domain */
6662 spin_lock_irqsave(&rq
->lock
, flags
);
6664 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6668 spin_unlock_irqrestore(&rq
->lock
, flags
);
6671 #ifdef CONFIG_HOTPLUG_CPU
6672 case CPU_UP_CANCELED
:
6673 case CPU_UP_CANCELED_FROZEN
:
6674 if (!cpu_rq(cpu
)->migration_thread
)
6676 /* Unbind it from offline cpu so it can run. Fall thru. */
6677 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6678 cpumask_any(cpu_online_mask
));
6679 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6680 cpu_rq(cpu
)->migration_thread
= NULL
;
6684 case CPU_DEAD_FROZEN
:
6685 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6686 migrate_live_tasks(cpu
);
6688 kthread_stop(rq
->migration_thread
);
6689 rq
->migration_thread
= NULL
;
6690 /* Idle task back to normal (off runqueue, low prio) */
6691 spin_lock_irq(&rq
->lock
);
6692 update_rq_clock(rq
);
6693 deactivate_task(rq
, rq
->idle
, 0);
6694 rq
->idle
->static_prio
= MAX_PRIO
;
6695 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6696 rq
->idle
->sched_class
= &idle_sched_class
;
6697 migrate_dead_tasks(cpu
);
6698 spin_unlock_irq(&rq
->lock
);
6700 migrate_nr_uninterruptible(rq
);
6701 BUG_ON(rq
->nr_running
!= 0);
6704 * No need to migrate the tasks: it was best-effort if
6705 * they didn't take sched_hotcpu_mutex. Just wake up
6708 spin_lock_irq(&rq
->lock
);
6709 while (!list_empty(&rq
->migration_queue
)) {
6710 struct migration_req
*req
;
6712 req
= list_entry(rq
->migration_queue
.next
,
6713 struct migration_req
, list
);
6714 list_del_init(&req
->list
);
6715 spin_unlock_irq(&rq
->lock
);
6716 complete(&req
->done
);
6717 spin_lock_irq(&rq
->lock
);
6719 spin_unlock_irq(&rq
->lock
);
6723 case CPU_DYING_FROZEN
:
6724 /* Update our root-domain */
6726 spin_lock_irqsave(&rq
->lock
, flags
);
6728 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6731 spin_unlock_irqrestore(&rq
->lock
, flags
);
6738 /* Register at highest priority so that task migration (migrate_all_tasks)
6739 * happens before everything else.
6741 static struct notifier_block __cpuinitdata migration_notifier
= {
6742 .notifier_call
= migration_call
,
6746 static int __init
migration_init(void)
6748 void *cpu
= (void *)(long)smp_processor_id();
6751 /* Start one for the boot CPU: */
6752 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6753 BUG_ON(err
== NOTIFY_BAD
);
6754 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6755 register_cpu_notifier(&migration_notifier
);
6759 early_initcall(migration_init
);
6764 #ifdef CONFIG_SCHED_DEBUG
6766 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6767 struct cpumask
*groupmask
)
6769 struct sched_group
*group
= sd
->groups
;
6772 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6773 cpumask_clear(groupmask
);
6775 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6777 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6778 printk("does not load-balance\n");
6780 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6785 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6787 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6788 printk(KERN_ERR
"ERROR: domain->span does not contain "
6791 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6792 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6796 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6800 printk(KERN_ERR
"ERROR: group is NULL\n");
6804 if (!group
->__cpu_power
) {
6805 printk(KERN_CONT
"\n");
6806 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6811 if (!cpumask_weight(sched_group_cpus(group
))) {
6812 printk(KERN_CONT
"\n");
6813 printk(KERN_ERR
"ERROR: empty group\n");
6817 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6818 printk(KERN_CONT
"\n");
6819 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6823 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6825 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6826 printk(KERN_CONT
" %s", str
);
6828 group
= group
->next
;
6829 } while (group
!= sd
->groups
);
6830 printk(KERN_CONT
"\n");
6832 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6833 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6836 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6837 printk(KERN_ERR
"ERROR: parent span is not a superset "
6838 "of domain->span\n");
6842 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6844 cpumask_var_t groupmask
;
6848 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6852 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6854 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6855 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6860 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6867 free_cpumask_var(groupmask
);
6869 #else /* !CONFIG_SCHED_DEBUG */
6870 # define sched_domain_debug(sd, cpu) do { } while (0)
6871 #endif /* CONFIG_SCHED_DEBUG */
6873 static int sd_degenerate(struct sched_domain
*sd
)
6875 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6878 /* Following flags need at least 2 groups */
6879 if (sd
->flags
& (SD_LOAD_BALANCE
|
6880 SD_BALANCE_NEWIDLE
|
6884 SD_SHARE_PKG_RESOURCES
)) {
6885 if (sd
->groups
!= sd
->groups
->next
)
6889 /* Following flags don't use groups */
6890 if (sd
->flags
& (SD_WAKE_IDLE
|
6899 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6901 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6903 if (sd_degenerate(parent
))
6906 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6909 /* Does parent contain flags not in child? */
6910 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6911 if (cflags
& SD_WAKE_AFFINE
)
6912 pflags
&= ~SD_WAKE_BALANCE
;
6913 /* Flags needing groups don't count if only 1 group in parent */
6914 if (parent
->groups
== parent
->groups
->next
) {
6915 pflags
&= ~(SD_LOAD_BALANCE
|
6916 SD_BALANCE_NEWIDLE
|
6920 SD_SHARE_PKG_RESOURCES
);
6921 if (nr_node_ids
== 1)
6922 pflags
&= ~SD_SERIALIZE
;
6924 if (~cflags
& pflags
)
6930 static void free_rootdomain(struct root_domain
*rd
)
6932 cpupri_cleanup(&rd
->cpupri
);
6934 free_cpumask_var(rd
->rto_mask
);
6935 free_cpumask_var(rd
->online
);
6936 free_cpumask_var(rd
->span
);
6940 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6942 struct root_domain
*old_rd
= NULL
;
6943 unsigned long flags
;
6945 spin_lock_irqsave(&rq
->lock
, flags
);
6950 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6953 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6956 * If we dont want to free the old_rt yet then
6957 * set old_rd to NULL to skip the freeing later
6960 if (!atomic_dec_and_test(&old_rd
->refcount
))
6964 atomic_inc(&rd
->refcount
);
6967 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6968 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
6971 spin_unlock_irqrestore(&rq
->lock
, flags
);
6974 free_rootdomain(old_rd
);
6977 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6979 memset(rd
, 0, sizeof(*rd
));
6982 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
6983 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
6984 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
6985 cpupri_init(&rd
->cpupri
, true);
6989 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6991 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6993 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6996 if (cpupri_init(&rd
->cpupri
, false) != 0)
7001 free_cpumask_var(rd
->rto_mask
);
7003 free_cpumask_var(rd
->online
);
7005 free_cpumask_var(rd
->span
);
7010 static void init_defrootdomain(void)
7012 init_rootdomain(&def_root_domain
, true);
7014 atomic_set(&def_root_domain
.refcount
, 1);
7017 static struct root_domain
*alloc_rootdomain(void)
7019 struct root_domain
*rd
;
7021 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7025 if (init_rootdomain(rd
, false) != 0) {
7034 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7035 * hold the hotplug lock.
