KVM: x86 emulator: Implement zero-extended immediate decoding
[linux-2.6/verdex.git] / drivers / net / 8139cp.c
blobd0dbbf39349a3cb87d6eb19c51591bb736c9b9f5
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
107 #define PFX DRV_NAME ": "
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define CP_INTERNAL_PHY 32
132 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
133 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
134 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
135 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
136 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
138 /* Time in jiffies before concluding the transmitter is hung. */
139 #define TX_TIMEOUT (6*HZ)
141 /* hardware minimum and maximum for a single frame's data payload */
142 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
143 #define CP_MAX_MTU 4096
145 enum {
146 /* NIC register offsets */
147 MAC0 = 0x00, /* Ethernet hardware address. */
148 MAR0 = 0x08, /* Multicast filter. */
149 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
150 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
151 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
152 Cmd = 0x37, /* Command register */
153 IntrMask = 0x3C, /* Interrupt mask */
154 IntrStatus = 0x3E, /* Interrupt status */
155 TxConfig = 0x40, /* Tx configuration */
156 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
157 RxConfig = 0x44, /* Rx configuration */
158 RxMissed = 0x4C, /* 24 bits valid, write clears */
159 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
160 Config1 = 0x52, /* Config1 */
161 Config3 = 0x59, /* Config3 */
162 Config4 = 0x5A, /* Config4 */
163 MultiIntr = 0x5C, /* Multiple interrupt select */
164 BasicModeCtrl = 0x62, /* MII BMCR */
165 BasicModeStatus = 0x64, /* MII BMSR */
166 NWayAdvert = 0x66, /* MII ADVERTISE */
167 NWayLPAR = 0x68, /* MII LPA */
168 NWayExpansion = 0x6A, /* MII Expansion */
169 Config5 = 0xD8, /* Config5 */
170 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
171 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
172 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
173 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
174 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
175 TxThresh = 0xEC, /* Early Tx threshold */
176 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
177 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
179 /* Tx and Rx status descriptors */
180 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
181 RingEnd = (1 << 30), /* End of descriptor ring */
182 FirstFrag = (1 << 29), /* First segment of a packet */
183 LastFrag = (1 << 28), /* Final segment of a packet */
184 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
185 MSSShift = 16, /* MSS value position */
186 MSSMask = 0xfff, /* MSS value: 11 bits */
187 TxError = (1 << 23), /* Tx error summary */
188 RxError = (1 << 20), /* Rx error summary */
189 IPCS = (1 << 18), /* Calculate IP checksum */
190 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
191 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
192 TxVlanTag = (1 << 17), /* Add VLAN tag */
193 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
194 IPFail = (1 << 15), /* IP checksum failed */
195 UDPFail = (1 << 14), /* UDP/IP checksum failed */
196 TCPFail = (1 << 13), /* TCP/IP checksum failed */
197 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
198 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
199 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
200 RxProtoTCP = 1,
201 RxProtoUDP = 2,
202 RxProtoIP = 3,
203 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
204 TxOWC = (1 << 22), /* Tx Out-of-window collision */
205 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
206 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
207 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
208 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
209 RxErrFrame = (1 << 27), /* Rx frame alignment error */
210 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
211 RxErrCRC = (1 << 18), /* Rx CRC error */
212 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
213 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
214 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
216 /* StatsAddr register */
217 DumpStats = (1 << 3), /* Begin stats dump */
219 /* RxConfig register */
220 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
221 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
222 AcceptErr = 0x20, /* Accept packets with CRC errors */
223 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
224 AcceptBroadcast = 0x08, /* Accept broadcast packets */
225 AcceptMulticast = 0x04, /* Accept multicast packets */
226 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
227 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
229 /* IntrMask / IntrStatus registers */
230 PciErr = (1 << 15), /* System error on the PCI bus */
231 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
232 LenChg = (1 << 13), /* Cable length change */
233 SWInt = (1 << 8), /* Software-requested interrupt */
234 TxEmpty = (1 << 7), /* No Tx descriptors available */
235 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
236 LinkChg = (1 << 5), /* Packet underrun, or link change */
237 RxEmpty = (1 << 4), /* No Rx descriptors available */
238 TxErr = (1 << 3), /* Tx error */
239 TxOK = (1 << 2), /* Tx packet sent */
240 RxErr = (1 << 1), /* Rx error */
241 RxOK = (1 << 0), /* Rx packet received */
242 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
243 but hardware likes to raise it */
245 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
246 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
247 RxErr | RxOK | IntrResvd,
249 /* C mode command register */
250 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
251 RxOn = (1 << 3), /* Rx mode enable */
252 TxOn = (1 << 2), /* Tx mode enable */
254 /* C+ mode command register */
255 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
256 RxChkSum = (1 << 5), /* Rx checksum offload enable */
257 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
258 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
259 CpRxOn = (1 << 1), /* Rx mode enable */
260 CpTxOn = (1 << 0), /* Tx mode enable */
262 /* Cfg9436 EEPROM control register */
263 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
264 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
266 /* TxConfig register */
267 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
268 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
270 /* Early Tx Threshold register */
271 TxThreshMask = 0x3f, /* Mask bits 5-0 */
