V4L/DVB (10061): dsbr100: increase driver version
[linux-2.6/verdex.git] / kernel / futex.c
blob4fe790e89d0f34af1cc24359d32bca3b58e970ca
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state {
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list;
78 * The PI object:
80 struct rt_mutex pi_mutex;
82 struct task_struct *owner;
83 atomic_t refcount;
85 union futex_key key;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
97 struct futex_q {
98 struct plist_node list;
99 wait_queue_head_t waiters;
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
104 /* Key which the futex is hashed on: */
105 union futex_key key;
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
116 * Split the global futex_lock into every hash list lock.
118 struct futex_hash_bucket {
119 spinlock_t lock;
120 struct plist_head chain;
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
126 * Take mm->mmap_sem, when futex is shared
128 static inline void futex_lock_mm(struct rw_semaphore *fshared)
130 if (fshared)
131 down_read(fshared);
135 * Release mm->mmap_sem, when the futex is shared
137 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
139 if (fshared)
140 up_read(fshared);
144 * We hash on the keys returned from get_futex_key (see below).
146 static struct futex_hash_bucket *hash_futex(union futex_key *key)
148 u32 hash = jhash2((u32*)&key->both.word,
149 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150 key->both.offset);
151 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
155 * Return 1 if two futex_keys are equal, 0 otherwise.
157 static inline int match_futex(union futex_key *key1, union futex_key *key2)
159 return (key1->both.word == key2->both.word
160 && key1->both.ptr == key2->both.ptr
161 && key1->both.offset == key2->both.offset);
165 * get_futex_key - Get parameters which are the keys for a futex.
166 * @uaddr: virtual address of the futex
167 * @shared: NULL for a PROCESS_PRIVATE futex,
168 * &current->mm->mmap_sem for a PROCESS_SHARED futex
169 * @key: address where result is stored.
171 * Returns a negative error code or 0
172 * The key words are stored in *key on success.
174 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
175 * offset_within_page). For private mappings, it's (uaddr, current->mm).
176 * We can usually work out the index without swapping in the page.
178 * fshared is NULL for PROCESS_PRIVATE futexes
179 * For other futexes, it points to &current->mm->mmap_sem and
180 * caller must have taken the reader lock. but NOT any spinlocks.
182 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
183 union futex_key *key)
185 unsigned long address = (unsigned long)uaddr;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *vma;
188 struct page *page;
189 int err;
192 * The futex address must be "naturally" aligned.
194 key->both.offset = address % PAGE_SIZE;
195 if (unlikely((address % sizeof(u32)) != 0))
196 return -EINVAL;
197 address -= key->both.offset;
200 * PROCESS_PRIVATE futexes are fast.
201 * As the mm cannot disappear under us and the 'key' only needs
202 * virtual address, we dont even have to find the underlying vma.
203 * Note : We do have to check 'uaddr' is a valid user address,
204 * but access_ok() should be faster than find_vma()
206 if (!fshared) {
207 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208 return -EFAULT;
209 key->private.mm = mm;
210 key->private.address = address;
211 return 0;
214 * The futex is hashed differently depending on whether
215 * it's in a shared or private mapping. So check vma first.
217 vma = find_extend_vma(mm, address);
218 if (unlikely(!vma))
219 return -EFAULT;
222 * Permissions.
224 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
225 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228 * Private mappings are handled in a simple way.
230 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
231 * it's a read-only handle, it's expected that futexes attach to
232 * the object not the particular process. Therefore we use
233 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
234 * mappings of _writable_ handles.
236 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
237 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
238 key->private.mm = mm;
239 key->private.address = address;
240 return 0;
244 * Linear file mappings are also simple.
246 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
247 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
248 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
249 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
250 + vma->vm_pgoff);
251 return 0;
255 * We could walk the page table to read the non-linear
256 * pte, and get the page index without fetching the page
257 * from swap. But that's a lot of code to duplicate here
258 * for a rare case, so we simply fetch the page.
260 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
261 if (err >= 0) {
262 key->shared.pgoff =
263 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
264 put_page(page);
265 return 0;
267 return err;
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
275 static void get_futex_key_refs(union futex_key *key)
277 if (key->both.ptr == NULL)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
281 atomic_inc(&key->shared.inode->i_count);
282 break;
283 case FUT_OFF_MMSHARED:
284 atomic_inc(&key->private.mm->mm_count);
285 break;
290 * Drop a reference to the resource addressed by a key.
291 * The hash bucket spinlock must not be held.
293 static void drop_futex_key_refs(union futex_key *key)
295 if (!key->both.ptr)
296 return;
297 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298 case FUT_OFF_INODE:
299 iput(key->shared.inode);
300 break;
301 case FUT_OFF_MMSHARED:
302 mmdrop(key->private.mm);
303 break;
307 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
309 u32 curval;
311 pagefault_disable();
312 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
313 pagefault_enable();
315 return curval;
318 static int get_futex_value_locked(u32 *dest, u32 __user *from)
320 int ret;
322 pagefault_disable();
323 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
324 pagefault_enable();
326 return ret ? -EFAULT : 0;
330 * Fault handling.
331 * if fshared is non NULL, current->mm->mmap_sem is already held
333 static int futex_handle_fault(unsigned long address,
334 struct rw_semaphore *fshared, int attempt)
336 struct vm_area_struct * vma;
337 struct mm_struct *mm = current->mm;
338 int ret = -EFAULT;
340 if (attempt > 2)
341 return ret;
343 if (!fshared)
344 down_read(&mm->mmap_sem);
345 vma = find_vma(mm, address);
346 if (vma && address >= vma->vm_start &&
347 (vma->vm_flags & VM_WRITE)) {
348 int fault;
349 fault = handle_mm_fault(mm, vma, address, 1);
350 if (unlikely((fault & VM_FAULT_ERROR))) {
351 #if 0
352 /* XXX: let's do this when we verify it is OK */
353 if (ret & VM_FAULT_OOM)
354 ret = -ENOMEM;
355 #endif
356 } else {
357 ret = 0;
358 if (fault & VM_FAULT_MAJOR)
359 current->maj_flt++;
360 else
361 current->min_flt++;
364 if (!fshared)
365 up_read(&mm->mmap_sem);
366 return ret;
370 * PI code:
372 static int refill_pi_state_cache(void)
374 struct futex_pi_state *pi_state;
376 if (likely(current->pi_state_cache))
377 return 0;
379 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
381 if (!pi_state)
382 return -ENOMEM;
384 INIT_LIST_HEAD(&pi_state->list);
385 /* pi_mutex gets initialized later */
386 pi_state->owner = NULL;
387 atomic_set(&pi_state->refcount, 1);
389 current->pi_state_cache = pi_state;
391 return 0;
394 static struct futex_pi_state * alloc_pi_state(void)
396 struct futex_pi_state *pi_state = current->pi_state_cache;
398 WARN_ON(!pi_state);
399 current->pi_state_cache = NULL;
401 return pi_state;
404 static void free_pi_state(struct futex_pi_state *pi_state)
406 if (!atomic_dec_and_test(&pi_state->refcount))
407 return;
410 * If pi_state->owner is NULL, the owner is most probably dying
411 * and has cleaned up the pi_state already
413 if (pi_state->owner) {
414 spin_lock_irq(&pi_state->owner->pi_lock);
415 list_del_init(&pi_state->list);
416 spin_unlock_irq(&pi_state->owner->pi_lock);
418 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
421 if (current->pi_state_cache)
422 kfree(pi_state);
423 else {
425 * pi_state->list is already empty.
