x86: Add generic aperf/mperf code
[linux-2.6/verdex.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob4109679863c1c3b5e15c8d7ca917d0fbe4633348
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
64 struct acpi_cpufreq_data {
65 struct acpi_processor_performance *acpi_data;
66 struct cpufreq_frequency_table *freq_table;
67 unsigned int resume;
68 unsigned int cpu_feature;
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73 static DEFINE_PER_CPU(struct aperfmperf, old_perf);
75 DEFINE_TRACE(power_mark);
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance *acpi_perf_data;
80 static struct cpufreq_driver acpi_cpufreq_driver;
82 static unsigned int acpi_pstate_strict;
84 static int check_est_cpu(unsigned int cpuid)
86 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
88 return cpu_has(cpu, X86_FEATURE_EST);
91 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
93 struct acpi_processor_performance *perf;
94 int i;
96 perf = data->acpi_data;
98 for (i = 0; i < perf->state_count; i++) {
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
102 return 0;
105 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
107 int i;
108 struct acpi_processor_performance *perf;
110 msr &= INTEL_MSR_RANGE;
111 perf = data->acpi_data;
113 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
114 if (msr == perf->states[data->freq_table[i].index].status)
115 return data->freq_table[i].frequency;
117 return data->freq_table[0].frequency;
120 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
122 switch (data->cpu_feature) {
123 case SYSTEM_INTEL_MSR_CAPABLE:
124 return extract_msr(val, data);
125 case SYSTEM_IO_CAPABLE:
126 return extract_io(val, data);
127 default:
128 return 0;
132 struct msr_addr {
133 u32 reg;
136 struct io_addr {
137 u16 port;
138 u8 bit_width;
141 struct drv_cmd {
142 unsigned int type;
143 const struct cpumask *mask;
144 union {
145 struct msr_addr msr;
146 struct io_addr io;
147 } addr;
148 u32 val;
151 /* Called via smp_call_function_single(), on the target CPU */
152 static void do_drv_read(void *_cmd)
154 struct drv_cmd *cmd = _cmd;
155 u32 h;
157 switch (cmd->type) {
158 case SYSTEM_INTEL_MSR_CAPABLE:
159 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160 break;
161 case SYSTEM_IO_CAPABLE:
162 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163 &cmd->val,
164 (u32)cmd->addr.io.bit_width);
165 break;
166 default:
167 break;
171 /* Called via smp_call_function_many(), on the target CPUs */
172 static void do_drv_write(void *_cmd)
174 struct drv_cmd *cmd = _cmd;
175 u32 lo, hi;
177 switch (cmd->type) {
178 case SYSTEM_INTEL_MSR_CAPABLE:
179 rdmsr(cmd->addr.msr.reg, lo, hi);
180 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
181 wrmsr(cmd->addr.msr.reg, lo, hi);
182 break;
183 case SYSTEM_IO_CAPABLE:
184 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
185 cmd->val,
186 (u32)cmd->addr.io.bit_width);
187 break;
188 default:
189 break;
193 static void drv_read(struct drv_cmd *cmd)
195 cmd->val = 0;
197 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
200 static void drv_write(struct drv_cmd *cmd)
202 int this_cpu;
204 this_cpu = get_cpu();
205 if (cpumask_test_cpu(this_cpu, cmd->mask))
206 do_drv_write(cmd);
207 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
208 put_cpu();
211 static u32 get_cur_val(const struct cpumask *mask)
213 struct acpi_processor_performance *perf;
214 struct drv_cmd cmd;
216 if (unlikely(cpumask_empty(mask)))
217 return 0;
219 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
220 case SYSTEM_INTEL_MSR_CAPABLE:
221 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
222 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
223 break;
224 case SYSTEM_IO_CAPABLE:
225 cmd.type = SYSTEM_IO_CAPABLE;
226 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
227 cmd.addr.io.port = perf->control_register.address;
228 cmd.addr.io.bit_width = perf->control_register.bit_width;
229 break;
230 default:
231 return 0;
234 cmd.mask = mask;
235 drv_read(&cmd);
237 dprintk("get_cur_val = %u\n", cmd.val);
239 return cmd.val;
242 /* Called via smp_call_function_single(), on the target CPU */
243 static void read_measured_perf_ctrs(void *_cur)
245 struct aperfmperf *am = _cur;
247 get_aperfmperf(am);
251 * Return the measured active (C0) frequency on this CPU since last call
252 * to this function.