272 TxThreshMax = 2048, /* Max early Tx threshold */
274 /* Config1 register */
275 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
276 LWACT = (1 << 4), /* LWAKE active mode */
277 PMEnable = (1 << 0), /* Enable various PM features of chip */
279 /* Config3 register */
280 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
281 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
282 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
284 /* Config4 register */
285 LWPTN = (1 << 1), /* LWAKE Pattern */
286 LWPME = (1 << 4), /* LANWAKE vs PMEB */
288 /* Config5 register */
289 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
290 MWF = (1 << 5), /* Accept Multicast wakeup frame */
291 UWF = (1 << 4), /* Accept Unicast wakeup frame */
292 LANWake = (1 << 1), /* Enable LANWake signal */
293 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
295 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
296 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
297 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
300 static const unsigned int cp_rx_config =
301 (RX_FIFO_THRESH << RxCfgFIFOShift) |
302 (RX_DMA_BURST << RxCfgDMAShift);
304 struct cp_desc {
305 __le32 opts1;
306 __le32 opts2;
307 __le64 addr;
310 struct cp_dma_stats {
311 __le64 tx_ok;
312 __le64 rx_ok;
313 __le64 tx_err;
314 __le32 rx_err;
315 __le16 rx_fifo;
316 __le16 frame_align;
317 __le32 tx_ok_1col;
318 __le32 tx_ok_mcol;
319 __le64 rx_ok_phys;
320 __le64 rx_ok_bcast;
321 __le32 rx_ok_mcast;
322 __le16 tx_abort;
323 __le16 tx_underrun;
324 } __attribute__((packed));
326 struct cp_extra_stats {
327 unsigned long rx_frags;
330 struct cp_private {
331 void __iomem *regs;
332 struct net_device *dev;
333 spinlock_t lock;
334 u32 msg_enable;
336 struct napi_struct napi;
338 struct pci_dev *pdev;
339 u32 rx_config;
340 u16 cpcmd;
342 struct cp_extra_stats cp_stats;
344 unsigned rx_head ____cacheline_aligned;
345 unsigned rx_tail;
346 struct cp_desc *rx_ring;
347 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
349 unsigned tx_head ____cacheline_aligned;
350 unsigned tx_tail;
351 struct cp_desc *tx_ring;
352 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
354 unsigned rx_buf_sz;
355 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
357 #if CP_VLAN_TAG_USED
358 struct vlan_group *vlgrp;
359 #endif
360 dma_addr_t ring_dma;
362 struct mii_if_info mii_if;
365 #define cpr8(reg) readb(cp->regs + (reg))
366 #define cpr16(reg) readw(cp->regs + (reg))
367 #define cpr32(reg) readl(cp->regs + (reg))
368 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
369 #define cpw16(reg,val) writew((val), cp->regs + (reg))
370 #define cpw32(reg,val) writel((val), cp->regs + (reg))
371 #define cpw8_f(reg,val) do { \
372 writeb((val), cp->regs + (reg)); \
373 readb(cp->regs + (reg)); \
374 } while (0)
375 #define cpw16_f(reg,val) do { \
376 writew((val), cp->regs + (reg)); \
377 readw(cp->regs + (reg)); \
378 } while (0)
379 #define cpw32_f(reg,val) do { \
380 writel((val), cp->regs + (reg)); \
381 readl(cp->regs + (reg)); \
382 } while (0)
385 static void __cp_set_rx_mode (struct net_device *dev);
386 static void cp_tx (struct cp_private *cp);
387 static void cp_clean_rings (struct cp_private *cp);
388 #ifdef CONFIG_NET_POLL_CONTROLLER
389 static void cp_poll_controller(struct net_device *dev);
390 #endif
391 static int cp_get_eeprom_len(struct net_device *dev);
392 static int cp_get_eeprom(struct net_device *dev,
393 struct ethtool_eeprom *eeprom, u8 *data);
394 static int cp_set_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
397 static struct pci_device_id cp_pci_tbl[] = {
398 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
399 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
400 { },
402 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
404 static struct {
405 const char str[ETH_GSTRING_LEN];
406 } ethtool_stats_keys[] = {
407 { "tx_ok" },
408 { "rx_ok" },
409 { "tx_err" },
410 { "rx_err" },
411 { "rx_fifo" },
412 { "frame_align" },
413 { "tx_ok_1col" },
414 { "tx_ok_mcol" },
415 { "rx_ok_phys" },
416 { "rx_ok_bcast" },
417 { "rx_ok_mcast" },
418 { "tx_abort" },
419 { "tx_underrun" },
420 { "rx_frags" },
424 #if CP_VLAN_TAG_USED
425 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
427 struct cp_private *cp = netdev_priv(dev);
428 unsigned long flags;
430 spin_lock_irqsave(&cp->lock, flags);
431 cp->vlgrp = grp;
432 if (grp)
433 cp->cpcmd |= RxVlanOn;
434 else
435 cp->cpcmd &= ~RxVlanOn;
437 cpw16(CpCmd, cp->cpcmd);
438 spin_unlock_irqrestore(&cp->lock, flags);
440 #endif /* CP_VLAN_TAG_USED */
442 static inline void cp_set_rxbufsize (struct cp_private *cp)
444 unsigned int mtu = cp->dev->mtu;
446 if (mtu > ETH_DATA_LEN)
447 /* MTU + ethernet header + FCS + optional VLAN tag */
448 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
449 else
450 cp->rx_buf_sz = PKT_BUF_SZ;
453 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
454 struct cp_desc *desc)
456 skb->protocol = eth_type_trans (skb, cp->dev);
458 cp->dev->stats.rx_packets++;
459 cp->dev->stats.rx_bytes += skb->len;
461 #if CP_VLAN_TAG_USED
462 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
463 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
464 swab16(le32_to_cpu(desc->opts2) & 0xffff));
465 } else
466 #endif
467 netif_receive_skb(skb);
470 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
471 u32 status, u32 len)
473 if (netif_msg_rx_err (cp))
474 pr_debug("%s: rx err, slot %d status 0x%x len %d\n",
475 cp->dev->name, rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
489 static inline unsigned int cp_rx_csum_ok (u32 status)
491 unsigned int protocol = (status >> 16) & 0x3;
493 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
494 return 1;
495 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
496 return 1;
497 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
498 return 1;
499 return 0;
502 static int cp_rx_poll(struct napi_struct *napi, int budget)
504 struct cp_private *cp = container_of(napi, struct cp_private, napi);
505 struct net_device *dev = cp->dev;
506 unsigned int rx_tail = cp->rx_tail;
507 int rx;
509 rx_status_loop:
510 rx = 0;
511 cpw16(IntrStatus, cp_rx_intr_mask);
513 while (1) {
514 u32 status, len;
515 dma_addr_t mapping;
516 struct sk_buff *skb, *new_skb;
517 struct cp_desc *desc;
518 const unsigned buflen = cp->rx_buf_sz;
520 skb = cp->rx_skb[rx_tail];
521 BUG_ON(!skb);
523 desc = &cp->rx_ring[rx_tail];
524 status = le32_to_cpu(desc->opts1);
525 if (status & DescOwn)
526 break;
528 len = (status & 0x1fff) - 4;
529 mapping = le64_to_cpu(desc->addr);
531 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
532 /* we don't support incoming fragmented frames.