426 * clear pi_state->owner.
427 * refcount is at 0 - put it back to 1.
429 pi_state->owner = NULL;
430 atomic_set(&pi_state->refcount, 1);
431 current->pi_state_cache = pi_state;
436 * Look up the task based on what TID userspace gave us.
437 * We dont trust it.
439 static struct task_struct * futex_find_get_task(pid_t pid)
441 struct task_struct *p;
442 const struct cred *cred = current_cred(), *pcred;
444 rcu_read_lock();
445 p = find_task_by_vpid(pid);
446 if (!p) {
447 p = ERR_PTR(-ESRCH);
448 } else {
449 pcred = __task_cred(p);
450 if (cred->euid != pcred->euid &&
451 cred->euid != pcred->uid)
452 p = ERR_PTR(-ESRCH);
453 else
454 get_task_struct(p);
457 rcu_read_unlock();
459 return p;
463 * This task is holding PI mutexes at exit time => bad.
464 * Kernel cleans up PI-state, but userspace is likely hosed.
465 * (Robust-futex cleanup is separate and might save the day for userspace.)
467 void exit_pi_state_list(struct task_struct *curr)
469 struct list_head *next, *head = &curr->pi_state_list;
470 struct futex_pi_state *pi_state;
471 struct futex_hash_bucket *hb;
472 union futex_key key;
474 if (!futex_cmpxchg_enabled)
475 return;
477 * We are a ZOMBIE and nobody can enqueue itself on
478 * pi_state_list anymore, but we have to be careful
479 * versus waiters unqueueing themselves:
481 spin_lock_irq(&curr->pi_lock);
482 while (!list_empty(head)) {
484 next = head->next;
485 pi_state = list_entry(next, struct futex_pi_state, list);
486 key = pi_state->key;
487 hb = hash_futex(&key);
488 spin_unlock_irq(&curr->pi_lock);
490 spin_lock(&hb->lock);
492 spin_lock_irq(&curr->pi_lock);
494 * We dropped the pi-lock, so re-check whether this
495 * task still owns the PI-state:
497 if (head->next != next) {
498 spin_unlock(&hb->lock);
499 continue;
502 WARN_ON(pi_state->owner != curr);
503 WARN_ON(list_empty(&pi_state->list));
504 list_del_init(&pi_state->list);
505 pi_state->owner = NULL;
506 spin_unlock_irq(&curr->pi_lock);
508 rt_mutex_unlock(&pi_state->pi_mutex);
510 spin_unlock(&hb->lock);
512 spin_lock_irq(&curr->pi_lock);
514 spin_unlock_irq(&curr->pi_lock);
517 static int
518 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
519 union futex_key *key, struct futex_pi_state **ps)
521 struct futex_pi_state *pi_state = NULL;
522 struct futex_q *this, *next;
523 struct plist_head *head;
524 struct task_struct *p;
525 pid_t pid = uval & FUTEX_TID_MASK;
527 head = &hb->chain;
529 plist_for_each_entry_safe(this, next, head, list) {
530 if (match_futex(&this->key, key)) {
532 * Another waiter already exists - bump up
533 * the refcount and return its pi_state:
535 pi_state = this->pi_state;
537 * Userspace might have messed up non PI and PI futexes
539 if (unlikely(!pi_state))
540 return -EINVAL;
542 WARN_ON(!atomic_read(&pi_state->refcount));
543 WARN_ON(pid && pi_state->owner &&
544 pi_state->owner->pid != pid);
546 atomic_inc(&pi_state->refcount);
547 *ps = pi_state;
549 return 0;
554 * We are the first waiter - try to look up the real owner and attach
555 * the new pi_state to it, but bail out when TID = 0
557 if (!pid)
558 return -ESRCH;
559 p = futex_find_get_task(pid);
560 if (IS_ERR(p))
561 return PTR_ERR(p);
564 * We need to look at the task state flags to figure out,
565 * whether the task is exiting. To protect against the do_exit
566 * change of the task flags, we do this protected by
567 * p->pi_lock:
569 spin_lock_irq(&p->pi_lock);
570 if (unlikely(p->flags & PF_EXITING)) {
572 * The task is on the way out. When PF_EXITPIDONE is
573 * set, we know that the task has finished the
574 * cleanup:
576 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
578 spin_unlock_irq(&p->pi_lock);
579 put_task_struct(p);
580 return ret;
583 pi_state = alloc_pi_state();
586 * Initialize the pi_mutex in locked state and make 'p'
587 * the owner of it:
589 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
591 /* Store the key for possible exit cleanups: */
592 pi_state->key = *key;
594 WARN_ON(!list_empty(&pi_state->list));
595 list_add(&pi_state->list, &p->pi_state_list);
596 pi_state->owner = p;
597 spin_unlock_irq(&p->pi_lock);
599 put_task_struct(p);
601 *ps = pi_state;
603 return 0;
607 * The hash bucket lock must be held when this is called.
608 * Afterwards, the futex_q must not be accessed.
610 static void wake_futex(struct futex_q *q)
612 plist_del(&q->list, &q->list.plist);
614 * The lock in wake_up_all() is a crucial memory barrier after the
615 * plist_del() and also before assigning to q->lock_ptr.
617 wake_up_all(&q->waiters);
619 * The waiting task can free the futex_q as soon as this is written,
620 * without taking any locks. This must come last.
622 * A memory barrier is required here to prevent the following store
623 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
624 * at the end of wake_up_all() does not prevent this store from
625 * moving.