7038 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7040 struct rq
*rq
= cpu_rq(cpu
);
7041 struct sched_domain
*tmp
;
7043 /* Remove the sched domains which do not contribute to scheduling. */
7044 for (tmp
= sd
; tmp
; ) {
7045 struct sched_domain
*parent
= tmp
->parent
;
7049 if (sd_parent_degenerate(tmp
, parent
)) {
7050 tmp
->parent
= parent
->parent
;
7052 parent
->parent
->child
= tmp
;
7057 if (sd
&& sd_degenerate(sd
)) {
7063 sched_domain_debug(sd
, cpu
);
7065 rq_attach_root(rq
, rd
);
7066 rcu_assign_pointer(rq
->sd
, sd
);
7069 /* cpus with isolated domains */
7070 static cpumask_var_t cpu_isolated_map
;
7072 /* Setup the mask of cpus configured for isolated domains */
7073 static int __init
isolated_cpu_setup(char *str
)
7075 cpulist_parse(str
, cpu_isolated_map
);
7079 __setup("isolcpus=", isolated_cpu_setup
);
7082 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7083 * to a function which identifies what group(along with sched group) a CPU
7084 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7085 * (due to the fact that we keep track of groups covered with a struct cpumask).
7087 * init_sched_build_groups will build a circular linked list of the groups
7088 * covered by the given span, and will set each group's ->cpumask correctly,
7089 * and ->cpu_power to 0.
7092 init_sched_build_groups(const struct cpumask
*span
,
7093 const struct cpumask
*cpu_map
,
7094 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7095 struct sched_group
**sg
,
7096 struct cpumask
*tmpmask
),
7097 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7099 struct sched_group
*first
= NULL
, *last
= NULL
;
7102 cpumask_clear(covered
);
7104 for_each_cpu(i
, span
) {
7105 struct sched_group
*sg
;
7106 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7109 if (cpumask_test_cpu(i
, covered
))
7112 cpumask_clear(sched_group_cpus(sg
));
7113 sg
->__cpu_power
= 0;
7115 for_each_cpu(j
, span
) {
7116 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7119 cpumask_set_cpu(j
, covered
);
7120 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7131 #define SD_NODES_PER_DOMAIN 16
7136 * find_next_best_node - find the next node to include in a sched_domain
7137 * @node: node whose sched_domain we're building
7138 * @used_nodes: nodes already in the sched_domain
7140 * Find the next node to include in a given scheduling domain. Simply
7141 * finds the closest node not already in the @used_nodes map.
7143 * Should use nodemask_t.
7145 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7147 int i
, n
, val
, min_val
, best_node
= 0;
7151 for (i
= 0; i
< nr_node_ids
; i
++) {
7152 /* Start at @node */
7153 n
= (node
+ i
) % nr_node_ids
;
7155 if (!nr_cpus_node(n
))
7158 /* Skip already used nodes */
7159 if (node_isset(n
, *used_nodes
))
7162 /* Simple min distance search */
7163 val
= node_distance(node
, n
);
7165 if (val
< min_val
) {
7171 node_set(best_node
, *used_nodes
);
7176 * sched_domain_node_span - get a cpumask for a node's sched_domain
7177 * @node: node whose cpumask we're constructing
7178 * @span: resulting cpumask
7180 * Given a node, construct a good cpumask for its sched_domain to span. It
7181 * should be one that prevents unnecessary balancing, but also spreads tasks
7184 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7186 nodemask_t used_nodes
;
7189 cpumask_clear(span
);
7190 nodes_clear(used_nodes
);
7192 cpumask_or(span
, span
, cpumask_of_node(node
));
7193 node_set(node
, used_nodes
);
7195 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7196 int next_node
= find_next_best_node(node
, &used_nodes
);
7198 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7201 #endif /* CONFIG_NUMA */
7203 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7206 * The cpus mask in sched_group and sched_domain hangs off the end.
7207 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7208 * for nr_cpu_ids < CONFIG_NR_CPUS.
7210 struct static_sched_group
{
7211 struct sched_group sg
;
7212 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7215 struct static_sched_domain
{
7216 struct sched_domain sd
;
7217 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7221 * SMT sched-domains:
7223 #ifdef CONFIG_SCHED_SMT
7224 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7225 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7228 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7229 struct sched_group
**sg
, struct cpumask
*unused
)
7232 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7235 #endif /* CONFIG_SCHED_SMT */
7238 * multi-core sched-domains:
7240 #ifdef CONFIG_SCHED_MC
7241 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7242 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7243 #endif /* CONFIG_SCHED_MC */
7245 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7247 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7248 struct sched_group
**sg
, struct cpumask
*mask
)
7252 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7253 group
= cpumask_first(mask
);
7255 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7258 #elif defined(CONFIG_SCHED_MC)
7260 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7261 struct sched_group
**sg
, struct cpumask
*unused
)
7264 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7269 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7270 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7273 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7274 struct sched_group
**sg
, struct cpumask
*mask
)
7277 #ifdef CONFIG_SCHED_MC
7278 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
7279 group
= cpumask_first(mask
);
7280 #elif defined(CONFIG_SCHED_SMT)
7281 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7282 group
= cpumask_first(mask
);
7287 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7293 * The init_sched_build_groups can't handle what we want to do with node
7294 * groups, so roll our own. Now each node has its own list of groups which
7295 * gets dynamically allocated.
7297 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
7298 static struct sched_group
***sched_group_nodes_bycpu
;
7300 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
7301 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7303 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7304 struct sched_group
**sg
,
7305 struct cpumask
*nodemask
)
7309 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7310 group
= cpumask_first(nodemask
);
7313 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7317 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7319 struct sched_group
*sg
= group_head
;
7325 for_each_cpu(j
, sched_group_cpus(sg
)) {
7326 struct sched_domain
*sd
;
7328 sd
= &per_cpu(phys_domains
, j
).sd
;
7329 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7331 * Only add "power" once for each
7337 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7340 } while (sg
!= group_head
);
7342 #endif /* CONFIG_NUMA */
7345 /* Free memory allocated for various sched_group structures */
7346 static void free_sched_groups(const struct cpumask
*cpu_map
,
7347 struct cpumask
*nodemask
)
7351 for_each_cpu(cpu
, cpu_map
) {
7352 struct sched_group
**sched_group_nodes
7353 = sched_group_nodes_bycpu
[cpu
];
7355 if (!sched_group_nodes
)
7358 for (i
= 0; i
< nr_node_ids
; i
++) {
7359 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7361 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7362 if (cpumask_empty(nodemask
))
7372 if (oldsg
!= sched_group_nodes
[i
])
7375 kfree(sched_group_nodes
);
7376 sched_group_nodes_bycpu
[cpu
] = NULL
;
7379 #else /* !CONFIG_NUMA */
7380 static void free_sched_groups(const struct cpumask
*cpu_map
,
7381 struct cpumask
*nodemask
)
7384 #endif /* CONFIG_NUMA */
7387 * Initialize sched groups cpu_power.
7389 * cpu_power indicates the capacity of sched group, which is used while
7390 * distributing the load between different sched groups in a sched domain.
7391 * Typically cpu_power for all the groups in a sched domain will be same unless
7392 * there are asymmetries in the topology. If there are asymmetries, group
7393 * having more cpu_power will pickup more load compared to the group having
7396 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7397 * the maximum number of tasks a group can handle in the presence of other idle
7398 * or lightly loaded groups in the same sched domain.
7400 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7402 struct sched_domain
*child
;
7403 struct sched_group
*group
;
7405 WARN_ON(!sd
|| !sd
->groups
);
7407 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7412 sd
->groups
->__cpu_power
= 0;
7415 * For perf policy, if the groups in child domain share resources
7416 * (for example cores sharing some portions of the cache hierarchy
7417 * or SMT), then set this domain groups cpu_power such that each group
7418 * can handle only one task, when there are other idle groups in the
7419 * same sched domain.