533 * instead, we attempt to ensure that the
534 * pre-allocated RX skbs are properly sized such
535 * that RX fragments are never encountered
537 cp_rx_err_acct(cp, rx_tail, status, len);
538 dev->stats.rx_dropped++;
539 cp->cp_stats.rx_frags++;
540 goto rx_next;
543 if (status & (RxError | RxErrFIFO)) {
544 cp_rx_err_acct(cp, rx_tail, status, len);
545 goto rx_next;
548 if (netif_msg_rx_status(cp))
549 pr_debug("%s: rx slot %d status 0x%x len %d\n",
550 dev->name, rx_tail, status, len);
552 new_skb = netdev_alloc_skb(dev, buflen + NET_IP_ALIGN);
553 if (!new_skb) {
554 dev->stats.rx_dropped++;
555 goto rx_next;
558 skb_reserve(new_skb, NET_IP_ALIGN);
560 dma_unmap_single(&cp->pdev->dev, mapping,
561 buflen, PCI_DMA_FROMDEVICE);
563 /* Handle checksum offloading for incoming packets. */
564 if (cp_rx_csum_ok(status))
565 skb->ip_summed = CHECKSUM_UNNECESSARY;
566 else
567 skb->ip_summed = CHECKSUM_NONE;
569 skb_put(skb, len);
571 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
572 PCI_DMA_FROMDEVICE);
573 cp->rx_skb[rx_tail] = new_skb;
575 cp_rx_skb(cp, skb, desc);
576 rx++;
578 rx_next:
579 cp->rx_ring[rx_tail].opts2 = 0;
580 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
581 if (rx_tail == (CP_RX_RING_SIZE - 1))
582 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
583 cp->rx_buf_sz);
584 else
585 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
586 rx_tail = NEXT_RX(rx_tail);
588 if (rx >= budget)
589 break;
592 cp->rx_tail = rx_tail;
594 /* if we did not reach work limit, then we're done with
595 * this round of polling
597 if (rx < budget) {
598 unsigned long flags;
600 if (cpr16(IntrStatus) & cp_rx_intr_mask)
601 goto rx_status_loop;
603 spin_lock_irqsave(&cp->lock, flags);
604 cpw16_f(IntrMask, cp_intr_mask);
605 __napi_complete(napi);
606 spin_unlock_irqrestore(&cp->lock, flags);
609 return rx;
612 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
614 struct net_device *dev = dev_instance;
615 struct cp_private *cp;
616 u16 status;
618 if (unlikely(dev == NULL))
619 return IRQ_NONE;
620 cp = netdev_priv(dev);
622 status = cpr16(IntrStatus);
623 if (!status || (status == 0xFFFF))
624 return IRQ_NONE;
626 if (netif_msg_intr(cp))
627 pr_debug("%s: intr, status %04x cmd %02x cpcmd %04x\n",
628 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
630 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
632 spin_lock(&cp->lock);
634 /* close possible race's with dev_close */
635 if (unlikely(!netif_running(dev))) {
636 cpw16(IntrMask, 0);
637 spin_unlock(&cp->lock);
638 return IRQ_HANDLED;
641 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
642 if (napi_schedule_prep(&cp->napi)) {
643 cpw16_f(IntrMask, cp_norx_intr_mask);
644 __napi_schedule(&cp->napi);
647 if (status & (TxOK | TxErr | TxEmpty | SWInt))
648 cp_tx(cp);
649 if (status & LinkChg)
650 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
652 spin_unlock(&cp->lock);
654 if (status & PciErr) {
655 u16 pci_status;
657 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
658 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
659 pr_err("%s: PCI bus error, status=%04x, PCI status=%04x\n",
660 dev->name, status, pci_status);
662 /* TODO: reset hardware */
665 return IRQ_HANDLED;
668 #ifdef CONFIG_NET_POLL_CONTROLLER
670 * Polling receive - used by netconsole and other diagnostic tools
671 * to allow network i/o with interrupts disabled.
673 static void cp_poll_controller(struct net_device *dev)
675 disable_irq(dev->irq);
676 cp_interrupt(dev->irq, dev);
677 enable_irq(dev->irq);
679 #endif
681 static void cp_tx (struct cp_private *cp)
683 unsigned tx_head = cp->tx_head;
684 unsigned tx_tail = cp->tx_tail;
686 while (tx_tail != tx_head) {
687 struct cp_desc *txd = cp->tx_ring + tx_tail;
688 struct sk_buff *skb;
689 u32 status;
691 rmb();
692 status = le32_to_cpu(txd->opts1);
693 if (status & DescOwn)
694 break;
696 skb = cp->tx_skb[tx_tail];
697 BUG_ON(!skb);
699 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
700 le32_to_cpu(txd->opts1) & 0xffff,
701 PCI_DMA_TODEVICE);
703 if (status & LastFrag) {
704 if (status & (TxError | TxFIFOUnder)) {
705 if (netif_msg_tx_err(cp))
706 pr_debug("%s: tx err, status 0x%x\n",
707 cp->dev->name, status);
708 cp->dev->stats.tx_errors++;
709 if (status & TxOWC)
710 cp->dev->stats.tx_window_errors++;
711 if (status & TxMaxCol)
712 cp->dev->stats.tx_aborted_errors++;
713 if (status & TxLinkFail)
714 cp->dev->stats.tx_carrier_errors++;
715 if (status & TxFIFOUnder)
716 cp->dev->stats.tx_fifo_errors++;
717 } else {
718 cp->dev->stats.collisions +=
719 ((status >> TxColCntShift) & TxColCntMask);
720 cp->dev->stats.tx_packets++;
721 cp->dev->stats.tx_bytes += skb->len;
722 if (netif_msg_tx_done(cp))
723 pr_debug("%s: tx done, slot %d\n", cp->dev->name, tx_tail);
725 dev_kfree_skb_irq(skb);
728 cp->tx_skb[tx_tail] = NULL;
730 tx_tail = NEXT_TX(tx_tail);
733 cp->tx_tail = tx_tail;
735 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
736 netif_wake_queue(cp->dev);
739 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
741 struct cp_private *cp = netdev_priv(dev);
742 unsigned entry;
743 u32 eor, flags;
744 unsigned long intr_flags;
745 #if CP_VLAN_TAG_USED
746 u32 vlan_tag = 0;
747 #endif
748 int mss = 0;
750 spin_lock_irqsave(&cp->lock, intr_flags);
752 /* This is a hard error, log it. */
753 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
754 netif_stop_queue(dev);
755 spin_unlock_irqrestore(&cp->lock, intr_flags);
756 pr_err(PFX "%s: BUG! Tx Ring full when queue awake!\n",
757 dev->name);
758 return NETDEV_TX_BUSY;
761 #if CP_VLAN_TAG_USED
762 if (cp->vlgrp && vlan_tx_tag_present(skb))
763 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
764 #endif
766 entry = cp->tx_head;
767 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
768 if (dev->features & NETIF_F_TSO)
769 mss = skb_shinfo(skb)->gso_size;
771 if (skb_shinfo(skb)->nr_frags == 0) {
772 struct cp_desc *txd = &cp->tx_ring[entry];
773 u32 len;
774 dma_addr_t mapping;
776 len = skb->len;
777 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
778 CP_VLAN_TX_TAG(txd, vlan_tag);
779 txd->addr = cpu_to_le64(mapping);
780 wmb();
782 flags = eor | len | DescOwn | FirstFrag | LastFrag;
784 if (mss)
785 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
786 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
787 const struct iphdr *ip = ip_hdr(skb);
788 if (ip->protocol == IPPROTO_TCP)
789 flags |= IPCS | TCPCS;
790 else if (ip->protocol == IPPROTO_UDP)
791 flags |= IPCS | UDPCS;
792 else
793 WARN_ON(1); /* we need a WARN() */
796 txd->opts1 = cpu_to_le32(flags);
797 wmb();
799 cp->tx_skb[entry] = skb;
800 entry = NEXT_TX(entry);
801 } else {
802 struct cp_desc *txd;
803 u32 first_len, first_eor;
804 dma_addr_t first_mapping;
805 int frag, first_entry = entry;
806 const struct iphdr *ip = ip_hdr(skb);
808 /* We must give this initial chunk to the device last.
809 * Otherwise we could race with the device.