627 smp_wmb();
628 q->lock_ptr = NULL;
631 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
633 struct task_struct *new_owner;
634 struct futex_pi_state *pi_state = this->pi_state;
635 u32 curval, newval;
637 if (!pi_state)
638 return -EINVAL;
640 spin_lock(&pi_state->pi_mutex.wait_lock);
641 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
644 * This happens when we have stolen the lock and the original
645 * pending owner did not enqueue itself back on the rt_mutex.
646 * Thats not a tragedy. We know that way, that a lock waiter
647 * is on the fly. We make the futex_q waiter the pending owner.
649 if (!new_owner)
650 new_owner = this->task;
653 * We pass it to the next owner. (The WAITERS bit is always
654 * kept enabled while there is PI state around. We must also
655 * preserve the owner died bit.)
657 if (!(uval & FUTEX_OWNER_DIED)) {
658 int ret = 0;
660 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
662 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
664 if (curval == -EFAULT)
665 ret = -EFAULT;
666 else if (curval != uval)
667 ret = -EINVAL;
668 if (ret) {
669 spin_unlock(&pi_state->pi_mutex.wait_lock);
670 return ret;
674 spin_lock_irq(&pi_state->owner->pi_lock);
675 WARN_ON(list_empty(&pi_state->list));
676 list_del_init(&pi_state->list);
677 spin_unlock_irq(&pi_state->owner->pi_lock);
679 spin_lock_irq(&new_owner->pi_lock);
680 WARN_ON(!list_empty(&pi_state->list));
681 list_add(&pi_state->list, &new_owner->pi_state_list);
682 pi_state->owner = new_owner;
683 spin_unlock_irq(&new_owner->pi_lock);
685 spin_unlock(&pi_state->pi_mutex.wait_lock);
686 rt_mutex_unlock(&pi_state->pi_mutex);
688 return 0;
691 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
693 u32 oldval;
696 * There is no waiter, so we unlock the futex. The owner died
697 * bit has not to be preserved here. We are the owner:
699 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
701 if (oldval == -EFAULT)
702 return oldval;
703 if (oldval != uval)
704 return -EAGAIN;
706 return 0;
710 * Express the locking dependencies for lockdep:
712 static inline void
713 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
715 if (hb1 <= hb2) {
716 spin_lock(&hb1->lock);
717 if (hb1 < hb2)
718 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
719 } else { /* hb1 > hb2 */
720 spin_lock(&hb2->lock);
721 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
726 * Wake up all waiters hashed on the physical page that is mapped
727 * to this virtual address:
729 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
730 int nr_wake, u32 bitset)
732 struct futex_hash_bucket *hb;
733 struct futex_q *this, *next;
734 struct plist_head *head;
735 union futex_key key;
736 int ret;
738 if (!bitset)
739 return -EINVAL;
741 futex_lock_mm(fshared);
743 ret = get_futex_key(uaddr, fshared, &key);
744 if (unlikely(ret != 0))
745 goto out;
747 hb = hash_futex(&key);
748 spin_lock(&hb->lock);
749 head = &hb->chain;
751 plist_for_each_entry_safe(this, next, head, list) {
752 if (match_futex (&this->key, &key)) {
753 if (this->pi_state) {
754 ret = -EINVAL;
755 break;
758 /* Check if one of the bits is set in both bitsets */
759 if (!(this->bitset & bitset))
760 continue;
762 wake_futex(this);
763 if (++ret >= nr_wake)
764 break;
768 spin_unlock(&hb->lock);
769 out:
770 futex_unlock_mm(fshared);
771 return ret;
775 * Wake up all waiters hashed on the physical page that is mapped
776 * to this virtual address:
778 static int
779 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
780 u32 __user *uaddr2,
781 int nr_wake, int nr_wake2, int op)
783 union futex_key key1, key2;
784 struct futex_hash_bucket *hb1, *hb2;
785 struct plist_head *head;
786 struct futex_q *this, *next;
787 int ret, op_ret, attempt = 0;
789 retryfull:
790 futex_lock_mm(fshared);
792 ret = get_futex_key(uaddr1, fshared, &key1);
793 if (unlikely(ret != 0))
794 goto out;
795 ret = get_futex_key(uaddr2, fshared, &key2);
796 if (unlikely(ret != 0))
797 goto out;
799 hb1 = hash_futex(&key1);
800 hb2 = hash_futex(&key2);
802 retry:
803 double_lock_hb(hb1, hb2);
805 op_ret = futex_atomic_op_inuser(op, uaddr2);
806 if (unlikely(op_ret < 0)) {
807 u32 dummy;
809 spin_unlock(&hb1->lock);
810 if (hb1 != hb2)
811 spin_unlock(&hb2->lock);
813 #ifndef CONFIG_MMU
815 * we don't get EFAULT from MMU faults if we don't have an MMU,
816 * but we might get them from range checking
818 ret = op_ret;
819 goto out;
820 #endif
822 if (unlikely(op_ret != -EFAULT)) {
823 ret = op_ret;
824 goto out;
828 * futex_atomic_op_inuser needs to both read and write
829 * *(int __user *)uaddr2, but we can't modify it
830 * non-atomically. Therefore, if get_user below is not
831 * enough, we need to handle the fault ourselves, while
832 * still holding the mmap_sem.
834 if (attempt++) {
835 ret = futex_handle_fault((unsigned long)uaddr2,
836 fshared, attempt);
837 if (ret)
838 goto out;
839 goto retry;
843 * If we would have faulted, release mmap_sem,
844 * fault it in and start all over again.
846 futex_unlock_mm(fshared);
848 ret = get_user(dummy, uaddr2);
849 if (ret)
850 return ret;
852 goto retryfull;
855 head = &hb1->chain;
857 plist_for_each_entry_safe(this, next, head, list) {
858 if (match_futex (&this->key, &key1)) {
859 wake_futex(this);
860 if (++ret >= nr_wake)
861 break;
865 if (op_ret > 0) {
866 head = &hb2->chain;
868 op_ret = 0;
869 plist_for_each_entry_safe(this, next, head, list) {
870 if (match_futex (&this->key, &key2)) {
871 wake_futex(this);
872 if (++op_ret >= nr_wake2)
873 break;
876 ret += op_ret;
879 spin_unlock(&hb1->lock);
880 if (hb1 != hb2)
881 spin_unlock(&hb2->lock);
882 out:
883 futex_unlock_mm(fshared);
885 return ret;
889 * Requeue all waiters hashed on one physical page to another
890 * physical page.