7421 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7423 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7424 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7429 * add cpu_power of each child group to this groups cpu_power
7431 group
= child
->groups
;
7433 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7434 group
= group
->next
;
7435 } while (group
!= child
->groups
);
7439 * Initializers for schedule domains
7440 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7443 #ifdef CONFIG_SCHED_DEBUG
7444 # define SD_INIT_NAME(sd, type) sd->name = #type
7446 # define SD_INIT_NAME(sd, type) do { } while (0)
7449 #define SD_INIT(sd, type) sd_init_##type(sd)
7451 #define SD_INIT_FUNC(type) \
7452 static noinline void sd_init_##type(struct sched_domain *sd) \
7454 memset(sd, 0, sizeof(*sd)); \
7455 *sd = SD_##type##_INIT; \
7456 sd->level = SD_LV_##type; \
7457 SD_INIT_NAME(sd, type); \
7462 SD_INIT_FUNC(ALLNODES
)
7465 #ifdef CONFIG_SCHED_SMT
7466 SD_INIT_FUNC(SIBLING
)
7468 #ifdef CONFIG_SCHED_MC
7472 static int default_relax_domain_level
= -1;
7474 static int __init
setup_relax_domain_level(char *str
)
7478 val
= simple_strtoul(str
, NULL
, 0);
7479 if (val
< SD_LV_MAX
)
7480 default_relax_domain_level
= val
;
7484 __setup("relax_domain_level=", setup_relax_domain_level
);
7486 static void set_domain_attribute(struct sched_domain
*sd
,
7487 struct sched_domain_attr
*attr
)
7491 if (!attr
|| attr
->relax_domain_level
< 0) {
7492 if (default_relax_domain_level
< 0)
7495 request
= default_relax_domain_level
;
7497 request
= attr
->relax_domain_level
;
7498 if (request
< sd
->level
) {
7499 /* turn off idle balance on this domain */
7500 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7502 /* turn on idle balance on this domain */
7503 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7508 * Build sched domains for a given set of cpus and attach the sched domains
7509 * to the individual cpus
7511 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7512 struct sched_domain_attr
*attr
)
7514 int i
, err
= -ENOMEM
;
7515 struct root_domain
*rd
;
7516 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7519 cpumask_var_t domainspan
, covered
, notcovered
;
7520 struct sched_group
**sched_group_nodes
= NULL
;
7521 int sd_allnodes
= 0;
7523 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7525 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7526 goto free_domainspan
;
7527 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7531 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7532 goto free_notcovered
;
7533 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7535 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7536 goto free_this_sibling_map
;
7537 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7538 goto free_this_core_map
;
7539 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7540 goto free_send_covered
;
7544 * Allocate the per-node list of sched groups
7546 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7548 if (!sched_group_nodes
) {
7549 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7554 rd
= alloc_rootdomain();
7556 printk(KERN_WARNING
"Cannot alloc root domain\n");
7557 goto free_sched_groups
;
7561 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7565 * Set up domains for cpus specified by the cpu_map.
7567 for_each_cpu(i
, cpu_map
) {
7568 struct sched_domain
*sd
= NULL
, *p
;
7570 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
7573 if (cpumask_weight(cpu_map
) >
7574 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7575 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7576 SD_INIT(sd
, ALLNODES
);
7577 set_domain_attribute(sd
, attr
);
7578 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7579 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7585 sd
= &per_cpu(node_domains
, i
).sd
;
7587 set_domain_attribute(sd
, attr
);
7588 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7592 cpumask_and(sched_domain_span(sd
),
7593 sched_domain_span(sd
), cpu_map
);
7597 sd
= &per_cpu(phys_domains
, i
).sd
;
7599 set_domain_attribute(sd
, attr
);
7600 cpumask_copy(sched_domain_span(sd
), nodemask
);
7604 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7606 #ifdef CONFIG_SCHED_MC
7608 sd
= &per_cpu(core_domains
, i
).sd
;
7610 set_domain_attribute(sd
, attr
);
7611 cpumask_and(sched_domain_span(sd
), cpu_map
,
7612 cpu_coregroup_mask(i
));
7615 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7618 #ifdef CONFIG_SCHED_SMT
7620 sd
= &per_cpu(cpu_domains
, i
).sd
;
7621 SD_INIT(sd
, SIBLING
);
7622 set_domain_attribute(sd
, attr
);
7623 cpumask_and(sched_domain_span(sd
),
7624 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7627 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7631 #ifdef CONFIG_SCHED_SMT
7632 /* Set up CPU (sibling) groups */
7633 for_each_cpu(i
, cpu_map
) {
7634 cpumask_and(this_sibling_map
,
7635 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7636 if (i
!= cpumask_first(this_sibling_map
))
7639 init_sched_build_groups(this_sibling_map
, cpu_map
,
7641 send_covered
, tmpmask
);
7645 #ifdef CONFIG_SCHED_MC
7646 /* Set up multi-core groups */
7647 for_each_cpu(i
, cpu_map
) {
7648 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
7649 if (i
!= cpumask_first(this_core_map
))
7652 init_sched_build_groups(this_core_map
, cpu_map
,
7654 send_covered
, tmpmask
);
7658 /* Set up physical groups */
7659 for (i
= 0; i
< nr_node_ids
; i
++) {
7660 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7661 if (cpumask_empty(nodemask
))
7664 init_sched_build_groups(nodemask
, cpu_map
,
7666 send_covered
, tmpmask
);
7670 /* Set up node groups */
7672 init_sched_build_groups(cpu_map
, cpu_map
,
7673 &cpu_to_allnodes_group
,
7674 send_covered
, tmpmask
);
7677 for (i
= 0; i
< nr_node_ids
; i
++) {
7678 /* Set up node groups */
7679 struct sched_group
*sg
, *prev
;
7682 cpumask_clear(covered
);
7683 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7684 if (cpumask_empty(nodemask
)) {
7685 sched_group_nodes
[i
] = NULL
;
7689 sched_domain_node_span(i
, domainspan
);
7690 cpumask_and(domainspan
, domainspan
, cpu_map
);
7692 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7695 printk(KERN_WARNING
"Can not alloc domain group for "
7699 sched_group_nodes
[i
] = sg
;
7700 for_each_cpu(j
, nodemask
) {
7701 struct sched_domain
*sd
;
7703 sd
= &per_cpu(node_domains
, j
).sd
;
7706 sg
->__cpu_power
= 0;
7707 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7709 cpumask_or(covered
, covered
, nodemask
);
7712 for (j
= 0; j
< nr_node_ids
; j
++) {
7713 int n
= (i
+ j
) % nr_node_ids
;
7715 cpumask_complement(notcovered
, covered
);
7716 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7717 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7718 if (cpumask_empty(tmpmask
))
7721 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
7722 if (cpumask_empty(tmpmask
))
7725 sg
= kmalloc_node(sizeof(struct sched_group
) +
7730 "Can not alloc domain group for node %d\n", j
);
7733 sg
->__cpu_power
= 0;
7734 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7735 sg
->next
= prev
->next
;
7736 cpumask_or(covered
, covered
, tmpmask
);
7743 /* Calculate CPU power for physical packages and nodes */
7744 #ifdef CONFIG_SCHED_SMT
7745 for_each_cpu(i
, cpu_map
) {
7746 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7748 init_sched_groups_power(i
, sd
);
7751 #ifdef CONFIG_SCHED_MC
7752 for_each_cpu(i
, cpu_map
) {
7753 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7755 init_sched_groups_power(i
, sd
);
7759 for_each_cpu(i
, cpu_map
) {
7760 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7762 init_sched_groups_power(i
, sd
);
7766 for (i
= 0; i
< nr_node_ids
; i
++)
7767 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7770 struct sched_group
*sg
;
7772 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7774 init_numa_sched_groups_power(sg
);
7778 /* Attach the domains */
7779 for_each_cpu(i
, cpu_map
) {
7780 struct sched_domain
*sd
;
7781 #ifdef CONFIG_SCHED_SMT
7782 sd
= &per_cpu(cpu_domains
, i
).sd
;
7783 #elif defined(CONFIG_SCHED_MC)
7784 sd
= &per_cpu(core_domains
, i
).sd
;
7786 sd
= &per_cpu(phys_domains
, i
).sd
;
7788 cpu_attach_domain(sd
, rd
, i
);
7794 free_cpumask_var(tmpmask
);
7796 free_cpumask_var(send_covered
);
7798 free_cpumask_var(this_core_map
);
7799 free_this_sibling_map
:
7800 free_cpumask_var(this_sibling_map
);
7802 free_cpumask_var(nodemask
);
7805 free_cpumask_var(notcovered
);
7807 free_cpumask_var(covered
);
7809 free_cpumask_var(domainspan
);
7816 kfree(sched_group_nodes
);
7822 free_sched_groups(cpu_map
, tmpmask
);
7823 free_rootdomain(rd
);
7828 static int build_sched_domains(const struct cpumask
*cpu_map
)
7830 return __build_sched_domains(cpu_map
, NULL
);
7833 static struct cpumask
*doms_cur
; /* current sched domains */
7834 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7835 static struct sched_domain_attr
*dattr_cur
;
7836 /* attribues of custom domains in 'doms_cur' */
7839 * Special case: If a kmalloc of a doms_cur partition (array of
7840 * cpumask) fails, then fallback to a single sched domain,
7841 * as determined by the single cpumask fallback_doms.