811 first_eor = eor;
812 first_len = skb_headlen(skb);
813 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
814 first_len, PCI_DMA_TODEVICE);
815 cp->tx_skb[entry] = skb;
816 entry = NEXT_TX(entry);
818 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
819 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
820 u32 len;
821 u32 ctrl;
822 dma_addr_t mapping;
824 len = this_frag->size;
825 mapping = dma_map_single(&cp->pdev->dev,
826 ((void *) page_address(this_frag->page) +
827 this_frag->page_offset),
828 len, PCI_DMA_TODEVICE);
829 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
831 ctrl = eor | len | DescOwn;
833 if (mss)
834 ctrl |= LargeSend |
835 ((mss & MSSMask) << MSSShift);
836 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
837 if (ip->protocol == IPPROTO_TCP)
838 ctrl |= IPCS | TCPCS;
839 else if (ip->protocol == IPPROTO_UDP)
840 ctrl |= IPCS | UDPCS;
841 else
842 BUG();
845 if (frag == skb_shinfo(skb)->nr_frags - 1)
846 ctrl |= LastFrag;
848 txd = &cp->tx_ring[entry];
849 CP_VLAN_TX_TAG(txd, vlan_tag);
850 txd->addr = cpu_to_le64(mapping);
851 wmb();
853 txd->opts1 = cpu_to_le32(ctrl);
854 wmb();
856 cp->tx_skb[entry] = skb;
857 entry = NEXT_TX(entry);
860 txd = &cp->tx_ring[first_entry];
861 CP_VLAN_TX_TAG(txd, vlan_tag);
862 txd->addr = cpu_to_le64(first_mapping);
863 wmb();
865 if (skb->ip_summed == CHECKSUM_PARTIAL) {
866 if (ip->protocol == IPPROTO_TCP)
867 txd->opts1 = cpu_to_le32(first_eor | first_len |
868 FirstFrag | DescOwn |
869 IPCS | TCPCS);
870 else if (ip->protocol == IPPROTO_UDP)
871 txd->opts1 = cpu_to_le32(first_eor | first_len |
872 FirstFrag | DescOwn |
873 IPCS | UDPCS);
874 else
875 BUG();
876 } else
877 txd->opts1 = cpu_to_le32(first_eor | first_len |
878 FirstFrag | DescOwn);
879 wmb();
881 cp->tx_head = entry;
882 if (netif_msg_tx_queued(cp))
883 pr_debug("%s: tx queued, slot %d, skblen %d\n",
884 dev->name, entry, skb->len);
885 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
886 netif_stop_queue(dev);
888 spin_unlock_irqrestore(&cp->lock, intr_flags);
890 cpw8(TxPoll, NormalTxPoll);
891 dev->trans_start = jiffies;
893 return 0;
896 /* Set or clear the multicast filter for this adaptor.
897 This routine is not state sensitive and need not be SMP locked. */
899 static void __cp_set_rx_mode (struct net_device *dev)
901 struct cp_private *cp = netdev_priv(dev);
902 u32 mc_filter[2]; /* Multicast hash filter */
903 int i, rx_mode;
904 u32 tmp;
906 /* Note: do not reorder, GCC is clever about common statements. */
907 if (dev->flags & IFF_PROMISC) {
908 /* Unconditionally log net taps. */
909 rx_mode =
910 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
911 AcceptAllPhys;
912 mc_filter[1] = mc_filter[0] = 0xffffffff;
913 } else if ((dev->mc_count > multicast_filter_limit)
914 || (dev->flags & IFF_ALLMULTI)) {
915 /* Too many to filter perfectly -- accept all multicasts. */
916 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
917 mc_filter[1] = mc_filter[0] = 0xffffffff;
918 } else {
919 struct dev_mc_list *mclist;
920 rx_mode = AcceptBroadcast | AcceptMyPhys;
921 mc_filter[1] = mc_filter[0] = 0;
922 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
923 i++, mclist = mclist->next) {
924 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
926 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
927 rx_mode |= AcceptMulticast;
931 /* We can safely update without stopping the chip. */
932 tmp = cp_rx_config | rx_mode;
933 if (cp->rx_config != tmp) {
934 cpw32_f (RxConfig, tmp);
935 cp->rx_config = tmp;
937 cpw32_f (MAR0 + 0, mc_filter[0]);
938 cpw32_f (MAR0 + 4, mc_filter[1]);
941 static void cp_set_rx_mode (struct net_device *dev)
943 unsigned long flags;
944 struct cp_private *cp = netdev_priv(dev);
946 spin_lock_irqsave (&cp->lock, flags);
947 __cp_set_rx_mode(dev);
948 spin_unlock_irqrestore (&cp->lock, flags);
951 static void __cp_get_stats(struct cp_private *cp)
953 /* only lower 24 bits valid; write any value to clear */
954 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
955 cpw32 (RxMissed, 0);
958 static struct net_device_stats *cp_get_stats(struct net_device *dev)
960 struct cp_private *cp = netdev_priv(dev);
961 unsigned long flags;
963 /* The chip only need report frame silently dropped. */
964 spin_lock_irqsave(&cp->lock, flags);
965 if (netif_running(dev) && netif_device_present(dev))
966 __cp_get_stats(cp);
967 spin_unlock_irqrestore(&cp->lock, flags);
969 return &dev->stats;
972 static void cp_stop_hw (struct cp_private *cp)
974 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
975 cpw16_f(IntrMask, 0);
976 cpw8(Cmd, 0);
977 cpw16_f(CpCmd, 0);
978 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
980 cp->rx_tail = 0;
981 cp->tx_head = cp->tx_tail = 0;
984 static void cp_reset_hw (struct cp_private *cp)
986 unsigned work = 1000;
988 cpw8(Cmd, CmdReset);
990 while (work--) {
991 if (!(cpr8(Cmd) & CmdReset))
992 return;
994 schedule_timeout_uninterruptible(10);
997 pr_err("%s: hardware reset timeout\n", cp->dev->name);
1000 static inline void cp_start_hw (struct cp_private *cp)
1002 cpw16(CpCmd, cp->cpcmd);
1003 cpw8(Cmd, RxOn | TxOn);
1006 static void cp_init_hw (struct cp_private *cp)
1008 struct net_device *dev = cp->dev;
1009 dma_addr_t ring_dma;
1011 cp_reset_hw(cp);
1013 cpw8_f (Cfg9346, Cfg9346_Unlock);
1015 /* Restore our idea of the MAC address. */
1016 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1017 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1019 cp_start_hw(cp);
1020 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1022 __cp_set_rx_mode(dev);
1023 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1025 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1026 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1027 cpw8(Config3, PARMEnable);
1028 cp->wol_enabled = 0;
1030 cpw8(Config5, cpr8(Config5) & PMEStatus);
1032 cpw32_f(HiTxRingAddr, 0);
1033 cpw32_f(HiTxRingAddr + 4, 0);