253 * Input: cpu number
254 * Return: Average CPU frequency in terms of max frequency (zero on error)
256 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
257 * over a period of time, while CPU is in C0 state.
258 * IA32_MPERF counts at the rate of max advertised frequency
259 * IA32_APERF counts at the rate of actual CPU frequency
260 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
261 * no meaning should be associated with absolute values of these MSRs.
263 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
264 unsigned int cpu)
266 struct aperfmperf perf;
267 unsigned long ratio;
268 unsigned int retval;
270 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
271 return 0;
273 ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
274 per_cpu(old_perf, cpu) = perf;
276 retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
278 return retval;
281 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
283 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
284 unsigned int freq;
285 unsigned int cached_freq;
287 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
289 if (unlikely(data == NULL ||
290 data->acpi_data == NULL || data->freq_table == NULL)) {
291 return 0;
294 cached_freq = data->freq_table[data->acpi_data->state].frequency;
295 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
296 if (freq != cached_freq) {
298 * The dreaded BIOS frequency change behind our back.
299 * Force set the frequency on next target call.
301 data->resume = 1;
304 dprintk("cur freq = %u\n", freq);
306 return freq;
309 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
310 struct acpi_cpufreq_data *data)
312 unsigned int cur_freq;
313 unsigned int i;
315 for (i = 0; i < 100; i++) {
316 cur_freq = extract_freq(get_cur_val(mask), data);
317 if (cur_freq == freq)
318 return 1;
319 udelay(10);
321 return 0;
324 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
325 unsigned int target_freq, unsigned int relation)
327 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
328 struct acpi_processor_performance *perf;
329 struct cpufreq_freqs freqs;
330 struct drv_cmd cmd;
331 unsigned int next_state = 0; /* Index into freq_table */
332 unsigned int next_perf_state = 0; /* Index into perf table */
333 unsigned int i;
334 int result = 0;
335 struct power_trace it;
337 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
339 if (unlikely(data == NULL ||
340 data->acpi_data == NULL || data->freq_table == NULL)) {
341 return -ENODEV;
344 perf = data->acpi_data;
345 result = cpufreq_frequency_table_target(policy,
346 data->freq_table,
347 target_freq,
348 relation, &next_state);
349 if (unlikely(result)) {
350 result = -ENODEV;
351 goto out;
354 next_perf_state = data->freq_table[next_state].index;
355 if (perf->state == next_perf_state) {
356 if (unlikely(data->resume)) {
357 dprintk("Called after resume, resetting to P%d\n",
358 next_perf_state);
359 data->resume = 0;
360 } else {
361 dprintk("Already at target state (P%d)\n",
362 next_perf_state);
363 goto out;
367 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
369 switch (data->cpu_feature) {
370 case SYSTEM_INTEL_MSR_CAPABLE:
371 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
372 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
373 cmd.val = (u32) perf->states[next_perf_state].control;
374 break;
375 case SYSTEM_IO_CAPABLE:
376 cmd.type = SYSTEM_IO_CAPABLE;
377 cmd.addr.io.port = perf->control_register.address;
378 cmd.addr.io.bit_width = perf->control_register.bit_width;
379 cmd.val = (u32) perf->states[next_perf_state].control;
380 break;
381 default:
382 result = -ENODEV;
383 goto out;
386 /* cpufreq holds the hotplug lock, so we are safe from here on */
387 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
388 cmd.mask = policy->cpus;
389 else
390 cmd.mask = cpumask_of(policy->cpu);
392 freqs.old = perf->states[perf->state].core_frequency * 1000;
393 freqs.new = data->freq_table[next_state].frequency;
394 for_each_cpu(i, cmd.mask) {
395 freqs.cpu = i;
396 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
399 drv_write(&cmd);
401 if (acpi_pstate_strict) {
402 if (!check_freqs(cmd.mask, freqs.new, data)) {
403 dprintk("acpi_cpufreq_target failed (%d)\n",
404 policy->cpu);
405 result = -EAGAIN;
406 goto out;
410 for_each_cpu(i, cmd.mask) {
411 freqs.cpu = i;
412 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
414 perf->state = next_perf_state;
416 out:
417 return result;
420 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
422 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
424 dprintk("acpi_cpufreq_verify\n");
426 return cpufreq_frequency_table_verify(policy, data->freq_table);
429 static unsigned long
430 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
432 struct acpi_processor_performance *perf = data->acpi_data;
434 if (cpu_khz) {
435 /* search the closest match to cpu_khz */
436 unsigned int i;
437 unsigned long freq;
438 unsigned long freqn = perf->states[0].core_frequency * 1000;
440 for (i = 0; i < (perf->state_count-1); i++) {
441 freq = freqn;
442 freqn = perf->states[i+1].core_frequency * 1000;
443 if ((2 * cpu_khz) > (freqn + freq)) {
444 perf->state = i;
445 return freq;
448 perf->state = perf->state_count-1;
449 return freqn;
450 } else {
451 /* assume CPU is at P0... */
452 perf->state = 0;
453 return perf->states[0].core_frequency * 1000;
457 static void free_acpi_perf_data(void)
459 unsigned int i;
461 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
462 for_each_possible_cpu(i)
463 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
464 ->shared_cpu_map);
465 free_percpu(acpi_perf_data);
469 * acpi_cpufreq_early_init - initialize ACPI P-States library
471 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
472 * in order to determine correct frequency and voltage pairings. We can
473 * do _PDC and _PSD and find out the processor dependency for the
474 * actual init that will happen later...