7843 static cpumask_var_t fallback_doms
;
7846 * arch_update_cpu_topology lets virtualized architectures update the
7847 * cpu core maps. It is supposed to return 1 if the topology changed
7848 * or 0 if it stayed the same.
7850 int __attribute__((weak
)) arch_update_cpu_topology(void)
7856 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7857 * For now this just excludes isolated cpus, but could be used to
7858 * exclude other special cases in the future.
7860 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7864 arch_update_cpu_topology();
7866 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
7868 doms_cur
= fallback_doms
;
7869 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
7871 err
= build_sched_domains(doms_cur
);
7872 register_sched_domain_sysctl();
7877 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7878 struct cpumask
*tmpmask
)
7880 free_sched_groups(cpu_map
, tmpmask
);
7884 * Detach sched domains from a group of cpus specified in cpu_map
7885 * These cpus will now be attached to the NULL domain
7887 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7889 /* Save because hotplug lock held. */
7890 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7893 for_each_cpu(i
, cpu_map
)
7894 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7895 synchronize_sched();
7896 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7899 /* handle null as "default" */
7900 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7901 struct sched_domain_attr
*new, int idx_new
)
7903 struct sched_domain_attr tmp
;
7910 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7911 new ? (new + idx_new
) : &tmp
,
7912 sizeof(struct sched_domain_attr
));
7916 * Partition sched domains as specified by the 'ndoms_new'
7917 * cpumasks in the array doms_new[] of cpumasks. This compares
7918 * doms_new[] to the current sched domain partitioning, doms_cur[].
7919 * It destroys each deleted domain and builds each new domain.
7921 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7922 * The masks don't intersect (don't overlap.) We should setup one
7923 * sched domain for each mask. CPUs not in any of the cpumasks will
7924 * not be load balanced. If the same cpumask appears both in the
7925 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7928 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7929 * ownership of it and will kfree it when done with it. If the caller
7930 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7931 * ndoms_new == 1, and partition_sched_domains() will fallback to
7932 * the single partition 'fallback_doms', it also forces the domains
7935 * If doms_new == NULL it will be replaced with cpu_online_mask.
7936 * ndoms_new == 0 is a special case for destroying existing domains,
7937 * and it will not create the default domain.
7939 * Call with hotplug lock held
7941 /* FIXME: Change to struct cpumask *doms_new[] */
7942 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
7943 struct sched_domain_attr
*dattr_new
)
7948 mutex_lock(&sched_domains_mutex
);
7950 /* always unregister in case we don't destroy any domains */
7951 unregister_sched_domain_sysctl();
7953 /* Let architecture update cpu core mappings. */
7954 new_topology
= arch_update_cpu_topology();
7956 n
= doms_new
? ndoms_new
: 0;
7958 /* Destroy deleted domains */
7959 for (i
= 0; i
< ndoms_cur
; i
++) {
7960 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7961 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
7962 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7965 /* no match - a current sched domain not in new doms_new[] */
7966 detach_destroy_domains(doms_cur
+ i
);
7971 if (doms_new
== NULL
) {
7973 doms_new
= fallback_doms
;
7974 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
7975 WARN_ON_ONCE(dattr_new
);
7978 /* Build new domains */
7979 for (i
= 0; i
< ndoms_new
; i
++) {
7980 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7981 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
7982 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7985 /* no match - add a new doms_new */
7986 __build_sched_domains(doms_new
+ i
,
7987 dattr_new
? dattr_new
+ i
: NULL
);
7992 /* Remember the new sched domains */
7993 if (doms_cur
!= fallback_doms
)
7995 kfree(dattr_cur
); /* kfree(NULL) is safe */
7996 doms_cur
= doms_new
;
7997 dattr_cur
= dattr_new
;
7998 ndoms_cur
= ndoms_new
;
8000 register_sched_domain_sysctl();
8002 mutex_unlock(&sched_domains_mutex
);
8005 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8006 static void arch_reinit_sched_domains(void)
8010 /* Destroy domains first to force the rebuild */
8011 partition_sched_domains(0, NULL
, NULL
);
8013 rebuild_sched_domains();
8017 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8019 unsigned int level
= 0;
8021 if (sscanf(buf
, "%u", &level
) != 1)
8025 * level is always be positive so don't check for
8026 * level < POWERSAVINGS_BALANCE_NONE which is 0
8027 * What happens on 0 or 1 byte write,
8028 * need to check for count as well?
8031 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8035 sched_smt_power_savings
= level
;
8037 sched_mc_power_savings
= level
;
8039 arch_reinit_sched_domains();
8044 #ifdef CONFIG_SCHED_MC
8045 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8048 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8050 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8051 const char *buf
, size_t count
)
8053 return sched_power_savings_store(buf
, count
, 0);
8055 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8056 sched_mc_power_savings_show
,
8057 sched_mc_power_savings_store
);
8060 #ifdef CONFIG_SCHED_SMT
8061 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8064 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8066 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8067 const char *buf
, size_t count
)
8069 return sched_power_savings_store(buf
, count
, 1);
8071 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8072 sched_smt_power_savings_show
,
8073 sched_smt_power_savings_store
);
8076 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8080 #ifdef CONFIG_SCHED_SMT
8082 err
= sysfs_create_file(&cls
->kset
.kobj
,
8083 &attr_sched_smt_power_savings
.attr
);
8085 #ifdef CONFIG_SCHED_MC
8086 if (!err
&& mc_capable())
8087 err
= sysfs_create_file(&cls
->kset
.kobj
,
8088 &attr_sched_mc_power_savings
.attr
);
8092 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8094 #ifndef CONFIG_CPUSETS
8096 * Add online and remove offline CPUs from the scheduler domains.
8097 * When cpusets are enabled they take over this function.