892 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
893 u32 __user *uaddr2,
894 int nr_wake, int nr_requeue, u32 *cmpval)
896 union futex_key key1, key2;
897 struct futex_hash_bucket *hb1, *hb2;
898 struct plist_head *head1;
899 struct futex_q *this, *next;
900 int ret, drop_count = 0;
902 retry:
903 futex_lock_mm(fshared);
905 ret = get_futex_key(uaddr1, fshared, &key1);
906 if (unlikely(ret != 0))
907 goto out;
908 ret = get_futex_key(uaddr2, fshared, &key2);
909 if (unlikely(ret != 0))
910 goto out;
912 hb1 = hash_futex(&key1);
913 hb2 = hash_futex(&key2);
915 double_lock_hb(hb1, hb2);
917 if (likely(cmpval != NULL)) {
918 u32 curval;
920 ret = get_futex_value_locked(&curval, uaddr1);
922 if (unlikely(ret)) {
923 spin_unlock(&hb1->lock);
924 if (hb1 != hb2)
925 spin_unlock(&hb2->lock);
928 * If we would have faulted, release mmap_sem, fault
929 * it in and start all over again.
931 futex_unlock_mm(fshared);
933 ret = get_user(curval, uaddr1);
935 if (!ret)
936 goto retry;
938 return ret;
940 if (curval != *cmpval) {
941 ret = -EAGAIN;
942 goto out_unlock;
946 head1 = &hb1->chain;
947 plist_for_each_entry_safe(this, next, head1, list) {
948 if (!match_futex (&this->key, &key1))
949 continue;
950 if (++ret <= nr_wake) {
951 wake_futex(this);
952 } else {
954 * If key1 and key2 hash to the same bucket, no need to
955 * requeue.
957 if (likely(head1 != &hb2->chain)) {
958 plist_del(&this->list, &hb1->chain);
959 plist_add(&this->list, &hb2->chain);
960 this->lock_ptr = &hb2->lock;
961 #ifdef CONFIG_DEBUG_PI_LIST
962 this->list.plist.lock = &hb2->lock;
963 #endif
965 this->key = key2;
966 get_futex_key_refs(&key2);
967 drop_count++;
969 if (ret - nr_wake >= nr_requeue)
970 break;
974 out_unlock:
975 spin_unlock(&hb1->lock);
976 if (hb1 != hb2)
977 spin_unlock(&hb2->lock);
979 /* drop_futex_key_refs() must be called outside the spinlocks. */
980 while (--drop_count >= 0)
981 drop_futex_key_refs(&key1);
983 out:
984 futex_unlock_mm(fshared);
985 return ret;
988 /* The key must be already stored in q->key. */
989 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
991 struct futex_hash_bucket *hb;
993 init_waitqueue_head(&q->waiters);
995 get_futex_key_refs(&q->key);
996 hb = hash_futex(&q->key);
997 q->lock_ptr = &hb->lock;
999 spin_lock(&hb->lock);
1000 return hb;
1003 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1005 int prio;
1008 * The priority used to register this element is
1009 * - either the real thread-priority for the real-time threads
1010 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1011 * - or MAX_RT_PRIO for non-RT threads.
1012 * Thus, all RT-threads are woken first in priority order, and
1013 * the others are woken last, in FIFO order.
1015 prio = min(current->normal_prio, MAX_RT_PRIO);
1017 plist_node_init(&q->list, prio);
1018 #ifdef CONFIG_DEBUG_PI_LIST
1019 q->list.plist.lock = &hb->lock;
1020 #endif
1021 plist_add(&q->list, &hb->chain);
1022 q->task = current;
1023 spin_unlock(&hb->lock);
1026 static inline void
1027 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1029 spin_unlock(&hb->lock);
1030 drop_futex_key_refs(&q->key);
1034 * queue_me and unqueue_me must be called as a pair, each
1035 * exactly once. They are called with the hashed spinlock held.
1038 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1039 static int unqueue_me(struct futex_q *q)
1041 spinlock_t *lock_ptr;
1042 int ret = 0;
1044 /* In the common case we don't take the spinlock, which is nice. */
1045 retry:
1046 lock_ptr = q->lock_ptr;
1047 barrier();
1048 if (lock_ptr != NULL) {
1049 spin_lock(lock_ptr);
1051 * q->lock_ptr can change between reading it and
1052 * spin_lock(), causing us to take the wrong lock. This
1053 * corrects the race condition.
1055 * Reasoning goes like this: if we have the wrong lock,
1056 * q->lock_ptr must have changed (maybe several times)
1057 * between reading it and the spin_lock(). It can
1058 * change again after the spin_lock() but only if it was
1059 * already changed before the spin_lock(). It cannot,
1060 * however, change back to the original value. Therefore
1061 * we can detect whether we acquired the correct lock.
1063 if (unlikely(lock_ptr != q->lock_ptr)) {
1064 spin_unlock(lock_ptr);
1065 goto retry;
1067 WARN_ON(plist_node_empty(&q->list));
1068 plist_del(&q->list, &q->list.plist);
1070 BUG_ON(q->pi_state);
1072 spin_unlock(lock_ptr);
1073 ret = 1;
1076 drop_futex_key_refs(&q->key);
1077 return ret;
1081 * PI futexes can not be requeued and must remove themself from the
1082 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1083 * and dropped here.
1085 static void unqueue_me_pi(struct futex_q *q)
1087 WARN_ON(plist_node_empty(&q->list));
1088 plist_del(&q->list, &q->list.plist);
1090 BUG_ON(!q->pi_state);
1091 free_pi_state(q->pi_state);
1092 q->pi_state = NULL;
1094 spin_unlock(q->lock_ptr);
1096 drop_futex_key_refs(&q->key);
1100 * Fixup the pi_state owner with the new owner.
1102 * Must be called with hash bucket lock held and mm->sem held for non
1103 * private futexes.
1105 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1106 struct task_struct *newowner,
1107 struct rw_semaphore *fshared)
1109 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1110 struct futex_pi_state *pi_state = q->pi_state;
1111 struct task_struct *oldowner = pi_state->owner;
1112 u32 uval, curval, newval;
1113 int ret, attempt = 0;
1115 /* Owner died? */
1116 if (!pi_state->owner)
1117 newtid |= FUTEX_OWNER_DIED;
1120 * We are here either because we stole the rtmutex from the
1121 * pending owner or we are the pending owner which failed to
1122 * get the rtmutex. We have to replace the pending owner TID
1123 * in the user space variable. This must be atomic as we have
1124 * to preserve the owner died bit here.
1126 * Note: We write the user space value _before_ changing the
1127 * pi_state because we can fault here. Imagine swapped out
1128 * pages or a fork, which was running right before we acquired
1129 * mmap_sem, that marked all the anonymous memory readonly for
1130 * cow.