1035 ring_dma = cp->ring_dma;
1036 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1037 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1039 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1040 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1041 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1043 cpw16(MultiIntr, 0);
1045 cpw16_f(IntrMask, cp_intr_mask);
1047 cpw8_f(Cfg9346, Cfg9346_Lock);
1050 static int cp_refill_rx(struct cp_private *cp)
1052 struct net_device *dev = cp->dev;
1053 unsigned i;
1055 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1056 struct sk_buff *skb;
1057 dma_addr_t mapping;
1059 skb = netdev_alloc_skb(dev, cp->rx_buf_sz + NET_IP_ALIGN);
1060 if (!skb)
1061 goto err_out;
1063 skb_reserve(skb, NET_IP_ALIGN);
1065 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1066 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1067 cp->rx_skb[i] = skb;
1069 cp->rx_ring[i].opts2 = 0;
1070 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1071 if (i == (CP_RX_RING_SIZE - 1))
1072 cp->rx_ring[i].opts1 =
1073 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1074 else
1075 cp->rx_ring[i].opts1 =
1076 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1079 return 0;
1081 err_out:
1082 cp_clean_rings(cp);
1083 return -ENOMEM;
1086 static void cp_init_rings_index (struct cp_private *cp)
1088 cp->rx_tail = 0;
1089 cp->tx_head = cp->tx_tail = 0;
1092 static int cp_init_rings (struct cp_private *cp)
1094 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1095 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1097 cp_init_rings_index(cp);
1099 return cp_refill_rx (cp);
1102 static int cp_alloc_rings (struct cp_private *cp)
1104 void *mem;
1106 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1107 &cp->ring_dma, GFP_KERNEL);
1108 if (!mem)
1109 return -ENOMEM;
1111 cp->rx_ring = mem;
1112 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1114 return cp_init_rings(cp);
1117 static void cp_clean_rings (struct cp_private *cp)
1119 struct cp_desc *desc;
1120 unsigned i;
1122 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1123 if (cp->rx_skb[i]) {
1124 desc = cp->rx_ring + i;
1125 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1126 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1127 dev_kfree_skb(cp->rx_skb[i]);
1131 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1132 if (cp->tx_skb[i]) {
1133 struct sk_buff *skb = cp->tx_skb[i];
1135 desc = cp->tx_ring + i;
1136 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1137 le32_to_cpu(desc->opts1) & 0xffff,
1138 PCI_DMA_TODEVICE);
1139 if (le32_to_cpu(desc->opts1) & LastFrag)
1140 dev_kfree_skb(skb);
1141 cp->dev->stats.tx_dropped++;
1145 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1146 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1148 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1149 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1152 static void cp_free_rings (struct cp_private *cp)
1154 cp_clean_rings(cp);
1155 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1156 cp->ring_dma);
1157 cp->rx_ring = NULL;
1158 cp->tx_ring = NULL;
1161 static int cp_open (struct net_device *dev)
1163 struct cp_private *cp = netdev_priv(dev);
1164 int rc;
1166 if (netif_msg_ifup(cp))
1167 pr_debug("%s: enabling interface\n", dev->name);
1169 rc = cp_alloc_rings(cp);
1170 if (rc)
1171 return rc;
1173 napi_enable(&cp->napi);
1175 cp_init_hw(cp);
1177 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1178 if (rc)
1179 goto err_out_hw;
1181 netif_carrier_off(dev);
1182 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1183 netif_start_queue(dev);
1185 return 0;
1187 err_out_hw:
1188 napi_disable(&cp->napi);
1189 cp_stop_hw(cp);
1190 cp_free_rings(cp);
1191 return rc;
1194 static int cp_close (struct net_device *dev)
1196 struct cp_private *cp = netdev_priv(dev);
1197 unsigned long flags;
1199 napi_disable(&cp->napi);
1201 if (netif_msg_ifdown(cp))
1202 pr_debug("%s: disabling interface\n", dev->name);
1204 spin_lock_irqsave(&cp->lock, flags);
1206 netif_stop_queue(dev);
1207 netif_carrier_off(dev);
1209 cp_stop_hw(cp);
1211 spin_unlock_irqrestore(&cp->lock, flags);
1213 free_irq(dev->irq, dev);
1215 cp_free_rings(cp);
1216 return 0;
1219 static void cp_tx_timeout(struct net_device *dev)
1221 struct cp_private *cp = netdev_priv(dev);
1222 unsigned long flags;
1223 int rc;
1225 pr_warning("%s: Transmit timeout, status %2x %4x %4x %4x\n",
1226 dev->name, cpr8(Cmd), cpr16(CpCmd),
1227 cpr16(IntrStatus), cpr16(IntrMask));
1229 spin_lock_irqsave(&cp->lock, flags);
1231 cp_stop_hw(cp);
1232 cp_clean_rings(cp);
1233 rc = cp_init_rings(cp);
1234 cp_start_hw(cp);
1236 netif_wake_queue(dev);
1238 spin_unlock_irqrestore(&cp->lock, flags);
1240 return;
1243 #ifdef BROKEN
1244 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1246 struct cp_private *cp = netdev_priv(dev);
1247 int rc;
1248 unsigned long flags;
1250 /* check for invalid MTU, according to hardware limits */
1251 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1252 return -EINVAL;
1254 /* if network interface not up, no need for complexity */
1255 if (!netif_running(dev)) {
1256 dev->mtu = new_mtu;
1257 cp_set_rxbufsize(cp); /* set new rx buf size */
1258 return 0;
1261 spin_lock_irqsave(&cp->lock, flags);
1263 cp_stop_hw(cp); /* stop h/w and free rings */
1264 cp_clean_rings(cp);
1266 dev->mtu = new_mtu;
1267 cp_set_rxbufsize(cp); /* set new rx buf size */
1269 rc = cp_init_rings(cp); /* realloc and restart h/w */
1270 cp_start_hw(cp);
1272 spin_unlock_irqrestore(&cp->lock, flags);
1274 return rc;
1276 #endif /* BROKEN */
1278 static const char mii_2_8139_map[8] = {
1279 BasicModeCtrl,
1280 BasicModeStatus,
1283 NWayAdvert,
1284 NWayLPAR,
1285 NWayExpansion,
1289 static int mdio_read(struct net_device *dev, int phy_id, int location)
1291 struct cp_private *cp = netdev_priv(dev);
1293 return location < 8 && mii_2_8139_map[location] ?