8099 static int update_sched_domains(struct notifier_block
*nfb
,
8100 unsigned long action
, void *hcpu
)
8104 case CPU_ONLINE_FROZEN
:
8106 case CPU_DEAD_FROZEN
:
8107 partition_sched_domains(1, NULL
, NULL
);
8116 static int update_runtime(struct notifier_block
*nfb
,
8117 unsigned long action
, void *hcpu
)
8119 int cpu
= (int)(long)hcpu
;
8122 case CPU_DOWN_PREPARE
:
8123 case CPU_DOWN_PREPARE_FROZEN
:
8124 disable_runtime(cpu_rq(cpu
));
8127 case CPU_DOWN_FAILED
:
8128 case CPU_DOWN_FAILED_FROZEN
:
8130 case CPU_ONLINE_FROZEN
:
8131 enable_runtime(cpu_rq(cpu
));
8139 void __init
sched_init_smp(void)
8141 cpumask_var_t non_isolated_cpus
;
8143 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8145 #if defined(CONFIG_NUMA)
8146 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8148 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8151 mutex_lock(&sched_domains_mutex
);
8152 arch_init_sched_domains(cpu_online_mask
);
8153 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8154 if (cpumask_empty(non_isolated_cpus
))
8155 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8156 mutex_unlock(&sched_domains_mutex
);
8159 #ifndef CONFIG_CPUSETS
8160 /* XXX: Theoretical race here - CPU may be hotplugged now */
8161 hotcpu_notifier(update_sched_domains
, 0);
8164 /* RT runtime code needs to handle some hotplug events */
8165 hotcpu_notifier(update_runtime
, 0);
8169 /* Move init over to a non-isolated CPU */
8170 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8172 sched_init_granularity();
8173 free_cpumask_var(non_isolated_cpus
);
8175 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8176 init_sched_rt_class();
8179 void __init
sched_init_smp(void)
8181 sched_init_granularity();
8183 #endif /* CONFIG_SMP */
8185 int in_sched_functions(unsigned long addr
)
8187 return in_lock_functions(addr
) ||
8188 (addr
>= (unsigned long)__sched_text_start
8189 && addr
< (unsigned long)__sched_text_end
);
8192 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8194 cfs_rq
->tasks_timeline
= RB_ROOT
;
8195 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8196 #ifdef CONFIG_FAIR_GROUP_SCHED
8199 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8202 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8204 struct rt_prio_array
*array
;
8207 array
= &rt_rq
->active
;
8208 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8209 INIT_LIST_HEAD(array
->queue
+ i
);
8210 __clear_bit(i
, array
->bitmap
);
8212 /* delimiter for bitsearch: */
8213 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8215 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8216 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8219 rt_rq
->rt_nr_migratory
= 0;
8220 rt_rq
->overloaded
= 0;
8224 rt_rq
->rt_throttled
= 0;
8225 rt_rq
->rt_runtime
= 0;
8226 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8228 #ifdef CONFIG_RT_GROUP_SCHED
8229 rt_rq
->rt_nr_boosted
= 0;
8234 #ifdef CONFIG_FAIR_GROUP_SCHED
8235 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8236 struct sched_entity
*se
, int cpu
, int add
,
8237 struct sched_entity
*parent
)
8239 struct rq
*rq
= cpu_rq(cpu
);
8240 tg
->cfs_rq
[cpu
] = cfs_rq
;
8241 init_cfs_rq(cfs_rq
, rq
);
8244 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8247 /* se could be NULL for init_task_group */
8252 se
->cfs_rq
= &rq
->cfs
;
8254 se
->cfs_rq
= parent
->my_q
;
8257 se
->load
.weight
= tg
->shares
;
8258 se
->load
.inv_weight
= 0;
8259 se
->parent
= parent
;
8263 #ifdef CONFIG_RT_GROUP_SCHED
8264 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8265 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8266 struct sched_rt_entity
*parent
)
8268 struct rq
*rq
= cpu_rq(cpu
);
8270 tg
->rt_rq
[cpu
] = rt_rq
;
8271 init_rt_rq(rt_rq
, rq
);
8273 rt_rq
->rt_se
= rt_se
;
8274 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8276 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8278 tg
->rt_se
[cpu
] = rt_se
;
8283 rt_se
->rt_rq
= &rq
->rt
;
8285 rt_se
->rt_rq
= parent
->my_q
;
8287 rt_se
->my_q
= rt_rq
;
8288 rt_se
->parent
= parent
;
8289 INIT_LIST_HEAD(&rt_se
->run_list
);
8293 void __init
sched_init(void)
8296 unsigned long alloc_size
= 0, ptr
;
8298 #ifdef CONFIG_FAIR_GROUP_SCHED
8299 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8301 #ifdef CONFIG_RT_GROUP_SCHED
8302 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8304 #ifdef CONFIG_USER_SCHED
8308 * As sched_init() is called before page_alloc is setup,
8309 * we use alloc_bootmem().
8312 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8314 #ifdef CONFIG_FAIR_GROUP_SCHED
8315 init_task_group
.se
= (struct sched_entity
**)ptr
;
8316 ptr
+= nr_cpu_ids
* sizeof(void **);
8318 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8319 ptr
+= nr_cpu_ids
* sizeof(void **);
8321 #ifdef CONFIG_USER_SCHED
8322 root_task_group
.se
= (struct sched_entity
**)ptr
;
8323 ptr
+= nr_cpu_ids
* sizeof(void **);
8325 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8326 ptr
+= nr_cpu_ids
* sizeof(void **);
8327 #endif /* CONFIG_USER_SCHED */
8328 #endif /* CONFIG_FAIR_GROUP_SCHED */
8329 #ifdef CONFIG_RT_GROUP_SCHED
8330 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8331 ptr
+= nr_cpu_ids
* sizeof(void **);
8333 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8334 ptr
+= nr_cpu_ids
* sizeof(void **);
8336 #ifdef CONFIG_USER_SCHED
8337 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8338 ptr
+= nr_cpu_ids
* sizeof(void **);
8340 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8341 ptr
+= nr_cpu_ids
* sizeof(void **);
8342 #endif /* CONFIG_USER_SCHED */
8343 #endif /* CONFIG_RT_GROUP_SCHED */
8347 init_defrootdomain();
8350 init_rt_bandwidth(&def_rt_bandwidth
,
8351 global_rt_period(), global_rt_runtime());
8353 #ifdef CONFIG_RT_GROUP_SCHED
8354 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8355 global_rt_period(), global_rt_runtime());
8356 #ifdef CONFIG_USER_SCHED
8357 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8358 global_rt_period(), RUNTIME_INF
);
8359 #endif /* CONFIG_USER_SCHED */
8360 #endif /* CONFIG_RT_GROUP_SCHED */
8362 #ifdef CONFIG_GROUP_SCHED
8363 list_add(&init_task_group
.list
, &task_groups
);
8364 INIT_LIST_HEAD(&init_task_group
.children
);
8366 #ifdef CONFIG_USER_SCHED
8367 INIT_LIST_HEAD(&root_task_group
.children
);
8368 init_task_group
.parent
= &root_task_group
;
8369 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8370 #endif /* CONFIG_USER_SCHED */
8371 #endif /* CONFIG_GROUP_SCHED */
8373 for_each_possible_cpu(i
) {
8377 spin_lock_init(&rq
->lock
);
8379 init_cfs_rq(&rq
->cfs
, rq
);
8380 init_rt_rq(&rq
->rt
, rq
);
8381 #ifdef CONFIG_FAIR_GROUP_SCHED
8382 init_task_group
.shares
= init_task_group_load
;
8383 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8384 #ifdef CONFIG_CGROUP_SCHED
8386 * How much cpu bandwidth does init_task_group get?
8388 * In case of task-groups formed thr' the cgroup filesystem, it
8389 * gets 100% of the cpu resources in the system. This overall
8390 * system cpu resource is divided among the tasks of
8391 * init_task_group and its child task-groups in a fair manner,
8392 * based on each entity's (task or task-group's) weight
8393 * (se->load.weight).
8395 * In other words, if init_task_group has 10 tasks of weight
8396 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8397 * then A0's share of the cpu resource is:
8399 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8401 * We achieve this by letting init_task_group's tasks sit
8402 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8404 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8405 #elif defined CONFIG_USER_SCHED
8406 root_task_group
.shares
= NICE_0_LOAD
;
8407 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8409 * In case of task-groups formed thr' the user id of tasks,
8410 * init_task_group represents tasks belonging to root user.
8411 * Hence it forms a sibling of all subsequent groups formed.