476 static int __init acpi_cpufreq_early_init(void)
478 unsigned int i;
479 dprintk("acpi_cpufreq_early_init\n");
481 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
482 if (!acpi_perf_data) {
483 dprintk("Memory allocation error for acpi_perf_data.\n");
484 return -ENOMEM;
486 for_each_possible_cpu(i) {
487 if (!zalloc_cpumask_var_node(
488 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
489 GFP_KERNEL, cpu_to_node(i))) {
491 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
492 free_acpi_perf_data();
493 return -ENOMEM;
497 /* Do initialization in ACPI core */
498 acpi_processor_preregister_performance(acpi_perf_data);
499 return 0;
502 #ifdef CONFIG_SMP
504 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
505 * or do it in BIOS firmware and won't inform about it to OS. If not
506 * detected, this has a side effect of making CPU run at a different speed
507 * than OS intended it to run at. Detect it and handle it cleanly.
509 static int bios_with_sw_any_bug;
511 static int sw_any_bug_found(const struct dmi_system_id *d)
513 bios_with_sw_any_bug = 1;
514 return 0;
517 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
519 .callback = sw_any_bug_found,
520 .ident = "Supermicro Server X6DLP",
521 .matches = {
522 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
523 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
524 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
529 #endif
531 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
533 unsigned int i;
534 unsigned int valid_states = 0;
535 unsigned int cpu = policy->cpu;
536 struct acpi_cpufreq_data *data;
537 unsigned int result = 0;
538 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
539 struct acpi_processor_performance *perf;
541 dprintk("acpi_cpufreq_cpu_init\n");
543 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
544 if (!data)
545 return -ENOMEM;
547 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
548 per_cpu(drv_data, cpu) = data;
550 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
551 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
553 result = acpi_processor_register_performance(data->acpi_data, cpu);
554 if (result)
555 goto err_free;
557 perf = data->acpi_data;
558 policy->shared_type = perf->shared_type;
561 * Will let policy->cpus know about dependency only when software
562 * coordination is required.
564 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
565 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
566 cpumask_copy(policy->cpus, perf->shared_cpu_map);
568 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
570 #ifdef CONFIG_SMP
571 dmi_check_system(sw_any_bug_dmi_table);
572 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
573 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
574 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
576 #endif
578 /* capability check */
579 if (perf->state_count <= 1) {
580 dprintk("No P-States\n");
581 result = -ENODEV;
582 goto err_unreg;
585 if (perf->control_register.space_id != perf->status_register.space_id) {
586 result = -ENODEV;
587 goto err_unreg;
590 switch (perf->control_register.space_id) {
591 case ACPI_ADR_SPACE_SYSTEM_IO:
592 dprintk("SYSTEM IO addr space\n");
593 data->cpu_feature = SYSTEM_IO_CAPABLE;
594 break;
595 case ACPI_ADR_SPACE_FIXED_HARDWARE:
596 dprintk("HARDWARE addr space\n");
597 if (!check_est_cpu(cpu)) {
598 result = -ENODEV;
599 goto err_unreg;
601 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
602 break;
603 default:
604 dprintk("Unknown addr space %d\n",
605 (u32) (perf->control_register.space_id));
606 result = -ENODEV;
607 goto err_unreg;
610 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
611 (perf->state_count+1), GFP_KERNEL);
612 if (!data->freq_table) {
613 result = -ENOMEM;
614 goto err_unreg;
617 /* detect transition latency */
618 policy->cpuinfo.transition_latency = 0;
619 for (i = 0; i < perf->state_count; i++) {
620 if ((perf->states[i].transition_latency * 1000) >
621 policy->cpuinfo.transition_latency)
622 policy->cpuinfo.transition_latency =