1132 * Modifying pi_state _before_ the user space value would
1133 * leave the pi_state in an inconsistent state when we fault
1134 * here, because we need to drop the hash bucket lock to
1135 * handle the fault. This might be observed in the PID check
1136 * in lookup_pi_state.
1138 retry:
1139 if (get_futex_value_locked(&uval, uaddr))
1140 goto handle_fault;
1142 while (1) {
1143 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1145 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1147 if (curval == -EFAULT)
1148 goto handle_fault;
1149 if (curval == uval)
1150 break;
1151 uval = curval;
1155 * We fixed up user space. Now we need to fix the pi_state
1156 * itself.
1158 if (pi_state->owner != NULL) {
1159 spin_lock_irq(&pi_state->owner->pi_lock);
1160 WARN_ON(list_empty(&pi_state->list));
1161 list_del_init(&pi_state->list);
1162 spin_unlock_irq(&pi_state->owner->pi_lock);
1165 pi_state->owner = newowner;
1167 spin_lock_irq(&newowner->pi_lock);
1168 WARN_ON(!list_empty(&pi_state->list));
1169 list_add(&pi_state->list, &newowner->pi_state_list);
1170 spin_unlock_irq(&newowner->pi_lock);
1171 return 0;
1174 * To handle the page fault we need to drop the hash bucket
1175 * lock here. That gives the other task (either the pending
1176 * owner itself or the task which stole the rtmutex) the
1177 * chance to try the fixup of the pi_state. So once we are
1178 * back from handling the fault we need to check the pi_state
1179 * after reacquiring the hash bucket lock and before trying to
1180 * do another fixup. When the fixup has been done already we
1181 * simply return.
1183 handle_fault:
1184 spin_unlock(q->lock_ptr);
1186 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1188 spin_lock(q->lock_ptr);
1191 * Check if someone else fixed it for us:
1193 if (pi_state->owner != oldowner)
1194 return 0;
1196 if (ret)
1197 return ret;
1199 goto retry;
1203 * In case we must use restart_block to restart a futex_wait,
1204 * we encode in the 'flags' shared capability
1206 #define FLAGS_SHARED 1
1208 static long futex_wait_restart(struct restart_block *restart);
1210 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1211 u32 val, ktime_t *abs_time, u32 bitset)
1213 struct task_struct *curr = current;
1214 DECLARE_WAITQUEUE(wait, curr);
1215 struct futex_hash_bucket *hb;
1216 struct futex_q q;
1217 u32 uval;
1218 int ret;
1219 struct hrtimer_sleeper t;
1220 int rem = 0;
1222 if (!bitset)
1223 return -EINVAL;
1225 q.pi_state = NULL;
1226 q.bitset = bitset;
1227 retry:
1228 futex_lock_mm(fshared);
1230 ret = get_futex_key(uaddr, fshared, &q.key);
1231 if (unlikely(ret != 0))
1232 goto out_release_sem;
1234 hb = queue_lock(&q);
1237 * Access the page AFTER the futex is queued.
1238 * Order is important:
1240 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1241 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1243 * The basic logical guarantee of a futex is that it blocks ONLY
1244 * if cond(var) is known to be true at the time of blocking, for
1245 * any cond. If we queued after testing *uaddr, that would open
1246 * a race condition where we could block indefinitely with
1247 * cond(var) false, which would violate the guarantee.
1249 * A consequence is that futex_wait() can return zero and absorb
1250 * a wakeup when *uaddr != val on entry to the syscall. This is
1251 * rare, but normal.
1253 * for shared futexes, we hold the mmap semaphore, so the mapping
1254 * cannot have changed since we looked it up in get_futex_key.
1256 ret = get_futex_value_locked(&uval, uaddr);
1258 if (unlikely(ret)) {
1259 queue_unlock(&q, hb);
1262 * If we would have faulted, release mmap_sem, fault it in and
1263 * start all over again.
1265 futex_unlock_mm(fshared);
1267 ret = get_user(uval, uaddr);
1269 if (!ret)
1270 goto retry;
1271 return ret;
1273 ret = -EWOULDBLOCK;
1274 if (uval != val)
1275 goto out_unlock_release_sem;
1277 /* Only actually queue if *uaddr contained val. */
1278 queue_me(&q, hb);
1281 * Now the futex is queued and we have checked the data, we
1282 * don't want to hold mmap_sem while we sleep.
1284 futex_unlock_mm(fshared);
1287 * There might have been scheduling since the queue_me(), as we
1288 * cannot hold a spinlock across the get_user() in case it
1289 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1290 * queueing ourselves into the futex hash. This code thus has to
1291 * rely on the futex_wake() code removing us from hash when it
1292 * wakes us up.
1295 /* add_wait_queue is the barrier after __set_current_state. */
1296 __set_current_state(TASK_INTERRUPTIBLE);
1297 add_wait_queue(&q.waiters, &wait);
1299 * !plist_node_empty() is safe here without any lock.
1300 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1302 if (likely(!plist_node_empty(&q.list))) {
1303 if (!abs_time)
1304 schedule();
1305 else {
1306 unsigned long slack;
1307 slack = current->timer_slack_ns;
1308 if (rt_task(current))
1309 slack = 0;
1310 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1311 HRTIMER_MODE_ABS);
1312 hrtimer_init_sleeper(&t, current);
1313 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1315 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1316 if (!hrtimer_active(&t.timer))
1317 t.task = NULL;
1320 * the timer could have already expired, in which
1321 * case current would be flagged for rescheduling.
1322 * Don't bother calling schedule.
1324 if (likely(t.task))
1325 schedule();
1327 hrtimer_cancel(&t.timer);
1329 /* Flag if a timeout occured */
1330 rem = (t.task == NULL);
1332 destroy_hrtimer_on_stack(&t.timer);
1335 __set_current_state(TASK_RUNNING);
1338 * NOTE: we don't remove ourselves from the waitqueue because
1339 * we are the only user of it.
1342 /* If we were woken (and unqueued), we succeeded, whatever. */
1343 if (!unqueue_me(&q))
1344 return 0;
1345 if (rem)
1346 return -ETIMEDOUT;
1349 * We expect signal_pending(current), but another thread may
1350 * have handled it for us already.