8412 * In this case, init_task_group gets only a fraction of overall
8413 * system cpu resource, based on the weight assigned to root
8414 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8415 * by letting tasks of init_task_group sit in a separate cfs_rq
8416 * (init_cfs_rq) and having one entity represent this group of
8417 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8419 init_tg_cfs_entry(&init_task_group
,
8420 &per_cpu(init_cfs_rq
, i
),
8421 &per_cpu(init_sched_entity
, i
), i
, 1,
8422 root_task_group
.se
[i
]);
8425 #endif /* CONFIG_FAIR_GROUP_SCHED */
8427 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8428 #ifdef CONFIG_RT_GROUP_SCHED
8429 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8430 #ifdef CONFIG_CGROUP_SCHED
8431 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8432 #elif defined CONFIG_USER_SCHED
8433 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8434 init_tg_rt_entry(&init_task_group
,
8435 &per_cpu(init_rt_rq
, i
),
8436 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8437 root_task_group
.rt_se
[i
]);
8441 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8442 rq
->cpu_load
[j
] = 0;
8446 rq
->active_balance
= 0;
8447 rq
->next_balance
= jiffies
;
8451 rq
->migration_thread
= NULL
;
8452 INIT_LIST_HEAD(&rq
->migration_queue
);
8453 rq_attach_root(rq
, &def_root_domain
);
8456 atomic_set(&rq
->nr_iowait
, 0);
8459 set_load_weight(&init_task
);
8461 #ifdef CONFIG_PREEMPT_NOTIFIERS
8462 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8466 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8469 #ifdef CONFIG_RT_MUTEXES
8470 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8474 * The boot idle thread does lazy MMU switching as well:
8476 atomic_inc(&init_mm
.mm_count
);
8477 enter_lazy_tlb(&init_mm
, current
);
8480 * Make us the idle thread. Technically, schedule() should not be
8481 * called from this thread, however somewhere below it might be,
8482 * but because we are the idle thread, we just pick up running again
8483 * when this runqueue becomes "idle".
8485 init_idle(current
, smp_processor_id());
8487 * During early bootup we pretend to be a normal task:
8489 current
->sched_class
= &fair_sched_class
;
8491 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8492 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8495 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8497 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8500 scheduler_running
= 1;
8503 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8504 void __might_sleep(char *file
, int line
)
8507 static unsigned long prev_jiffy
; /* ratelimiting */
8509 if ((!in_atomic() && !irqs_disabled()) ||
8510 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8512 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8514 prev_jiffy
= jiffies
;
8517 "BUG: sleeping function called from invalid context at %s:%d\n",
8520 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8521 in_atomic(), irqs_disabled(),
8522 current
->pid
, current
->comm
);
8524 debug_show_held_locks(current
);
8525 if (irqs_disabled())
8526 print_irqtrace_events(current
);
8530 EXPORT_SYMBOL(__might_sleep
);
8533 #ifdef CONFIG_MAGIC_SYSRQ
8534 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8538 update_rq_clock(rq
);
8539 on_rq
= p
->se
.on_rq
;
8541 deactivate_task(rq
, p
, 0);
8542 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8544 activate_task(rq
, p
, 0);
8545 resched_task(rq
->curr
);
8549 void normalize_rt_tasks(void)
8551 struct task_struct
*g
, *p
;
8552 unsigned long flags
;
8555 read_lock_irqsave(&tasklist_lock
, flags
);
8556 do_each_thread(g
, p
) {
8558 * Only normalize user tasks:
8563 p
->se
.exec_start
= 0;
8564 #ifdef CONFIG_SCHEDSTATS
8565 p
->se
.wait_start
= 0;
8566 p
->se
.sleep_start
= 0;
8567 p
->se
.block_start
= 0;
8572 * Renice negative nice level userspace
8575 if (TASK_NICE(p
) < 0 && p
->mm
)
8576 set_user_nice(p
, 0);
8580 spin_lock(&p
->pi_lock
);
8581 rq
= __task_rq_lock(p
);
8583 normalize_task(rq
, p
);
8585 __task_rq_unlock(rq
);
8586 spin_unlock(&p
->pi_lock
);
8587 } while_each_thread(g
, p
);
8589 read_unlock_irqrestore(&tasklist_lock
, flags
);
8592 #endif /* CONFIG_MAGIC_SYSRQ */
8596 * These functions are only useful for the IA64 MCA handling.
8598 * They can only be called when the whole system has been
8599 * stopped - every CPU needs to be quiescent, and no scheduling
8600 * activity can take place. Using them for anything else would
8601 * be a serious bug, and as a result, they aren't even visible
8602 * under any other configuration.
8606 * curr_task - return the current task for a given cpu.
8607 * @cpu: the processor in question.
8609 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8611 struct task_struct
*curr_task(int cpu
)
8613 return cpu_curr(cpu
);
8617 * set_curr_task - set the current task for a given cpu.
8618 * @cpu: the processor in question.
8619 * @p: the task pointer to set.
8621 * Description: This function must only be used when non-maskable interrupts
8622 * are serviced on a separate stack. It allows the architecture to switch the
8623 * notion of the current task on a cpu in a non-blocking manner. This function
8624 * must be called with all CPU's synchronized, and interrupts disabled, the
8625 * and caller must save the original value of the current task (see
8626 * curr_task() above) and restore that value before reenabling interrupts and
8627 * re-starting the system.
8629 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8631 void set_curr_task(int cpu
, struct task_struct
*p
)
8638 #ifdef CONFIG_FAIR_GROUP_SCHED
8639 static void free_fair_sched_group(struct task_group
*tg
)
8643 for_each_possible_cpu(i
) {
8645 kfree(tg
->cfs_rq
[i
]);
8655 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8657 struct cfs_rq
*cfs_rq
;
8658 struct sched_entity
*se
;
8662 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8665 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8669 tg
->shares
= NICE_0_LOAD
;
8671 for_each_possible_cpu(i
) {
8674 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8675 GFP_KERNEL
, cpu_to_node(i
));
8679 se
= kzalloc_node(sizeof(struct sched_entity
),
8680 GFP_KERNEL
, cpu_to_node(i
));
8684 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8693 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8695 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8696 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8699 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8701 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8703 #else /* !CONFG_FAIR_GROUP_SCHED */
8704 static inline void free_fair_sched_group(struct task_group
*tg
)
8709 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8714 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8718 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8721 #endif /* CONFIG_FAIR_GROUP_SCHED */
8723 #ifdef CONFIG_RT_GROUP_SCHED
8724 static void free_rt_sched_group(struct task_group
*tg
)
8728 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8730 for_each_possible_cpu(i
) {
8732 kfree(tg
->rt_rq
[i
]);
8734 kfree(tg
->rt_se
[i
]);
8742 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8744 struct rt_rq
*rt_rq
;
8745 struct sched_rt_entity
*rt_se
;
8749 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8752 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8756 init_rt_bandwidth(&tg
->rt_bandwidth
,
8757 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8759 for_each_possible_cpu(i
) {
8762 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8763 GFP_KERNEL
, cpu_to_node(i
));
8767 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8768 GFP_KERNEL
, cpu_to_node(i
));
8772 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8781 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8783 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8784 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8787 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8789 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8791 #else /* !CONFIG_RT_GROUP_SCHED */
8792 static inline void free_rt_sched_group(struct task_group
*tg
)
8797 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8802 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8806 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8809 #endif /* CONFIG_RT_GROUP_SCHED */
8811 #ifdef CONFIG_GROUP_SCHED
8812 static void free_sched_group(struct task_group
*tg
)
8814 free_fair_sched_group(tg
);
8815 free_rt_sched_group(tg
);
8819 /* allocate runqueue etc for a new task group */
8820 struct task_group
*sched_create_group(struct task_group
*parent
)
8822 struct task_group
*tg
;
8823 unsigned long flags
;
8826 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8828 return ERR_PTR(-ENOMEM
);
8830 if (!alloc_fair_sched_group(tg
, parent
))
8833 if (!alloc_rt_sched_group(tg
, parent
))
8836 spin_lock_irqsave(&task_group_lock
, flags
);
8837 for_each_possible_cpu(i
) {
8838 register_fair_sched_group(tg
, i
);
8839 register_rt_sched_group(tg
, i
);
8841 list_add_rcu(&tg
->list
, &task_groups
);
8843 WARN_ON(!parent
); /* root should already exist */
8845 tg
->parent
= parent
;
8846 INIT_LIST_HEAD(&tg
->children
);
8847 list_add_rcu(&tg
->siblings
, &parent
->children
);
8848 spin_unlock_irqrestore(&task_group_lock
, flags
);
8853 free_sched_group(tg
);
8854 return ERR_PTR(-ENOMEM
);
8857 /* rcu callback to free various structures associated with a task group */
8858 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8860 /* now it should be safe to free those cfs_rqs */
8861 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8864 /* Destroy runqueue etc associated with a task group */
8865 void sched_destroy_group(struct task_group
*tg
)
8867 unsigned long flags
;
8870 spin_lock_irqsave(&task_group_lock
, flags
);
8871 for_each_possible_cpu(i
) {
8872 unregister_fair_sched_group(tg
, i
);
8873 unregister_rt_sched_group(tg
, i
);
8875 list_del_rcu(&tg
->list
);
8876 list_del_rcu(&tg
->siblings
);
8877 spin_unlock_irqrestore(&task_group_lock
, flags
);
8879 /* wait for possible concurrent references to cfs_rqs complete */
8880 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8883 /* change task's runqueue when it moves between groups.