623 perf->states[i].transition_latency * 1000;
626 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
627 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
628 policy->cpuinfo.transition_latency > 20 * 1000) {
629 policy->cpuinfo.transition_latency = 20 * 1000;
630 printk_once(KERN_INFO
631 "P-state transition latency capped at 20 uS\n");
634 /* table init */
635 for (i = 0; i < perf->state_count; i++) {
636 if (i > 0 && perf->states[i].core_frequency >=
637 data->freq_table[valid_states-1].frequency / 1000)
638 continue;
640 data->freq_table[valid_states].index = i;
641 data->freq_table[valid_states].frequency =
642 perf->states[i].core_frequency * 1000;
643 valid_states++;
645 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
646 perf->state = 0;
648 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
649 if (result)
650 goto err_freqfree;
652 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
653 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
655 switch (perf->control_register.space_id) {
656 case ACPI_ADR_SPACE_SYSTEM_IO:
657 /* Current speed is unknown and not detectable by IO port */
658 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
659 break;
660 case ACPI_ADR_SPACE_FIXED_HARDWARE:
661 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
662 policy->cur = get_cur_freq_on_cpu(cpu);
663 break;
664 default:
665 break;
668 /* notify BIOS that we exist */
669 acpi_processor_notify_smm(THIS_MODULE);
671 /* Check for APERF/MPERF support in hardware */
672 if (cpu_has(c, X86_FEATURE_APERFMPERF))
673 acpi_cpufreq_driver.getavg = get_measured_perf;
675 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
676 for (i = 0; i < perf->state_count; i++)
677 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
678 (i == perf->state ? '*' : ' '), i,
679 (u32) perf->states[i].core_frequency,
680 (u32) perf->states[i].power,
681 (u32) perf->states[i].transition_latency);
683 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
686 * the first call to ->target() should result in us actually
687 * writing something to the appropriate registers.
689 data->resume = 1;
691 return result;
693 err_freqfree:
694 kfree(data->freq_table);
695 err_unreg:
696 acpi_processor_unregister_performance(perf, cpu);
697 err_free:
698 kfree(data);
699 per_cpu(drv_data, cpu) = NULL;
701 return result;
704 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
706 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
708 dprintk("acpi_cpufreq_cpu_exit\n");
710 if (data) {
711 cpufreq_frequency_table_put_attr(policy->cpu);
712 per_cpu(drv_data, policy->cpu) = NULL;
713 acpi_processor_unregister_performance(data->acpi_data,
714 policy->cpu);
715 kfree(data);
718 return 0;
721 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
723 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
725 dprintk("acpi_cpufreq_resume\n");
727 data->resume = 1;
729 return 0;
732 static struct freq_attr *acpi_cpufreq_attr[] = {
733 &cpufreq_freq_attr_scaling_available_freqs,
734 NULL,
737 static struct cpufreq_driver acpi_cpufreq_driver = {
738 .verify = acpi_cpufreq_verify,
739 .target = acpi_cpufreq_target,
740 .init = acpi_cpufreq_cpu_init,
741 .exit = acpi_cpufreq_cpu_exit,
742 .resume = acpi_cpufreq_resume,
743 .name = "acpi-cpufreq",
744 .owner = THIS_MODULE,
745 .attr = acpi_cpufreq_attr,
748 static int __init acpi_cpufreq_init(void)
750 int ret;
752 if (acpi_disabled)
753 return 0;
755 dprintk("acpi_cpufreq_init\n");
757 ret = acpi_cpufreq_early_init();
758 if (ret)
759 return ret;
761 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
762 if (ret)
763 free_acpi_perf_data();
765 return ret;
768 static void __exit acpi_cpufreq_exit(void)
770 dprintk("acpi_cpufreq_exit\n");
772 cpufreq_unregister_driver(&acpi_cpufreq_driver);
774 free_percpu(acpi_perf_data);
777 module_param(acpi_pstate_strict, uint, 0644);
778 MODULE_PARM_DESC(acpi_pstate_strict,
779 "value 0 or non-zero. non-zero -> strict ACPI checks are "
780 "performed during frequency changes.");
782 late_initcall(acpi_cpufreq_init);
783 module_exit(acpi_cpufreq_exit);
785 MODULE_ALIAS("acpi");