4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK
))
28 if (current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
!= 0)
32 EXPORT_SYMBOL(can_do_mlock
);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page
*page
)
56 VM_BUG_ON(!PageLocked(page
));
58 if (!page
->mapping
) { /* truncated ? */
62 dec_zone_page_state(page
, NR_MLOCK
);
63 count_vm_event(UNEVICTABLE_PGCLEARED
);
64 if (!isolate_lru_page(page
)) {
65 putback_lru_page(page
);
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page
))
71 count_vm_event(UNEVICTABLE_PGSTRANDED
);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page
*page
)
81 BUG_ON(!PageLocked(page
));
83 if (!TestSetPageMlocked(page
)) {
84 inc_zone_page_state(page
, NR_MLOCK
);
85 count_vm_event(UNEVICTABLE_PGMLOCKED
);
86 if (!isolate_lru_page(page
))
87 putback_lru_page(page
);
92 * called from munlock()/munmap() path with page supposedly on the LRU.
94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
95 * [in try_to_munlock()] and then attempt to isolate the page. We must
96 * isolate the page to keep others from messing with its unevictable
97 * and mlocked state while trying to munlock. However, we pre-clear the
98 * mlocked state anyway as we might lose the isolation race and we might
99 * not get another chance to clear PageMlocked. If we successfully
100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101 * mapping the page, it will restore the PageMlocked state, unless the page
102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
103 * perhaps redundantly.
104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106 * either of which will restore the PageMlocked state by calling
107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 static void munlock_vma_page(struct page
*page
)
111 BUG_ON(!PageLocked(page
));
113 if (TestClearPageMlocked(page
)) {
114 dec_zone_page_state(page
, NR_MLOCK
);
115 if (!isolate_lru_page(page
)) {
116 int ret
= try_to_munlock(page
);
118 * did try_to_unlock() succeed or punt?
120 if (ret
== SWAP_SUCCESS
|| ret
== SWAP_AGAIN
)
121 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
123 putback_lru_page(page
);
126 * We lost the race. let try_to_unmap() deal
127 * with it. At least we get the page state and
128 * mlock stats right. However, page is still on
129 * the noreclaim list. We'll fix that up when
130 * the page is eventually freed or we scan the
133 if (PageUnevictable(page
))
134 count_vm_event(UNEVICTABLE_PGSTRANDED
);
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
142 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
144 * @start: start address
147 * This takes care of making the pages present too.
149 * return 0 on success, negative error code on error.
151 * vma->vm_mm->mmap_sem must be held for at least read.
153 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
154 unsigned long start
, unsigned long end
)
156 struct mm_struct
*mm
= vma
->vm_mm
;
157 unsigned long addr
= start
;
158 struct page
*pages
[16]; /* 16 gives a reasonable batch */
159 int nr_pages
= (end
- start
) / PAGE_SIZE
;
163 VM_BUG_ON(start
& ~PAGE_MASK
);
164 VM_BUG_ON(end
& ~PAGE_MASK
);
165 VM_BUG_ON(start
< vma
->vm_start
);
166 VM_BUG_ON(end
> vma
->vm_end
);
167 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
170 if (vma
->vm_flags
& VM_WRITE
)
171 gup_flags
= GUP_FLAGS_WRITE
;
173 while (nr_pages
> 0) {
179 * get_user_pages makes pages present if we are
180 * setting mlock. and this extra reference count will
181 * disable migration of this page. However, page may
182 * still be truncated out from under us.
184 ret
= __get_user_pages(current
, mm
, addr
,
185 min_t(int, nr_pages
, ARRAY_SIZE(pages
)),
186 gup_flags
, pages
, NULL
);
188 * This can happen for, e.g., VM_NONLINEAR regions before
189 * a page has been allocated and mapped at a given offset,
190 * or for addresses that map beyond end of a file.
191 * We'll mlock the pages if/when they get faulted in.
196 lru_add_drain(); /* push cached pages to LRU */
198 for (i
= 0; i
< ret
; i
++) {
199 struct page
*page
= pages
[i
];
203 * Because we lock page here and migration is blocked
204 * by the elevated reference, we need only check for
205 * file-cache page truncation. This page->mapping
206 * check also neatly skips over the ZERO_PAGE(),
207 * though if that's common we'd prefer not to lock it.