8884 * The caller of this function should have put the task in its new group
8885 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8886 * reflect its new group.
8888 void sched_move_task(struct task_struct
*tsk
)
8891 unsigned long flags
;
8894 rq
= task_rq_lock(tsk
, &flags
);
8896 update_rq_clock(rq
);
8898 running
= task_current(rq
, tsk
);
8899 on_rq
= tsk
->se
.on_rq
;
8902 dequeue_task(rq
, tsk
, 0);
8903 if (unlikely(running
))
8904 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8906 set_task_rq(tsk
, task_cpu(tsk
));
8908 #ifdef CONFIG_FAIR_GROUP_SCHED
8909 if (tsk
->sched_class
->moved_group
)
8910 tsk
->sched_class
->moved_group(tsk
);
8913 if (unlikely(running
))
8914 tsk
->sched_class
->set_curr_task(rq
);
8916 enqueue_task(rq
, tsk
, 0);
8918 task_rq_unlock(rq
, &flags
);
8920 #endif /* CONFIG_GROUP_SCHED */
8922 #ifdef CONFIG_FAIR_GROUP_SCHED
8923 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8925 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8930 dequeue_entity(cfs_rq
, se
, 0);
8932 se
->load
.weight
= shares
;
8933 se
->load
.inv_weight
= 0;
8936 enqueue_entity(cfs_rq
, se
, 0);
8939 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8941 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8942 struct rq
*rq
= cfs_rq
->rq
;
8943 unsigned long flags
;
8945 spin_lock_irqsave(&rq
->lock
, flags
);
8946 __set_se_shares(se
, shares
);
8947 spin_unlock_irqrestore(&rq
->lock
, flags
);
8950 static DEFINE_MUTEX(shares_mutex
);
8952 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8955 unsigned long flags
;
8958 * We can't change the weight of the root cgroup.
8963 if (shares
< MIN_SHARES
)
8964 shares
= MIN_SHARES
;
8965 else if (shares
> MAX_SHARES
)
8966 shares
= MAX_SHARES
;
8968 mutex_lock(&shares_mutex
);
8969 if (tg
->shares
== shares
)
8972 spin_lock_irqsave(&task_group_lock
, flags
);
8973 for_each_possible_cpu(i
)
8974 unregister_fair_sched_group(tg
, i
);
8975 list_del_rcu(&tg
->siblings
);
8976 spin_unlock_irqrestore(&task_group_lock
, flags
);
8978 /* wait for any ongoing reference to this group to finish */
8979 synchronize_sched();
8982 * Now we are free to modify the group's share on each cpu
8983 * w/o tripping rebalance_share or load_balance_fair.
8985 tg
->shares
= shares
;
8986 for_each_possible_cpu(i
) {
8990 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8991 set_se_shares(tg
->se
[i
], shares
);
8995 * Enable load balance activity on this group, by inserting it back on
8996 * each cpu's rq->leaf_cfs_rq_list.
8998 spin_lock_irqsave(&task_group_lock
, flags
);
8999 for_each_possible_cpu(i
)
9000 register_fair_sched_group(tg
, i
);
9001 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9002 spin_unlock_irqrestore(&task_group_lock
, flags
);
9004 mutex_unlock(&shares_mutex
);
9008 unsigned long sched_group_shares(struct task_group
*tg
)
9014 #ifdef CONFIG_RT_GROUP_SCHED
9016 * Ensure that the real time constraints are schedulable.
9018 static DEFINE_MUTEX(rt_constraints_mutex
);
9020 static unsigned long to_ratio(u64 period
, u64 runtime
)
9022 if (runtime
== RUNTIME_INF
)
9025 return div64_u64(runtime
<< 20, period
);
9028 /* Must be called with tasklist_lock held */
9029 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9031 struct task_struct
*g
, *p
;
9033 do_each_thread(g
, p
) {
9034 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9036 } while_each_thread(g
, p
);
9041 struct rt_schedulable_data
{
9042 struct task_group
*tg
;
9047 static int tg_schedulable(struct task_group
*tg
, void *data
)
9049 struct rt_schedulable_data
*d
= data
;
9050 struct task_group
*child
;
9051 unsigned long total
, sum
= 0;
9052 u64 period
, runtime
;
9054 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9055 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9058 period
= d
->rt_period
;
9059 runtime
= d
->rt_runtime
;
9062 #ifdef CONFIG_USER_SCHED
9063 if (tg
== &root_task_group
) {
9064 period
= global_rt_period();
9065 runtime
= global_rt_runtime();
9070 * Cannot have more runtime than the period.
9072 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9076 * Ensure we don't starve existing RT tasks.
9078 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9081 total
= to_ratio(period
, runtime
);
9084 * Nobody can have more than the global setting allows.
9086 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9090 * The sum of our children's runtime should not exceed our own.
9092 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9093 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9094 runtime
= child
->rt_bandwidth
.rt_runtime
;
9096 if (child
== d
->tg
) {
9097 period
= d
->rt_period
;
9098 runtime
= d
->rt_runtime
;
9101 sum
+= to_ratio(period
, runtime
);
9110 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9112 struct rt_schedulable_data data
= {
9114 .rt_period
= period
,
9115 .rt_runtime
= runtime
,
9118 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9121 static int tg_set_bandwidth(struct task_group
*tg
,
9122 u64 rt_period
, u64 rt_runtime
)
9126 mutex_lock(&rt_constraints_mutex
);
9127 read_lock(&tasklist_lock
);
9128 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9132 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9133 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9134 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9136 for_each_possible_cpu(i
) {
9137 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9139 spin_lock(&rt_rq
->rt_runtime_lock
);
9140 rt_rq
->rt_runtime
= rt_runtime
;
9141 spin_unlock(&rt_rq
->rt_runtime_lock
);
9143 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9145 read_unlock(&tasklist_lock
);
9146 mutex_unlock(&rt_constraints_mutex
);
9151 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9153 u64 rt_runtime
, rt_period
;
9155 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9156 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9157 if (rt_runtime_us
< 0)
9158 rt_runtime
= RUNTIME_INF
;
9160 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9163 long sched_group_rt_runtime(struct task_group
*tg
)
9167 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9170 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9171 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9172 return rt_runtime_us
;
9175 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9177 u64 rt_runtime
, rt_period
;
9179 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9180 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9185 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9188 long sched_group_rt_period(struct task_group
*tg
)
9192 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9193 do_div(rt_period_us
, NSEC_PER_USEC
);
9194 return rt_period_us
;
9197 static int sched_rt_global_constraints(void)
9199 u64 runtime
, period
;
9202 if (sysctl_sched_rt_period
<= 0)
9205 runtime
= global_rt_runtime();
9206 period
= global_rt_period();
9209 * Sanity check on the sysctl variables.