1352 if (!abs_time)
1353 return -ERESTARTSYS;
1354 else {
1355 struct restart_block *restart;
1356 restart = &current_thread_info()->restart_block;
1357 restart->fn = futex_wait_restart;
1358 restart->futex.uaddr = (u32 *)uaddr;
1359 restart->futex.val = val;
1360 restart->futex.time = abs_time->tv64;
1361 restart->futex.bitset = bitset;
1362 restart->futex.flags = 0;
1364 if (fshared)
1365 restart->futex.flags |= FLAGS_SHARED;
1366 return -ERESTART_RESTARTBLOCK;
1369 out_unlock_release_sem:
1370 queue_unlock(&q, hb);
1372 out_release_sem:
1373 futex_unlock_mm(fshared);
1374 return ret;
1378 static long futex_wait_restart(struct restart_block *restart)
1380 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1381 struct rw_semaphore *fshared = NULL;
1382 ktime_t t;
1384 t.tv64 = restart->futex.time;
1385 restart->fn = do_no_restart_syscall;
1386 if (restart->futex.flags & FLAGS_SHARED)
1387 fshared = &current->mm->mmap_sem;
1388 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1389 restart->futex.bitset);
1394 * Userspace tried a 0 -> TID atomic transition of the futex value
1395 * and failed. The kernel side here does the whole locking operation:
1396 * if there are waiters then it will block, it does PI, etc. (Due to
1397 * races the kernel might see a 0 value of the futex too.)
1399 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1400 int detect, ktime_t *time, int trylock)
1402 struct hrtimer_sleeper timeout, *to = NULL;
1403 struct task_struct *curr = current;
1404 struct futex_hash_bucket *hb;
1405 u32 uval, newval, curval;
1406 struct futex_q q;
1407 int ret, lock_taken, ownerdied = 0, attempt = 0;
1409 if (refill_pi_state_cache())
1410 return -ENOMEM;
1412 if (time) {
1413 to = &timeout;
1414 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1415 HRTIMER_MODE_ABS);
1416 hrtimer_init_sleeper(to, current);
1417 hrtimer_set_expires(&to->timer, *time);
1420 q.pi_state = NULL;
1421 retry:
1422 futex_lock_mm(fshared);
1424 ret = get_futex_key(uaddr, fshared, &q.key);
1425 if (unlikely(ret != 0))
1426 goto out_release_sem;
1428 retry_unlocked:
1429 hb = queue_lock(&q);
1431 retry_locked:
1432 ret = lock_taken = 0;
1435 * To avoid races, we attempt to take the lock here again
1436 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1437 * the locks. It will most likely not succeed.
1439 newval = task_pid_vnr(current);
1441 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1443 if (unlikely(curval == -EFAULT))
1444 goto uaddr_faulted;
1447 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1448 * situation and we return success to user space.
1450 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1451 ret = -EDEADLK;
1452 goto out_unlock_release_sem;
1456 * Surprise - we got the lock. Just return to userspace:
1458 if (unlikely(!curval))
1459 goto out_unlock_release_sem;
1461 uval = curval;
1464 * Set the WAITERS flag, so the owner will know it has someone
1465 * to wake at next unlock
1467 newval = curval | FUTEX_WAITERS;
1470 * There are two cases, where a futex might have no owner (the
1471 * owner TID is 0): OWNER_DIED. We take over the futex in this
1472 * case. We also do an unconditional take over, when the owner
1473 * of the futex died.
1475 * This is safe as we are protected by the hash bucket lock !
1477 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1478 /* Keep the OWNER_DIED bit */
1479 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1480 ownerdied = 0;
1481 lock_taken = 1;
1484 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1486 if (unlikely(curval == -EFAULT))
1487 goto uaddr_faulted;
1488 if (unlikely(curval != uval))
1489 goto retry_locked;
1492 * We took the lock due to owner died take over.
1494 if (unlikely(lock_taken))
1495 goto out_unlock_release_sem;
1498 * We dont have the lock. Look up the PI state (or create it if
1499 * we are the first waiter):
1501 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1503 if (unlikely(ret)) {
1504 switch (ret) {
1506 case -EAGAIN:
1508 * Task is exiting and we just wait for the
1509 * exit to complete.
1511 queue_unlock(&q, hb);
1512 futex_unlock_mm(fshared);
1513 cond_resched();
1514 goto retry;
1516 case -ESRCH:
1518 * No owner found for this futex. Check if the
1519 * OWNER_DIED bit is set to figure out whether
1520 * this is a robust futex or not.
1522 if (get_futex_value_locked(&curval, uaddr))
1523 goto uaddr_faulted;
1526 * We simply start over in case of a robust
1527 * futex. The code above will take the futex
1528 * and return happy.
1530 if (curval & FUTEX_OWNER_DIED) {
1531 ownerdied = 1;
1532 goto retry_locked;
1534 default:
1535 goto out_unlock_release_sem;
1540 * Only actually queue now that the atomic ops are done:
1542 queue_me(&q, hb);
1545 * Now the futex is queued and we have checked the data, we
1546 * don't want to hold mmap_sem while we sleep.
1548 futex_unlock_mm(fshared);
1550 WARN_ON(!q.pi_state);
1552 * Block on the PI mutex:
1554 if (!trylock)
1555 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1556 else {
1557 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1558 /* Fixup the trylock return value: */
1559 ret = ret ? 0 : -EWOULDBLOCK;
1562 futex_lock_mm(fshared);
1563 spin_lock(q.lock_ptr);
1565 if (!ret) {
1567 * Got the lock. We might not be the anticipated owner
1568 * if we did a lock-steal - fix up the PI-state in
1569 * that case:
1571 if (q.pi_state->owner != curr)
1572 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1573 } else {
1575 * Catch the rare case, where the lock was released
1576 * when we were on the way back before we locked the
1577 * hash bucket.
1579 if (q.pi_state->owner == curr) {
1581 * Try to get the rt_mutex now. This might
1582 * fail as some other task acquired the
1583 * rt_mutex after we removed ourself from the
1584 * rt_mutex waiters list.
1586 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1587 ret = 0;
1588 else {
1590 * pi_state is incorrect, some other
1591 * task did a lock steal and we
1592 * returned due to timeout or signal
1593 * without taking the rt_mutex. Too
1594 * late. We can access the
1595 * rt_mutex_owner without locking, as
1596 * the other task is now blocked on
1597 * the hash bucket lock. Fix the state
1598 * up.