210 mlock_vma_page(page
);
212 put_page(page
); /* ref from get_user_pages() */
215 addr
+= ret
* PAGE_SIZE
;
220 return ret
; /* 0 or negative error code */
224 * convert get_user_pages() return value to posix mlock() error
226 static int __mlock_posix_error_return(long retval
)
228 if (retval
== -EFAULT
)
230 else if (retval
== -ENOMEM
)
236 * mlock_vma_pages_range() - mlock pages in specified vma range.
237 * @vma - the vma containing the specfied address range
238 * @start - starting address in @vma to mlock
239 * @end - end address [+1] in @vma to mlock
241 * For mmap()/mremap()/expansion of mlocked vma.
243 * return 0 on success for "normal" vmas.
245 * return number of pages [> 0] to be removed from locked_vm on success
248 long mlock_vma_pages_range(struct vm_area_struct
*vma
,
249 unsigned long start
, unsigned long end
)
251 int nr_pages
= (end
- start
) / PAGE_SIZE
;
252 BUG_ON(!(vma
->vm_flags
& VM_LOCKED
));
255 * filter unlockable vmas
257 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
260 if (!((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
261 is_vm_hugetlb_page(vma
) ||
262 vma
== get_gate_vma(current
))) {
264 __mlock_vma_pages_range(vma
, start
, end
);
266 /* Hide errors from mmap() and other callers */
271 * User mapped kernel pages or huge pages:
272 * make these pages present to populate the ptes, but
273 * fall thru' to reset VM_LOCKED--no need to unlock, and
274 * return nr_pages so these don't get counted against task's
275 * locked limit. huge pages are already counted against
278 make_pages_present(start
, end
);
281 vma
->vm_flags
&= ~VM_LOCKED
; /* and don't come back! */
282 return nr_pages
; /* error or pages NOT mlocked */
286 * munlock_vma_pages_range() - munlock all pages in the vma range.'
287 * @vma - vma containing range to be munlock()ed.
288 * @start - start address in @vma of the range
289 * @end - end of range in @vma.
291 * For mremap(), munmap() and exit().
293 * Called with @vma VM_LOCKED.
295 * Returns with VM_LOCKED cleared. Callers must be prepared to
298 * We don't save and restore VM_LOCKED here because pages are
299 * still on lru. In unmap path, pages might be scanned by reclaim
300 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
301 * free them. This will result in freeing mlocked pages.
303 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
304 unsigned long start
, unsigned long end
)
309 vma
->vm_flags
&= ~VM_LOCKED
;
311 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
312 struct page
*page
= follow_page(vma
, addr
, FOLL_GET
);
316 munlock_vma_page(page
);
325 * mlock_fixup - handle mlock[all]/munlock[all] requests.
327 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
328 * munlock is a no-op. However, for some special vmas, we go ahead and
329 * populate the ptes via make_pages_present().
331 * For vmas that pass the filters, merge/split as appropriate.
333 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
334 unsigned long start
, unsigned long end
, unsigned int newflags
)
336 struct mm_struct
*mm
= vma
->vm_mm
;
340 int lock
= newflags
& VM_LOCKED
;
342 if (newflags
== vma
->vm_flags
||
343 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
344 goto out
; /* don't set VM_LOCKED, don't count */
346 if ((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
347 is_vm_hugetlb_page(vma
) ||
348 vma
== get_gate_vma(current
)) {
350 make_pages_present(start
, end
);
351 goto out
; /* don't set VM_LOCKED, don't count */
354 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
355 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
356 vma
->vm_file
, pgoff
, vma_policy(vma
));
362 if (start
!= vma
->vm_start
) {
363 ret
= split_vma(mm
, vma
, start
, 1);
368 if (end
!= vma
->vm_end
) {
369 ret
= split_vma(mm
, vma
, end
, 0);
376 * Keep track of amount of locked VM.
378 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
380 nr_pages
= -nr_pages
;
381 mm
->locked_vm
+= nr_pages
;
384 * vm_flags is protected by the mmap_sem held in write mode.