9211 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9214 mutex_lock(&rt_constraints_mutex
);
9215 read_lock(&tasklist_lock
);
9216 ret
= __rt_schedulable(NULL
, 0, 0);
9217 read_unlock(&tasklist_lock
);
9218 mutex_unlock(&rt_constraints_mutex
);
9222 #else /* !CONFIG_RT_GROUP_SCHED */
9223 static int sched_rt_global_constraints(void)
9225 unsigned long flags
;
9228 if (sysctl_sched_rt_period
<= 0)
9231 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9232 for_each_possible_cpu(i
) {
9233 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9235 spin_lock(&rt_rq
->rt_runtime_lock
);
9236 rt_rq
->rt_runtime
= global_rt_runtime();
9237 spin_unlock(&rt_rq
->rt_runtime_lock
);
9239 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9243 #endif /* CONFIG_RT_GROUP_SCHED */
9245 int sched_rt_handler(struct ctl_table
*table
, int write
,
9246 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9250 int old_period
, old_runtime
;
9251 static DEFINE_MUTEX(mutex
);
9254 old_period
= sysctl_sched_rt_period
;
9255 old_runtime
= sysctl_sched_rt_runtime
;
9257 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9259 if (!ret
&& write
) {
9260 ret
= sched_rt_global_constraints();
9262 sysctl_sched_rt_period
= old_period
;
9263 sysctl_sched_rt_runtime
= old_runtime
;
9265 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9266 def_rt_bandwidth
.rt_period
=
9267 ns_to_ktime(global_rt_period());
9270 mutex_unlock(&mutex
);
9275 #ifdef CONFIG_CGROUP_SCHED
9277 /* return corresponding task_group object of a cgroup */
9278 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9280 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9281 struct task_group
, css
);
9284 static struct cgroup_subsys_state
*
9285 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9287 struct task_group
*tg
, *parent
;
9289 if (!cgrp
->parent
) {
9290 /* This is early initialization for the top cgroup */
9291 return &init_task_group
.css
;
9294 parent
= cgroup_tg(cgrp
->parent
);
9295 tg
= sched_create_group(parent
);
9297 return ERR_PTR(-ENOMEM
);
9303 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9305 struct task_group
*tg
= cgroup_tg(cgrp
);
9307 sched_destroy_group(tg
);
9311 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9312 struct task_struct
*tsk
)
9314 #ifdef CONFIG_RT_GROUP_SCHED
9315 /* Don't accept realtime tasks when there is no way for them to run */
9316 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9319 /* We don't support RT-tasks being in separate groups */
9320 if (tsk
->sched_class
!= &fair_sched_class
)
9328 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9329 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9331 sched_move_task(tsk
);
9334 #ifdef CONFIG_FAIR_GROUP_SCHED
9335 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9338 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9341 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9343 struct task_group
*tg
= cgroup_tg(cgrp
);
9345 return (u64
) tg
->shares
;
9347 #endif /* CONFIG_FAIR_GROUP_SCHED */
9349 #ifdef CONFIG_RT_GROUP_SCHED
9350 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9353 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9356 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9358 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9361 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9364 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9367 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9369 return sched_group_rt_period(cgroup_tg(cgrp
));
9371 #endif /* CONFIG_RT_GROUP_SCHED */
9373 static struct cftype cpu_files
[] = {
9374 #ifdef CONFIG_FAIR_GROUP_SCHED
9377 .read_u64
= cpu_shares_read_u64
,
9378 .write_u64
= cpu_shares_write_u64
,
9381 #ifdef CONFIG_RT_GROUP_SCHED
9383 .name
= "rt_runtime_us",
9384 .read_s64
= cpu_rt_runtime_read
,
9385 .write_s64
= cpu_rt_runtime_write
,
9388 .name
= "rt_period_us",
9389 .read_u64
= cpu_rt_period_read_uint
,
9390 .write_u64
= cpu_rt_period_write_uint
,
9395 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9397 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9400 struct cgroup_subsys cpu_cgroup_subsys
= {
9402 .create
= cpu_cgroup_create
,
9403 .destroy
= cpu_cgroup_destroy
,
9404 .can_attach
= cpu_cgroup_can_attach
,
9405 .attach
= cpu_cgroup_attach
,
9406 .populate
= cpu_cgroup_populate
,
9407 .subsys_id
= cpu_cgroup_subsys_id
,
9411 #endif /* CONFIG_CGROUP_SCHED */
9413 #ifdef CONFIG_CGROUP_CPUACCT
9416 * CPU accounting code for task groups.
9418 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9419 * (balbir@in.ibm.com).
9422 /* track cpu usage of a group of tasks and its child groups */
9424 struct cgroup_subsys_state css
;
9425 /* cpuusage holds pointer to a u64-type object on every cpu */
9427 struct cpuacct
*parent
;
9430 struct cgroup_subsys cpuacct_subsys
;
9432 /* return cpu accounting group corresponding to this container */
9433 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9435 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9436 struct cpuacct
, css
);
9439 /* return cpu accounting group to which this task belongs */
9440 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9442 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9443 struct cpuacct
, css
);
9446 /* create a new cpu accounting group */
9447 static struct cgroup_subsys_state
*cpuacct_create(
9448 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9450 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9453 return ERR_PTR(-ENOMEM
);
9455 ca
->cpuusage
= alloc_percpu(u64
);
9456 if (!ca
->cpuusage
) {
9458 return ERR_PTR(-ENOMEM
);
9462 ca
->parent
= cgroup_ca(cgrp
->parent
);
9467 /* destroy an existing cpu accounting group */
9469 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9471 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9473 free_percpu(ca
->cpuusage
);
9477 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9479 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9482 #ifndef CONFIG_64BIT
9484 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9486 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9488 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9496 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9498 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9500 #ifndef CONFIG_64BIT
9502 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9504 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9506 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9512 /* return total cpu usage (in nanoseconds) of a group */
9513 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9515 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9516 u64 totalcpuusage
= 0;
9519 for_each_present_cpu(i
)
9520 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9522 return totalcpuusage
;
9525 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9528 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9537 for_each_present_cpu(i
)
9538 cpuacct_cpuusage_write(ca
, i
, 0);
9544 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9547 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9551 for_each_present_cpu(i
) {
9552 percpu
= cpuacct_cpuusage_read(ca
, i
);
9553 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9555 seq_printf(m
, "\n");
9559 static struct cftype files
[] = {
9562 .read_u64
= cpuusage_read
,
9563 .write_u64
= cpuusage_write
,
9566 .name
= "usage_percpu",
9567 .read_seq_string
= cpuacct_percpu_seq_read
,
9572 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9574 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9578 * charge this task's execution time to its accounting group.
9580 * called with rq->lock held.
9582 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9587 if (!cpuacct_subsys
.active
)
9590 cpu
= task_cpu(tsk
);
9593 for (; ca
; ca
= ca
->parent
) {
9594 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9595 *cpuusage
+= cputime
;
9599 struct cgroup_subsys cpuacct_subsys
= {
9601 .create
= cpuacct_create
,
9602 .destroy
= cpuacct_destroy
,
9603 .populate
= cpuacct_populate
,
9604 .subsys_id
= cpuacct_subsys_id
,
9606 #endif /* CONFIG_CGROUP_CPUACCT */