1600 struct task_struct *owner;
1601 int res;
1603 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1604 res = fixup_pi_state_owner(uaddr, &q, owner,
1605 fshared);
1607 /* propagate -EFAULT, if the fixup failed */
1608 if (res)
1609 ret = res;
1611 } else {
1613 * Paranoia check. If we did not take the lock
1614 * in the trylock above, then we should not be
1615 * the owner of the rtmutex, neither the real
1616 * nor the pending one:
1618 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1619 printk(KERN_ERR "futex_lock_pi: ret = %d "
1620 "pi-mutex: %p pi-state %p\n", ret,
1621 q.pi_state->pi_mutex.owner,
1622 q.pi_state->owner);
1626 /* Unqueue and drop the lock */
1627 unqueue_me_pi(&q);
1628 futex_unlock_mm(fshared);
1630 if (to)
1631 destroy_hrtimer_on_stack(&to->timer);
1632 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1634 out_unlock_release_sem:
1635 queue_unlock(&q, hb);
1637 out_release_sem:
1638 futex_unlock_mm(fshared);
1639 if (to)
1640 destroy_hrtimer_on_stack(&to->timer);
1641 return ret;
1643 uaddr_faulted:
1645 * We have to r/w *(int __user *)uaddr, but we can't modify it
1646 * non-atomically. Therefore, if get_user below is not
1647 * enough, we need to handle the fault ourselves, while
1648 * still holding the mmap_sem.
1650 * ... and hb->lock. :-) --ANK
1652 queue_unlock(&q, hb);
1654 if (attempt++) {
1655 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1656 attempt);
1657 if (ret)
1658 goto out_release_sem;
1659 goto retry_unlocked;
1662 futex_unlock_mm(fshared);
1664 ret = get_user(uval, uaddr);
1665 if (!ret && (uval != -EFAULT))
1666 goto retry;
1668 if (to)
1669 destroy_hrtimer_on_stack(&to->timer);
1670 return ret;
1674 * Userspace attempted a TID -> 0 atomic transition, and failed.
1675 * This is the in-kernel slowpath: we look up the PI state (if any),
1676 * and do the rt-mutex unlock.
1678 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1680 struct futex_hash_bucket *hb;
1681 struct futex_q *this, *next;
1682 u32 uval;
1683 struct plist_head *head;
1684 union futex_key key;
1685 int ret, attempt = 0;
1687 retry:
1688 if (get_user(uval, uaddr))
1689 return -EFAULT;
1691 * We release only a lock we actually own:
1693 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1694 return -EPERM;
1696 * First take all the futex related locks:
1698 futex_lock_mm(fshared);
1700 ret = get_futex_key(uaddr, fshared, &key);
1701 if (unlikely(ret != 0))
1702 goto out;
1704 hb = hash_futex(&key);
1705 retry_unlocked:
1706 spin_lock(&hb->lock);
1709 * To avoid races, try to do the TID -> 0 atomic transition
1710 * again. If it succeeds then we can return without waking
1711 * anyone else up:
1713 if (!(uval & FUTEX_OWNER_DIED))
1714 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1717 if (unlikely(uval == -EFAULT))
1718 goto pi_faulted;
1720 * Rare case: we managed to release the lock atomically,
1721 * no need to wake anyone else up:
1723 if (unlikely(uval == task_pid_vnr(current)))
1724 goto out_unlock;
1727 * Ok, other tasks may need to be woken up - check waiters
1728 * and do the wakeup if necessary:
1730 head = &hb->chain;
1732 plist_for_each_entry_safe(this, next, head, list) {
1733 if (!match_futex (&this->key, &key))
1734 continue;
1735 ret = wake_futex_pi(uaddr, uval, this);
1737 * The atomic access to the futex value
1738 * generated a pagefault, so retry the
1739 * user-access and the wakeup:
1741 if (ret == -EFAULT)
1742 goto pi_faulted;
1743 goto out_unlock;
1746 * No waiters - kernel unlocks the futex:
1748 if (!(uval & FUTEX_OWNER_DIED)) {
1749 ret = unlock_futex_pi(uaddr, uval);
1750 if (ret == -EFAULT)
1751 goto pi_faulted;
1754 out_unlock:
1755 spin_unlock(&hb->lock);
1756 out:
1757 futex_unlock_mm(fshared);
1759 return ret;
1761 pi_faulted:
1763 * We have to r/w *(int __user *)uaddr, but we can't modify it
1764 * non-atomically. Therefore, if get_user below is not
1765 * enough, we need to handle the fault ourselves, while
1766 * still holding the mmap_sem.
1768 * ... and hb->lock. --ANK
1770 spin_unlock(&hb->lock);
1772 if (attempt++) {
1773 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1774 attempt);
1775 if (ret)
1776 goto out;
1777 uval = 0;
1778 goto retry_unlocked;
1781 futex_unlock_mm(fshared);
1783 ret = get_user(uval, uaddr);
1784 if (!ret && (uval != -EFAULT))
1785 goto retry;
1787 return ret;
1791 * Support for robust futexes: the kernel cleans up held futexes at
1792 * thread exit time.
1794 * Implementation: user-space maintains a per-thread list of locks it
1795 * is holding. Upon do_exit(), the kernel carefully walks this list,
1796 * and marks all locks that are owned by this thread with the
1797 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1798 * always manipulated with the lock held, so the list is private and
1799 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1800 * field, to allow the kernel to clean up if the thread dies after
1801 * acquiring the lock, but just before it could have added itself to
1802 * the list. There can only be one such pending lock.
1806 * sys_set_robust_list - set the robust-futex list head of a task
1807 * @head: pointer to the list-head
1808 * @len: length of the list-head, as userspace expects
1810 asmlinkage long
1811 sys_set_robust_list(struct robust_list_head __user *head,
1812 size_t len)
1814 if (!futex_cmpxchg_enabled)
1815 return -ENOSYS;
1817 * The kernel knows only one size for now:
1819 if (unlikely(len != sizeof(*head)))
1820 return -EINVAL;
1822 current->robust_list = head;
1824 return 0;
1828 * sys_get_robust_list - get the robust-futex list head of a task
1829 * @pid: pid of the process [zero for current task]
1830 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1831 * @len_ptr: pointer to a length field, the kernel fills in the header size
1833 asmlinkage long
1834 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1835 size_t __user *len_ptr)
1837 struct robust_list_head __user *head;
1838 unsigned long ret;
1839 const struct cred *cred = current_cred(), *pcred;
1841 if (!futex_cmpxchg_enabled)
1842 return -ENOSYS;
1844 if (!pid)
1845 head = current->robust_list;
1846 else {
1847 struct task_struct *p;
1849 ret = -ESRCH;
1850 rcu_read_lock();
1851 p = find_task_by_vpid(pid);
1852 if (!p)
1853 goto err_unlock;
1854 ret = -EPERM;
1855 pcred = __task_cred(p);
1856 if (cred->euid != pcred->euid &&
1857 cred->euid != pcred->uid &&
1858 !capable(CAP_SYS_PTRACE))
1859 goto err_unlock;
1860 head = p->robust_list;
1861 rcu_read_unlock();
1864 if (put_user(sizeof(*head), len_ptr))
1865 return -EFAULT;
1866 return put_user(head, head_ptr);
1868 err_unlock:
1869 rcu_read_unlock();
1871 return ret;
1875 * Process a futex-list entry, check whether it's owned by the
1876 * dying task, and do notification if so:
1878 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1880 u32 uval, nval, mval;
1882 retry:
1883 if (get_user(uval, uaddr))
1884 return -1;
1886 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1888 * Ok, this dying thread is truly holding a futex
1889 * of interest. Set the OWNER_DIED bit atomically
1890 * via cmpxchg, and if the value had FUTEX_WAITERS
1891 * set, wake up a waiter (if any). (We have to do a
1892 * futex_wake() even if OWNER_DIED is already set -
1893 * to handle the rare but possible case of recursive
1894 * thread-death.) The rest of the cleanup is done in
1895 * userspace.