385 * It's okay if try_to_unmap_one unmaps a page just after we
386 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
390 vma
->vm_flags
= newflags
;
391 ret
= __mlock_vma_pages_range(vma
, start
, end
);
393 ret
= __mlock_posix_error_return(ret
);
395 munlock_vma_pages_range(vma
, start
, end
);
403 static int do_mlock(unsigned long start
, size_t len
, int on
)
405 unsigned long nstart
, end
, tmp
;
406 struct vm_area_struct
* vma
, * prev
;
409 len
= PAGE_ALIGN(len
);
415 vma
= find_vma_prev(current
->mm
, start
, &prev
);
416 if (!vma
|| vma
->vm_start
> start
)
419 if (start
> vma
->vm_start
)
422 for (nstart
= start
; ; ) {
423 unsigned int newflags
;
425 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
427 newflags
= vma
->vm_flags
| VM_LOCKED
;
429 newflags
&= ~VM_LOCKED
;
434 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
438 if (nstart
< prev
->vm_end
)
439 nstart
= prev
->vm_end
;
444 if (!vma
|| vma
->vm_start
!= nstart
) {
452 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
454 unsigned long locked
;
455 unsigned long lock_limit
;
461 lru_add_drain_all(); /* flush pagevec */
463 down_write(¤t
->mm
->mmap_sem
);
464 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
467 locked
= len
>> PAGE_SHIFT
;
468 locked
+= current
->mm
->locked_vm
;
470 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
471 lock_limit
>>= PAGE_SHIFT
;
473 /* check against resource limits */
474 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
475 error
= do_mlock(start
, len
, 1);
476 up_write(¤t
->mm
->mmap_sem
);
480 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
484 down_write(¤t
->mm
->mmap_sem
);
485 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
487 ret
= do_mlock(start
, len
, 0);
488 up_write(¤t
->mm
->mmap_sem
);
492 static int do_mlockall(int flags
)
494 struct vm_area_struct
* vma
, * prev
= NULL
;
495 unsigned int def_flags
= 0;
497 if (flags
& MCL_FUTURE
)
498 def_flags
= VM_LOCKED
;
499 current
->mm
->def_flags
= def_flags
;
500 if (flags
== MCL_FUTURE
)
503 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
504 unsigned int newflags
;
506 newflags
= vma
->vm_flags
| VM_LOCKED
;
507 if (!(flags
& MCL_CURRENT
))
508 newflags
&= ~VM_LOCKED
;
511 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
517 SYSCALL_DEFINE1(mlockall
, int, flags
)
519 unsigned long lock_limit
;
522 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
529 lru_add_drain_all(); /* flush pagevec */
531 down_write(¤t
->mm
->mmap_sem
);
533 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
534 lock_limit
>>= PAGE_SHIFT
;
537 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
538 capable(CAP_IPC_LOCK
))
539 ret
= do_mlockall(flags
);
540 up_write(¤t
->mm
->mmap_sem
);
545 SYSCALL_DEFINE0(munlockall
)
549 down_write(¤t
->mm
->mmap_sem
);
550 ret
= do_mlockall(0);
551 up_write(¤t
->mm
->mmap_sem
);
556 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
557 * shm segments) get accounted against the user_struct instead.
559 static DEFINE_SPINLOCK(shmlock_user_lock
);
561 int user_shm_lock(size_t size
, struct user_struct
*user
)
563 unsigned long lock_limit
, locked
;
566 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
567 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
568 if (lock_limit
== RLIM_INFINITY
)
570 lock_limit
>>= PAGE_SHIFT
;
571 spin_lock(&shmlock_user_lock
);
573 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
576 user
->locked_shm
+= locked
;
579 spin_unlock(&shmlock_user_lock
);
583 void user_shm_unlock(size_t size
, struct user_struct
*user
)
585 spin_lock(&shmlock_user_lock
);
586 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
587 spin_unlock(&shmlock_user_lock
);
591 int account_locked_memory(struct mm_struct
*mm
, struct rlimit
*rlim
,
594 unsigned long lim
, vm
, pgsz
;
597 pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
599 down_write(&mm
->mmap_sem
);
601 lim
= rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
602 vm
= mm
->total_vm
+ pgsz
;
606 lim
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
607 vm
= mm
->locked_vm
+ pgsz
;
611 mm
->total_vm
+= pgsz
;
612 mm
->locked_vm
+= pgsz
;
616 up_write(&mm
->mmap_sem
);
620 void refund_locked_memory(struct mm_struct
*mm
, size_t size
)
622 unsigned long pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
624 down_write(&mm
->mmap_sem
);
626 mm
->total_vm
-= pgsz
;
627 mm
->locked_vm
-= pgsz
;
629 up_write(&mm
->mmap_sem
);