1294 readw(cp->regs + mii_2_8139_map[location]) : 0;
1298 static void mdio_write(struct net_device *dev, int phy_id, int location,
1299 int value)
1301 struct cp_private *cp = netdev_priv(dev);
1303 if (location == 0) {
1304 cpw8(Cfg9346, Cfg9346_Unlock);
1305 cpw16(BasicModeCtrl, value);
1306 cpw8(Cfg9346, Cfg9346_Lock);
1307 } else if (location < 8 && mii_2_8139_map[location])
1308 cpw16(mii_2_8139_map[location], value);
1311 /* Set the ethtool Wake-on-LAN settings */
1312 static int netdev_set_wol (struct cp_private *cp,
1313 const struct ethtool_wolinfo *wol)
1315 u8 options;
1317 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1318 /* If WOL is being disabled, no need for complexity */
1319 if (wol->wolopts) {
1320 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1321 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1324 cpw8 (Cfg9346, Cfg9346_Unlock);
1325 cpw8 (Config3, options);
1326 cpw8 (Cfg9346, Cfg9346_Lock);
1328 options = 0; /* Paranoia setting */
1329 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1330 /* If WOL is being disabled, no need for complexity */
1331 if (wol->wolopts) {
1332 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1333 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1334 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1337 cpw8 (Config5, options);
1339 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1341 return 0;
1344 /* Get the ethtool Wake-on-LAN settings */
1345 static void netdev_get_wol (struct cp_private *cp,
1346 struct ethtool_wolinfo *wol)
1348 u8 options;
1350 wol->wolopts = 0; /* Start from scratch */
1351 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1352 WAKE_MCAST | WAKE_UCAST;
1353 /* We don't need to go on if WOL is disabled */
1354 if (!cp->wol_enabled) return;
1356 options = cpr8 (Config3);
1357 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1358 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1360 options = 0; /* Paranoia setting */
1361 options = cpr8 (Config5);
1362 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1363 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1364 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1367 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1369 struct cp_private *cp = netdev_priv(dev);
1371 strcpy (info->driver, DRV_NAME);
1372 strcpy (info->version, DRV_VERSION);
1373 strcpy (info->bus_info, pci_name(cp->pdev));
1376 static int cp_get_regs_len(struct net_device *dev)
1378 return CP_REGS_SIZE;
1381 static int cp_get_sset_count (struct net_device *dev, int sset)
1383 switch (sset) {
1384 case ETH_SS_STATS:
1385 return CP_NUM_STATS;
1386 default:
1387 return -EOPNOTSUPP;
1391 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1393 struct cp_private *cp = netdev_priv(dev);
1394 int rc;
1395 unsigned long flags;
1397 spin_lock_irqsave(&cp->lock, flags);
1398 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1399 spin_unlock_irqrestore(&cp->lock, flags);
1401 return rc;
1404 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1406 struct cp_private *cp = netdev_priv(dev);
1407 int rc;
1408 unsigned long flags;
1410 spin_lock_irqsave(&cp->lock, flags);
1411 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1412 spin_unlock_irqrestore(&cp->lock, flags);
1414 return rc;
1417 static int cp_nway_reset(struct net_device *dev)
1419 struct cp_private *cp = netdev_priv(dev);
1420 return mii_nway_restart(&cp->mii_if);
1423 static u32 cp_get_msglevel(struct net_device *dev)
1425 struct cp_private *cp = netdev_priv(dev);
1426 return cp->msg_enable;
1429 static void cp_set_msglevel(struct net_device *dev, u32 value)
1431 struct cp_private *cp = netdev_priv(dev);
1432 cp->msg_enable = value;
1435 static u32 cp_get_rx_csum(struct net_device *dev)
1437 struct cp_private *cp = netdev_priv(dev);
1438 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1441 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1443 struct cp_private *cp = netdev_priv(dev);
1444 u16 cmd = cp->cpcmd, newcmd;
1446 newcmd = cmd;
1448 if (data)
1449 newcmd |= RxChkSum;
1450 else
1451 newcmd &= ~RxChkSum;
1453 if (newcmd != cmd) {
1454 unsigned long flags;
1456 spin_lock_irqsave(&cp->lock, flags);
1457 cp->cpcmd = newcmd;
1458 cpw16_f(CpCmd, newcmd);
1459 spin_unlock_irqrestore(&cp->lock, flags);
1462 return 0;
1465 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1466 void *p)
1468 struct cp_private *cp = netdev_priv(dev);
1469 unsigned long flags;
1471 if (regs->len < CP_REGS_SIZE)
1472 return /* -EINVAL */;
1474 regs->version = CP_REGS_VER;
1476 spin_lock_irqsave(&cp->lock, flags);
1477 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1478 spin_unlock_irqrestore(&cp->lock, flags);
1481 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1483 struct cp_private *cp = netdev_priv(dev);
1484 unsigned long flags;
1486 spin_lock_irqsave (&cp->lock, flags);
1487 netdev_get_wol (cp, wol);
1488 spin_unlock_irqrestore (&cp->lock, flags);
1491 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1493 struct cp_private *cp = netdev_priv(dev);
1494 unsigned long flags;
1495 int rc;
1497 spin_lock_irqsave (&cp->lock, flags);
1498 rc = netdev_set_wol (cp, wol);
1499 spin_unlock_irqrestore (&cp->lock, flags);
1501 return rc;
1504 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1506 switch (stringset) {
1507 case ETH_SS_STATS:
1508 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1509 break;
1510 default:
1511 BUG();
1512 break;
1516 static void cp_get_ethtool_stats (struct net_device *dev,
1517 struct ethtool_stats *estats, u64 *tmp_stats)
1519 struct cp_private *cp = netdev_priv(dev);
1520 struct cp_dma_stats *nic_stats;
1521 dma_addr_t dma;
1522 int i;
1524 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1525 &dma, GFP_KERNEL);
1526 if (!nic_stats)
1527 return;
1529 /* begin NIC statistics dump */
1530 cpw32(StatsAddr + 4, (u64)dma >> 32);
1531 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1532 cpr32(StatsAddr);
1534 for (i = 0; i < 1000; i++) {
1535 if ((cpr32(StatsAddr) & DumpStats) == 0)
1536 break;
1537 udelay(10);
1539 cpw32(StatsAddr, 0);
1540 cpw32(StatsAddr + 4, 0);
1541 cpr32(StatsAddr);
1543 i = 0;
1544 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1545 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1546 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1547 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1548 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1549 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1550 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1551 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1552 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1553 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1554 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1555 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1556 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1557 tmp_stats[i++] = cp->cp_stats.rx_frags;
1558 BUG_ON(i != CP_NUM_STATS);
1560 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1563 static const struct ethtool_ops cp_ethtool_ops = {
1564 .get_drvinfo = cp_get_drvinfo,
1565 .get_regs_len = cp_get_regs_len,
1566 .get_sset_count = cp_get_sset_count,
1567 .get_settings = cp_get_settings,
1568 .set_settings = cp_set_settings,
1569 .nway_reset = cp_nway_reset,
1570 .get_link = ethtool_op_get_link,
1571 .get_msglevel = cp_get_msglevel,
1572 .set_msglevel = cp_set_msglevel,
1573 .get_rx_csum = cp_get_rx_csum,
1574 .set_rx_csum = cp_set_rx_csum,
1575 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1576 .set_sg = ethtool_op_set_sg,
1577 .set_tso = ethtool_op_set_tso,
1578 .get_regs = cp_get_regs,
1579 .get_wol = cp_get_wol,
1580 .set_wol = cp_set_wol,
1581 .get_strings = cp_get_strings,
1582 .get_ethtool_stats = cp_get_ethtool_stats,
1583 .get_eeprom_len = cp_get_eeprom_len,
1584 .get_eeprom = cp_get_eeprom,
1585 .set_eeprom = cp_set_eeprom,
1588 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1590 struct cp_private *cp = netdev_priv(dev);
1591 int rc;
1592 unsigned long flags;
1594 if (!netif_running(dev))
1595 return -EINVAL;
1597 spin_lock_irqsave(&cp->lock, flags);
1598 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1599 spin_unlock_irqrestore(&cp->lock, flags);
1600 return rc;
1603 static int cp_set_mac_address(struct net_device *dev, void *p)
1605 struct cp_private *cp = netdev_priv(dev);
1606 struct sockaddr *addr = p;
1608 if (!is_valid_ether_addr(addr->sa_data))
1609 return -EADDRNOTAVAIL;
1611 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1613 spin_lock_irq(&cp->lock);
1615 cpw8_f(Cfg9346, Cfg9346_Unlock);
1616 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1617 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1618 cpw8_f(Cfg9346, Cfg9346_Lock);
1620 spin_unlock_irq(&cp->lock);
1622 return 0;
1625 /* Serial EEPROM section. */
1627 /* EEPROM_Ctrl bits. */
1628 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1629 #define EE_CS 0x08 /* EEPROM chip select. */
1630 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1631 #define EE_WRITE_0 0x00
1632 #define EE_WRITE_1 0x02
1633 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1634 #define EE_ENB (0x80 | EE_CS)
1636 /* Delay between EEPROM clock transitions.