1897 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1898 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1900 if (nval == -EFAULT)
1901 return -1;
1903 if (nval != uval)
1904 goto retry;
1907 * Wake robust non-PI futexes here. The wakeup of
1908 * PI futexes happens in exit_pi_state():
1910 if (!pi && (uval & FUTEX_WAITERS))
1911 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1912 FUTEX_BITSET_MATCH_ANY);
1914 return 0;
1918 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1920 static inline int fetch_robust_entry(struct robust_list __user **entry,
1921 struct robust_list __user * __user *head,
1922 int *pi)
1924 unsigned long uentry;
1926 if (get_user(uentry, (unsigned long __user *)head))
1927 return -EFAULT;
1929 *entry = (void __user *)(uentry & ~1UL);
1930 *pi = uentry & 1;
1932 return 0;
1936 * Walk curr->robust_list (very carefully, it's a userspace list!)
1937 * and mark any locks found there dead, and notify any waiters.
1939 * We silently return on any sign of list-walking problem.
1941 void exit_robust_list(struct task_struct *curr)
1943 struct robust_list_head __user *head = curr->robust_list;
1944 struct robust_list __user *entry, *next_entry, *pending;
1945 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1946 unsigned long futex_offset;
1947 int rc;
1949 if (!futex_cmpxchg_enabled)
1950 return;
1953 * Fetch the list head (which was registered earlier, via
1954 * sys_set_robust_list()):
1956 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1957 return;
1959 * Fetch the relative futex offset:
1961 if (get_user(futex_offset, &head->futex_offset))
1962 return;
1964 * Fetch any possibly pending lock-add first, and handle it
1965 * if it exists:
1967 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1968 return;
1970 next_entry = NULL; /* avoid warning with gcc */
1971 while (entry != &head->list) {
1973 * Fetch the next entry in the list before calling
1974 * handle_futex_death:
1976 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1978 * A pending lock might already be on the list, so
1979 * don't process it twice:
1981 if (entry != pending)
1982 if (handle_futex_death((void __user *)entry + futex_offset,
1983 curr, pi))
1984 return;
1985 if (rc)
1986 return;
1987 entry = next_entry;
1988 pi = next_pi;
1990 * Avoid excessively long or circular lists:
1992 if (!--limit)
1993 break;
1995 cond_resched();
1998 if (pending)
1999 handle_futex_death((void __user *)pending + futex_offset,
2000 curr, pip);
2003 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2004 u32 __user *uaddr2, u32 val2, u32 val3)
2006 int ret = -ENOSYS;
2007 int cmd = op & FUTEX_CMD_MASK;
2008 struct rw_semaphore *fshared = NULL;
2010 if (!(op & FUTEX_PRIVATE_FLAG))
2011 fshared = &current->mm->mmap_sem;
2013 switch (cmd) {
2014 case FUTEX_WAIT:
2015 val3 = FUTEX_BITSET_MATCH_ANY;
2016 case FUTEX_WAIT_BITSET:
2017 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2018 break;
2019 case FUTEX_WAKE:
2020 val3 = FUTEX_BITSET_MATCH_ANY;
2021 case FUTEX_WAKE_BITSET:
2022 ret = futex_wake(uaddr, fshared, val, val3);
2023 break;
2024 case FUTEX_REQUEUE:
2025 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2026 break;
2027 case FUTEX_CMP_REQUEUE:
2028 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2029 break;
2030 case FUTEX_WAKE_OP:
2031 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2032 break;
2033 case FUTEX_LOCK_PI:
2034 if (futex_cmpxchg_enabled)
2035 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2036 break;
2037 case FUTEX_UNLOCK_PI:
2038 if (futex_cmpxchg_enabled)
2039 ret = futex_unlock_pi(uaddr, fshared);
2040 break;
2041 case FUTEX_TRYLOCK_PI:
2042 if (futex_cmpxchg_enabled)
2043 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2044 break;
2045 default:
2046 ret = -ENOSYS;
2048 return ret;
2052 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2053 struct timespec __user *utime, u32 __user *uaddr2,
2054 u32 val3)
2056 struct timespec ts;
2057 ktime_t t, *tp = NULL;
2058 u32 val2 = 0;
2059 int cmd = op & FUTEX_CMD_MASK;
2061 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2062 cmd == FUTEX_WAIT_BITSET)) {
2063 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2064 return -EFAULT;
2065 if (!timespec_valid(&ts))
2066 return -EINVAL;
2068 t = timespec_to_ktime(ts);
2069 if (cmd == FUTEX_WAIT)
2070 t = ktime_add_safe(ktime_get(), t);
2071 tp = &t;
2074 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2075 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2077 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2078 cmd == FUTEX_WAKE_OP)
2079 val2 = (u32) (unsigned long) utime;
2081 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2084 static int __init futex_init(void)
2086 u32 curval;
2087 int i;
2090 * This will fail and we want it. Some arch implementations do
2091 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2092 * functionality. We want to know that before we call in any
2093 * of the complex code paths. Also we want to prevent
2094 * registration of robust lists in that case. NULL is
2095 * guaranteed to fault and we get -EFAULT on functional
2096 * implementation, the non functional ones will return
2097 * -ENOSYS.
2099 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2100 if (curval == -EFAULT)
2101 futex_cmpxchg_enabled = 1;
2103 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2104 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2105 spin_lock_init(&futex_queues[i].lock);
2108 return 0;
2110 __initcall(futex_init);