1637 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1640 #define eeprom_delay() readl(ee_addr)
1642 /* The EEPROM commands include the alway-set leading bit. */
1643 #define EE_EXTEND_CMD (4)
1644 #define EE_WRITE_CMD (5)
1645 #define EE_READ_CMD (6)
1646 #define EE_ERASE_CMD (7)
1648 #define EE_EWDS_ADDR (0)
1649 #define EE_WRAL_ADDR (1)
1650 #define EE_ERAL_ADDR (2)
1651 #define EE_EWEN_ADDR (3)
1653 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1655 static void eeprom_cmd_start(void __iomem *ee_addr)
1657 writeb (EE_ENB & ~EE_CS, ee_addr);
1658 writeb (EE_ENB, ee_addr);
1659 eeprom_delay ();
1662 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1664 int i;
1666 /* Shift the command bits out. */
1667 for (i = cmd_len - 1; i >= 0; i--) {
1668 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1669 writeb (EE_ENB | dataval, ee_addr);
1670 eeprom_delay ();
1671 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1672 eeprom_delay ();
1674 writeb (EE_ENB, ee_addr);
1675 eeprom_delay ();
1678 static void eeprom_cmd_end(void __iomem *ee_addr)
1680 writeb (~EE_CS, ee_addr);
1681 eeprom_delay ();
1684 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1685 int addr_len)
1687 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1689 eeprom_cmd_start(ee_addr);
1690 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1691 eeprom_cmd_end(ee_addr);
1694 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1696 int i;
1697 u16 retval = 0;
1698 void __iomem *ee_addr = ioaddr + Cfg9346;
1699 int read_cmd = location | (EE_READ_CMD << addr_len);
1701 eeprom_cmd_start(ee_addr);
1702 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1704 for (i = 16; i > 0; i--) {
1705 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1706 eeprom_delay ();
1707 retval =
1708 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1710 writeb (EE_ENB, ee_addr);
1711 eeprom_delay ();
1714 eeprom_cmd_end(ee_addr);
1716 return retval;
1719 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1720 int addr_len)
1722 int i;
1723 void __iomem *ee_addr = ioaddr + Cfg9346;
1724 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1726 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1728 eeprom_cmd_start(ee_addr);
1729 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1730 eeprom_cmd(ee_addr, val, 16);
1731 eeprom_cmd_end(ee_addr);
1733 eeprom_cmd_start(ee_addr);
1734 for (i = 0; i < 20000; i++)
1735 if (readb(ee_addr) & EE_DATA_READ)
1736 break;
1737 eeprom_cmd_end(ee_addr);
1739 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1742 static int cp_get_eeprom_len(struct net_device *dev)
1744 struct cp_private *cp = netdev_priv(dev);
1745 int size;
1747 spin_lock_irq(&cp->lock);
1748 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1749 spin_unlock_irq(&cp->lock);
1751 return size;
1754 static int cp_get_eeprom(struct net_device *dev,
1755 struct ethtool_eeprom *eeprom, u8 *data)
1757 struct cp_private *cp = netdev_priv(dev);
1758 unsigned int addr_len;
1759 u16 val;
1760 u32 offset = eeprom->offset >> 1;
1761 u32 len = eeprom->len;
1762 u32 i = 0;
1764 eeprom->magic = CP_EEPROM_MAGIC;
1766 spin_lock_irq(&cp->lock);
1768 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1770 if (eeprom->offset & 1) {
1771 val = read_eeprom(cp->regs, offset, addr_len);
1772 data[i++] = (u8)(val >> 8);
1773 offset++;
1776 while (i < len - 1) {
1777 val = read_eeprom(cp->regs, offset, addr_len);
1778 data[i++] = (u8)val;
1779 data[i++] = (u8)(val >> 8);
1780 offset++;
1783 if (i < len) {
1784 val = read_eeprom(cp->regs, offset, addr_len);
1785 data[i] = (u8)val;
1788 spin_unlock_irq(&cp->lock);
1789 return 0;
1792 static int cp_set_eeprom(struct net_device *dev,
1793 struct ethtool_eeprom *eeprom, u8 *data)
1795 struct cp_private *cp = netdev_priv(dev);
1796 unsigned int addr_len;
1797 u16 val;
1798 u32 offset = eeprom->offset >> 1;
1799 u32 len = eeprom->len;
1800 u32 i = 0;
1802 if (eeprom->magic != CP_EEPROM_MAGIC)
1803 return -EINVAL;
1805 spin_lock_irq(&cp->lock);
1807 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1809 if (eeprom->offset & 1) {
1810 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1811 val |= (u16)data[i++] << 8;
1812 write_eeprom(cp->regs, offset, val, addr_len);
1813 offset++;
1816 while (i < len - 1) {
1817 val = (u16)data[i++];
1818 val |= (u16)data[i++] << 8;
1819 write_eeprom(cp->regs, offset, val, addr_len);
1820 offset++;
1823 if (i < len) {
1824 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1825 val |= (u16)data[i];
1826 write_eeprom(cp->regs, offset, val, addr_len);
1829 spin_unlock_irq(&cp->lock);
1830 return 0;
1833 /* Put the board into D3cold state and wait for WakeUp signal */
1834 static void cp_set_d3_state (struct cp_private *cp)
1836 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1837 pci_set_power_state (cp->pdev, PCI_D3hot);
1840 static const struct net_device_ops cp_netdev_ops = {
1841 .ndo_open = cp_open,
1842 .ndo_stop = cp_close,
1843 .ndo_validate_addr = eth_validate_addr,
1844 .ndo_set_mac_address = cp_set_mac_address,
1845 .ndo_set_multicast_list = cp_set_rx_mode,
1846 .ndo_get_stats = cp_get_stats,
1847 .ndo_do_ioctl = cp_ioctl,
1848 .ndo_start_xmit = cp_start_xmit,
1849 .ndo_tx_timeout = cp_tx_timeout,
1850 #if CP_VLAN_TAG_USED
1851 .ndo_vlan_rx_register = cp_vlan_rx_register,
1852 #endif
1853 #ifdef BROKEN
1854 .ndo_change_mtu = cp_change_mtu,
1855 #endif
1857 #ifdef CONFIG_NET_POLL_CONTROLLER
1858 .ndo_poll_controller = cp_poll_controller,
1859 #endif
1862 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1864 struct net_device *dev;
1865 struct cp_private *cp;
1866 int rc;
1867 void __iomem *regs;
1868 resource_size_t pciaddr;
1869 unsigned int addr_len, i, pci_using_dac;
1871 #ifndef MODULE
1872 static int version_printed;
1873 if (version_printed++ == 0)
1874 pr_info("%s", version);
1875 #endif
1877 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1878 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1879 dev_info(&pdev->dev,
1880 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1881 pdev->vendor, pdev->device, pdev->revision);
1882 return -ENODEV;
1885 dev = alloc_etherdev(sizeof(struct cp_private));
1886 if (!dev)
1887 return -ENOMEM;
1888 SET_NETDEV_DEV(dev, &pdev->dev);
1890 cp = netdev_priv(dev);
1891 cp->pdev = pdev;
1892 cp->dev = dev;
1893 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1894 spin_lock_init (&cp->lock);
1895 cp->mii_if.dev = dev;
1896 cp->mii_if.mdio_read = mdio_read;
1897 cp->mii_if.mdio_write = mdio_write;
1898 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1899 cp->mii_if.phy_id_mask = 0x1f;
1900 cp->mii_if.reg_num_mask = 0x1f;
1901 cp_set_rxbufsize(cp);
1903 rc = pci_enable_device(pdev);
1904 if (rc)
1905 goto err_out_free;
1907 rc = pci_set_mwi(pdev);
1908 if (rc)
1909 goto err_out_disable;
1911 rc = pci_request_regions(pdev, DRV_NAME);
1912 if (rc)
1913 goto err_out_mwi;
1915 pciaddr = pci_resource_start(pdev, 1);
1916 if (!pciaddr) {
1917 rc = -EIO;
1918 dev_err(&pdev->dev, "no MMIO resource\n");
1919 goto err_out_res;
1921 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1922 rc = -EIO;
1923 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1924 (unsigned long long)pci_resource_len(pdev, 1));
1925 goto err_out_res;
1928 /* Configure DMA attributes. */
1929 if ((sizeof(dma_addr_t) > 4) &&
1930 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1931 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1932 pci_using_dac = 1;
1933 } else {
1934 pci_using_dac = 0;
1936 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1937 if (rc) {
1938 dev_err(&pdev->dev,
1939 "No usable DMA configuration, aborting.\n");
1940 goto err_out_res;
1942 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1943 if (rc) {
1944 dev_err(&pdev->dev,
1945 "No usable consistent DMA configuration, "
1946 "aborting.\n");
1947 goto err_out_res;
1951 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1952 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1954 regs = ioremap(pciaddr, CP_REGS_SIZE);
1955 if (!regs) {
1956 rc = -EIO;
1957 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1958 (unsigned long long)pci_resource_len(pdev, 1),
1959 (unsigned long long)pciaddr);
1960 goto err_out_res;
1962 dev->base_addr = (unsigned long) regs;
1963 cp->regs = regs;
1965 cp_stop_hw(cp);
1967 /* read MAC address from EEPROM */
1968 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1969 for (i = 0; i < 3; i++)
1970 ((__le16 *) (dev->dev_addr))[i] =
1971 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1972 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1974 dev->netdev_ops = &cp_netdev_ops;
1975 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1976 dev->ethtool_ops = &cp_ethtool_ops;
1977 dev->watchdog_timeo = TX_TIMEOUT;
1979 #if CP_VLAN_TAG_USED
1980 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1981 #endif
1983 if (pci_using_dac)
1984 dev->features |= NETIF_F_HIGHDMA;
1986 #if 0 /* disabled by default until verified */
1987 dev->features |= NETIF_F_TSO;
1988 #endif
1990 dev->irq = pdev->irq;
1992 rc = register_netdev(dev);
1993 if (rc)
1994 goto err_out_iomap;
1996 pr_info("%s: RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1997 dev->name,
1998 dev->base_addr,
1999 dev->dev_addr,
2000 dev->irq);
2002 pci_set_drvdata(pdev, dev);
2004 /* enable busmastering and memory-write-invalidate */
2005 pci_set_master(pdev);
2007 if (cp->wol_enabled)
2008 cp_set_d3_state (cp);
2010 return 0;
2012 err_out_iomap:
2013 iounmap(regs);
2014 err_out_res:
2015 pci_release_regions(pdev);
2016 err_out_mwi:
2017 pci_clear_mwi(pdev);
2018 err_out_disable:
2019 pci_disable_device(pdev);
2020 err_out_free:
2021 free_netdev(dev);
2022 return rc;
2025 static void cp_remove_one (struct pci_dev *pdev)
2027 struct net_device *dev = pci_get_drvdata(pdev);
2028 struct cp_private *cp = netdev_priv(dev);
2030 unregister_netdev(dev);
2031 iounmap(cp->regs);
2032 if (cp->wol_enabled)
2033 pci_set_power_state (pdev, PCI_D0);
2034 pci_release_regions(pdev);
2035 pci_clear_mwi(pdev);
2036 pci_disable_device(pdev);
2037 pci_set_drvdata(pdev, NULL);
2038 free_netdev(dev);
2041 #ifdef CONFIG_PM
2042 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2044 struct net_device *dev = pci_get_drvdata(pdev);
2045 struct cp_private *cp = netdev_priv(dev);
2046 unsigned long flags;
2048 if (!netif_running(dev))
2049 return 0;
2051 netif_device_detach (dev);
2052 netif_stop_queue (dev);
2054 spin_lock_irqsave (&cp->lock, flags);
2056 /* Disable Rx and Tx */
2057 cpw16 (IntrMask, 0);
2058 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2060 spin_unlock_irqrestore (&cp->lock, flags);
2062 pci_save_state(pdev);
2063 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2064 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2066 return 0;
2069 static int cp_resume (struct pci_dev *pdev)
2071 struct net_device *dev = pci_get_drvdata (pdev);
2072 struct cp_private *cp = netdev_priv(dev);
2073 unsigned long flags;
2075 if (!netif_running(dev))
2076 return 0;
2078 netif_device_attach (dev);
2080 pci_set_power_state(pdev, PCI_D0);
2081 pci_restore_state(pdev);
2082 pci_enable_wake(pdev, PCI_D0, 0);
2084 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2085 cp_init_rings_index (cp);
2086 cp_init_hw (cp);
2087 netif_start_queue (dev);
2089 spin_lock_irqsave (&cp->lock, flags);
2091 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2093 spin_unlock_irqrestore (&cp->lock, flags);
2095 return 0;
2097 #endif /* CONFIG_PM */
2099 static struct pci_driver cp_driver = {
2100 .name = DRV_NAME,
2101 .id_table = cp_pci_tbl,
2102 .probe = cp_init_one,
2103 .remove = cp_remove_one,
2104 #ifdef CONFIG_PM
2105 .resume = cp_resume,
2106 .suspend = cp_suspend,
2107 #endif
2110 static int __init cp_init (void)
2112 #ifdef MODULE
2113 pr_info("%s", version);
2114 #endif
2115 return pci_register_driver(&cp_driver);
2118 static void __exit cp_exit (void)
2120 pci_unregister_driver (&cp_driver);
2123 module_init(cp_init);
2124 module_exit(cp_exit);